
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or

future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Haptic Interaction with a Polygon Mesh

Reconstructed from Images

Xingzi Zhang

School of Computer Science and Engineering

Nanyang Technological University

Singapore

e-mail: ZHAN0388@e.ntu.edu.sg

Michael Goesele

TU Darmstadt

Germany

e-mail: goesele@cs.tu-darmstadt.de

Alexei Sourin

School of Computer Science and Engineering

Nanyang Technological University

Singapore

e-mail: assourin@ntu.edu.sg

Abstract—Multi-view reconstruction methods are able to

produce polygon meshes of a complex scene with millions of

triangles which are well suited for visualization purposes.

However, these large-scale, dense meshes normally cannot be

haptically rendered directly with readily available APIs. In this

paper, we present a method to extend meshes reconstructed from

images to visual-haptic applications by using images for visual

display while an improved hybrid collision detection method is

used to meet the real-time requirements for haptic rendering.

Moreover, three main imperfections (holes, outliers and

degenerated facets) inherent in reconstructed models are also

handled to help provide a smooth and consistent force feedback.

Given a reconstructed model and the corresponding image, the

proposed method provides a way to virtually explore the scene in

the image, making it possible to appreciate art works and historic

monuments within a touching distance.

Keywords-haptic interaction; image-based visualization;

imperfect polygon mesh

I. INTRODUCTION

Multi-view reconstruction methods such as [16] are able
to produce polygon meshes of a complex scene which are
sufficient for visualization. However, because of
imperfections inherent in passive computer vision
techniques, meshes reconstructed in this way usually
contain holes, bumpy surfaces and outliers, which cannot be
handled easily in haptic interaction. Besides, these meshes
often have more than one million triangles, which are
unevenly distributed based on the image content. For
example, if there are several close-up photos of a part of the
scene, it is likely to have more details and thus more
polygons in this region, resulting in a partially dense model.
Collision detection with a large-scale, dense mesh is a
challenging task in haptic interaction which requires a high
update rate (1 kHz). Simplifying the mesh by decimation
can accelerate the collision detection process, but at the cost
of losing geometry details on the reconstructed surface. For
applications which require simulated tangible perception
that exactly matches the displayed geometry, it is necessary

to find a haptic rendering algorithm which can maintain
both the visual-haptic interactive speed and the accuracy of
the haptic feedback.

Interactive rendering of large-size meshes is
problematic since the combined visual and haptic rendering
time for the meshes would significantly increase as the
number of polygons goes up and reaches the limit of the
graphics renderer. Although mesh simplification methods
and acceleration techniques can effectively reduce the
rendering time, image-based visualization is a better choice
instead of photorealistically rendering a scene with millions
of polygons.

Therefore, to be able to interact with complex models
reconstructed from images, we propose to use images to
replace visual display of these models while still aligning
them with the respective parts of the images for haptic
interaction. In applications, such as interactive panoramas
and virtual street walkthroughs, we believe this could
provide a way to immerse in a visual-haptic environment
with models of original high resolution. An improved
hybrid collision detection method which combines
precomputed connectivity information and spatial
partitioning is also proposed in this paper. It is suitable for
fast collision detection and is able to handle the artificial
elements inside the meshes. In Section ІІ, we survey the
relevant works. In Section ІІІ, the main algorithms and
system architecture are described. Comparison with a few
relevant approaches is done in Section ІV, followed by the
conclusion in Section V.

II. RELATED WORK

Regarding the features of reconstructed meshes, two
main problems that we encounter in the interaction are (i)
how to achieve fast and accurate collision detection and (ii)
how to provide photorealistic visual feedback for the
interaction.

A. Point-based Collision Detection with Polygon Meshes

Many methods proposed for haptic rendering of polygon
meshes so far detect collision with the whole polygon mesh

mailto:ZHAN0388@e.ntu.edu.sg
mailto:goesele@cs.tu-darmstadt.de

in each haptic frame. The haptic rendering time thus
depends on the number of polygons. For example, in
widely-used haptic rendering methods such as God-Object
[1], Ruspini [2] and CHAI3D [3], active constraint polygons
need to be found first from all the polygons in each haptic
frame, and then the constraint polygon with the shortest
distance to haptic cursor is determined as the contact
polygon. OpenHaptics HLAPI [4] utilizes OpenGL Depth
Buffer and Feedback Buffer in a smart way and can
automatically detect collision with shapes rendered in
graphics based on the shape geometry and depth
information. In this way, Depth Buffer and Feedback
Buffer’s performance are not influenced by the size of
polygons. However, the Feedback Buffer has a limited size
(storing up to 65536 vertices) and using the Depth Buffer
results in discontinuities in the computed haptic force due to
the fact that 3D geometry is saved as an image in the Depth
Buffer.

