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Abstract—Multi-view reconstruction methods are able to 

produce polygon meshes of a complex scene with millions of 

triangles which are well suited for visualization purposes. 

However, these large-scale, dense meshes normally cannot be 

haptically rendered directly with readily available APIs. In this 

paper, we present a method to extend meshes reconstructed from 

images to visual-haptic applications by using images for visual 

display while an improved hybrid collision detection method is 

used to meet the real-time requirements for haptic rendering. 

Moreover, three main imperfections (holes, outliers and 

degenerated facets) inherent in reconstructed models are also 

handled to help provide a smooth and consistent force feedback. 

Given a reconstructed model and the corresponding image, the 

proposed method provides a way to virtually explore the scene in 

the image, making it possible to appreciate art works and historic 

monuments within a touching distance.  

Keywords-haptic interaction; image-based visualization; 

imperfect polygon mesh 

I.  INTRODUCTION  

Multi-view reconstruction methods such as [16] are able 
to produce polygon meshes of a complex scene which are 
sufficient for visualization. However, because of 
imperfections inherent in passive computer vision 
techniques, meshes reconstructed in this way usually 
contain holes, bumpy surfaces and outliers, which cannot be 
handled easily in haptic interaction. Besides, these meshes 
often have more than one million triangles, which are 
unevenly distributed based on the image content. For 
example, if there are several close-up photos of a part of the 
scene, it is likely to have more details and thus more 
polygons in this region, resulting in a partially dense model. 
Collision detection with a large-scale, dense mesh is a 
challenging task in haptic interaction which requires a high 
update rate (1 kHz). Simplifying the mesh by decimation 
can accelerate the collision detection process, but at the cost 
of losing geometry details on the reconstructed surface. For 
applications which require simulated tangible perception 
that exactly matches the displayed geometry, it is necessary 

to find a haptic rendering algorithm which can maintain 
both the visual-haptic interactive speed and the accuracy of 
the haptic feedback.  

Interactive rendering of large-size meshes is 
problematic since the combined visual and haptic rendering 
time for the meshes would significantly increase as the 
number of polygons goes up and reaches the limit of the 
graphics renderer. Although mesh simplification methods 
and acceleration techniques can effectively reduce the 
rendering time, image-based visualization is a better choice 
instead of photorealistically rendering a scene with millions 
of polygons.  

Therefore, to be able to interact with complex models 
reconstructed from images, we propose to use images to 
replace visual display of these models while still aligning 
them with the respective parts of the images for haptic 
interaction. In applications, such as interactive panoramas 
and virtual street walkthroughs, we believe this could 
provide a way to immerse in a visual-haptic environment 
with models of original high resolution. An improved 
hybrid collision detection method which combines 
precomputed connectivity information and spatial 
partitioning is also proposed in this paper. It is suitable for 
fast collision detection and is able to handle the artificial 
elements inside the meshes. In Section ІІ, we survey the 
relevant works. In Section ІІІ, the main algorithms and 
system architecture are described. Comparison with a few 
relevant approaches is done in Section ІV, followed by the 
conclusion in Section V. 

II. RELATED WORK 

Regarding the features of reconstructed meshes, two 
main problems that we encounter in the interaction are (i) 
how to achieve fast and accurate collision detection and (ii) 
how to provide photorealistic visual feedback for the 
interaction. 

A. Point-based Collision Detection with Polygon Meshes 

Many methods proposed for haptic rendering of polygon 
meshes so far detect collision with the whole polygon mesh 
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in each haptic frame. The haptic rendering time thus 
depends on the number of polygons. For example, in 
widely-used haptic rendering methods such as God-Object 
[1], Ruspini [2] and CHAI3D [3], active constraint polygons 
need to be found first from all the polygons in each haptic 
frame, and then the constraint polygon with the shortest 
distance to haptic cursor is determined as the contact 
polygon. OpenHaptics HLAPI [4] utilizes OpenGL Depth 
Buffer and Feedback Buffer in a smart way and can 
automatically detect collision with shapes rendered in 
graphics based on the shape geometry and depth 
information. In this way, Depth Buffer and Feedback 
Buffer’s performance are not influenced by the size of 
polygons. However, the Feedback Buffer has a limited size 
(storing up to 65536 vertices) and using the Depth Buffer 
results in discontinuities in the computed haptic force due to 
the fact that 3D geometry is saved as an image in the Depth 
Buffer.  

