
Guided Profiling for Auto-Tuning Array Layouts on GPUs

Nicolas Weber
TU Darmstadt

Graduate School of
Computational Engineering

Sandra C. Amend
TU Darmstadt

Michael Goesele
TU Darmstadt

Graduate School of
Computational Engineering

ABSTRACT
Auto-tuning for Graphics Processing Units (GPUs) has be-
come very popular in recent years. It removes the necessity
to hand-tune GPU code especially when a new hardware
architecture is released. Our auto-tuner optimizes memory
access patterns. This is a key aspect to exploit the full per-
formance of modern GPUs. As the memory hierarchy has
historically changed in nearly every GPU generation, it was
necessary to reoptimize the code for all of these new ar-
chitectures. Unfortunately, the solution space for memory
optimizations in large applications can easily reach millions
of configurations for a single kernel. This vast number of im-
plementations cannot be fully evaluated in a feasible time.
In this paper we present an adaptive profiling algorithm that
aims at finding a near optimal configuration within a frac-
tion of the global optimum, while reducing the profiling time
by several orders of magnitude compared to an exhaustive
search. Our algorithm is aimed at and evaluated on large
real-world applications.

1. INTRODUCTION
Leveraging the full potential of a Graphics Processing Unit
(GPU) is a difficult task, as there are many influencing fac-
tors such as the specific algorithm, used scheduling, resource
utilization, hardware architecture, and many more. In the
last couple of years, several auto-tuning approaches target-
ing different optimization aspects have emerged, including
application [10, 26] and domain specific solutions [12, 16, 22,
28], high level languages [1, 4, 8, 9, 11] and frameworks
or tool sets, which optimize applications domain indepen-
dently [13, 25, 27].

Optimal memory access is arguably one of the most cru-
cial performance aspects, especially since the memory hi-
erarchy has been altered in nearly every GPU generation,
which consequently required to adapt existing code for each
new architecture. Our auto-tuner optimizes the array access
in NVIDIA CUDA [18] applications. It is able to choose dif-
ferent transpositions and Array of Struct layouts (such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PMBS2015, November 15-20 2015, Austin, Texas USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4009-0/15/11 ...$15.00
DOI: http://dx.doi.org/10.1145/2832087.2832093

Array of Structs (AoS), Structure of Arrays (SoA) or Ar-
ray of Structure of Arrays (AoSoA, often also referenced
as tiled-AoS)), as well as to optimize the usage of memory
types such as global and texture memory. Each array can
be an AoS, multidimensional (n-Array), or both (n-AoS).
These optimizations allow a high flexibility but introduce a
very vast number of possible implementations that can be
greater than a million per application.

Like many other state of the art auto-tuning approaches we
rely on empirical profiling as most of the optimization ef-
fects are difficult to model, especially for data dependent
effects such as bank conflicts and serialization of atomic op-
erations. Empirical profiling has the advantage that it ex-
ecutes the application directly on the specific hardware for
realistic data. On the other hand empirical profiling is very
time intensive since it requires many different trial runs of
the application. Further each kernel configuration that is
evaluated has to be explicitly compiled prior to its execution,
which often takes significantly more time than the execution
itself. Our work mainly focuses on real-world applications
whose total execution time is quite long. This poses a diffi-
cult task for empirical profiling as only a few configurations
can be evaluated and compiled in an acceptable time frame
if a single application run does not only take a couple of
seconds.

In this paper we focus on the question, how to find a nearly
optimal memory configuration for a single kernel, with no
dependencies to other kernels, in as little time as possible.
Our contributions are:

1. We introduce a novel adaptive profiling algorithm, that
uses a predictor with domain knowledge to concentrate
the search on the approximated location of the global
minimum. It requires only few profiling runs to find a
near optimal solution and is several orders of magni-
tude faster than an exhaustive search.

2. We evaluate our approach against a series of state of
the art adaptive algorithms

3. We present a GPU watch-dog to reduce the profiling
time, which can be combined with many different pro-
filing algorithms

The outline of this paper is as follows: Section 2 relates our
work to current state of the art methods. A brief introduc-
tion to our auto-tuner is then given in Section 3. Section 4
explains our algorithm and Section 5 shows how we integrate

ACM, 2015. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for re-
distribution. The definitive version was published in Proc. of
PMBS2015, http://dx.doi.org/10.1145/2832087.2832093.