There are a number of methods that have been proposed
to reduce the computational time using spatial partitioning
and hierarchical structures, such as H-COLLIDE [5] and
ActivePolygon [6]. In the ActivePolygon algorithm,
polygons are stored in an octree data structure. Only the
polygons stored in the cells that the haptic cursor passes by
between frames are used for collision detection. These
methods could effectively reduce the haptic rendering time,
however, they could not handle the situation when the mesh
is too dense, because the computation complexity of these
algorithms depends on the number of polygons in the cells
that the haptic cursor passes from frame-to-frame. Thus, if
the haptic cursor moves very fast and passes several cells
within one cycle, only the first cell (obtained from the cursor
position in last frame) and the last cell (obtained from the
cursor position in current frame) are known while the in-
between cell information is lost. To avoid leaving out the
actual contact polygon, all the cells that the cursor might
pass need to be considered and this would lead to a
significant expansion in the searching range, even if when
the cell size is optimized. For example, in Geomagic Touch
its maximum velocity is 2.5 mm/ms, so all the polygons in
those cells within the distance of 2.5 mm to the previous
position of haptic cursor need to be checked. If the mesh is
dense and has a few hundred polygons within a 2.5 mm
cubic space, fast and accurate collision detection cannot be
maintained.

Geometry connectivity information was first used by
Chih-Hao Ho et al. in their “neighborhood watch” algorithm
[7] to predict the next active primitive based on the previous
active primitive. Here, active primitive refers to the
primitive that the haptic cursor is in contact with. Before
haptic rendering, the connectivities among vertices, lines
and polygons of the mesh are predefined and stored. After
the first collision is detected, only the neighbors of the
previous contact primitive are checked. Using an iterative
approach one can track the trace of haptic cursor and find
the closest primitive at the current position. In this way, the
haptic rendering time is independent of the number of
polygons except for every first collision with the mesh.

As discussed above, spatial partitioning cannot handle
interactive collision detection with a large mesh. Despite
this limitation, it is suitable to be used for checking whether
the haptic cursor is inside or outside the mesh since only
polygons within one cell need to be checked. Inspired by the

“neighborhood watch” algorithm [7], we propose a hybrid
collision detection method which combines precomputed
connectivity information and spatial partitioning. In this
way, the computational time is fully independent of the
polygon number. One of the main differences between our
proposed method and Chih-Hao Ho’s method is that we are
not dealing with perfect CAD polygon meshes. The
geometry information obtained from the meshes can be
incomplete, may contain redundant vertices and facets, or
may even be wrong. A more general criteria for searching
for the active primitive is thus needed.

B. Visual Rendering in Visual-haptic Interaction

Environment

In a visual-haptic interactive scene, polygon meshes, as
well as the haptic cursor, are usually displayed for visual
feedback. While GPUs can process millions of polygons
interactively for visual rendering, displaying the haptic
cursor at the same time is problematic since the haptic
cursor position is computed by the CPU (together with other
haptic rendering tasks) at the rate of 1 kHz. As the combined
rendering time increases with increasing mesh size, the
movement of the haptic cursor in the scene slows down and
would finally become clumsy. To reduce the graphics
rendering time for visual models, we need to either speed up
the rendering process or to reduce the size of the models.

Common graphical renderers in visual-haptic
interaction, such as OpenGL and Direct3D, utilize
rasterization-based rendering due to the real-time
requirement. With powerful graphics hardware and the use
of acceleration structures for culling, a complex interactive
scene can be rendered in real-time. However, the rendering
effect of a rasterization-based rendering algorithm heavily
depends on the lighting techniques applied to the scene and
the manual effort of designers, which poses an obstacle to
realistic immersion. Compared to rasterization-based
algorithms, ray tracing provides a more realistic visual
effect, but it is costly in computation. With the emergence
of high-performance rendering engines like Brigade [8], it
has become possible to incorporate ray tracing into real-
time rendering. However, it is still far from being applied in
interactive visual-haptic scenes with millions of polygons.

In order to display a more realistic scene, there are works
which combine ray tracing with rasterization-based
rendering in visual-haptic interaction environment. For
example, Morris and Joshi propose to display pre-processed
raytraced images to simulate a static-viewpoint scene [9].
Depth information is extracted here along with the image
for proper occlusion with other objects rendered in real-
time. In this way, large computation is avoided to be done
in the rendering loop and realism is improved.

Based on the examples illustrated in [9], we know that
images can be a promising alternative to displaying the
models in some real-time applications. Previously, image-
based visualization is mainly used in haptic interaction
where images are the interactive objects. Images are
displayed as a guidance to the perceivable contours and
textures of the objects, and the force feedback is generated
based on the image properties such as grayscale or color
values of the pixels [10, 11]. To allow the users to perceive
the whole geometry of the object in the image, some works
augment images with haptic models which match the image
content. The augmented models can be simplified geometry

models, depth maps, or even mathematical functions and
procedures [12-14].

