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Figure 1: A polygonal input mesh (a) is traversed and encoded as a stream of operations (marked using different colors) and attributes.
During traversal, the mesh is implicitly converted into a triangle mesh (b) and stored as a bit stream (c). The final compressed representation
allows us to recover the original polygons (d) rather than the intermediate triangle mesh.

Abstract

Polygonal meshes are used in various fields ranging from CAD to gaming and web based applications. Reducing the size
required for storing and transmitting these meshes by taking advantage of redundancies is an important aspect in all of these
cases. In this paper, we present a connectivity based compression approach that predicts attributes and stores differences to
the predictions together with minimal connectivity information. It is an extension to the Cut-Border Machine and applicable
to arbitrary manifold and non-manifold polygonal meshes containing multiple attributes of different types. It compresses both
the connectivity and attributes without loss outside of re-ordering vertices and polygons. In addition, an optional quantization
step can be used to further reduce the data if a certain loss of accuracy is acceptable. Our method outperforms state-of-the-art
compression techniques, including specialized triangle mesh compression approaches when applicable. Typical compression
rates for our approach range from 2:1 to 6:1 for lossless compression and up to 25:1 when quantizing to 14 bit accuracy.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Graphics data structures and data types

1. Introduction

Triangle meshes and, more general, polygonal meshes are ubiqui-
tous and have many applications. Currently used meshes typically
contain millions or even billions of polygons. In order to store these
efficiently, many compression approaches and, more recently, com-
pression standards have been proposed. Initially, the meshes were
stored in plain ASCII or binary format with generic compression
(e.g. GZip). While such an approach already significantly reduces
the storage requirements, it fails to take advantage of most of the
redundancies in the underlying mesh, yielding sub-optimal com-
pression rates.

Compression approaches can be classified as either progressive
or single rate. Progressive approaches allow different levels of de-

tail and instant visualization of coarser levels while loading the
remainder of the data. They tend, however, to offer lower com-
pression rates than the single rate approaches. In terms of sin-
gle rate approaches, several standards such as OpenCTM, WebGL
Loader, Open3DGC and Google Draco have been proposed over
time. However, all of these standards impose severe restrictions on
the type of meshes (i.e. only triangle meshes) and/or the types of
attributes they support.

In this paper, we propose a novel mesh compression scheme
based on the Cut-Border Machine [GS98, Gum99] that allows
for compression of generic, manifold and non-manifold polygonal
meshes. More specifically, our contributions are:

• a general and efficient single rate connectivity compression
scheme for polygon meshes of arbitrary topology,
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• a compression scheme for different types and number of at-
tributes attached to vertices, faces or corners, and
• compression rates that are on par or better than the state-of-the-

art in current approaches for triangle or polygonal mesh com-
pression even for meshes supported by other approaches.

2. Related Work

Starting with the first geometry compression approach by Deer-
ing [Dee95], the basic idea of single rate encoders is to start with
an initial triangle and build the entire mesh by attaching trian-
gles to the already encoded part of the mesh. Touma and Gots-
man [TG98] predict the position of new vertices using a paral-
lelogram rule rather than storing the absolute position. They also
encode the free valence of new vertices instead of transmitting a
special code for triangles that close a cycle. This approach has
been extended to polygons by Alliez and Isenburg [IA02]. Context
based predictive coding was added by Kälberer et al. [KPRW05].
Gumhold and Strasser [GS98] on the other hand explicitly store
triangles in their cut-border machine and instead rely on arithmetic
coding to efficiently represent triangle operations. In an extension
Gumhold [Gum99] adapts the traversal order of the mesh and uses
context sensitive models to further reduce storage costs. The edge-
breaker algorithm [Ros99] is very similar to the cut-border machine
but it instead encodes the boundary of the mesh up front. Google
Draco is based on this approach. Extending Deering [Dee95], Ba-
jaj et al. [BPZ99] introduce predictive coding of arbitrary attributes
similar to the predictive coding of vertex positions. By restrict-
ing triangles meshes to be two-manifold [KADS02] or piecewise
regular [SRK02], the coding efficiency can further be improved.
Unfortunately, all algorithms to this point are capable of only en-
coding manifold, orientable triangle meshes. In order to encode
non-manifold meshes or general polygonal meshes, the original
mesh has to be split into separate triangle meshes. Guéziec et
al. [GBTS99] compress general manifold polygonal meshes and
use vertex clustering to avoid transmitting the same vertex multi-
ple times. The TFAN algorithm [MZP09] separates any manifold
or non-manifold mesh into a set of triangles fans and a set of trian-
gle fan configurations. This approach has been implemented as part
of MPEG4 and Open3DGC. Isenburg and Lindstrom [ILS05] pro-
pose a different approach to geometry compression by re-ordering
of triangles and vertices. This re-oderend list is then compressed by
using relative indices counting from the tail of the already streamed
vertex data [IL05]. This approach is able to compress any mesh
topology and can easily be extended to general polygonal meshes.
The compression ratio on the other hand is not optimal as indices
are still stored explicitly instead of using connectivity information.
Jakob et al. [JBG17] implemented a parallel version of the cut-
border machine with local predictions. However, due to the parallel
implementation and the restrictions of the GPU based decompres-
sion approach, their compression approach only supports quantized
attribute data and sub-optimal connectivity compression rates.

