
Visualization of Astronomical Nebulae
via Distributed Multi-GPU Compressed Sensing Tomography

Stephan Wenger, Marco Ament, Stefan Guthe, Dirk Lorenz, Andreas Tillmann,
Daniel Weiskopf, Member, IEEE Computer Society, and Marcus Magnor, Member, IEEE

(a) (b) (c) (d)

Fig. 1. The planetary nebula M2-9 is a typical example of a bipolar nebula. Its quasi-symmetric twin lobes of ionized material
emanate from a binary star system in its center. Assuming axial symmetry, our reconstruction algorithm uses a single input image (a)
to produce a high-resolution 3D visualization that closely resembles the original image when rendered from the same viewpoint (b).
From a novel vantage point, the emission along the principal axis of the nebula accumulates and creates a luminous halo (c). As the
vantage point approaches the symmetry axis, the received intensity further increases and the perceived shape of the nebula changes
toward two entangled rings (d). The resolution of the reconstructed volume is 5123 voxels. Original image: Bruce Balick (University
of Washington), Vincent Icke (Leiden University, The Netherlands), Garrelt Mellema (Stockholm University), and NASA.

Abstract—The 3D visualization of astronomical nebulae is a challenging problem since only a single 2D projection is observable from
our fixed vantage point on Earth. We attempt to generate plausible and realistic looking volumetric visualizations via a tomographic
approach that exploits the spherical or axial symmetry prevalent in some relevant types of nebulae. Different types of symmetry can
be implemented by using different randomized distributions of virtual cameras. Our approach is based on an iterative compressed
sensing reconstruction algorithm that we extend with support for position-dependent volumetric regularization and linear equality con-
straints. We present a distributed multi-GPU implementation that is capable of reconstructing high-resolution datasets from arbitrary
projections. Its robustness and scalability are demonstrated for astronomical imagery from the Hubble Space Telescope. The result-
ing volumetric data is visualized using direct volume rendering. Compared to previous approaches, our method preserves a much
higher amount of detail and visual variety in the 3D visualization, especially for objects with only approximate symmetry.

Index Terms—Astronomical visualization, distributed volume reconstruction, direct volume rendering.

1 INTRODUCTION

Due to their intricate and colorful structure, astronomical nebulae are
among the most visually appealing astrophysical phenomena. How-
ever, our vantage point is confined to the solar system, and we can
only gather imagery and other observational data from a single point
of view. This makes deducing the correct 3D geometry a notoriously
difficult task except for cases when the geometry is particularly sim-
ple and additional data from specially equipped telescopes is avail-
able [32]. Fortunately, for the purpose of visualization in education

• Stephan Wenger, Stefan Guthe and Marcus Magnor are with the
Institut für Computergraphik, TU Braunschweig, Germany. E-mail:
wenger@cg.cs.tu-bs.de.

• Marco Ament and Daniel Weiskopf are with VISUS,
University of Stuttgart, Germany.

• Dirk Lorenz is with the Institute for Analysis and Algebra,
TU Braunschweig, Germany.

• Andreas Tillmann is with the Research Group Optimization,
TU Darmstadt, Germany.

c©2012 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

and popular science, e.g. in digital full-dome planetariums and sky
simulation software such as Celestia (http://www.shatters.
net/celestia/), a plausible and realistic volumetric reconstruc-
tion is often sufficient. Such a plausible but not necessarily physically
accurate reconstruction can also give astronomers an initial intuition
about possible geometries and may serve as a starting point for further
manual modeling. For example, it has been shown only recently using
manual modeling that some classes of nebulae that were believed to be
structurally different actually might share a common morphology but
are only observed from different vantage points [8]. Such structural
insight could be obtained directly from a 3D visualization like the one
we propose.

3D information can be obtained from a single image by exploiting
the fact that many types of astronomical nebulae exhibit an approxi-
mate spherical or axial symmetry [19]. Based on the assumption that
the object looks very similar from a number of different directions, the
view from Earth can be replicated at other virtual viewpoints, resulting
in a tomographic reconstruction problem (Section 3). Tomographic re-
construction traditionally uses filtered back-projection, which suffers
from a number of limitations, including susceptibility to noise and arti-
facts as well as the lack of flexible regularization schemes to alleviate
the derogatory effects of inconsistent data and incomplete sampling.
Since the symmetry of astronomical nebulae is only approximate, the
virtual views tend to be inconsistent. Thus, a different approach has

wenger@cg.cs.tu-bs.de
http://www.shatters.net/celestia/
http://www.shatters.net/celestia/

Fig. 2. Overview of our application pipeline. The user browses an image database, such as http://hubblesite.org/gallery/, and selects
an astronomical object with a roughly symmetric shape. Next, a few relevant parameters are interactively chosen by the user, determining the type
of symmetry and the desired volume resolution. Based on this parameter setup, our fully automatic reconstruction algorithm solves a constrained
optimization problem on a multi-GPU cluster to compute a volumetric model that closely resembles the view of the original image taken from Earth.
The result of our algorithm is a volumetric model of the nebula that can be visualized interactively with direct volume rendering. The visualization is
also valuable to improve the overall quality of the result by slightly readjusting the parameters.

to be taken. In the context of computed tomography, a number of it-
erative algebraic reconstruction techniques have been introduced that
attempt to reduce the drawbacks of filtered back-projection. These ap-
proaches are, in general, more stable with respect to noise or occlud-
ers and more flexible with respect to missing data, inconsistent data,
or non-equidistant projections. However, iterative techniques require
a considerably higher computational effort, and the medical industry
has been hesitant to employ them in commercial products [30]. As part
of our contribution, we alleviate this limitation by designing and im-
plementing an efficient iterative tomographic reconstruction algorithm
for a multi-GPU compute cluster. Thus, the advantages of iterative
techniques can be exploited even for the large datasets required for
visually appealing renderings.

Our algorithm is based on a particularly promising formulation of
the tomographic reconstruction problem that originates from the the-
ory of compressed sensing [5,6]. Compressed sensing states that under
certain conditions a signal can be perfectly reconstructed from only a
small number of measurements. Most importantly, the signal is as-
sumed to be sparse in some transform domain such as a wavelet space,
the gradient domain or, as in our case, in a voxel representation. Even
if this condition is often not perfectly fulfilled in practice, as is the
case in most tomographic applications, the corresponding algorithms
are sufficiently robust to yield good approximate solutions in cases
where the sparsity condition is only roughly satisfied. Our algorithm
builds on the fast iterative shrinkage-thresholding algorithm [3]. As
part of our contribution, we adapt it to the tomographic reconstruc-
tion problem and extend it with additional constraints for enforcing
nonnegative intensities and selected projections, see Figure 3. The op-
timization algorithm is discussed in detail in Section 4.

The computational bottleneck of most iterative reconstruction tech-
niques, including those based on compressed sensing, is the repeated
computation of forward and backward projections (Section 5). The
forward projection denotes the projection of a discretized volume into
different views, which can in many cases be described as a linear oper-
ator. The backward projection is, in a mathematical sense, the adjoint
of the forward projection operator and projects the views back into
the volume. In our implementation, both projection operators are dis-
tributed among the GPUs in a compute cluster to speed up this most
computationally expensive operation (Section 6). Since the forward
and backward projection operations are common to most iterative re-
construction techniques, this core part of our parallel implementation
can be integrated in a wide range of other algorithms as well.