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2832087.2832093
http://dx.doi.org/10.1145/2832087.2832093

it into the auto-tuner. In Section 6 we explain our evalua-
tion method, followed by the results in Section 7. Section 8
gives a conclusion and an outlook on future work.

2. RELATED WORK
In the following we introduce previous work that is closely
related to ours. We start with other GPU memory access
optimization frameworks, continue with exhaustive search
based auto-tuning approaches and end with adaptive profil-
ing methods.

2.1 GPU Memory Access Optimizations
Optimal memory access has been specifically targeted by
Rubin et al. [23] who published the MAPS framework. It
provides STL-like data access containers that map on com-
mon GPU algorithms. Their approach optimizes memory
access but is no real auto-tuning framework, as no auto-
mated decisions are made. Instead the programmer has to
explicitly decide which data structures to use and if a matrix
should be stored transposed. The only automated adaption
their framework is applying is to detect the GPU architec-
ture and to apply certain optimizations specifically targeting
this architecture.

Kofler et al. [14] optimize the tile size of AoSoA data struc-
tures for OpenCL applications. They analyze the GPU code
and build a memory access graph model. This is combined
with a generic GPU performance model, which they estab-
lish using a predefined benchmark. Both models together
allow to estimate the optimal tile size. In contrast, our auto-
tuner relies on empirical profiling of the targeted GPU kernel
without predefined benchmark or model. We have observed
that the properties of real data can have a great impact on
the performance of an algorithm if the data itself influences
the execution, e.g., through bank conflicts or atomic opera-
tion serialization.

2.2 Exhaustive Search Based Auto-Tuning
Muralidharan et al. [17] proposed an optimization frame-
work, which selects the correct algorithm for a problem de-
pending on application specific meta data provided by the
programmer. Unfortunately, the authors do not mention
how much time their approach requires to acquire the nec-
essary classification data and how much time is spent to
convert the input data between different formats, e.g., in
their Sparse Matrix optimization benchmark. Weber and
Goesele [25] optimize memory access patterns for AoS and
n-Arrays. They learn a decision model, which enables them
to predict a good working memory layout during runtime.
All these approaches, however, have in common that they
need to run the application multiple times using different
input data and perform an exhaustive profiling to establish
their decision models. Depending on the number of config-
urations, an exhaustive search requires a prohibitively large
amount of time.

2.3 Adaptive Profiling Methods
Adaptive profiling tries to reduce the effort required for pro-
filing by selecting a subset of configurations instead of per-
forming an exhaustive search. Jordan et al. [13], e.g., use
a genetic algorithm to steer the profiling. Their approach
solely relies on the genetic algorithm and does not introduce

any kind of domain knowledge. Chung et al. [5] proposed
Active Harmony, a general framework with API interface,
which could be adapted for GPUs. This framework tries to
profile and adapt an application during runtime. They use a
heuristic to prioritize the search of their Nelder-Mead based
algorithm. Ansel et al. [2] introduced a similar generic auto-
tuning approach called OpenTuner. Instead of optimizing an
application at runtime, it compiles and restarts it for each
new configuration. They use multiple search algorithms to
find an optimal solution and can execute the application on
multiple machines simultaneously to speed up the optimiza-
tion. Given our focus on tuning complex applications which
require a significant amount of time to compile, it would take
too much time to recompile the entire application hundreds
or thousands of times. Instead we apply an in-application
profiling which compiles only necessary kernels in parallel.
This is much faster than recompiling and restarting the en-
tire application. Their approach, however, seems to be well
suited for small applications. Liu et al. [15] introduced an
input adaptive optimization framework. They use a greedy
algorithm which optimizes each dimension separately until
it reaches a maximum. Their method also has to recompile
the entire application for each evaluated configuration. All
of these approaches use no knowledge of the optimization
domain while profiling. In contrast, we developed a predic-
tor, which analyzes the optimization space and estimates the
location of the optimal solution. This minimizes the num-
ber of required samples and ultimately reduces the profiling
time.