3. Preliminaries

Similar to Maglo et al. [MLDH15], we define a mesh as geometry,
connectivity and attributes. The geometry of a mesh is the collec-
tion of polygons, i.e. which and how many vertices belong to each

triangle edge
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Figure 2: Visualization of the Triangle Edge Data Structure. fnext
points to the same edge on the next triangle (from green to red,
then blue and back to green). enext iterates over all edges of one
triangle.

individual polygon or face. A face can also be interpreted as a list
of edges. The connectivity of the mesh is defined by shared edges
between polygons. The attributes are all information attached to
vertices, edges and faces. According to Isenburg et al. [IGG01],
the position of a vertex can simply be seen as one attribute.

3.1. Connectivity

Based on the topology of the input mesh, there exist certain con-
straints on the local connectivity. In a 2-manifold mesh, all faces
attached to any given vertex form an open or closed polygon fan.
In turn, if a mesh is non-manifold, there exists at least one vertex
that is connected to multiple polygon fans.

Most mesh formats, e.g. PLY, OBJ and OFF, represent the con-
nectivity by storing vertex indices for each corner of a polygon.
This indirect approach of storing connectivity information requires
a linear-time lookup for finding an adjacent polygon because the
whole face list has to be traversed for it. Since connectivity com-
pression algorithms make aggressive use of adjacency information,
an efficient direct connectivity data structure has to be used to make
the compression feasible.

In order to support non-manifold meshes, we extend the Triangle
Edge Data Structure [Müc93]. In this data structure, the half edges
form a tuple with their triangle, called triangle edge. Each triangle
edge stores a reference (fnext) to the next and the previous triangle
attached to the same edge. These references form two cycles around
the half edge. There is also a pointer that references the next edge
of the current triangle called enext (see Figure 2). It can easily be
adapted to polygonal meshes by attaching each fnext pointer to the
corresponding edges instead of the triangle/polygon. We call this
modified data structure Polygon Edge Data Structure.

3.2. Attributes

Due to the structure of our algorithm, we make no distinction be-
tween the vertex position and further vertex attributes. An attribute
can be seen as a vector of real or integral scalar numbers. The po-
sition p of a vertex, for example, can be represented as the vector
(px, py, pz). Multiple attributes that always occur in a union can
be grouped together. E.g., vertex normals are always bound to the
vertex positions and shared by all neighboring faces if there are
no sharp edges in a mesh. Attributes with the same signature form
a series, called attribute list. Attributes bound to faces are called
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Figure 3: Algorithm structure: Data flow of the connectivity and
the attributes.

face attributes and the ones bound to vertices are called vertex at-
tributes respectively. Attributes that are bound to face corners are
called corner attributes. Groups of corners around a specific ver-
tex are called wedges if they share the same attribute data. Due to
the indexed input structure, wedges can always be determined by
grouping the corner attributes while walking around a vertex. Edges
and half edges can also hold attributes but they will not be further
discussed in this paper due to their rare use.

Usually, certain attributes are defined only for specific regions,
e.g. texture coordinates or vertex colors are only available for part
of a mesh. Regions are defined for faces and vertices separately,
as a region of faces cannot be determined by analyzing the ver-
tex regions and vice versa. Different regions can share connectivity
which has to be taken into account for compression, as different
regions cannot be handled as different meshes.