The application of our approach results in a simple workflow, see
Figure 2, as opposed to cumbersome manual modeling. An astronom-
ical image database serves as an input archive with high-resolution
images taken from modern telescopes, such as the Hubble Space Tele-
scope. The user selects an image of an astronomical nebula with ap-
proximately spherical or axial symmetry and creates a simple setup for
the subsequent fully automatic reconstruction. As part of the setup, the
user specifies the type of symmetry (along with the symmetry axis, if
applicable), the desired resolution of the resulting volume, and op-
tional parameters. Afterwards, our reconstruction algorithm solves a

constrained optimization problem and computes a volumetric model
of the nebula that can be visualized interactively with standard direct
volume rendering.

A fundamental advantage of our application compared to conven-
tional modeling tools is the small number of parameters and their sim-
ple handling. The number of virtual viewpoints controls the smooth-
ness of the reconstruction. The spatial arrangement of the virtual view-
points is basically determined by the symmetry of the nebula with a
single additional parameter for jittering the center of symmetry. One of
our contributions to the core optimization algorithm is to constrain the
view from Earth to be similar to the original image; the level of sim-
ilarity is controlled by a single parameter that determines the number
of inner loops in the algorithm. The last parameter controls the magni-
tude of regularization, which is necessary as the reconstruction prob-
lem is usually ill-posed. We will discuss and evaluate typical choices
of parameters along with the results displayed in Section 7.

2 RELATED WORK

Because of the difficulty of deducing plausible three-dimensional
structure from a single image, the reconstruction of volumetric mod-
els for astronomical nebulae is typically performed manually by as-
tronomers or artists. For example, a complex 3D model of the
Orion nebula was created by professional astronomers over several
years [28, 38]. Even with specialized modeling tools [34], the typical
modeling time is still measured in weeks. Attempts on symmetry-
based automatic reconstruction and visualization [16,19,20] have pro-
duced perfectly symmetric, low-resolution models poor in visual de-
tail. Automated methods for the reconstruction and visualization of
asymmetric reflection nebulae [18] suffer from a similar lack of detail
and are not applicable for translucent objects, such as most planetary
nebulae. Although it is theoretically possible to introduce artificial
asymmetry and detail into the reconstruction results [36], this process
is as complex as the original reconstruction problem and often results
in unappealing visual artifacts like streaks and implausible clusters of
emission.

Tomographic reconstruction is common in medical applications
such as computed tomography, but can also be used for other trans-
parent volumetric phenomena like flames [12]. Iterative reconstruc-
tion techniques for computed tomography date back to the 1970s [10].
Since then, numerous iterative reconstruction algorithms have been
proposed, including some based on compressed sensing. A compre-
hensive overview of iterative algorithms based on minimization of the
total variation can be found in [35]. However, it becomes clear from
the following argument that these algorithms are, in general, not suited
for large-scale volumetric reconstruction problems with arbitrary pro-
jection geometries.

The memory requirements for fully volumetric reconstruction algo-
rithms quickly become unmanageable. For example, a 10243 32-bit
floating-point voxel volume requires 4GB of memory. For optimal
results, the number of input images should be of the same order of
magnitude as the resolution of the volume, such that the intermediate
images require about 4GB as well. Both amounts are doubled by the

http://hubblesite.org/gallery/

L← 2 times the largest eigenvalue of ATA
x0←max

(
ATb−τ

L ,0
)

y0← x0
t0← 1
for i = 1 to nouter do

xi←max
(

L2
2 yi−LAT(Ayi−b)−τ

L2
2

,0
)

for j = 1 to ninner do {optional loop to enforce Bx = c}
xi← xi +BT (c−Bxi)

xi←max
(

L2
2 yi−LAT(Ayi−b)−τ

L2
2

,0
)

end for
ti← 1

2

(
1+
√

1+4t2
i−1

)
yi← xi +

(ti−1−1)
ti (xi− xi−1)

end for
return xnouter

Fig. 3. Optimization algorithm derived from [3]. Given linear operators A
and AT, a data vector b, the regularization parameter τ, and the iteration
limit nouter, it computes the vector x≥ 0 that minimizes ‖Ax−b‖2+τ ‖x‖1.
Optionally, a constraint of the form Bx = c can be specified by passing
linear operators B and BT (with BBT = I), a constraint vector c, and the
iteration limit ninner. The operators A, AT, B, and BT only need to be
given implicitly, i.e., as functions that compute the application of the op-
erator to a vector. In the case of volumetric projection operators, this
allows for a much more efficient implementation than an explicit matrix
multiplication; in fact, explicit storage of the matrix elements quickly be-
comes infeasible. The constant L can be computed from implicitly given
A and AT using a power iteration scheme. The results of applying A and
AT can be cached, while Ay can be computed from Ax, so that only one
evaluation of the operators A and AT is necessary in each step.

fact that the variables of the previous iteration are often required in
the update step. Furthermore the original input images add another
4GB, leading to a total of 20GB of memory. For many tomographic
applications based on optical imagery, the images contain RGB color
information, raising the amount of memory required to about 60GB.
Because of the complexity of the generic volumetric reconstruction
problem, many reconstruction algorithms are tailored to specific pro-
jection setups [14, 33, 37], limiting their range of applicability. Most
importantly, the arbitrary random projection geometries required for
the reconstruction of spherically symmetric nebulae disallow any such
optimization.

In order to solve the generic volumetric reconstruction problem ef-
ficiently for large-scale datasets, the use of massively parallel compu-
tation, e.g. on graphics hardware, is indispensable. Unfortunately, the
memory of current GPUs is far smaller than what is required for high-
resolution reconstructions. This requires either costly swapping be-
tween GPU memory and CPU memory or disk, or the use of multiple
GPUs whose memory and processing power are effectively combined.
The only reconstruction algorithm known to the authors that makes use
of multiple GPUs [13], however, is limited to a single machine with
typically not more than two or four graphics cards. In addition, it nei-
ther offers any means for additional constraints, nor does it provide for
any kind of regularization. Instead, it computes a simple least-squares
approximation of the data, making it unsuitable for the plausible re-
construction of highly inconsistent datasets. In contrast, the proposed
approach is flexible enough to provide hard constraints combined with
different regularization schemes and makes use of a virtually unlim-
ited amount of GPU memory by distributing the computational load to
multiple computers in a cluster. As iterative reconstruction techniques
typically scale at least polynomially with problem size, the additional
speedup due to parallel computation on a large number of devices is
an important additional feature of our approach that effectively reduces
computation time from several days to a few hours.

In direct volume rendering, distributed algorithms and GPU accel-
eration are widely used to improve data and performance scalability.
The two fundamental paradigms [25] in parallel volume rendering de-

(a) (b)

Fig. 4. Traversal for a single output pixel (viewing ray drawn in red)
through the volume data during forward projection with all contributing
voxels marked blue (a), compared against the support region of a sin-
gle voxel (blue) in the backward projection with all contributing pixels
marked red (b). In both illustrations, the affected grid cells of the volume
are indicated in green.

compose either image-space (sort-first) or object-space (sort-last) to
distribute data and workload among the render nodes. In addition,
GPUs can be employed to further accelerate rendering on each node,
for example in sort-last approach with load balancing [27] or with
multiple GPUs in a single physical node [21]. Typically, sort-last de-
compositions scale well with large data, but have to deal with more
advanced compositing techniques such as binary swap [17], direct
send [7], or radix-k [31]. More recently, distributed sort-first volume
rendering has been employed [26] in conjunction with GPU acceler-
ation and load balancing, avoiding a final compositing step but sacri-
ficing the ability to scale easily with large data. In contrast to these
techniques, volumetric reconstruction requires images from more than
one view point and also performs backward projections. Together, this
leads to a much higher computational expense and requires different
strategies in a distributed environment than previous methods provide.