Since our goal is to interact with complex meshes
reconstructed from multi-view reconstruction methods such
as MVE [16], corresponding images to the mesh are readily
available and camera parameters are already reconstructed
in the reconstruction pipeline using structure-from-motion
algorithms. Therefore, image-based visualization is an ideal
choice in this case. Using the reconstructed camera
parameters, the haptic display is easily registered with the
image and a high-resolution visual feedback can be
achieved without complex computations.

III. SYSTEM OVERVIEW

A. Hybrid Collision Detection Algorithm

One of the main goals for this paper is to find an
algorithm that is suitable for handling collision detection
with large-scale, dense reconstructed meshes. Inspired by
[7], we incorporate spatial partitioning into the
“neighborhood watch” algorithm, narrowing down the
detection range to triangles within one cell to get the first
active polygon and then using this polygon as starting point
to track the next active primitive. A mesh has three kinds of
primitive types: vertices, line segments and polygons. We
consider a primitive active if the projection of the haptic
cursor on the mesh is right inside or on this primitive.

Before applying this collision detection algorithm, there
are three preprocessing steps. Reconstructed models are
likely to have duplicate vertices, e.g., the city wall model
used in our experiments has 1883 groups of duplicate
vertices. Our first preprocessing step is to delete the
duplicate vertices and zero-area polygons in the mesh, if
any. All the vertices are traversed to form a list of duplicate
vertex groups, and in each group the vertex with the smallest
index is considered as effective while the others are deemed
duplicates. Then, the polygons with duplicate vertices are
divided into two groups. Those with two or more duplicate
vertices from the same group (i.e. zero-area facets) are
deleted directly, while the others have their duplicate
vertices replaced by the effective vertices of the same group.
For example, suppose p1, p2, p3 are overlapped vertices and
vertices p4, p5 don’t overlap with each other. Since p1 has the
smallest index in this overlapped vertex group, it is an
effective vertex. For triangle facet p1p2p4, we should
delete it because p1 overlaps with p2, while for triangle facet
p2p4p5, we should replace p2 with p1.

After removing all the duplicate vertices and zero-area
polygons, the second step is to build the connectivities
among vertices, line segments and polygons and store all the
neighbors for each primitive. We define the neighbors for
the three primitive types referring to the definitions in [7]:
for a polygon, the neighbors are its line and vertex
components; for a vertex and a line, the definition of
neighbors is extended to all the polygons connected to it and
all the lines and vertices that comprise these polygons. Fig.
1 illustrates an example of how neighbors are defined for a
vertex, a line segment and a polygon.

Based on the connectivities between the vertices and
polygons, the vertex normals are recalculated by summing
up the weighted normal of the neighboring polygons and
normalizing the sum [15] as in (1).

 𝑛𝑣 =
∑ 𝛼𝑖∗𝑛𝑓,𝑖𝑖

‖∑ 𝛼𝑖∗𝑛𝑓,𝑖𝑖 ‖


Here, the weight is each neighboring polygon’s inner
angle at this vertex. Besides, we also check and store
whether a line is on a convex or concave surface. The lines
with only one adjacent polygon are marked as edges. These
lines may be the edges of the outer contour or the edges of
holes on the surface of the mesh.

 (a) (b) (c)

Figure 1. A neighboring vertex is marked as a small circle, a

neighboring line segment is marked in orange color, and a neighboring
polygon is marked with stripes. (a) The red vertex has 7 neighboring

polygons, 14 neighboring line segments and 7 neighboring vertices. (b)

The red line segment has 2 neighboring polygons, 4 neighboring line
segments and 4 neighboring vertices. (c) The red polygon has 3

neighboring line segments and 3 neighboring vertices.

In the final preprocessing step, we apply a uniform
partition to the space within the bounding box of the
polygon mesh and divide this space into cells. A polygon is
considered as belonging to one cell if the polygon has one
or more vertices in this cell, the polygon has edges
intersecting with the bounding box of this cell or the
bounding box of this cell intersects with the polygon. The
criteria is the same as that in [6]. The size of the cell is
determined by the size of the bounding box and the density
of the model. To guarantee the detection accuracy, it should
not be smaller than the maximum distance that the haptic
cursor can move in the camera frustum in one frame.
Therefore, the way that the model and the haptic cursor are
mapped into camera workspace would also have an impact
on the cell size determination.