3.3. Compression

Our overall compression approach transforms both connectivity
and attributes into a string of symbols. For maximum compression
efficiency, all of these symbols are encoded using context adap-
tive arithmetic coding where each context consists of an adaptive
model [Gum99]. Each model predicts the probability of a certain
symbol based on an initial estimate and the number of symbols
previously encoded through this model [MNW98].

4. Connectivity Compression

Fundamentally, our approach first splits the input mesh into con-
nectivity and attribute data and encodes both parts separately (see
Figure 3). The connectivity information is used to set up the Poly-
gon Edge Data Structure that is used for querying adjacency in-
formation. This information is then used to encode the connectivity
using our extended Cut-Border Machine. The attributes on the other
hand are compressed using the connectivity data for both defining
an ordering and prediction.

4.1. Cut-Border Machine

The original Cut-Border Machine of Gumhold et al. [GS98,
Gum99] is used to compress triangle mesh connectivity. By travers-

gate-adjacent vertex
gate-adjacent edges
gate-adjacent triangle
gate
cut-border

Figure 4: Terms of the Cut-Border Machine using the example of
the new vertex operation.

new vertex (∗) conn. forward (→) conn. backward (←)

border (_) spliti (∞i) unionp,i (∪p
i )

Figure 5: Cut-border operations [Gum99]. The current cut-border
is marked blue, the gate is marked as a bold blue arrow and the
gate-adjacent triangle is shaded dark grey.

ing the mesh in a structured way and writing only information re-
quired for correct traversal during decoding, nearly optimal com-
pression can be performed.

The main part of the Cut-Border Machine is the so called cut-
border. The cut-border splits the mesh into an encoded and to-be-
encoded part and is stored as a circular data structure containing
half edges. For each iteration, the Cut-Border Machine stores a ref-
erence to the currently active cut-border element, the so called gate.
The gate leads from the compressed to the uncompressed region
and is the only part of the cut-border where new triangles are ap-
pended to the cut-border. In the following, we define multiple terms
for better understanding of the algorithm (Figure 4). We call the tri-
angle of the twin of the gate gate-adjacent triangle and the vertex
of the gate-adjacent triangle not connected to the gate gate-adjacent
vertex. The two edges of the gate-adjacent triangle connecting the
gate with the gate-adjacent vertex are called gate-adjacent edges.

At the beginning, the Cut-Border Machine chooses a triangle
from the set of triangles, initializes the cut-border to the three
edges, and sets the gate to the first edge. Now, the Cut-Border Ma-
chine checks for the gate-adjacent vertex, which can be classified
according to the following conditions (see Figure 5): If the gate-
adjacent vertex is not part of the cut-border, the gate-adjacent edges
will be added to the cut-border and a new vertex operation will be
written. If the vertex is the next vertex on the cut-border after the
gate, the gate will be directly connected to the edge after the next
element and a connect forward operation will be encoded. Anal-
ogous, a connect backward operation will be encoded, when the
gate-adjacent vertex is the previous one. If the vertex does not ex-
ist because the gate is on a mesh border a border operation will
be written and the gate will be removed from the cut-border. If the
vertex is on the current cut-border but neither the previous nor the
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Figure 6: Traversal of a non-manifold mesh using the Cut-Border
Machine. The current gate is marked blue. The pink triangle can
not be encoded with the original Cut-Border Machine.

next, the cut-border must be split into two parts; the part in traversal
direction from the gate to the adjacent vertex and the part in oppo-
site direction. This will be encoded as a split operation, followed
by the offset of the adjacent vertex on the cut-border. After split-
ting the cut-border a new condition can occur. When the adjacent
vertex is part of another cut-border, they have to be concatenated
at this vertex using the union operation, followed by the offset and
the part index.

After checking the conditions, updating the cut-border and en-
coding the cut-border operations, the first new edge of the encoded
triangle becomes the new gate; this corresponds to a depth-first
search [Gum99]. When there is no edge left on the cut-border, the
Cut-Border Machine tries to find a distinct edge connected com-
ponent of the mesh and repeats the previous steps. If all edge con-
nected components are encoded, the Cut-Border Machine stops.