3 IMAGE FORMATION AND SYMMETRY

Our method is based on two fundamental assumptions: a model of
emissive light transport within astronomical nebulae and an assump-
tion about their spatial symmetry, which we will introduce in the fol-
lowing.

In general, in tomographic applications, an object is imaged from
several different views, from which a discretized volumetric represen-
tation of the object can be reconstructed. The imaging process con-
sists of projecting the volume to these views according to an optical
model of emission and absorption [23]. Many astronomical objects
like planetary nebulae, see Figure 1, exhibit little to no absorption.
By neglecting any effects of absorption, the image formation can be
described by a linear system of equations. The intensity I = ∑i eidi
of an image pixel is then a linear combination of the emission densi-
ties e0,e1, . . . ,en along the corresponding viewing ray, where di is the
length of the viewing ray segment that falls into the ith volumetric grid
cell along the ray. When the emission densities of the volume are writ-
ten as a vector v of grid cell intensities and the intensities of the pixels
in the kth view are written as a vector bk of pixel values, we can define
the forward projection as a linear operator Mk such that Mkv = bk. The
transpose of the forward projection operator, the backward projection
operator MT

k , is equally important for the mathematical formulation
and the implementation of the algorithm. Intuitively, it distributes the
intensity of each pixel among all contributing grid cells proportionally
to their contribution. In Section 5, we will discuss practical consid-
erations for efficient and accurate implementation of the forward and
backward projection operators.

In the context of tomographic reconstruction, assumptions about
spatial symmetry can conveniently be modeled by reconstructing the
volume from a number of virtual views. The viewpoint and image con-
tent of these views define the type of symmetry. For example, a spher-
ically symmetric object looks the same from every possible viewpoint;
this can be modeled by creating a number of random viewpoints and
associating a copy of the original observed image with each viewpoint.
With respect to enforcing exact symmetry using an analytical model,
this approach has the advantage of allowing small deviations that cre-
ate more variety in the visualization and are important for being able
to discern different views of the 3D object. A larger number of virtual

(a) (b) (c)

Fig. 5. Overview of our distributed projection steps with two compute nodes (red and green) and four projected views. The partial volume datasets
V0 and V1 are distributed evenly across both nodes. For the forward projection, each node i applies the linear operator A to its sub-volume Vi with a
forward projection k on its GPU and obtains a set of partial images Pk

i (a). The compositing workload of the partial images of all projected views is
distributed evenly among all nodes. Therefore, a subset of the partial images is transferred over the network and all nodes perform the computation
concurrently on their GPU to obtain Pk (b). For the backward projection, the composited images are spread to all nodes. Afterward, the inverse
operator AT is applied to the images Pk (c).

views create more accurate symmetry, whereas a smaller number in-
troduce more variety and a more realistic 3D impression. In addition,
the concept of random virtual views flexibly adapts to other types of
symmetry. For example, axially symmetric objects can be modeled by
arranging the virtual views around the axis of symmetry. By randomly
perturbing the axis for each individual view, additional variance can
be introduced to aid the perception of depth. Examples of both types
of symmetry are presented in Section 7.

4 COMPRESSED SENSING ALGORITHM

In the previous section, it has been shown that the projection of a vol-
ume v to an image bk can be written as a linear equation Mkv = bk.
In a typical tomographic application, many (say nviews) images bk will
be captured. By stacking these image vectors and the corresponding
operators Mk, we can summarize the complete capturing process in a
system of linear equations

(M0, . . . ,Mnviews−1)
T v = (b0, . . . ,bnviews−1)

T or Mv = b . (1)

When the projections M and the captured images b are known, the
volumetric object v can in principle be reconstructed by solving this
system of linear equations. However, in practice, this inverse problem
is often ill-posed. For example, there is often not enough information
captured in the images b to uniquely define the volume v. In this case,
the most plausible solution has to be selected by choosing an appro-
priate regularizer.

In the context of compressed sensing, it is typically assumed that
natural signals are sparse in some transform domain. For example, a
photograph of an outdoor scene may be sparse in a wavelet represen-
tation, which is why such representations are used for image compres-
sion. Compressed sensing algorithms promote such sparse solutions
by solving an optimization problem that includes a regularization term
of the form ‖x‖1 = ∑i |x|, where x = Sv is the signal vector v trans-
formed to some sparsity domain S. Equation 1 can thus be written as
Ax = b with A = MS−1 and x = Sv.

In general, any linear basis transform S can be used as a sparsity
basis. In a typical tomography application where an isolated object is
imaged in front of a dark background, the signal can be assumed to be
sparse in the voxel representation, so that S is the identity. In our nu-
merical experiments, we limit ourselves to such voxel-domain sparsity
for the sake of simplicity. Nevertheless, other sparsity domains can be
used by simply choosing a different S.

The fast iterative shrinkage-thresholding algorithm [3] is an ex-
ample of a fast, state-of-the art compressed sensing signal recovery
algorithm. It iteratively minimizes the generic functional F(x) =
f (x) + g(x) for convex g(x) and convex continuously differentiable
f (x). Part of our contribution consists in adapting this algorithm to
the tomographic reconstruction problem and extending it with an op-
tion to enforce nonnegativity of intensities as well as additional con-
straints. We choose f as a data fidelity term f (x) = ‖Ax−b‖2 that

enforces compliance of the solution with the captured images, and g
as a regularization term g(x) = τ ‖x‖1 = τ ∑i ‖xi‖ (with the `1 norm
of x scaled by a weighting factor τ) that promotes sparse solutions.
In simple terms, minimization of the `1 norm does not encourage a
uniform distribution of intensity as a least-squares method would do,
but instead penalizes nonzero coefficients. For a more comprehensive
introduction, we refer to Baraniuk [2].

Two other popular choices for regularization terms include the `1
norm of the wavelet coefficients of x and the `1 norm of the gradient
of x, or total variation (TV). We choose to minimize the `1 norm of
x because it integrates more easily with the requirement of nonnega-
tive intensities than a minimization of the wavelet coefficients, which
often leads to overshooting and ringing artifacts. Compared to mini-
mization of the total variation, our approach is computationally much
more efficient, and it preserves fine detail that is easily suppressed by
TV regularization. Most importantly, minimizing the voxel intensities
creates compact objects on a clear low-intensity background, which
is a favorable property for the reconstruction of isolated astronomical
objects.