Another way to limit the number of evaluated configura-
tions are search space pruning algorithms such as proposed
by Castro et al. [7]. They sample a certain number of values
per dimension to estimate the location of important regions
in their search space. In these regions the number of sam-
ples is increased, to improve the search for the minimum.
Unfortunately, memory access patterns pose a multidimen-
sional discrete optimization problem with very few (usually
less than five) values per dimension. This prevents us from
applying these techniques to our problem, as the search for
important regions, would already execute all possible values
of a dimension.

3. AUTO-TUNER DESIGN
Our auto-tuner is designed to optimize complex array lay-
outs in NVIDIA CUDA [18] applications. The main goals
for our design are to apply our optimizations with a mini-
mal programming overhead (by using mostly native CUDA
or C++ syntax), high compatibility and portability between
platforms (Windows <> Linux). As we only want to remove
the daunting task of finding an optimal memory layout from
the programmer, we do not want to introduce any new pro-
gramming paradigm.

3.1 Supported Optimization Dimensions
The auto-tuner can optimize several dimensions that have
a key impact on memory related performance. It supports
different transpositions of arrays, layouts (AoS, SoA and
AoSoA) and the placement of data in different memory types
(e.g., in global or texture memory) for AoS, n-Array or n-
AoS data structures. For AoSoA we use a tile size of 32
which matches the warp size. While the layouts for global
and shared memory access can be varied, we do not perform

Listing 1: Code changes necessary to apply auto-tuner.

—– CUDA kernel code —–

1 g l o b a l void ke rne l (Data∗ data , int w, int h) {
2 int a = 0 , b = 0 ;
3

4 for (int y = 0 ; y < h ; y++) {
5 a += data [threadIdx . x + w ∗ y] . a ;
6 b += data [threadIdx . x + w ∗ y] . b ;
7 }
8

9 . . .
10 }

—– GPU code for auto-tuner —–

1 g l o b a l void ke rne l (Data data) {
2 int a = 0 , b = 0 ;
3

4 for (int y = 0 ; y < data . getCount<1>() ; y++) {
5 a += data [threadIdx . x] [y] . a ;
6 b += data [threadIdx . x] [y] . b ;
7 }
8

9 . . .
10 }

—– CUDA Driver API CPU code —–

1 Data∗ host = new Data [w ∗ h] ;
2 CUdeviceptr dev i ce ;
3 cuMemAlloc(&device , s izeof (Data)∗w∗h) ;
4

5 for (int x . . .) for (int y . . .) {
6 host [x + w ∗ y] . a = . . . ;
7 host [x + w ∗ y] . b = . . . ;
8 }
9

10 cuMemcpyHtoD(device , host , s izeof (Data)∗w∗h) ;
11

12 cuModuleLoad(&module , ” f i l e . ptx ”) ;
13 cuModuleGetFunction(&func , module , ”ke rne l ”) ;
14

15 void∗ args [] = {&device , &w, &h } ;
16 cuLaunchKernel (func , . . .) ;

—– CPU code for auto-tuner —–

1 Data : : Host host (w, h) ;
2 Data : : Device dev i ce (w, h) ;
3

4

5 for (int x . . .) for (int y . . .) {
6 host [x] [y] . a = . . . ;
7 host [x] [y] . b = . . . ;
8 }
9

10 cuMemcpyHtoD(device , host , host . g e tS i z e ()) ;
11

12 cuModuleLoad(&module , ” f i l e . cu ”) ;
13 cuModuleGetFunction(&func , module , ”ke rne l ”) ;
14

15 void∗ args [] = { dev i ce } ;
16 cuLaunchKernel (func , . . .) ;

an automated partitioning of which data should be placed in
shared memory and which should not. In our opinion, this
decision should be made by the programmer, as this impacts
the semantics and limit the design space of the code. Fur-
ther, the auto-tuner adjusts the size of the L1 cache on Fermi
and Kepler cards. On these architectures it is possible to in-
crease the amount of L1 cache by reducing the size of shared
memory. This can improve the performance as it increases
the chance of a cache hit in the L1 cache. On the other
hand it can reduce the occupancy of the kernel, depending
on the amount of shared memory used, often resulting in a
performance drop. Another feature are user defined prepro-
cessor based optimizations, that can evaluate different code
paths. This can be used to implement a variety of different
algorithms.