An important feature the original Cut-Border Machine [GS98]
lacks, is the capability to encode non-manifold edges and ver-
tices. The improved Cut-Border Machine [Gum99] can only en-
code non-manifold vertices on mesh borders and non-orientable
vertices which forces the approach to cut meshes into manifold
edge-connected components while losing adjacency information at
the cuts. In addition, neither of these are able to compress polyg-
onal meshes. We thus propose a generalized compression scheme
that works for arbitrary polygonal meshes. In Section 4.2, we will
look into extending the Cut-Border Machine to encode general
non-manifold triangle meshes and finally non-manifold polygonal
meshes in Section 4.3.

4.2. Non-manifold meshes

When analyzing why the Cut-Border Machine cannot encode non-
manifold vertices or edges, we observed that it assumes every gate-
adjacent vertex to be located on the cut-border when it is flagged
as previously encoded. This is exactly the condition for any split
operation. On 2-manifold meshes, this is always the case because
each edge is only handled twice during compression – once when
it is added to the cut-border and again when it becomes the gate
or some gate connects to that edge. During the second encounter,
the edge is always removed from the cut-border. On non-manifold
meshes, an edge can get connected or become the gate multiple
times. Due to the removal of the edge this can no longer be encoded.
However, the removal is required to ensure a correct traversal order.
The problems caused by the traversal of non-manifold meshes can
be seen in Figure 6 where the final triangle cannot be added as
neither of the two encoded vertices can be indexed anymore.

Our approach solves this problem by handling the case where a

gate-adjacent vertex was flagged as already encoded but does not
exist on the cut-border as a new vertex operation. During encoding
the global vertex offset is transmitted instead of transmitting the
whole vertex attribute as it is already present in the encoded stream.
Using this technique, the mesh is split into multiple pieces implic-
itly. The individual parts are compressed separately but the decoder
is able to concatenate the parts correctly using the global vertex off-
set. We call the modified new vertex operation non-manifold new
vertex (∗i). Having to transmit a global vertex offset is acceptable,
due to the few occurrences of non-manifold vertices or edges in
most meshes. This solution does not need any costly preprocessing
steps to recognize non-manifold vertices or edges by analyzing all
triangle fans prior to encoding.

Similar to the improved Cut-Border Machine [Gum99], we fur-
ther introduced three new initial operations to initialize a new edge-
connected mesh component with the offsets of one, two or three al-
ready encoded (non-manifold) vertices (non-manifold initial 14i,
non-manifold initial 2 4i, j and non-manifold initial 3 4i, j,k). In
Figure 6 this is equivalent to re-initializing the gate to the already
encoded edge of the pink triangle.

4.3. Polygonal Meshes

In the improved Cut-Border Machine [Gum99], Gumhold notes
that the compression can be improved by traversing the mesh using
a depth-first search. This keeps the start vertex of the gate fixed as
long as possible and a traversal around the triangle fan of this ver-
tex happens as long as new vertex operations occur. When the last
triangle of the triangle fan is about to be encoded, a connect for-
ward operation closes the triangle fan and finally changes the start
vertex of the gate to traverse a new triangle fan. This traversal order
is locally equal to the traversal orders used in current valence based
systems.

Since polygons can always be split up into an open triangle fan,
we can exploit the traversal order to continuously encode a triangu-
lation of the polygon. Note that we do not actually use this triangu-
lation outside of encoding or decoding the polygon and thus don’t
require special treatment of concave polygons. To recover the orig-
inal polygon, we simply have to encode the number of additional
vertices that belong to this polygon. This can be done by adding a
symbol after the first triangle of every polygon. In pure triangle or
quad meshes this will automatically be omitted as the model of the
encoder only contains a single symbol.

To avoid redundant encoding of attributes, the face attribute is
only attached to the first triangle of the polygon and only a sin-
gle new corner attribute is attached to every following triangle, i.e.
number of triangles plus two instead of three times the number of
triangles.