The complete optimization process is depicted in Figure 3. In an
initialization step, the smallest Lipschitz constant L of ∇ f is computed
from the largest eigenvalue of ATA. Due to memory constraints (see
Section 5), the forward and backward projection operators A and AT

are only given implicitly, i.e., matrix products Ax and ATx can be com-
puted, but the individual matrix elements are unknown. Therefore, the
largest eigenvalue is computed using the power iteration method [9,
p. 330]. Subsequently, F (x) is iteratively optimized. The number
nouter of iteration steps specifies the tradeoff between runtime and re-
construction quality. Alternatively, a threshold for the change in x or
F (x) can be used as a termination criterion. In each iteration i,

L
2

∥∥∥∥xi−
(

yi−
1
L

∇ f (yi)

)∥∥∥∥2
+g(xi) (2)

is minimized, where yi is derived from the vectors xi and xi−1 of the
previous steps as described in Figure 3. Since all density values are in-
herently nonnegative, we additionaly require xi ≥ 0. With our choices
for f and g, Equation 2 becomes∥∥∥∥L

2
(xi− yi)+AT (Ayi−b)

∥∥∥∥2
+ τ ‖xi‖1 , (3)

subject to xi ≥ 0, which is minimized by

xi = max
(L2

2 yi−LAT(Ayi−b)− τ

L2

2

,0
)
. (4)

The results of the projection operations A and AT are cached; in addi-
tion, Ayi is computed from Axi and Axi−1, so that both the forward and
backward projections are only executed once during each iteration.

(a) (b) (c) (d) (e)

Fig. 6. The planetary nebula Abell 39 and reconstructions assuming spherical symmetry. The original image (a) was replicated at several virtual
camera positions distributed randomly around the center of the object (schematic display in (b)) and subsequently reconstructed at a resolution of
5123 voxels with τ = 0 and nouter = 40 for 64 (c), 128 (d), and 512 (e) virtual cameras in 3 539sec, 6 950sec, and 33 034sec, respectively. Original
image: WIYN/NOAO/NSF.

As a fundamental extension, we allow for hard constraints of the
form Bx= c, with BBT = I. Such constraints are useful if, for example,
one view is known to be exact, but all others are subject to noise or in-
consistencies, as for astronomical data where one projection is known
precisely but all others are highly speculative. In that case, B would
be chosen as a single projection Mk. The constraints are approximated
by alternately projecting onto the subspaces of feasible solutions and
of nonnegative solutions in an inner loop comprising ninner iterations.
Again, the number of iterations specifies the tradeoff between runtime
and compliance with the constraints, providing a means to control the
level of similarity. Alternatively, the largest acceptable difference be-
tween Bx and c can be provided as a termination criterion. This step
is completely optional and does not entail any performance penalties
when no constraints are specified.

For practical reconstruction problems, additional prior information
is often given as an approximate a priori assumption about the distribu-
tion of intensity. For example, if an object is known to be compact, the
presence of intensity farther from the center is increasingly unlikely.
We incorporate such prior information in the reconstruction algorithm
by formally replacing the scalar regularization parameter τ by a vec-
tor. Thus, a different regularization parameter can be specified for each
voxel in x, where smaller values of τ represent a higher a priori prob-
ability of intensity in the corresponding voxel. This kind of spatially
dependent regularization can lead to much more compact and realistic
models with less background noise.

5 FORWARD AND BACKWARD PROJECTION

For the actual reconstruction, we need to repeatedly project the images
to the volume and vice versa using the sparse matrices Mk and MT

k .
Assuming the size of our input images is n2 and the size of the volume
is n3, each Mk consists of n5 entries with about n3 nonzero entries.
Since we need all matrices Mk in each iteration and the number of
images is of the same order as n, we need to store a total number
of about n4 nonzero entries out of a total number of about n6. The
total storage requirement for n= 1024 would easily exceed a couple of
terabytes just for the nonzero values. Thus, instead of calculating and
storing Mk explicitly, we calculate Mkv and MT

k bk for each iteration.
Assuming that the scalar voxel values of the volume define a sam-

pled piecewise trilinear function in space, each value of v has a foot-
print that is twice as large as the distance between two voxels along
all three axes. Since the footprint is symmetrical along the axes, we
can use a common formula to integrate one grid cell, i.e., the space
between eight neighboring sampling points, at a time. Since we con-
sider an emission-only model, the weighted sample values of the eight
neighboring voxels are simply added up and we can solve the integra-
tion on a per-voxel basis.

To solve the integration analytically, we consider the influence of
one voxel vi on a single grid cell. Without loss of generality, we place
the voxel at position (1,1,1) in a local coordinate system that is rotated
such that the grid cell in question coincides with the unit cube with
coordinates in the [0,1] range. The scalar value at any sample point s
inside this unit cube is therefore visxsysz. Since we need to integrate

the scalar values along a ray intersecting the unit cube, we define e as
the entry point, d as the direction, and l as the length of the intersecting
ray segment. A sample point can thus be represented as s= e+td with
0≤ t ≤ l. The integrated emission can then be calculated as vim with
m defined as

m =
∫ l

0
(ex + tdx)

(
ey + tdy

)
(ez + tdz)dt (5)

= exeyezl +
dxeyez + exdyez + exeydz

2
l2 +

exdydz +dxeydz +dxdyez

3
l3 +

dxdydz

4
l4 .

Note that each of the entries of Mk is the sum of m over all affected
grid cells for a given vi.

To avoid scatter write and write collision in a parallel implemen-
tation, we can simply calculate one scalar output of the matrix multi-
plication in a single thread. The forward projection Mkv uses the fast
voxel traversal algorithm by Amanatides and Woo [1] to find all voxel
values v that contribute to a single pixel of the image bk as shown in
Figure 4(a). As part of our contribution, we combine this algorithm
with our analytically integrated kernel for trilinear interpolation to im-
plement an efficient and accurate parallel GPU raycaster that traverses
the entire volume along several viewing rays at once before writing
the accumulated result to the output image.

Parallelizing over the output again, the backward projection MT
k bk

needs to find all pixels of the image bk that contribute to a given voxel
v. We therefore project the bounding box of the 2× 2× 2 grid cells
to the input image and cast a ray for each pixel through the small sub-
volume as shown in Figure 4(b). The same integration as above is
used again, but this time we multiply m with the corresponding pixel
in bk. This can be seen as constructing the matrices Mk in column
order instead of row order.

6 DISTRIBUTED ARCHITECTURE

After having discussed our optimization algorithm and the projection
operators in the previous sections, we now contribute an implemen-
tation for a distributed multi-GPU cluster. In Section 2, we illus-
trated that memory requirements grow significantly for large datasets
and clearly exceed the available resources on a single GPU, which
motivates our approach to employ a distributed environment. There-
fore, we seek to achieve two goals by adding more compute nodes to
the system: high data scalability for large volumes by exploiting the
combined graphics memory in a distributed cluster (including multiple
GPUs in one physical node), and reasonable performance scalability.

In the following, we refer to a compute node as a process that has
exclusive access to a dedicated GPU, i.e., the number of compute
nodes equals the total number of available GPUs in the cluster do-
main. We start our approach by decomposing the volume data V into
sub-volumes Vi of equal size and distribute them evenly across all com-
pute nodes. The sub-volumes Vi are padded with an additional layer

(a) (b) (c) (d) (e)

Fig. 7. The supernova remnant 0509-67.5 and reconstructions assuming spherical symmetry. After manually removing the background stars, the
original image (a) was replicated at 128 virtual camera positions distributed randomly around the center of the object (schematic display in (b)).
Without constraining the projection from the front, details are averaged out, leading to an overly symmetric model (c). Constraining the projection
from the front to be similar to the original image preserves asymmetric features and details and accurately reproduces the original view (d),
whereas a different view (e) exhibits new aspects but retains similarity to the coarse structure of the original view. The volume was reconstructed
at a resolution of 5123 voxels with τ = r ·103, nouter = 40, and ninner = 2 in 8 592sec, where r is the Euclidean distance from each voxel to the center
of symmetry. Original image: NASA, ESA, CXC, SAO, the Hubble Heritage Team (STScI/AURA), and J. Hughes (Rutgers University).

of voxels at the boundaries to ensure seamless transitions between ad-
jacent bricks of data. The initial image data for the reconstruction is
replicated on each compute node in a startup phase.