There are a number of methods that have been proposed 
to reduce the computational time using spatial partitioning 
and hierarchical structures, such as H-COLLIDE [5] and 
ActivePolygon [6]. In the ActivePolygon algorithm, 
polygons are stored in an octree data structure. Only the 
polygons stored in the cells that the haptic cursor passes by 
between frames are used for collision detection. These 
methods could effectively reduce the haptic rendering time, 
however, they could not handle the situation when the mesh 
is too dense, because the computation complexity of these 
algorithms depends on the number of polygons in the cells 
that the haptic cursor passes from frame-to-frame. Thus, if 
the haptic cursor moves very fast and passes several cells 
within one cycle, only the first cell (obtained from the cursor 
position in last frame) and the last cell (obtained from the 
cursor position in current frame) are known while the in-
between cell information is lost. To avoid leaving out the 
actual contact polygon, all the cells that the cursor might 
pass need to be considered and this would lead to a 
significant expansion in the searching range, even if when 
the cell size is optimized. For example, in Geomagic Touch 
its maximum velocity is 2.5 mm/ms, so all the polygons in 
those cells within the distance of 2.5 mm to the previous 
position of haptic cursor need to be checked. If the mesh is 
dense and has a few hundred polygons within a 2.5 mm 
cubic space, fast and accurate collision detection cannot be 
maintained. 

Geometry connectivity information was first used by 
Chih-Hao Ho et al. in their “neighborhood watch” algorithm 
[7] to predict the next active primitive based on the previous 
active primitive. Here, active primitive refers to the 
primitive that the haptic cursor is in contact with. Before 
haptic rendering, the connectivities among vertices, lines 
and polygons of the mesh are predefined and stored. After 
the first collision is detected, only the neighbors of the 
previous contact primitive are checked. Using an iterative 
approach one can track the trace of haptic cursor and find 
the closest primitive at the current position. In this way, the 
haptic rendering time is independent of the number of 
polygons except for every first collision with the mesh.  

As discussed above, spatial partitioning cannot handle 
interactive collision detection with a large mesh. Despite 
this limitation, it is suitable to be used for checking whether 
the haptic cursor is inside or outside the mesh since only 
polygons within one cell need to be checked. Inspired by the 

“neighborhood watch” algorithm [7], we propose a hybrid 
collision detection method which combines precomputed 
connectivity information and spatial partitioning. In this 
way, the computational time is fully independent of the 
polygon number. One of the main differences between our 
proposed method and Chih-Hao Ho’s method is that we are 
not dealing with perfect CAD polygon meshes. The 
geometry information obtained from the meshes can be 
incomplete, may contain redundant vertices and facets, or 
may even be wrong. A more general criteria for searching 
for the active primitive is thus needed. 

B. Visual Rendering in Visual-haptic Interaction 

Environment 

In a visual-haptic interactive scene, polygon meshes, as 
well as the haptic cursor, are usually displayed for visual 
feedback. While GPUs can process millions of polygons 
interactively for visual rendering, displaying the haptic 
cursor at the same time is problematic since the haptic 
cursor position is computed by the CPU (together with other 
haptic rendering tasks) at the rate of 1 kHz. As the combined 
rendering time increases with increasing mesh size, the 
movement of the haptic cursor in the scene slows down and 
would finally become clumsy. To reduce the graphics 
rendering time for visual models, we need to either speed up 
the rendering process or to reduce the size of the models. 

Common graphical renderers in visual-haptic 
interaction, such as OpenGL and Direct3D, utilize 
rasterization-based rendering due to the real-time 
requirement. With powerful graphics hardware and the use 
of acceleration structures for culling, a complex interactive 
scene can be rendered in real-time. However, the rendering 
effect of a rasterization-based rendering algorithm heavily 
depends on the lighting techniques applied to the scene and 
the manual effort of designers, which poses an obstacle to 
realistic immersion. Compared to rasterization-based 
algorithms, ray tracing provides a more realistic visual 
effect, but it is costly in computation. With the emergence 
of high-performance rendering engines like Brigade [8], it 
has become possible to incorporate ray tracing into real-
time rendering. However, it is still far from being applied in 
interactive visual-haptic scenes with millions of polygons.     