4.4. Coding Example

When encoding the mesh seen in Figure 7, the initial triangle f0,1,2
is encoded using an initial (4) operation. Next, the half-edge e2,0
becomes the initial gate and the algorithm traverses the triangle fan
from there generating new vertex operations until triangle f0,6,1 is
reached. Encoding this triangle generates a connect forward oper-
ation which closes the triangle fan. The next two triangles ( f1,6,7
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Figure 7: Example mesh. It contains a pentagon ( f0,1,2,3,4) and a
quad ( f0,4,5,6), which are split into triangles during compression
and two kinds of non-manifold triangles ( f0,8,7), which overlaps
the rest of the mesh and f4,9,10, which is connected by one single
vertex to the rest of the mesh).

and f1,7,8) cause additional new vertex operations. Next, the gate
e1,8 and the following cut-border elements are part of the mesh bor-
der and we thus have to store 7 border operations. The last triangle
of this edge-connected component f0,8,7 contains a non-manifold
vertex v0, because this vertex is already marked as encoded but not
on the current cut-border. This triangle has to be encoded using a
non-manifold new vertex operation. After that we have to store 2
more border operations to encode the entire boundary of the first
edge connected component. The triangle f4,9,10, that forms a new
edge-connected component, contains a non-manifold vertex v4 as
well and thus causes a non-manifold initial 1 operation. Finally, we
have to encode another 3 border operations for the second compo-
nent and then mark the stream as complete with a end of mesh (5)
operation. In addition to the operations, we also need to store how
many triangle belong to a certain face (encoded after the operation
that starts the new face) and any attributes that we would like to
encode.

In summary, the bit stream will contain the following symbols
for encoding the connectivity (see Figure 5 for additional symbol
definition; faces are given for reference only):

42∗∗︸ ︷︷ ︸
f0,1,2,3,4

∗1∗︸︷︷︸
f0,4,5,6

→ 0︸︷︷︸
f0,6,1

∗0︸︷︷︸
f1,6,7

∗0︸︷︷︸
f1,7,8

_______ ∗00︸︷︷︸
f0,8,7

__440︸︷︷︸
f4,9,10

___5

5. Attribute Compression

Every time we encounter a certain attribute for the first time, it
needs to be encoded within the compressed stream. In order to
achieve maximum efficiency, we encode all connectivity informa-
tion first and use it for predicting attribute values.

5.1. Number representation

As mentioned in Section 3, an attribute is a vector that can either
be stored as fixed or floating point numbers. Fixed point numbers
result in a smaller entropy of delta values but also incur some loss
on the original input data.

If some loss of accuracy is acceptable, floating point numbers
can be transformed into fixed point numbers using quantization.

For most smaller meshes, 14 bits are often enough for vertex posi-
tions and 10 bits suffice for normals. Note, when using ASCII files
as input, the attributes are usually stored as fixed point numbers
which may allow for “quantization” of attributes without any loss
of information.

5.2. Prediction & Delta Coding

To keep the number of bits required for encoding attributes low,
we only encode differences to a predicted attribute [MLDH15]. For
maximum coding efficiency, the differences should require as few
bits as possible and should be similar to each other. The predic-
tion algorithms need to be different for each attribute type and each
attribute will use its own arithmetic model as the statistical distri-
bution of possible values is unique for each attribute.

• Vertex attributes are predicted using multiple parallelogram pre-
diction.

• Face attributes are encoded as the difference to one of their
neighbors.

• Corner attributes are encoded as the difference to a former en-
coded attribute of that vertex.

The multiple parallelogram prediction is based on a simple paral-
lelogram prediction [TG98, GGS99] for all neighboring triangles
where all vertices have already been encoded. In our coding exam-
ple, v4 would be predicted as v0 +v3−v2. If there is more than one
parallelogram available, e.g. v6 in our example (v0 + v5− v4 and
v0 + v1− v2), we average all predictions. For lossy compression,
we use the average while for lossless compression, we pick the one
closest to the average to avoid numerical instabilities. This effec-
tively removes outliers in the prediction while still adapting to the
overall average. Once all predictions have been calculated, we need
to store the differences to the predictions in the bit stream.

As computing differences in floating point arithmetic suffers
from loss of accuracy, a transformation to a signed integer repre-
sentation that keeps the relative ordering of numbers is required.
A floating point number is stored (from msb to lsb) as a sign bit,
followed by the exponent and finally the mantissa. For positive
floating point numbers this already creates the correct ordering.
For negative floating point numbers, we simply have to invert the
31 lsbs to get the correct ordering as well. This was already de-
scribed by Lindstrom and Isenburg [LI06]. Positive and negative
infinity representations (maximum exponent) as well as de-norm
values (minimum exponent) are also ordered correctly. Thus, this
transformation keeps differences between very small positive and
negative numbers close to zero as well.