The computational steps of our algorithm in Figure 3 consist of ba-
sic vector operations as well as the operators A and AT, and, when
constraints are specified, B and BT. The componentwise vector op-
erations are executed independently in parallel on each GPU as they
do not require any communication. However, the distribution of the
projection steps requires more attention to detail. An overview of both
projections is illustrated in Figure 5. Each compute node i performs
the forward projection from Section 5 of its sub-volume Vi on the GPU
for all view points k = 0, . . . ,nviews−1 and obtains a set of partial im-
ages Pk

i as shown in Figure 5(a). In the next step, the partial images
of each view point need to be composited. From sort-last volume ren-
dering, it is well-known that compositing can be a severe bottleneck,
even for a single image. In our case, the number of images can be
quite large, up to a few hundreds, which further pushes computational
demands and communication overhead.

To accelerate compositing, we suggest a two-step approach. First,
the computational workload is distributed evenly across all compute
nodes. Assuming nviews view points and nnodes compute nodes, the
total compositing workload C is:

C =
nviews−1

∑
k=0

nnodes−1

∑
i=0

Pk
i (6)

The outer sum can be computed in parallel by using a round-robin
scheme, i.e., each node i is assigned a partial sum. However, not all
partial images of one view point are available on each node. Therefore,
the missing images need to be transferred over the network according
to the decomposition of the sum. Afterward, the inner sum in Equa-
tion 6 is computed on each GPU as shown in Figure 5(b).

Until now, there is a composited image for each view point, but the
result is spread all over the nodes. However, for subsequent operations
with the entire image data, e.g., the backward projection, it is neces-
sary to provide the result on each node. Therefore, the second step of
our compositing algorithm is a final scattering of the image data over
the network as shown in Figure 5(c). In contrast to the forward pro-
jection, the backward projection does not require a ray traversal of the
entire volume but only of a small region of 2×2×2 grid cells; hence
it can be processed independently on each node, once the image data
is available.

With the described partitioning scheme, our algorithm scales with
growing data size by adding more nodes to the domain since the for-
ward projection is similar to sort-last rendering. However, since we
render up to a few hundred images, compositing becomes a bottleneck.
We address this issue by distributing the workload among the compute
nodes. In fact, this multi-compositing step is similar to a sort-first ap-
proach by considering the images from all view points as the tiles of a

very large virtual image. Each node computes a part of this virtual im-
age in parallel by additive compositing. For the backward projection,
the entire virtual image is required on each node, which can be con-
sidered as the final gathering step in a sort-first approach with multiple
view points.

7 RESULTS

To evaluate the visual quality of the results and the performance of
the proposed algorithm, we present reconstructions of approximately
spherically and axially symmetric nebulae. Direct volume rendering
is used to visualize the resulting volumetric data. Fly-by animations
of the reconstructed objects can be found in the supplementary mate-
rial. The parallel algorithm was executed on a GPU cluster consist-
ing of 32 physical nodes, each with 2 Intel Xeon X5620 Quad Core
CPUs, 2 Nvidia GeForce GTX480 GPUs, and 24GB RAM. The phys-
ical nodes are interconnected over an InfiniBand network with a band-
width of 20GBit/s. The parallel implementation employs C++ for the
host code, CUDA for the GPU code, and mvapich2 for the commu-
nication via MPI. An MPI process is deployed for each GPU in the
cluster domain to support flexible execution configurations.

As a first example, we consider the planetary nebula Abell 39, Fig-
ure 6(a). Its geometry resembles a hollow sphere. For its reconstruc-
tion, virtual cameras were placed at random locations around the cen-
ter, Figure 6(b). By associating the original image with all of these
virtual views, the assumption of spherical symmetry is implicitly de-
fined. The corresponding reconstruction reproduces the supposed ge-
ometry of the object with increasing accuracy as the number of projec-
tions increases, Figures 6(c)–(e). Since the object is of almost perfect
spherical symmetry, the projections are largely consistent and no reg-
ularization is needed; so we set τ = 0.

The supernova remnant 0509-67.5 is a nebula with only approx-
imate spherical symmetry, Figure 7(a). In the false-color image,
visible-light observations from Hubble Space Telescope (pink and sur-
rounding star field) are combined with X-ray data from Chandra X-ray
Observatory (blue and green). This example illustrates how the pro-
posed algorithm handles arbitrary projection geometries, massively
inconsistent projections, equality constraints, and spatial regulariza-
tion. We again use a setup implementing spherical symmetry, see Fig-
ure 7(b). Since the symmetry is only approximate, the projections are
inconsistent, and without further precautions details would be aver-
aged out, Figure 7(c). To preserve the familiar appearance of the object
from the initial perspective, we add an equality constraint. To resolve
the ambiguity introduced by the competing projections, we make use
of location-dependent regularization by choosing τ as a function of
position. On the one hand, regularization reduces the amount of vox-
els with nonzero intensity, thereby suppressing typical artifacts (see
also Figure 10). On the other hand, with τ increasing radially from the
center, compact objects are favored, similar to the implicit regulariza-
tion mechanism used for reconstruction of reflection nebulae [18]. The

(a) (b) (c) (d) (e)

Fig. 8. The Ant Nebula (Mz 3), and reconstructions assuming axial symmetry. After manually removing the background stars, the original image (a)
was replicated at 128 virtual camera positions distributed randomly around the symmetry axis of the object (schematic display in (b)). To obtain a
more natural and less symmetric impression, the symmetry axis was jittered by ±4◦ for each camera. Constraining the projection from the front to
be similar to the original image, the volume was reconstructed at a resolution of 5123 voxels with τ = r ·103, nouter = 40, and ninner = 5 in 9 633sec,
where r is the Euclidean distance from each voxel to the symmetry axis. The resulting view from the front (c) closely resembles the original image.
The oblique view (d) exhibits less detail but an overall realistic shape. In contrast, the same view of a model reconstructed from cameras distributed
uniformly around the axis without jittering (e) looks less realistic (especially when animated) and suffers from directional artifacts. Original image:
NASA, ESA, and The Hubble Heritage Team (STScI/AURA).

(a) (b) (c) (d) (e)

Fig. 9. The Cat’s Eye Nebula (NGC 6543) and reconstructions assuming axial symmetry. The original image (a) was replicated at 128 virtual
camera positions distributed randomly around the symmetry axis of the object as in Figure 8(b), again with jittering about ±4◦ at a resolution of
5123 voxels with τ = r ·103. Without constraining the projection from the front, the result is overly symmetric and looks unrealistic (b). Employing
our constrained approach with ninner = 5 resembles the original image more convincingly as it introduces asymmetric features (c). Rotating the
constrained model toward the axis of symmetry still shows asymmetric features (d). As the vantage point approaches the symmetry axis, the
apparent shape of the Cat’s Eye nebula changes more toward a ring nebula (e), in contradiction with the canonical interpretation which is backed
by additional data. Original image: J.P. Harrington and K.J. Borkowski (University of Maryland), and NASA.

result is a consistent and plausible volumetric visualization that is ap-
proximately symmetric but retains its resemblance to the original, see
Figure 7(d), as well as a high amount of realistic, fine-grained detail
for other vantage points, see Figure 7(e).