In order to display a more realistic scene, there are works 
which combine ray tracing with rasterization-based 
rendering in visual-haptic interaction environment. For 
example, Morris and Joshi propose to display pre-processed 
raytraced images to simulate a static-viewpoint scene [9]. 
Depth information is extracted here along with the image 
for proper occlusion with other objects rendered in real-
time. In this way, large computation is avoided to be done 
in the rendering loop and realism is improved.   

Based on the examples illustrated in [9], we know that 
images can be a promising alternative to displaying the 
models in some real-time applications. Previously, image-
based visualization is mainly used in haptic interaction 
where images are the interactive objects. Images are 
displayed as a guidance to the perceivable contours and 
textures of the objects, and the force feedback is generated 
based on the image properties such as grayscale or color 
values of the pixels [10, 11]. To allow the users to perceive 
the whole geometry of the object in the image, some works 
augment images with haptic models which match the image 
content. The augmented models can be simplified geometry 



 

 

models, depth maps, or even mathematical functions and 
procedures [12-14]. 

Since our goal is to interact with complex meshes 
reconstructed from multi-view reconstruction methods such 
as MVE [16], corresponding images to the mesh are readily 
available and camera parameters are already reconstructed 
in the reconstruction pipeline using structure-from-motion 
algorithms. Therefore, image-based visualization is an ideal 
choice in this case. Using the reconstructed camera 
parameters, the haptic display is easily registered with the 
image and a high-resolution visual feedback can be 
achieved without complex computations. 

III. SYSTEM OVERVIEW 

A. Hybrid Collision Detection Algorithm 

One of the main goals for this paper is to find an 
algorithm that is suitable for handling collision detection 
with large-scale, dense reconstructed meshes. Inspired by 
[7], we incorporate spatial partitioning into the 
“neighborhood watch” algorithm, narrowing down the 
detection range to triangles within one cell to get the first 
active polygon and then using this polygon as starting point 
to track the next active primitive. A mesh has three kinds of 
primitive types: vertices, line segments and polygons. We 
consider a primitive active if the projection of the haptic 
cursor on the mesh is right inside or on this primitive. 

Before applying this collision detection algorithm, there 
are three preprocessing steps. Reconstructed models are 
likely to have duplicate vertices, e.g., the city wall model 
used in our experiments has 1883 groups of duplicate 
vertices. Our first preprocessing step is to delete the 
duplicate vertices and zero-area polygons in the mesh, if 
any. All the vertices are traversed to form a list of duplicate 
vertex groups, and in each group the vertex with the smallest 
index is considered as effective while the others are deemed 
duplicates. Then, the polygons with duplicate vertices are 
divided into two groups. Those with two or more duplicate 
vertices from the same group (i.e. zero-area facets) are 
deleted directly, while the others have their duplicate 
vertices replaced by the effective vertices of the same group. 
For example, suppose p1, p2, p3 are overlapped vertices and 
vertices p4, p5 don’t overlap with each other. Since p1 has the 
smallest index in this overlapped vertex group, it is an 
effective vertex. For triangle facet p1p2p4, we should 
delete it because p1 overlaps with p2, while for triangle facet 
p2p4p5, we should replace p2 with p1. 

After removing all the duplicate vertices and zero-area 
polygons, the second step is to build the connectivities 
among vertices, line segments and polygons and store all the 
neighbors for each primitive. We define the neighbors for 
the three primitive types referring to the definitions in [7]: 
for a polygon, the neighbors are its line and vertex 
components; for a vertex and a line, the definition of 
neighbors is extended to all the polygons connected to it and 
all the lines and vertices that comprise these polygons. Fig. 
1 illustrates an example of how neighbors are defined for a 
vertex, a line segment and a polygon. 

Based on the connectivities between the vertices and 
polygons, the vertex normals are recalculated by summing 
up the weighted normal of the neighboring polygons and 
normalizing the sum [15] as in (1).