After all three preprocessing steps, the collision
detection phase starts. The whole process is illustrated as
pseudocode in Fig. 2(a). It can be divided into two parts
based on the collision detection status in the last frame. If
there is no collision detected in the last frame (i.e. collision
== FALSE), then we follow the procedures below to check
whether the haptic cursor (Haptic Interface Point, HIP)
collides with the mesh in this frame. First, we check whether
the HIP is inside the bounding box of the mesh. If it is so,
since the bounding box has been split into a grid, we
continue to find out in which cell the HIP is contained. After
that, we proceed to check whether the HIP collides with the
polygons within this cell. If any of the polygons in this cell
has a positive distance to the previous HIP and a negative
distance to the current HIP, it means that the path of the HIP
intersects with this polygon (i.e. collision happens). The
collided polygon is then tagged as an active primitive and
the collision detection status is set to TRUE (i.e. collision =
TRUE). The computation complexity of this part is only
related to the number of polygons in the cell and is
independent of the size of the mesh.

Correspondingly, if the HIP was in collision with the
mesh in the last frame (i.e. collision == TRUE), then what
we need to check is whether the HIP is still inside the mesh
in this frame. Here, our strategy is to first find out which

primitive is active in this frame and then check whether the
HIP is behind this primitive seen from the camera. If the
HIP is underneath this primitive (i.e. the HIP has a negative
distance to this primitive), it means the HIP is still in contact
with the mesh. The procedures for finding the active
primitive in this frame are implemented in the repeat until
loop operation: with the active primitive in the last frame as
the starting point, the neighbors of the previous active
primitive and itself as well are checked to find the new
active primitive in each iteration. If the new active primitive
is the same as the previous one, then it would be considered
as the active primitive in this frame. Otherwise, the loop
continues with the obtained new active primitive assigned
as previous active primitive in the next iteration. After the
active primitive is found through iterations, the projection
of the HIP on the active primitive is assigned as the proxy.
The dot product between the vector from the current HIP to
the computed proxy position and the normal of the active
primitive is calculated to determine whether the cursor is
inside or outside. The new collision detection status would
be saved for the next frame.

(a)

(b)

Figure 2. (a) Algorithm for collision detection. (b) Algorithm for

obtaining the active primitive in the neighborhood.

In Ho et al. [7], the criteria for determining the active
primitive in the neighborhood are based on the distance. The
primitive with the shortest distance to the cursor is
considered as the active primitive. However, there can be
two different primitives which have the same distance
towards one point at the same time, leading to an unclear

case. For example, suppose we have a piece of mesh like the
one shown in Fig. 3. Point 𝑃 is the current HIP and the
previous active primitive is line segment AB. According to
the neighbor definition and distance criteria described in [7],
when we search for an active primitive in line segment AB’s
neighbors, polygon ABD would be chosen as an active
primitive. Since none of its neighbors (line segments AB,
AD, BD and vertices A, B, D) have a shorter distance to point
𝑃 compared to it, it would still be the active primitive in the
next iteration. Then in the next iteration the new active
primitive would be the same as the previous one, and it
would lead to the result that polygon ABD is the active
primitive in this frame, which is incorrect.

To resolve the ambiguity in the distance criteria, as
illustrated in Fig. 2(b), we expand the definition of the
neighbors and use the distance combined with the
orthogonal projection of HIP on the active primitive as
criteria for iteration. We go through the neighbors with the
following sequence. First, all the neighboring polygons are
checked to find whether there is any polygon that has the
projection of the HIP onto it within its range. If such
polygon exists, then the polygon that fulfills the condition
and has the smallest distance to the HIP would be returned.
If no such polygon exists, we proceed to compare the
distances between the HIP and the other neighbors (line
segments and vertices). The neighbor with the smallest
distance to the HIP is then the return value. If our criteria is
applied to the case as in Fig. 3, the iteration result is very
clear. With line segment AB as the active primitive in the
last frame, the iteration result would go in this way:
ABADADE.

Figure 3. An example to illustrate difference between the distance

criteria and our criteria. The projection of P onto ABD is P’.

B. Force Rendering

In our paper, we assume that the interactive models are
hard and stiff objects, therefore we apply proxy-based
haptic rendering: we compute a proxy to represent the haptic
cursor so that the cursor is always visible. When the HIP is
moving in free space, the position of the proxy matches the
HIP. When there is a collision, the active primitive is known
and the proxy is assigned as the projection of the HIP on the
active primitive.

We use a simple spring force model. The magnitude of
the force feedback is proportional to the penetration depth
of the HIP into the active primitive, which is exactly the
distmin that we obtain in the iteration loop of Algorithm 2.
Normally, the force is computed in the same direction as the
facet normal. In our method, we use this approach if the
active primitive is a polygon. When the active primitive is a
line segment, the force is applied along the direction
opposite to the movement which is from the proxy to the
HIP position. In this way, we can effectively prevent the
haptic cursor from crossing the edges. Thus, if the cursor

slides to a hole on the mesh, it would not fall into the hole.
The disadvantage of this strategy is that if the cursor slides
along a ragged edge, there are frequent changes in the force
direction, since we always give the cursor a resistant force
perpendicular to the edge. If the force direction is in the
same direction as the velocity, this may lead to a cursor
jump.