We also experimented with more optimization options, but
these either have changed the result (e.g., –use fast math
compiler flag) or had no impact on the performance (e.g.,
adjusting the shared memory bank width). Further we do
not optimize the kernel block size as this requires suitably
structured kernels and a mechanism to provide valid launch
configurations.

Equations 1 to 5 show a summary of all possible optimization
dimensions with their respective dependencies.

DL1Cache =


[SM,L1] on Fermi

[SM,L1, EQ] on Kepler

[None] otherwise

(1)

DLayout = [AoS, SoA,AoSoA] (2)

DMemory = [Global, T exture] (3)

DTransposition = [1, . . . , d!] (4)

DPreprocessor = [. . .] (5)

Using these dimensions, we can define a configuration C =
(d1, . . . , dn) of a kernel as tuple of values for the specific
dimensions D of the kernel.

3.2 Watch-dog Timer
As the time difference between the best and the worst pos-
sible configuration of a kernel can be very high, we imple-
mented a watch-dog, which can terminate the kernels during
profiling, if the execution exceeds the time of the best found
configuration. The watch-dog uses the internal nano second
timer to check if the timeout has been reached. It is im-
plemented inside the kernel as — to our knowledge — this
is the only safe way to terminate a kernel without destroy-
ing the GPU context. It requires some manual interaction,
as the programmer has to specify the location of the watch-
dog checkpoints. Further some additional registers are used,
which, as well as the checkpoints, can influence the perfor-
mance of the kernel. We will show in our evaluation that the
additional overhead caused by the watch-dog has minimal
impact on the decision on the optimal kernel configuration.
Further the watch-dog is only compiled into the kernels for
profiling and is removed in production runs.

3.3 Code Modifications
As adapting a compiler chain is a big problem for many
application maintainers and can be very difficult if main-
tained for different platforms, we rely on code generation.
The auto-tuner generates application specific code, that can
be used with any compiler. The programming interface in-
tercepts most CUDA Driver API calls, so that nearly no
changes to the code have to be done. Solely the memory ac-
cess of multidimensional arrays and additional features such
as user defined compiler flags or optimization hints (e.g. ar-
ray sizes that are known at compile time), have to be ex-
plicitly coded. To make it easy to access memory, we use a

default AoS syntax (array[x].item) for one dimensional AoS
and mimic a Java-like syntax for n-Array (array[x][y]) and
n-AoS (array[x][y].item). These are realized using C++ op-
erators. The number of used dimensions is arbitrary (e.g.
array[a][b][c][d][e][f]). Listing 1 shows an example for nec-
essary changes to the code.

To achieve optimal performance, it is crucial that the ex-
act layout implementation is directly compiled into the ker-
nel, because a variable implementation would drastically de-
crease the kernel performance. The entire kernel compilation
process is performed by the auto-tuner. To provide the data
in the correct format to the GPU, our host implementation
is able to adjust itself during runtime.

3.4 Execution & Runtime
During the normal execution of an application, our auto-
tuner intercepts all kernel calls, selects an optimal kernel
configuration (Copt ∈ C) and executes it. This interception
does not produce any measurable overhead.

In profiling mode, we intercept all kernel calls and pass the
control of the application to our profiling adapter. This per-
forms an in-application profiling, which allows a fine granu-
lar steering of the process for each kernel and ensures that
application setup and finalize procedures are not executed
multiple times, which would be the case if the entire ap-
plication is restarted. The profiling adapter takes care of
all necessary profiling operations, data restoration, compila-
tion, data format conversions and initialization of the watch-
dog. Compilation and format conversions are automatically
executed on the CPU in parallel to the GPU profiling. The
adapter makes it very easy to implement different search
algorithms on top of it. It is built in a blocking queue fash-
ion, so that a search algorithm is filling the queue and then
waits until it is processed. The algorithm then can either
refill the queue with other configurations or return control
to the application. Some hardware limitations, such as the
maximal size for texture memory [19], can only be evaluated
during runtime. All configurations that do not fulfill these
limitations are automatically skipped, regardless of the used
profiling algorithm.