                                  𝑛𝑣 =
∑ 𝛼𝑖∗𝑛𝑓,𝑖𝑖

‖∑ 𝛼𝑖∗𝑛𝑓,𝑖𝑖 ‖


Here, the weight is each neighboring polygon’s inner 
angle at this vertex. Besides, we also check and store 
whether a line is on a convex or concave surface. The lines 
with only one adjacent polygon are marked as edges. These 
lines may be the edges of the outer contour or the edges of 
holes on the surface of the mesh. 

 

 
    (a)                                    (b)                                   (c) 

Figure 1. A neighboring vertex is marked as a small circle, a 

neighboring line segment is marked in orange color, and a neighboring 
polygon is marked with stripes. (a) The red vertex has 7 neighboring 

polygons, 14 neighboring line segments and 7 neighboring vertices. (b) 

The red line segment has 2 neighboring polygons, 4 neighboring line 
segments and 4 neighboring vertices. (c) The red polygon has 3 

neighboring line segments and 3 neighboring vertices. 

In the final preprocessing step, we apply a uniform 
partition to the space within the bounding box of the 
polygon mesh and divide this space into cells. A polygon is 
considered as belonging to one cell if the polygon has one 
or more vertices in this cell, the polygon has edges 
intersecting with the bounding box of this cell or the 
bounding box of this cell intersects with the polygon. The 
criteria is the same as that in [6]. The size of the cell is 
determined by the size of the bounding box and the density 
of the model. To guarantee the detection accuracy, it should 
not be smaller than the maximum distance that the haptic 
cursor can move in the camera frustum in one frame. 
Therefore, the way that the model and the haptic cursor are 
mapped into camera workspace would also have an impact 
on the cell size determination.  

After all three preprocessing steps, the collision 
detection phase starts. The whole process is illustrated as 
pseudocode in Fig. 2(a).  It can be divided into two parts 
based on the collision detection status in the last frame. If 
there is no collision detected in the last frame (i.e. collision 
== FALSE), then we follow the procedures below to check 
whether the haptic cursor (Haptic Interface Point, HIP) 
collides with the mesh in this frame. First, we check whether 
the HIP is inside the bounding box of the mesh. If it is so, 
since the bounding box has been split into a grid, we 
continue to find out in which cell the HIP is contained. After 
that, we proceed to check whether the HIP collides with the 
polygons within this cell. If any of the polygons in this cell 
has a positive distance to the previous HIP and a negative 
distance to the current HIP, it means that the path of the HIP 
intersects with this polygon (i.e. collision happens).  The 
collided polygon is then tagged as an active primitive and 
the collision detection status is set to TRUE (i.e. collision = 
TRUE). The computation complexity of this part is only 
related to the number of polygons in the cell and is 
independent of the size of the mesh. 

Correspondingly, if the HIP was in collision with the 
mesh in the last frame (i.e. collision == TRUE), then what 
we need to check is whether the HIP is still inside the mesh 
in this frame. Here, our strategy is to first find out which 



 

 

primitive is active in this frame and then check whether the 
HIP is behind this primitive seen from the camera. If the 
HIP is underneath this primitive (i.e. the HIP has a negative 
distance to this primitive), it means the HIP is still in contact 
with the mesh. The procedures for finding the active 
primitive in this frame are implemented in the repeat until 
loop operation: with the active primitive in the last frame as 
the starting point, the neighbors of the previous active 
primitive and itself as well are checked to find the new 
active primitive in each iteration. If the new active primitive 
is the same as the previous one, then it would be considered 
as the active primitive in this frame. Otherwise, the loop 
continues with the obtained new active primitive assigned 
as previous active primitive in the next iteration. After the 
active primitive is found through iterations, the projection 
of the HIP on the active primitive is assigned as the proxy. 
The dot product between the vector from the current HIP to 
the computed proxy position and the normal of the active 
primitive is calculated to determine whether the cursor is 
inside or outside. The new collision detection status would 
be saved for the next frame. 

 

 
(a) 

 
(b) 

Figure 2. (a) Algorithm for collision detection. (b) Algorithm for 

obtaining the active primitive in the neighborhood.  