C. Coordinate System Alignment

When using images to replace visual display of the
meshes, we need to align the haptic models with the
respective parts of the images so that the image content
matches the haptic display. In a multi-view reconstruction
process, camera parameters of the images can be estimated
based on structure-from-motion techniques. Therefore,
given a target image and corresponding reconstructed model,
the estimated camera parameters could be used to calculate
the modelview and projection matrices for projecting the
model in the camera frustum. Suppose RC is the orientation
matrix of the virtual camera with respect to the world
coordinate system, TC is the column vector which defines
the location of the virtual camera in the world coordinate
system, f is the focal length of the camera, img_width and
img_height are the width and the height of the given image,
ppx and ppy are x, y coordinates of the principal point offset
of the camera in pixel coordinate system, znear and zfar are z
coordinates of the near and far clipping planes, then the 4*4
modelview and projection matrices Mmol and Mproj can be
obtained as follows:

 𝑀𝑚𝑜𝑙 = (
𝑅𝐶 𝑇𝐶
0 1

) (2)

𝑀𝑝𝑟𝑜𝑗 =

(

2𝑓𝛼𝑥 0 2(𝑝𝑝𝑥 − 0.5) 0

0 2𝑓𝛼𝑦 2(𝑝𝑝𝑦 − 0.5) 0

0 0
𝑧𝑓𝑎𝑟+𝑧𝑛𝑒𝑎𝑟

𝑧𝑓𝑎𝑟−𝑧𝑛𝑒𝑎𝑟

−2 𝑧𝑓𝑎𝑟 𝑧𝑛𝑒𝑎𝑟

𝑧𝑓𝑎𝑟−𝑧𝑛𝑒𝑎𝑟

0 0 1 0)

 (3)

 𝑎𝑠𝑝𝑒𝑐𝑡 = 𝑖𝑚𝑔_𝑤𝑖𝑑𝑡ℎ/𝑖𝑚𝑔_ℎ𝑒𝑖𝑔ℎ𝑡 (4)

 𝛼𝑥 = {
 1, 𝑖𝑓 𝑎𝑠𝑝𝑒𝑐𝑡 > 1

1 𝑎𝑠𝑝𝑒𝑐𝑡⁄ , 𝑖𝑓 𝑎𝑠𝑝𝑒𝑐𝑡 ≤ 1
 (5)

 𝛼𝑦 = {
𝑎𝑠𝑝𝑒𝑐𝑡, 𝑖𝑓 𝑎𝑠𝑝𝑒𝑐𝑡 > 1
1, 𝑖𝑓 𝑎𝑠𝑝𝑒𝑐𝑡 ≤ 1

 (6)

The example models used in this paper are produced by
the MVE [16]. Note that the origin of the pixel coordinate
system of MVE is at the top-left corner of the image while
that in OpenGL is at the bottom-left corner of the image,
therefore when displaying MVE models in OpenGL, the y-
axis needs to be inverted to match the image. This could be
done by inverting all elements in the second row of either
Mmol or Mproj.

There are three workspaces involved in the visual-haptic
interaction: the camera workspace (defined during the
structure-from-motion process), the haptic workspace, and
the world coordinate system. The whole mapping and
transformation process behind the interaction scene is
illustrated in the flowchart in Fig. 4. The procedures
enclosed by the blue dashed lines are for visual rendering.
In real 3D scenes, the haptic cursor would be hidden when
moving to the back of the objects. To simulate such

occlusion effect with displaying only 2D images, we write
the reconstructed models to the depth buffer and then
disable writing to the depth buffer right after the writing
operation. The depth buffer writing is kept disabled in the
following rendering loop. Afterwards, with depth test
enabled and glDepthFunc depth comparison function set to
GL_LEQUAL, the depth values of the models rendered in
real-time (e.g., haptic cursor) are compared with the depth
values stored in the depth buffer. A pixel of the haptic cursor
is only drawn if the incoming depth value at this pixel is less
than or equal to the stored depth value. In such a way, if the
haptic cursor goes to the back of the reconstructed model
(i.e. the incoming depth value is greater than the stored
depth value), it is not drawn and the occlusion effect is thus
achieved.

Figure 4. Flowchart of the mapping process.

In the haptic servo loop thread, the position of the haptic
cursor is mapped to the world coordinate system for
collision detection and then mapped back to the haptic
workspace for force rendering if the collision happens. The
generated proxy position is transformed to the camera
workspace and sent to the client thread for displaying.