4. PREDICTOR
For the search of an optimal kernel configuration, we use
a predictor, which estimates the location of the minimum.
Our method only requires to sample a very limited amount
of configurations of the entire optimization space. The to-
tal configuration count |C| can be very high, as it is scales
exponentially:

|C| =
∏
d∈D

|d| (6)

4.1 Prediction Theory
Our predictor is based on the assumption that different op-
tions have a linear contribution to the total execution time.
E.g. moving a specific array from global to texture memory
or switching it from AoS to SoA will always change runtime
by ∆global→texture and ∆AoS→SoA respectively. While this
may sound unintuitive, extensive tests on real applications
performed prior to this work suggest that this assumption
is actually true for a surprising number of cases.

The explanation for this lies in the way GPUs work. In a
warp, all threads either execute the same operation or are
deactivated. That is why accessing one array does not in-
fluence any other array access. However this only applies
to the array access itself. Dimensions such as the L1 cache
influence the performance of all arrays. We therefore subdi-
vide all dimensions into two classes, one which contains all
dimensions, which are independent DI and all others who
share their contribution to the execution time DS . As lay-
outs, transpositions and the used memory only influence the
performance of a specific array, we define all of our dimen-
sions to be independent, except for the L1 cache size. User
defined dimensions can either be declared as independent or
shared.

These assumptions allow us to calculate a predicted execu-
tion time P (CP) for a specific configuration as the sum of the
execution time T (CB) of a base configuration plus the time
differences ∆(CS,dI , CB) between CB and a set of support
configurations CS .

P (CP) = T (CB) +
∑

dI∈DI

(
T (CS,dI)− T (CB)

)︸ ︷︷ ︸
∆(CS,dI

,CB)

(7)

This predictor has the advantage that it only requires very
few samples to estimate the performance of the entire opti-
mization space. It is important to select the necessary base
and support configurations correctly. For the base configura-
tions we require each combination of the shared dimensions.

|CB | =
∏

dS∈DS

|dS | (8)

The values for the independent dimensions do not matter
and can be initialized with a default value. We use Layout =
SoA, Transposition = untransposed and Memory = global
as well as the first option of the user defined dimensions. The
number of support configurations calculates itself by the sum
of all values for the independent dimensions, subtracted by
one, as the default value is already covered by the base con-
figurations. Further this number has to be multiplied by the
number of base configurations.

|CS | = |CB | ·
∑

dI∈DI

(|dI | − 1) (9)

Figure 1 shows an example with three dimensions: L1 cache,
Layout and Memory. The L1 Cache is the only shared di-
mension, both others are independent. With the 12 high-
lighted configurations, we are able to estimate the perfor-
mance of the entire optimization space consisting of 18 con-
figurations.

5. IMPLEMENTATION
To apply the predictor in the auto-tuner, some more work
has to be done. Let us assume a very simple kernel with a
5x5 AoS consisting of two fields, a memory access as shown
in Listing 2, and a device whose memory controller can fetch
one memory bank with 4 adjoining items at once. For our
theoretical system each memory bank load requires 10 clock
cycles and one additional clock cycle for reading memory
banks that are not adjoined. Further let us assume that the
data can only be represented as AoS or SoA, and can be
stored untransposed or transposed. This results in a total

AoSoA

SoA

AoS

SM L1 EQ

La
yo

u
t

L1 Cache

AoSoA

SoA

AoS

SM L1 EQ

Figure 1: Left: To predict the performance of all configu-
rations, we require three base (dark grey) and nine support
(blue) configurations. With these we can predict the time
all of non-profiled configurations (light grey). Right: The
estimated performance of the red configuration is calculated
by using one base and two support configurations.

B11 B12

B13 B14

B11

B12

B13

B14

AoSTAoS

A21 B21

A22 B22

A23 B23

A24 B24

SoA SoAT

B15 B21A21

B15 A25 B25

A21 A22 A23

A21 A31 A41

A51 A22 A32

A42 A52 A23

A33 A43 A53

A25 A35 A45

A11 A12

A13 A14

A11

A12

A13

A14

A15

A15

A11 A12 A13 A14

A15

A11

A12

A13

A14

A15

...

...

...

...