In Ho et al. [7], the criteria for determining the active 
primitive in the neighborhood are based on the distance. The 
primitive with the shortest distance to the cursor is 
considered as the active primitive. However, there can be 
two different primitives which have the same distance 
towards one point at the same time, leading to an unclear 

case. For example, suppose we have a piece of mesh like the 
one shown in Fig. 3. Point 𝑃  is the current HIP and the 
previous active primitive is line segment AB. According to 
the neighbor definition and distance criteria described in [7], 
when we search for an active primitive in line segment AB’s 
neighbors, polygon ABD would be chosen as an active 
primitive. Since none of its neighbors (line segments AB, 
AD, BD and vertices A, B, D) have a shorter distance to point 
𝑃 compared to it, it would still be the active primitive in the 
next iteration. Then in the next iteration the new active 
primitive would be the same as the previous one, and it 
would lead to the result that polygon ABD is the active 
primitive in this frame, which is incorrect.  

To resolve the ambiguity in the distance criteria, as 
illustrated in Fig. 2(b), we expand the definition of the 
neighbors and use the distance combined with the 
orthogonal projection of HIP on the active primitive as 
criteria for iteration. We go through the neighbors with the 
following sequence. First, all the neighboring polygons are 
checked to find whether there is any polygon that has the 
projection of the HIP onto it within its range. If such 
polygon exists, then the polygon that fulfills the condition 
and has the smallest distance to the HIP would be returned. 
If no such polygon exists, we proceed to compare the 
distances between the HIP and the other neighbors (line 
segments and vertices). The neighbor with the smallest 
distance to the HIP is then the return value. If our criteria is 
applied to the case as in Fig. 3, the iteration result is very 
clear. With line segment AB as the active primitive in the 
last frame, the iteration result would go in this way: 
ABADADE. 

 
Figure 3. An example to illustrate difference between the distance 

criteria and our criteria. The projection of P onto ABD is P’. 

B. Force Rendering 

In our paper, we assume that the interactive models are 
hard and stiff objects, therefore we apply proxy-based 
haptic rendering: we compute a proxy to represent the haptic 
cursor so that the cursor is always visible. When the HIP is 
moving in free space, the position of the proxy matches the 
HIP. When there is a collision, the active primitive is known 
and the proxy is assigned as the projection of the HIP on the 
active primitive. 

We use a simple spring force model. The magnitude of 
the force feedback is proportional to the penetration depth 
of the HIP into the active primitive, which is exactly the 
distmin that we obtain in the iteration loop of Algorithm 2. 
Normally, the force is computed in the same direction as the 
facet normal. In our method, we use this approach if the 
active primitive is a polygon. When the active primitive is a 
line segment, the force is applied along the direction 
opposite to the movement which is from the proxy to the 
HIP position. In this way, we can effectively prevent the 
haptic cursor from crossing the edges. Thus, if the cursor 



 

 

slides to a hole on the mesh, it would not fall into the hole. 
The disadvantage of this strategy is that if the cursor slides 
along a ragged edge, there are frequent changes in the force 
direction, since we always give the cursor a resistant force 
perpendicular to the edge. If the force direction is in the 
same direction as the velocity, this may lead to a cursor 
jump.  

C. Coordinate System Alignment 

When using images to replace visual display of the 
meshes, we need to align the haptic models with the 
respective parts of the images so that the image content 
matches the haptic display. In a multi-view reconstruction 
process, camera parameters of the images can be estimated 
based on structure-from-motion techniques. Therefore, 
given a target image and corresponding reconstructed model, 
the estimated camera parameters could be used to calculate 
the modelview and projection matrices for projecting the 
model in the camera frustum. Suppose RC is the orientation 
matrix of the virtual camera with respect to the world 
coordinate system, TC is the column vector which defines 
the location of the virtual camera in the world coordinate 
system, f is the focal length of the camera, img_width and 
img_height are the width and the height of the given image, 
ppx and ppy are x, y coordinates of the principal point offset 
of the camera in pixel coordinate system, znear and zfar are z 
coordinates of the near and far clipping planes, then the 4*4 
modelview and projection matrices Mmol and Mproj can be 
obtained as follows: 

                                  𝑀𝑚𝑜𝑙 = (
𝑅𝐶 𝑇𝐶
0 1

)                             (2) 

𝑀𝑝𝑟𝑜𝑗 =

(

 
 