The Butterfly Nebula, or M2-9, is an example of a bipolar planetary
nebula whose structure is more easily described by an approximate
axisymmetry, see Figure 1(a). The axisymmetry can be modeled by
distributing the virtual cameras randomly around the axis of symme-
try. Only projections from the front are used; projections from the
back would be equivalent except for mirroring of the image. Again,
the projection from the front is constrained to be similar to the ob-
served image, and the regularization weight τ increases with distance
from the symmetry axis. Even though the assumed symmetry is only
approximate, most details are clearly visible in the reconstructed vol-
ume, see Figure 1(b). When the point of view approaches the axis,
the two-shell structure of the nebula becomes apparent although some
detail is inevitably averaged out, see Figures 1(c) and 1(d).

The Ant Nebula, or Mz 3, is another example of a bipolar nebula,
albeit with much more fine structure and less apparent symmetry, see
Figure 8(a). The cameras are again arranged around the symmetry
axis; to increase the amount of perceived three-dimensionality, the
axis is randomly inclined for each camera so that moving about the
axis produces more visual variation, see Figure 8(b), We again use
spatial regularization and an equality constraint to preserve the origi-
nal appearance, see Figure 8(c). When seen from a novel viewpoint,
see Figure 8(d), our visualization shows much more detail and less
visible artifacts than previous approaches. The result is more realistic
than a reconstruction from equidistant cameras, see Figure 8(e).

To demonstrate the importance of equality constraints, we consider
the Cat’s Eye Nebula, or NGC 6543, see Figure 9(a). It is a rather com-
plex nebula whose shape is believed to consist mainly of an elongated
central bubble and two larger spherical lobes. Due to its asymmetry,

a simple axisymmetry assumption produces overly symmetric, unre-
alistic results, see Figure 9(b). Using an equality constraint for the
original projection reproduces the nebula much more accurately, see
Figure 9(c). Novel views, however, reveal that the alleged bispherical
geometry is only imperfectly reconstructed; the reconstructed geome-
try instead resembles a single larger shell, see Figures 9(d) and (e).

To study the effects of different amounts of regularization, we re-
construct the planetary nebula NGC 6826, see Figure 10(a), with dif-
ferent parameters assuming axial symmetry. Without regularization,
artifacts arise in the outer regions of the volume, see Figure 10(b).
Moderate regularization entirely removes these artifacts, see Fig-
ure 10(c), and produces a faithful visualization, see Figure 10(d), that
looks plausible also from novel viewpoints, see Figure 10(e). Al-
though the range of suitable values of τ comprises several orders of
magnitude, excessively large values can lead to darkening of the outer
parts of the object, see Figure 10(f). In practice, the same value of τ is
appropriate for a wide range of objects, and the effects of too small or
too large a value are easily recognized by comparison with the original
image.

Figure 11 shows a failure case of our algorithm. The outer regions
of the Butterfly nebula contain both absorption and scattering, neither
of which are compatible with our basic assumptions. These regions
are therefore not interpreted as emissive regions attenuated by an ab-
sorbing layer, but as empty space. While the original view can be
reproduced, see Figure 11(b), oblique views exhibit missing parts, and
their appearence differs significantly from the expected structure, see
Figures 11(c) and (d).

We verify the accuracy of our algorithm and its applicability to gen-
eral tomographic reconstruction problems by reconstructing a known
test dataset, see Figure 12(a), from a number of CT-like projections.
We observe that the reconstruction error declines approximately expo-
nentially with the number of steps, see Figure 12(c), and that the rel-

(a) (b) (c) (d) (e) (f)

Fig. 10. Analysis of regularization parameter τ with reconstructions of planetary nebula NGC 6826. The original image (a) was replicated at 128
virtual camera positions distributed randomly around the symmetry axis of the object, again with jittering about ±4◦. Without regularization, by
setting τ = 0, noise and streaking are evident, here displayed with logarithmically scaled intensity to make them clearly visible (b). Employing our
regularization approach with τ = r ·103, where r is the Euclidean distance from each voxel to the symmetry axis, reduces noise and streak artifacts
significantly at the same intensity scaling (c). With linearly scaled intensity, the reconstruction closely reproduces the original image (d) and also
remains plausible when seen from a different vantage point (e). In contrast, if the regularization factor is chosen much too large (here τ = r ·5 ·104),
the outer parts of the nebula become suppressed (f). Original image: Bruce Balick (University of Washington), Jason Alexander (University of
Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio
Patriarchi (Arcetri Observatory, Italy), and NASA.

(a) (b) (c) (d)

Fig. 11. The Butterfly Nebula (NGC 6302) and reconstructions assum-
ing axial symmetry. The original image (a) was replicated at 128 virtual
camera positions distributed randomly around the symmetry axis of the
object as in Figure 8(b), again with jittering about ±4◦ at a resolution of
5123 voxels with τ = r ·103. This is a typical failure case for our algo-
rithm as the large amounts of dust in the nebula violate the assumption
of pure emission. While the rendering from the original vantage point is
able to reproduce the input image accurately (b), oblique views do not
reproduce the expected absorption at the tips of the two main lobes (c)–
(d). Original image: NASA, ESA, and the Hubble SM4 ERO Team.

ative squared error e = ‖x− x′‖2 /‖x‖2 after 100 steps is of the order
of 10−3, where x is the original volume and x′ is our reconstruction.
The reconstructed image shows no visible artifacts except for a slight
smoothing, see Figure 12(b). This accuracy seems to be sufficient to
allow for applications of the algorithm for our problem as well as in
other fields.

To quantitatively validate our method in its original application do-
main, we apply it to a single projection, see Figure 13(a), of a proto-
planetary nebula model built manually by an astronomer, see Fig-
ure 13(b). The numerical comparison of the reconstructed volume to
the original dataset shows a relative error of about 4.6 %. The value
is expected to be higher for nebulae with a less pronounced symme-
try. An oblique view of the reconstructed model, see Figure 13(c),
shows some weak streaking artifacts that would likely be suppressed
by jittering of the axis, albeit at the cost of a larger numerical error.

In Figure 14, we plot the computational time of one iteration step
for different data sizes, ranging from 643 to 10243 voxels, and for
varying numbers of views as a function of the number of nodes. The
plots allow for two observations to be made. For large datasets, a
larger number of nodes is necessary to handle the amount of data with-
out expensive sequential processing and data transfer. For very small
datasets, however, a high number of nodes is counterproductive be-
cause the padding of the sub-volumes reaches a significant portion of
the overall data and the time used for network communication and
synchronization becomes dominant.