D. Examples

The images in Fig. 5 illustrate how the concepts
introduced in the previous three sub-sections are
implemented given a reconstructed model. Fig. 5(a) shows
the original reconstructed city wall model, while the small
image in the left upper corner is the image to be used for
visual display in the interactive scene. Based on the
reconstructed camera parameters of this image, we
transform the model to the camera workspace and obtain the
part in Fig. 5(b) after clipping. We can see that the clipped
model matches with the content of the image (Fig. 5(c)).
After alignment, the haptic cursor is able to interact with the

Map haptic cursor from haptic workspace to world

coordinate system

ℎ𝑑𝑢𝑀𝑎𝑝𝑊𝑜𝑟𝑘𝑠𝑝𝑎𝑐𝑒𝑀𝑜𝑑𝑒𝑙(𝑀𝑚𝑜𝑙, 𝑀𝑝𝑟𝑜𝑗, 𝑀𝐻𝑡𝑜𝑊)

𝑝𝑤 = 𝑀𝐻𝑡𝑜𝑊 ∗ 𝑝ℎ

Collision detection

Between 𝑝𝑤
and 𝑝𝑤

′

Transform haptic proxy

from world coordinate

system to camera space

𝑃𝑟𝑜𝑥𝑦𝑐 = 𝑀𝑝𝑟𝑜𝑗 ∗ 𝑀𝑚𝑜𝑙 ∗

𝑃𝑟𝑜𝑥𝑦𝑤

Compute the contact

point 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑤

𝑃𝑟𝑜𝑥𝑦𝑤 = 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑤

Transform the

reconstructed model to

camera space

𝑝𝑐
′ = 𝑀𝑝𝑟𝑜𝑗 *

𝑀𝑚𝑜𝑙*
𝑝𝑤
′

Write 𝑝𝑐′ into depth

buffer and disable

depth buffer writing

Display 𝑃𝑟𝑜𝑥𝑦𝑐 with

the corresponding

image rendered as

texture and enable

depth test for

occlusion effect

No

Yes

Map the proxy back to

haptic workspace for force

calculation

𝑃𝑟𝑜𝑥𝑦ℎ = 𝑀𝐻𝑡𝑜𝑊
−1 ∗ 𝑃𝑟𝑜𝑥𝑦𝑤

𝑃𝑟𝑜𝑥𝑦𝑤 = 𝑝𝑤

city wall in the image as displayed in Fig. 5(d). The red ball
in Fig. 5(d) represents the proxy of the haptic cursor. A red
line pointing to the normal direction is also shown,
indicating that the cursor is in contact with the model now.

(a)

(b)

(c)

(d)

Figure 5. (a) the original reconstructed model. (b) the transformed

model displayed in simulated camera frustum. (c) the alignment of the
transformed model and the image. (d) a snapshot of the interactive scene.

The examples of haptic interaction with the models
reconstructed from images (Fig. 6) can be seen in the

companion video, which is also available at
https://youtu.be/6_tHrG9q3H8.

Figure 6. Examples of interactions with the models reconstructed from

images.

IV. COMPARISON AND EVALUATION

In this section, we compare our haptic rendering
algorithm with God-object renderer [1] provided by H3D
API and OpenHaptics HLAPI [4] using feedback buffer.
These two renderers are selected because they are
commonly used in haptic interaction with meshes. Besides,
we present the performance of our algorithm under two
conditions: one where meshes are displayed for
visualization and another one where image-based
visualization is applied.

In the comparison experiments with the other two haptic
rendering algorithms, we display simplified versions of a
reconstructed statue model (Fig. 7(a)) for visual feedback:
one has 51766 triangles (around 52k) and another one has
103534 triangles (around 103k). We did not use the original
model (around 9.5 million triangles), because both HLAPI
feedback buffer and God-object renderer could not handle
collision detection with such large meshes. In our
experiments, God-object renderer works with the default
collision detection algorithm provided by HAPI (a library

https://youtu.be/6_tHrG9q3H8

of H3D API) and Oriented Bounding Box of the model is
created for broad-phase collision detection inside.

 (a) (b)

Figure 7. (a) The target model is displayed using OpenGL in the

comparison experiment. (b) The image is shown instead of displaying

the model.

Given the same mesh, the comparison is done in terms
of average combined rendering time, the smoothness of the
cursor movement, and whether the algorithm works as
intended. To make sure that the combined rendering time is
recorded under the same conditions, we use the same
renderer (OpenGL) for displaying and move the haptic
cursor along the same path AB as shown in Fig. 7. Path AB
is chosen because it is a depression curve on the surface of
the model and thus it is easy to follow. Here, the combined
rendering time refers to the time for rendering the proxy of
the haptic cursor and the visual medium (meshes or images)
in the graphics loop. Since the position of the proxy is
calculated at the haptic update rate, the haptic rendering
performance would also have an influence on the combined
rendering time. Therefore, the combined rendering time is
determined by both visual and haptic rendering performance.
In our experiments, the combined rendering time is
collected in display function of each frame while the cursor
sliding from A to B and then an average is computed for
comparison. As for the second comparison item, the
smoothness of the movement, it is a visual reflection of the
combined rendering time. When the combined rendering
time exceeds 1 ms, the movement of the cursor would not
be smooth any more. Note that the combined rendering time
and the smoothness of the movement only make sense if we
are able to touch the model (i.e. the third comparison item).
If the model is not touchable, we consider that this algorithm
as failed.