2𝑓𝛼𝑥 0 2(𝑝𝑝𝑥 − 0.5) 0

0 2𝑓𝛼𝑦 2(𝑝𝑝𝑦 − 0.5) 0

0 0
𝑧𝑓𝑎𝑟+𝑧𝑛𝑒𝑎𝑟

𝑧𝑓𝑎𝑟−𝑧𝑛𝑒𝑎𝑟

−2 𝑧𝑓𝑎𝑟 𝑧𝑛𝑒𝑎𝑟

𝑧𝑓𝑎𝑟−𝑧𝑛𝑒𝑎𝑟

0 0 1 0 )

 
 

   (3) 

  𝑎𝑠𝑝𝑒𝑐𝑡 = 𝑖𝑚𝑔_𝑤𝑖𝑑𝑡ℎ/𝑖𝑚𝑔_ℎ𝑒𝑖𝑔ℎ𝑡                (4) 

                   𝛼𝑥 = {
   1,                𝑖𝑓 𝑎𝑠𝑝𝑒𝑐𝑡 > 1

1 𝑎𝑠𝑝𝑒𝑐𝑡⁄ , 𝑖𝑓 𝑎𝑠𝑝𝑒𝑐𝑡 ≤ 1
                  (5) 

                   𝛼𝑦 = {
𝑎𝑠𝑝𝑒𝑐𝑡, 𝑖𝑓 𝑎𝑠𝑝𝑒𝑐𝑡 > 1
1,             𝑖𝑓 𝑎𝑠𝑝𝑒𝑐𝑡 ≤ 1

                       (6) 

The example models used in this paper are produced by 
the MVE [16]. Note that the origin of the pixel coordinate 
system of MVE is at the top-left corner of the image while 
that in OpenGL is at the bottom-left corner of the image, 
therefore when displaying MVE models in OpenGL, the y-
axis needs to be inverted to match the image. This could be 
done by inverting all elements in the second row of either 
Mmol or Mproj. 

There are three workspaces involved in the visual-haptic 
interaction: the camera workspace (defined during the 
structure-from-motion process), the haptic workspace, and 
the world coordinate system. The whole mapping and 
transformation process behind the interaction scene is 
illustrated in the flowchart in Fig. 4. The procedures 
enclosed by the blue dashed lines are for visual rendering. 
In real 3D scenes, the haptic cursor would be hidden when 
moving to the back of the objects. To simulate such 

occlusion effect with displaying only 2D images, we write 
the reconstructed models to the depth buffer and then 
disable writing to the depth buffer right after the writing 
operation. The depth buffer writing is kept disabled in the 
following rendering loop. Afterwards, with depth test 
enabled and glDepthFunc depth comparison function set to 
GL_LEQUAL, the depth values of the models rendered in 
real-time (e.g., haptic cursor) are compared with the depth 
values stored in the depth buffer. A pixel of the haptic cursor 
is only drawn if the incoming depth value at this pixel is less 
than or equal to the stored depth value. In such a way, if the 
haptic cursor goes to the back of the reconstructed model 
(i.e. the incoming depth value is greater than the stored 
depth value), it is not drawn and the occlusion effect is thus 
achieved. 

 
Figure 4. Flowchart of the mapping process. 

In the haptic servo loop thread, the position of the haptic 
cursor is mapped to the world coordinate system for 
collision detection and then mapped back to the haptic 
workspace for force rendering if the collision happens. The 
generated proxy position is transformed to the camera 
workspace and sent to the client thread for displaying. 

D. Examples 

The images in Fig. 5 illustrate how the concepts 
introduced in the previous three sub-sections are 
implemented given a reconstructed model. Fig. 5(a) shows 
the original reconstructed city wall model, while the small 
image in the left upper corner is the image to be used for 
visual display in the interactive scene. Based on the 
reconstructed camera parameters of this image, we 
transform the model to the camera workspace and obtain the 
part in Fig. 5(b) after clipping. We can see that the clipped 
model matches with the content of the image (Fig. 5(c)). 
After alignment, the haptic cursor is able to interact with the 

Map haptic cursor from haptic workspace to world 

coordinate system 
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city wall in the image as displayed in Fig. 5(d). The red ball 
in Fig. 5(d) represents the proxy of the haptic cursor. A red 
line pointing to the normal direction is also shown, 
indicating that the cursor is in contact with the model now. 