Achieving optimal speedups in parallel algebraic reconstructions

(a) (b)
20 40 60 80 100

iterations

0.005

0.010

0.050

0.100

0.500

1.000

e

(c)

Fig. 12. The Marschner-Lobb test dataset [22] (a) and our reconstruc-
tion (b) at 1283 voxels resolution from 128 virtual cameras distributed
evenly around the up axis. The relative squared error e = ‖x− x′‖2 /‖x‖2

is computed from the original volume x and our reconstruction x′, and
is plotted logarithmically over the number of steps (c). This experiment
demonstrates the accuracy of our algorithm in a CT-like setting.

is an inherently difficult problem due to strong data dependencies.
Melvin et al. [24] discuss this issue in detail for classic CT reconstruc-
tion in medicine. The authors’ solution to reducing the impact of com-
munication overhead is a highly-specialized shared-memory hardware
architecture. With this setup, a speedup of about 21x could be achieved
with 32 CPU-based nodes. In our approach, we employ commod-
ity hardware and we build upon GPU-accelerated nodes with a fully
distributed memory architecture. Although the high performance–to–
cost ratio of multiple GPUs is attractive compared to such a dedicated
HPC cluster, latency induced by network-based communication com-
bined with the SIMD parallelization of the GPUs has a negative impact
on scalability. This observation is accompanied by the results from
Jang et al. [13], who iteratively reconstruct a least-squares approxi-
mation on an Nvidia Tesla S870 with 4 GPUs. Although the authors
report high speedups compared to a CPU-based implementation, the
performance gain of using 4 GPUs as compared to 1 GPU reaches
only a factor of about 2.0x for the forward projection and 2.7x for the
backward projection, including overhead due to data transfer and syn-
chronization respectively. According to Figures 14(a)–(c), we achieve
comparable speedups of 2.2x–3.2x with 4 GPUs, but in a distributed
environment.

We quantify the overhead of communication for a data size of 2563

voxels and 256 viewpoints in Figure 15 with a detailed breakdown of
the fractional times within one iteration step. With an increasing num-
ber of nodes, “Compositing Gather” becomes predominant, which is
the first transfer step in the distributed compositing algorithm, Fig-
ure 5(b). For more than 32 nodes, communication becomes dominant
and performance scalability reaches saturation for this particular pa-
rameter setup, see Figure 14.

5 10 15
nodes0

1

2

3

4

sec

16 views

32 views

64 views

(a)

5 10 15 20 25 30
nodes

10

20

30

40

50

sec

32 views

64 views

128 views

(b)

0 5 10 15 20 25 30
nodes0

200

400

600

800

sec

64 views

128 views

256 views

(c)

0 10 20 30 40 50 60
nodes0

500

1000

1500

2000

2500

3000

3500

sec

128 views

256 views

512 views

(d)

0 10 20 30 40 50 60
nodes0

500

1000

1500

2000

sec

32 views

64 views

128 views

(e)

Fig. 14. Time required for one iteration step at volume sizes of 643 (a), 1283 (b), 2563 (c), 5123 (d), and 10243 (e) voxels with varying number of
virtual views. For 5123 voxels, a minimum of 4 nodes is required to handle the data size. For 10243 voxels, 32 or more nodes are required, and the
number of views is bounded to 128 due to limited memory.

(a) (b) (c)

Fig. 13. A simplified (emission-only) model of the Red Rectangle nebula
was reconstructed from a single projection (a) at 1283 voxels resolution
from 128 virtual cameras distributed evenly around the up axis. Since
the nebula fulfills the symmetry assumption well, the reconstruction (c)
is visually quite similar to the original (b), and the relative error, cf. Fig-
ure 12, is only about 4.6 %. Model courtesy of Koning et al. [15].

1 2 4 8 16 32 64

20

40

60

80

100
%

nodes AT
A
Comp. Gather
Comp. Add
Comp. Scatter
Vec. Operations

Fig. 15. Detailed breakdown of one iteration step for a volume with a
resolution of 2563 voxels and 256 virtual views. The projections A and
AT and the vector operations are predominant until the number of nodes
reaches 32, when communication cost exceeds computation time.

8 CONCLUSION AND FUTURE WORK

We have shown that our tomographic algorithm is capable of recon-
structing volumes of resolutions up to 10243 voxels from up to 512
projections in a fully automatic way. When presented with strongly in-
consistent, contrived projections in the context of astronomical nebula
reconstruction from single images, a regularization scheme preserves
the plausibility of the result.

Astronomical nebulae of roughly spherical shape were shown to be
satisfyingly reconstructed by the algorithm, retaining a high amount
of detail and present irregularities in the geometry. Axisymmetric ob-
jects, on the other hand, lose some detail when the camera approaches
the symmetry axis. Here, the generation of synthetic detail may pro-
vide a remedy in the future. However, our additional constraints not
only help reproduce the original view convincingly, but also recon-
struct crucial asymmetric features that convey a basic impression of

irregularity even when the viewpoint is close to the axis.
Since our model only reconstructs emission, nebulae that contain a

significant amount of scattering or absorption are reconstructed poorly.
Reconstructions including simultaneous emission and absorption re-
quire nonlinear optimization and are in general more computationally
intensive. The attenuated ray transform [29] may provide a starting
point for a model comprising emission and absorption but no scatter-
ing. One notes that the change in the intensity I(x) along the view-
ing ray in the presence of absorption a(x) and emission e(x) is de-
scribed by dI(x)/dx = −a(x)I(x) + e(x), which is solved by I(x) =
I (0)exp(−

∫ x
0 a(t)dt)+

∫ x
0 e(t)exp(−

∫ x
t a(s)ds)dt. The inverse prob-

lem could in principle be solved using `1 minimization algorithms [4].
Recent grid-free methods [11] may also provide a method to solve
this problem efficiently. In contrast, if scattering is taken into account,
every voxel potentially influences the intensity of every image pixel,
and the inherent sparsity of the projection operator M is lost. High-
resolution reconstruction of scattering nebulae may be possible using
multi-resolution methods that are already used for rendering [18]. In
cases where the scattering effects can be approximated by a convo-
lution in the image plane, the problem could probably be solved by
a modified version of our algorithm, but convergence is likely to be
considerably slower.

The quality of the reconstruction is naturally limited by the fact that
the algorithm has no knowledge about the physical processes under-
lying the objects being reconstructed. Since our algorithm provides a
mechanism for specifying additional constraints in a generic way, it
would be possible to restrict the search space to solutions compatible
with a physical model. Additionally, an interactive volumetric recon-
struction tool could let the user guide the automatic reconstruction by
specifying the position of substructures in space or by manipulating
individual views. Obviously, an interactive editor would require fur-
ther acceleration of the reconstruction algorithm and live display of
intermediate results. Higher performance could be achieved by means
of a more sophisticated compositing scheme and additional optimiza-
tions in the projection kernels, e.g. through the use of more efficient
memory caching. In addition, a multi-resolution workflow would al-
low us to reconstruct a low-resolution model quickly in interactive
mode while high-resolution detail would be synthesized in a separate
offline step. In the long run, we seek to utilize the presented algorithm
as the foundation for a versatile and intuitive interactive, constraint-
based volumetric modeling framework that may also find applications
outside astronomical visualization as well.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their insight-
ful comments and constructive criticism. This work was partially
funded by Deutsche Forschungsgemeinschaft (DFG) as part of DFG
projects MA 2555/7–1 and WE 2836/2–1 (“Astrographik”) as well as
LO 1436/3–1 and PF 709/1–1 (“Sparse Exact and Approximate Re-
covery”).

REFERENCES

[1] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray trac-
ing. Proceedings of Eurographics, pages 3–10, 1987.