Based on the results shown in Table І, HLAPI feedback
buffer gives the worst performance on combined rendering
time among the three algorithms. It also reflects visually on
the cursor movement, which is why the cursor could not
move very smoothly when using HLAPI. We should note
that HLAPI feedback buffer normally is able to handle a
mesh of 52k triangles. The reason why it fails here is that
the interactive model is partially dense. Specifically, the
average amount of triangles within a 0.5*0.5*0.5 cubic
space along line AB in the 52k statue mesh is more than 50.
God-object renderer shows rather good results with the

smaller mesh, but it could not work properly with the bigger
mesh, so the obtained combined rendering time is not
comparable. Comparing to these two rendering algorithms,
our algorithm can work with both of the two simplified
models and provide effective results.

TABLE I. The results of the performance comparison.

Renderer Mesh
size (T)

Average combined
rendering time (ms)

Movement Touchable

God-object Statue
(52k)

0.012 Smooth Yes

HLAPI Statue
(52k)

80 Less smooth Yes (not in
real-time)

Ours
(mesh)

Statue
(52k)

0.001 Smooth Yes

Ours
(image)

Statue
(52k)

0.0098 Smooth Yes

God-object Statue
(103k)

0.011 Smooth No

HLAPI Statue
(103k)

130 Less smooth Yes (not in
real-time)

Ours
(mesh)

Statue
(103k)

0.0093 Smooth Yes

Ours
(image)

Statue
(103k)

0.0092 Smooth Yes

Ours
(mesh)

Statue
(9506k)

330 Clumsy Yes (not in
real-time)

Ours
(image)

Statue
(9506k)

0.6 Smooth Yes

Ours
(mesh)

City wall
(17600k)

820 Clumsy Yes (not in
real-time)

Ours
(image)

City wall
 (17600k)

0.017 Smooth Yes

(a) (b)

Figure 8. (a) the city wall image used in the test, with path AB marked

red. (b) the corresponding model.

The results of our algorithm working with two different
means of visualization (mesh-based and image-based) are
also shown in Table І. When the mesh is small, the
difference is very subtle. Take the statue mesh of 103k
triangles as an example. The average combined rendering
time of our algorithm with mesh-based and image-based
visualization are 9.3E-6 and 9.2E-6 seconds respectively.
Both of the two times are on microsecond level.
Considering the unavoidable impact of noise, we can say
that they are almost the same. However, when it comes to
the statue model of the original size (around 9.5 million
triangles), if we display meshes in the graphics loop, the
cursor’s movement would become clumsy. On the contrary,
if we display the image instead, our algorithm would still
work, with the combined rendering time below 0.001
second. The largest model that we test with our algorithm is
the city wall model shown in Fig. 5(a) with 17.6 million
triangles. Fig. 8(a) is the image of the city wall that we use
in the test. As shown in Table І, with image-based
visualization the average combined rendering time is largely
cut off and we are able to slide along path AB (marked red
in Fig 8(a)) smoothly.

If we check the last and the third items from the last row
of Table І, we find that, despite the fact that the original
statue model is only half size of the city wall model, its
average combined rendering time is longer than that of the
city wall model. This is due to the selection of image for
display. With different images selected, the camera
workspace, the haptic workspace, and the world coordinate
system are aligned in a different way. This would has an
impact on the haptic rendering performance of our
algorithm and lead to unsatisfactory result with some
images. Fig. 9(a) is such an example. As we can see, the
depth range (i.e. the distance between near and far clipping
planes) of the frustum defined by Fig. 9(a) is long. Since the
haptic workspace is fixed, it means when the haptic cursor
moves one unit distance in haptic workspace, it corresponds
to at least several unit distances in camera workspace. In this
way, more computations are required to track the active
primitive, and this results in many pop-through effects when
the cursor moves fast.

 (a) (b)

Figure 9. (a) an image with which our algorithm fails. (b) the

corresponding model.

V. CONCLUSION

We have presented our approach to creating a visual-
haptic interactive environment with multi-view
reconstructed models. To deal with large-size, partially
dense reconstructed meshes, we propose an improved
hybrid collision detection method. By preprocessing the
mesh with uniform partitioning and building connectivities
among the vertices, lines and polygons, we are able to
handle collision detection with meshes of over ten million
triangles. In this approach, instead of visually displaying the
mesh, image-based visualization is applied to meet the
requirements of realism and high interactive speed. We
align the haptic models with the images so that the haptic
display would match the visual content. Occlusion of the
haptic cursor is simulated as if it was interacting with a real
3D scene.