 

 
(a) 

(b) 

 
(c) 

 
(d) 

Figure 5. (a) the original reconstructed model. (b) the transformed 

model displayed in simulated camera frustum. (c) the alignment of the 
transformed model and the image. (d) a snapshot of the interactive scene. 

The examples of haptic interaction with the models 
reconstructed from images (Fig. 6) can be seen in the 

companion video, which is also available at 
https://youtu.be/6_tHrG9q3H8. 

 

 
Figure 6. Examples of interactions with the models reconstructed from 

images. 

IV. COMPARISON AND EVALUATION 

In this section, we compare our haptic rendering 
algorithm with God-object renderer [1] provided by H3D 
API and OpenHaptics HLAPI [4] using feedback buffer. 
These two renderers are selected because they are 
commonly used in haptic interaction with meshes. Besides, 
we present the performance of our algorithm under two 
conditions: one where meshes are displayed for 
visualization and another one where image-based 
visualization is applied. 

In the comparison experiments with the other two haptic 
rendering algorithms, we display simplified versions of a 
reconstructed statue model (Fig. 7(a)) for visual feedback: 
one has 51766 triangles (around 52k) and another one has 
103534 triangles (around 103k). We did not use the original 
model (around 9.5 million triangles), because both HLAPI 
feedback buffer and God-object renderer could not handle 
collision detection with such large meshes. In our 
experiments, God-object renderer works with the default 
collision detection algorithm provided by HAPI (a library 

https://youtu.be/6_tHrG9q3H8


 

 

of H3D API) and Oriented Bounding Box of the model is 
created for broad-phase collision detection inside. 

 
                     (a)                                                   (b) 

Figure 7. (a) The target model is displayed using OpenGL in the 

comparison experiment. (b) The image is shown instead of displaying 

the model.   

Given the same mesh, the comparison is done in terms 
of average combined rendering time, the smoothness of the 
cursor movement, and whether the algorithm works as 
intended. To make sure that the combined rendering time is 
recorded under the same conditions, we use the same 
renderer (OpenGL) for displaying and move the haptic 
cursor along the same path AB as shown in Fig. 7.  Path AB 
is chosen because it is a depression curve on the surface of 
the model and thus it is easy to follow. Here, the combined 
rendering time refers to the time for rendering the proxy of 
the haptic cursor and the visual medium (meshes or images) 
in the graphics loop. Since the position of the proxy is 
calculated at the haptic update rate, the haptic rendering 
performance would also have an influence on the combined 
rendering time. Therefore, the combined rendering time is 
determined by both visual and haptic rendering performance. 
In our experiments, the combined rendering time is 
collected in display function of each frame while the cursor 
sliding from A to B and then an average is computed for 
comparison. As for the second comparison item, the 
smoothness of the movement, it is a visual reflection of the 
combined rendering time. When the combined rendering 
time exceeds 1 ms, the movement of the cursor would not 
be smooth any more. Note that the combined rendering time 
and the smoothness of the movement only make sense if we 
are able to touch the model (i.e. the third comparison item). 
If the model is not touchable, we consider that this algorithm 
as failed.  

Based on the results shown in Table І, HLAPI feedback 
buffer gives the worst performance on combined rendering 
time among the three algorithms. It also reflects visually on 
the cursor movement, which is why the cursor could not 
move very smoothly when using HLAPI. We should note 
that HLAPI feedback buffer normally is able to handle a 
mesh of 52k triangles. The reason why it fails here is that 
the interactive model is partially dense. Specifically, the 
average amount of triangles within a 0.5*0.5*0.5 cubic 
space along line AB in the 52k statue mesh is more than 50. 
God-object renderer shows rather good results with the 

smaller mesh, but it could not work properly with the bigger 
mesh, so the obtained combined rendering time is not 
comparable. Comparing to these two rendering algorithms, 
our algorithm can work with both of the two simplified 
models and provide effective results.  

TABLE I.  The results of the performance comparison. 