[2] R. Baraniuk. Compressive sensing. IEEE Signal Processing Magazine,
24(4):118–121, 2007.

[3] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems. SIAM Journal on Imaging Sciences,
2(1):183–202, 2009.

[4] K. Bredies, T. Bonesky, D. A. Lorenz, , and P. Maass. A generalized con-
ditional gradient method for non-linear operator equations with sparsity
constraints. Inverse Problems, 23:2041–2058, 2007.

[5] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from in-
complete and inaccurate measurements. Communications on Pure and
Applied Mathematics, 59:1207–1223, 2006.

[6] D. L. Donoho. Compressed sensing. IEEE Transactions on Information
Theory, 52:1289–1306, 2006.

[7] S. Eilemann and R. Pajarola. Direct send compositing for parallel sort-last
rendering. In Proceedings of the Eurographics Symposium on Parallel
Graphics and Visualization, pages 29–36, 2007.

[8] T. García-Díaz, J. A. López, W. Steffen, M. G. Richer, and H. Riesgo. A
Cat’s Eye view of the Eskimo from Saturn. In Proceedings of the IAU
Symposium 283 “Planetary Nebulae: An Eye to the Future”, 2011.

[9] G. Golub and C. Loan. Matrix Computations. Johns Hopkins Studies in
the Mathematical Sciences. Johns Hopkins University Press, 1996.

[10] R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction tech-
niques (ART) for three-dimensional electron microscopy and X-ray pho-
tography. Journal of Theoretical Biology, 29(3):471–481, 1970.

[11] J. Gregson, M. Krimerman, M. B. Hullin, and W. Heidrich. Stochastic
tomography and its applications in 3D imaging of mixing fluids. ACM
Transactions on Graphics, 31(4):52:1–52:10, 2012.

[12] I. Ihrke and M. Magnor. Image-based tomographic reconstruction of
flames. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, pages 365–373, 2004.

[13] B. Jang, D. Kaeli, S. Do, and H. Pien. Multi GPU implementation of
iterative tomographic reconstruction algorithms. In Proceedings of the
IEEE International Symposium on Biomedical Imaging: From Nano to
Macro, pages 185–188, 2009.

[14] X. Jia, Y. Lou, R. Li, W. Song, and S. Jiang. GPU-based fast cone beam
CT reconstruction from undersampled and noisy projection data via total
variation. Medical Physics, 37:1757–1760, 2010.

[15] N. Koning, S. Kwok, and W. Steffen. Morphology of the Red Rectan-
gle proto-planetary nebula. In Proceedings of the IAU Symposium 283
“Planetary Nebulae: An Eye to the Future”, 2011.

[16] D. A. Leahy. Deprojection of emission in axially symmetric transparent
systems. Astronomy and Astrophysics, 247:584–589, July 1991.

[17] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. Parallel volume
rendering using binary-swap compositing. IEEE Computer Graphics and
Applications, 14:59–68, July 1994.

[18] M. Magnor, K. Hildebrand, A. Lintu, and A. Hanson. Reflection nebula
visualization. Proceedings of IEEE Visualization, pages 255–262, 2005.

[19] M. Magnor, G. Kindlmann, C. Hansen, and N. Duric. Constrained in-
verse volume rendering for planetary nebulae. In Proceedings of IEEE
Visualization, pages 83–90, 2004.

[20] M. Magnor, G. Kindlmann, C. Hansen, and N. Duric. Reconstruction and
visualization of planetary nebulae. IEEE Transactions on Visualization

and Computer Graphics, 11(5):485–496, Sept. 2005.
[21] S. Marchesin, C. Mongenet, and J.-M. Dischler. Multi-GPU sort-last

volume visualization. In Proceedings of the Eurographics Symposium on
Parallel Graphics and Visualization, pages 1–8, 2008.

[22] S. R. Marschner and R. J. Lobb. An evaluation of reconstruction filters for
volume rendering. In Proceedings of IEEE Visualization, pages 100–107,
1994.

[23] N. Max. Optical models for direct volume rendering. IEEE Transactions
on Visualization and Computer Graphics, 1(2):99–108, 1995.

[24] C. Melvin, M. Xu, and P. Thulasiraman. HPC for iterative image recon-
struction in CT. In Proceedings of the 2008 C3S2E conference, pages
61–68, 2008.

[25] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification of
parallel rendering. IEEE Computer Graphics and Applications, 14(4):23–
32, July 1994.

[26] B. Moloney, M. Ament, D. Weiskopf, and T. Möller. Sort-first parallel
volume rendering. IEEE Transactions on Visualization and Computer
Graphics, 17(8):1164–1177, 2011.

[27] C. Müller, M. Strengert, and T. Ertl. Optimized volume raycasting for
graphics-hardware-based cluster systems. In Proceedings of the Euro-
graphics Symposium on Parallel Graphics and Visualization, pages 59–
66, 2006.

[28] D. Nadeau, J. Genetti, S. Napear, B. Pailthorpe, C. Emmart, E. Wesselak,
and D. Davidson. Visualizing stars and emission nebulas. Computer
Graphics Forum, 20(1):27–33, 2001.

[29] F. Natterer and F. Wübbeling. The attenuated ray transform, chapter
2.4.1. Society for Industrial Mathematics, 2001.

[30] X. Pan, E. Sidky, and M. Vannier. Why do commercial CT scanners
still employ traditional, filtered back-projection for image reconstruction?
Inverse Problems, 25(12):123009, 2009.

[31] T. Peterka, D. Goodell, R. Ross, H.-W. Shen, and R. Thakur. A con-
figurable algorithm for parallel image-compositing applications. In Pro-
ceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, SC ’09, pages 4:1–4:10, 2009.

[32] F. Sabbadin, M. Turatto, R. Ragazzoni, E. Cappellaro, and S. Benetti.
The structure of planetary nebulae: theory vs. practice. Astronomy and
Astrophysics, 451(3):937–949, 2006.

[33] E. Sidky and X. Pan. Image reconstruction in circular cone-beam com-
puted tomography by constrained, total-variation minimization. Physics
in Medicine and Biology, 53:4777, 2008.

[34] W. Steffen, N. Koning, S. Wenger, C. Morisset, and M. Magnor. Shape:
A 3D modeling tool for astrophysics. IEEE Transactions on Visualization
and Computer Graphics, 17(4):454–465, Apr. 2011.

[35] J. Tang, B. E. Nett, and G.-H. Chen. Performance comparison between
total variation (TV)-based compressed sensing and statistical iterative re-
construction algorithms. Physics in Medicine and Biology, 54(19):5781–
5804, 2009.

[36] S. Wenger, J. Aja Fernández, C. Morisset, and M. Magnor. Algebraic 3D
reconstruction of planetary nebulae. Journal of WSCG, 17(1):33–40, Feb.
2009.

[37] S. Xiao, Y. Bresler, and D. Munson Jr. Fast Feldkamp algorithm for
cone-beam computer tomography. In Proceedings of the International
Conference on Image Processing, volume 2, pages II–819, 2003.

[38] W. Zheng and C. O’Dell. A three-dimensional model of the Orion nebula.
Astrophysical Journal, 438(2):784–793, Jan. 1995.

	Introduction
	Related Work
	Image Formation and Symmetry
	Compressed Sensing Algorithm
	Forward and Backward Projection
	Distributed Architecture
	Results
	Conclusion and Future Work