Similar to Guthe and Goesele [GG16], we know the range of
possible positive and negative numbers given the predicted value
and can thus reorder the differences in a way that their absolute
value increases (see Figure 8 for two examples).

5.3. Attribute bindings

As explained in Section 3, the mapping from faces and vertices
to regions is surjective. Because the connectivity encoder decides
which attribute is sent based on its traversal, redundancies can oc-
cur when one attribute is assigned multiple times. To avoid these
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0 −1 1 −2 · · · 14 −15 15 16 · · · 47 48

0 −1 1 −2 · · · −15 15 −16 −17 · · · −47 −48

Figure 8: Reordering of difference values for ranges [−15..48] and
[−48..15]. Possible differences are sorted by their absolute value.

redundancies, our algorithm tracks all attribute IDs in a so called
history. If an attribute is about to be encoded, a lookup into the his-
tory is performed. In case the attribute does not exist in the history,
the raw attribute data is encoded and a new entry is added to the his-
tory. Otherwise, only the global attribute ID is encoded in the data
stream. This history is only an optimization in cases where a small
number of very different attributes are assigned very often and the
prediction approach was not able to reduce the data sufficiently.

Because simple mesh formats such as PLY, OBJ or OFF do
not support surjective indexed attributes and allow only a bijec-
tive mapping, most exporters duplicate the attribute values. This
results in transmitting the same attribute multiple times because it
was bound to multiple faces, vertices or corners. To restore the sur-
jective mapping, a hash based approach is used to detect redundant
values: All attributes are added to a hash map and discarded when
the same value was previously inserted.

5.4. Regions

When calculating the differences to the predictions, the same at-
tribute types are assumed for the prediction and the values to be
predicted. By supporting regions, this is not always the case. As
a solution to this problem, we encode the region ID prior to each
attribute and omit the predictions step in the case of inconsistent re-
gions by encoding absolute values. This is better than splitting the
mesh at region borders as this would result in copying attributes
at region borders instead of encoding them once. If only one re-
gion exists for faces or vertices, the encoding of the region ID will
automatically be omitted by the arithmetic coder.

5.5. Header

Due to the variety of attributes supported by our format, a file
header must be provided in order to decode the compressed data.
The header is defined as follows:

• The number of faces N f and vertices Nv to allow allocations of
the attribute bindings.
• The number of regions Nr and their bindings to the attribute lists

for faces Bi
f , vertices Bi

v and corners Bi
c (with 0 ≤ i < Nr). This

needs to be defined per region as each region can have a variable
number of attribute lists bound to it.
• For each attribute list the format Fi (with 0 ≤ i < Na, Na can be

determined from the maximum of the bindings) must be trans-
mitted (data types and quantization) and how the attributes are
interpreted (positions, normals, etc.).
• In case of quantization, the format also includes the minimum

and maximum values for each attribute list.
• A list of possible number of edges per face to initialize the cor-

responding arithmetic coder.

6. Results

To evaluate our compression algorithm, we compare it against sev-
eral other approaches for both lossless and lossy compression on a
variety of meshes.

6.1. Meshes

The Lucy mesh (Figure 9a) is a non-manifold triangle mesh consist-
ing of 14,027,872 vertices and 28,055,742 triangles. An indexed
face set would require 481.6MB. The Bunny mesh (Figure 9b)
is a manifold triangle mesh with 5 holes and consists of 35,947
vertices and 69,451 triangles. An indexed face set would require
1,235kB. The Power Plant mesh (Figure 9c) is a non-manifold tri-
angle mesh consisting of 11,070,509 vertices with normals and
12,748,510 triangles. An indexed face set would require 399MB.
The Beethoven mesh (Figure 9d) is a non-manifold polygon mesh
consisting of 2,655 vertices with normals and 2,814 faces (5,030
triangles). An indexed face set (including a per face edge count)
would require 115kB. The Galleon mesh (Figure 9e) is a non-
manifold polygon mesh consisting of 2,372 vertices with normals
and 2,385 faces (4,698 triangles). An indexed face set (including
a per face edge count) would require 102kB. The Kobe mesh (Fig-
ure 9f) is a non-manifold polygon mesh consisting of 27,915 ver-
tices with normals and 13,066 faces (25,109 triangles). An indexed
face set (including a per face edge count) would require 905kB.