Renderer Mesh 
size (T) 

Average combined 
rendering time (ms) 

Movement Touchable 

God-object Statue 
(52k) 

0.012 Smooth Yes 

HLAPI Statue 
(52k) 

80 Less smooth Yes (not in 
real-time) 

Ours 
(mesh) 

Statue 
(52k) 

0.001 Smooth Yes 

Ours  
(image) 

Statue 
(52k) 

0.0098 Smooth Yes 

God-object Statue 
(103k) 

0.011 Smooth No 

HLAPI Statue 
(103k) 

130 Less smooth Yes (not in 
real-time) 

Ours 
(mesh) 

Statue 
(103k) 

0.0093 Smooth Yes 

Ours  
(image) 

Statue 
(103k) 

0.0092 Smooth Yes 

Ours  
(mesh) 

Statue 
(9506k) 

330 Clumsy Yes (not in 
real-time) 

Ours  
(image) 

Statue 
(9506k) 

0.6 Smooth Yes 

Ours  
(mesh) 

City wall 
(17600k) 

820 Clumsy Yes (not in 
real-time) 

Ours  
(image) 

City wall 
 (17600k) 

0.017 Smooth Yes 

       

   
(a)                                                        (b) 

Figure 8. (a) the city wall image used in the test, with path AB marked 

red. (b) the corresponding model.  

The results of our algorithm working with two different 
means of visualization (mesh-based and image-based) are 
also shown in Table І. When the mesh is small, the 
difference is very subtle. Take the statue mesh of 103k 
triangles as an example. The average combined rendering 
time of our algorithm with mesh-based and image-based 
visualization are 9.3E-6 and 9.2E-6 seconds respectively. 
Both of the two times are on microsecond level. 
Considering the unavoidable impact of noise, we can say 
that they are almost the same. However, when it comes to 
the statue model of the original size (around 9.5 million 
triangles), if we display meshes in the graphics loop, the 
cursor’s movement would become clumsy. On the contrary, 
if we display the image instead, our algorithm would still 
work, with the combined rendering time below 0.001 
second. The largest model that we test with our algorithm is 
the city wall model shown in Fig. 5(a) with 17.6 million 
triangles. Fig. 8(a) is the image of the city wall that we use 
in the test. As shown in Table І, with image-based 
visualization the average combined rendering time is largely 
cut off and we are able to slide along path AB (marked red 
in Fig 8(a)) smoothly.  



 

 

If we check the last and the third items from the last row 
of Table І, we find that, despite the fact that the original 
statue model is only half size of the city wall model, its 
average combined rendering time is longer than that of the 
city wall model. This is due to the selection of image for 
display. With different images selected, the camera 
workspace, the haptic workspace, and the world coordinate 
system are aligned in a different way. This would has an 
impact on the haptic rendering performance of our 
algorithm and lead to unsatisfactory result with some 
images. Fig. 9(a) is such an example. As we can see, the 
depth range (i.e. the distance between near and far clipping 
planes) of the frustum defined by Fig. 9(a) is long. Since the 
haptic workspace is fixed, it means when the haptic cursor 
moves one unit distance in haptic workspace, it corresponds 
to at least several unit distances in camera workspace. In this 
way, more computations are required to track the active 
primitive, and this results in many pop-through effects when 
the cursor moves fast.  

 
    (a)                                                        (b) 

Figure 9.  (a) an image with which our algorithm fails. (b) the 

corresponding model.  

V. CONCLUSION 

We have presented our approach to creating a visual-
haptic interactive environment with multi-view 
reconstructed models. To deal with large-size, partially 
dense reconstructed meshes, we propose an improved 
hybrid collision detection method. By preprocessing the 
mesh with uniform partitioning and building connectivities 
among the vertices, lines and polygons, we are able to 
handle collision detection with meshes of over ten million 
triangles. In this approach, instead of visually displaying the 
mesh, image-based visualization is applied to meet the 
requirements of realism and high interactive speed. We 
align the haptic models with the images so that the haptic 
display would match the visual content. Occlusion of the 
haptic cursor is simulated as if it was interacting with a real 
3D scene. 

With the presented method, we add a new modality into 
interaction with images. Besides viewing an image, this 
method enables us to appreciate the image content within a 
touching distance and complements our viewing experience. 
Potentially, it could also be combined with interactive 
applications such as virtual street navigation and virtual 
shopping, providing additional information for the users. 
Currently, only stiff objects are simulated in this paper. By 
incorporating soft objects in the future, the online shoppers 

would be able to feel the texture and the softness of the sofa 
from a sofa picture.   
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