With the presented method, we add a new modality into
interaction with images. Besides viewing an image, this
method enables us to appreciate the image content within a
touching distance and complements our viewing experience.
Potentially, it could also be combined with interactive
applications such as virtual street navigation and virtual
shopping, providing additional information for the users.
Currently, only stiff objects are simulated in this paper. By
incorporating soft objects in the future, the online shoppers

would be able to feel the texture and the softness of the sofa
from a sofa picture.

ACKNOWLEDGMENT

This research is supported by the National Research
Foundation, Prime Minster’s Office, Singapore under its
International Research Centers in Singapore Funding
Initiative, joint PhD Degree Program NTU-TU Darmstadt,
and MOE Singapore Funding RG17/15 “Haptic Interaction
with Images and Videos”.

REFERENCES

[1] C. B. Zilles and J. K. Salisbury, “A constraint-based god-object
method for haptic display,” in Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems, 1995,
pp. 146-151, doi: 10.1109/IROS.1995.525876.

[2] D. C. Ruspini, K. Kolarov, and O. Khatib, “The haptic display of
complex graphical environments,” in Proceedings of the 24th
annual conference on Computer graphics and interactive
techniques, 1997, pp. 345-352, doi: 10.1145/258734.258878.

[3] CHAI 3D. (2014). Available: http://www.chai3d.org/index.html

[4] Geomagic. (2016). OpenHaptic Toolkit Overview. Available:

http://www.geomagic.com/en/products/open-haptics/overview

[5] A. Gregory, M. C. Arthur, et al. “A framework for fast and accurate
collision detection for haptic interaction,” ACM SIGGRAPH 2005
Courses, No. 34, 2005, doi:10.1145/1198555.1198604.

[6] T. Anderson and N. Brown, “The activepolygon polygonal
algorithm for haptic force generation,” in Proceedings of the sixth
PHANToM Users Group Workshop, USA, October 27-30, 2001.

[7] C.H. Ho, C. Basdogan, and M. A. Srinivasan, “Efficient point-based
rendering techniques for haptic display of virtual objects,” Presence,
vol. 8(5), 1999, pp. 477-491, doi:10.1162/105474699566413.

[8] OTOY. Brigade. (2016). Available: https://home.otoy.com/render

/brigade/.

[9] D. Morris and N. Joshi, “Hybrid rendering for interactive virtual
scenes,” Stanford University Technical Report CSTR, 2006, vol. 6.

[10] J. Li, A. Song, and X. Zhang, “Image-based haptic texture
rendering,” in Proceedings of the 9th ACM SIGGRAPH Conference
on Virtual-Reality Continuum and its Applications in Industry, 2010,
pp. 237-242, doi:10.1145/1900179.1900230.

[11] H. Vasudevan and M. Manivannan, “Tangible images: runtime
generation of haptic textures from images,” in haptics symposium on
Haptic interfaces for virtual environment and teleoperator systems,
2008, pp. 357-360, doi: 10.1109/HAPTICS.2008.4479971.

[12] M. A. Otaduy, N. Jain, A. Sud, and M. C. Lin, “Haptic display of
interaction between textured models,” in Visualization IEEE, 2004,
pp. 297-304.

[13] S. Rasool and A. Sourin, “Tangible images,” in SIGGRAPH Asia
2011 Sketches, 2011, p. 41, doi:10.1145/2077378.2077430.

[14] S. Rasool and A. Sourin, “Towards Tangible Images and Video in
Cyberworlds--Function-Based Approach,” in International
Conference on Cyberworlds (CW), 2010, pp. 92-96, doi:
10.1109/CW.2010.19.

[15] G. Thürrner and C.A. Wüthrich, “Computing vertex normals from
polygonal facets,” Journal of Graphics Tools, vol. 3(1), 1998,
pp.43-46, doi:10.1080/10867651.1998.10487487.

[16] S. Fuhrmann, F. Langguth, N. Moehrle, M. Waechter and M.
Goesele, “MVE – An image-based reconstruction environment,” in
Computer&Graphics, vol. 53, 2015, pp. 44-53, doi:
10.1016/j.cag.2015.09.003.

http://dx.doi.org/10.1109/IROS.1995.525876
http://dx.doi.org/10.1145/258734.258878
http://www.chai3d.org/index.html
http://dx.doi.org/10.1145/1198555.1198604
https://home.otoy.com/render
http://dx.doi.org/10.1145/1900179.1900230
http://dx.doi.org/10.1109/HAPTICS.2008.4479971
http://dx.doi.org/10.1109/CW.2010.19
http://dx.doi.org/10.1080/10867651.1998.10487487
http://dx.doi.org/10.1016/j.cag.2015.09.003