6.2. Lossless Comparison

When comparing the compression ratio of our lossless compression
scheme against Google Draco, OpenCTM and GZip compression
of the original file (see Table 1), we can clearly see that we are al-
ways able to outperform the GZip compression of the original file.
For both the Lucy and the Bunny mesh, our approach outperforms
all other compression schemes while OpenCTM performs best on
the very regular Power Plant model as well as on the Beethoven,
Galleon and Triceratops meshes. The reason for this lies most likely
in the dictionary based compression while both our approach and
Google Draco use entropy coding. In terms of compression speed,
we are always faster than GZip except for very small meshes and re-
quire on average about the same time as OpenCTM. In addition, our
approach is the only one outside of GZip that is able to encode the
polygonal meshes without converting them to triangle meshes. As
a result, for the triangular meshes (except for the power plant) our
approach is outperforming all other approaches in terms of com-
pression ratio. For the polygonal meshes, our approach produces
better compression rates than the only other applicable approach
(GZip).

6.3. Lossy Comparison

When comparing lossy compression approaches, Google Draco al-
ways produces the smallest output with our approach in second
place for the Lucy and Bunny models (see Table 2). The reason for
the compression performance difference lies in the attribute pre-
diction scheme. While our approach stores the attributes within the
connectivity compression symbol stream, Google Draco stores all
attributes after the connectivity has been encoded. This way, mul-
tiple existing triangles can be used to predict the position of the
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(a) Lucy (b) Bunny (c) Power Plant (d) Beethoven (e) Galleon (f) Kobe

Figure 9: Renderings of the datasets.

Model
our drc ctm gz

Size Time Size Time Size Time Size Time
Lucy 78.35MB 69.18s 163.23MB 27.96s 123.76MB 93.12s 254.95MB 147.02s
Bunny 231.48kB 0.41s 413.71kB 0.15s 456.15kB 0.29s 809.31kB 0.52s
Power Plant 105.07MB 55.76s 224.55MB 21.77s 27.07MB 56.39s 114.37MB 97.43s
Beethoven 70.21kB 0.22s 63.17kB 0.09s 47.31kB 0.11s 81.07kB 0.16s
Galleon 64.34kB 0.25s 56.46kB 0.09s 38.78kB 0.1s 73.40kB 0.17s
Kobe 404.00kB 1.54s 697.52kB 0.12s 264.73kB 0.38s 510.94kB 0.19s

Table 1: Lossless compression using our approach compared against Google Draco (drc), OpenCTM (ctm) and GZip (gz). Note that Google
Draco and OpenCTM encode Beethoven, Galleon and Triceratops as triangle meshes and are therefore not able to recover the original
polygonal mesh during decompression.

encoded vertices leading to fewer bits to store the differences to the
predicted values. In order to implement the same prediction stream,
we would need to change our compression scheme to also encode
all attributes after the entire connectivity has been encoded. Again,
our approach is the only one that is able to encode the polygonal
meshes without converting them to triangle meshes and therefore
still the best choice in terms of compression ratio for these meshes.

6.4. Detailed Compression Analysis

Looking at the allocation of bits within the bit stream for both the
connectivity and the attributes (Table 3), we can see that the con-
nectivity of a triangle mesh requires 1 to 3 bit per vertex while
there is an increase of about 2 bit per vertex for polygonal meshes.
The attribute compression scheme achieves between 10 and 24 bit
per vertex/corner during lossless compression of three 32 bit float-
ing point values. When quantizing attributes to 14 bit (position) or
10 bit (other) per components, the compression scheme achieves
between 3 and 11 bit per vertex/corner. This corresponds to a com-
pression ratio of 3:1 to 10:1 on top of the quantization if enabled.

7. Conclusion & Future Work

In this paper, we have shown a general single rate connectivity com-
pression scheme for polygon meshes of arbitrary topology that is
capable of compressing different types and number of attributes at-
tached to vertices, faces or corners. With and without quantization
of attributes, we achieved compression rates that are on par or better
than the state-of-the-art in current approaches for triangle or polyg-
onal mesh compression. In the future, we would like to add support
for edge attributes.
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