Figure 2: Example for storing of a 5x5 AoS. Each line rep-
resents a memory bank with 4 items. Black boxes show
accessed items in the first iteration of Listing 2. Gray bars
indicate where the data is scattered over the memory.

of four configurations. Figure 2 shows the memory access
for all configurations in the first iteration of the inner loop.
The major goal for us is to minimize the required clock cy-
cles for all memory loads. As can be seen, SoAT is the best
layout with only two lines to be read. To find the optimal
layout, we have to sample AoS as base configuration. Fur-
ther we require two support configurations, which are AoST

and SoA. Their measured execution time is T (AoS) = 54,
T (AoST) = 30 and T (SoA) = 51 clock cycles for the inner
loop. When we apply our predictor (Equation 7) we get the
predicted execution time P (SoAT) = 27 which is the best
result.

Although this value differs from the exact value T (SoAT) =
20, it is still a useful prediction. In fact the difference is
caused by the choice of parameters for our artifical example.
But we expect a deviation between a prediction and a real

Listing 2: Pseudocode of n-AoS memory access example

1 struct AoS { int a ; int b } ;
2 AoS array [5] [5] ;
3

4 int sum = 0 ;
5 for (int y = 0 ; y < 5 ; y++)
6 for (int x = 0 ; x < 5 ; x++)
7 sum += array [y] [x] . a ;

system anyway. As we only want to locate the minimum,
we do not care about the correct predicted value, as long as
the ordering is not changed, so that the predicted minimum
is at the same location as the real one.

5.1 Real World Implementation
In a real system we encounter some additional difficulties.
Noise is in particular a big issue when using empirical pro-
filing. The reasons for this noise are manifold, starting by
varying CPU/memory frequencies, PCI-E bus occupancy
and utilization, driver or operating system overhead, task
scheduler, and many more. To compensate falsely predicted
results, we explicitly sample the five best candidates for the
minimum, yielding ground truth timings instead of predic-
tions, which are, however, still contaminated by remaining
noise.

To demonstrate that our predictor works as expected, we
show an example based on the binning kernel of our KD-
Tree benchmark, running on a Tesla K20. The kernel con-
sists of one 1D-AoS (layout), two read only 2D-AoS (layout,
transposition, memory), two user defined preprocessor di-
mensions and the setting for the L1 cache, which is a total
of 10 dimensions. Each of the user defined preprocessor di-
mensions has two options, while all other dimensions use the
values defined in Equation 1 to 5. This results in a total of
5184 configurations for the kernel.

3︸︷︷︸
L1 cache

· (3)1︸︷︷︸
AoS

· (3 · 2 · 2)2︸ ︷︷ ︸
2x 2D-AoS

· (2)2︸︷︷︸
2x user defined

= 5184 (10)

To estimate the performance of all configurations, we require
three base configurations CB and 36 support configurations
CS .

Figure 3 shows the measured (black line) and predicted (blue
line) execution time as well as the location of the base (black
crosses) and support (red crosses) configurations. All results
are sorted by the measured execution time, so that the x-axis
shows the rank of the configuration. Our five best candi-
dates are indicated as orange crosses. On the right we show
a closeup of the region around the minimum. As expected,
there is a difference between the predicted and measured
results, but the configurations that we have found are very
close to the optimal solution. To achieve this, we only had
to sample 44 out of 5184 configurations, which is 0.8% of
the entire solution space.

5.2 Watch-Dog
A näıve watch-dog implementation would always terminate
the execution of a kernel, when the execution time exceeds
the time of the best configuration. As this would break
the predictor since necessary values are missing, some rules
have to be applied to the watch-dog. First of all, a base
configuration cannot be killed, as these are essential for the
prediction. Further, all support configurations which have
the same values for the shared dimension and vary only in
the same independent dimension, can be put into a so called
watch-dog group. As we are only interested in finding a
minimum, we are satisfied with the fact, that for each in-
dependent dimension, we have the minimal value available.
This allows us to kill all configurations inside this group, if

60

110

160

210

260

310

360

410

460

510

560

0 1000 2000 3000 4000 5000

Ti
m

e
(m

s)

Predicted Measured Support Base Best Predicted

65

70

75

80

85

90

0 200 400 600

Ti
m

e
(m

s)

Support

Figure 3: Prediction results for the binning kernel of our KD-Tree benchmark on a Tesla K20. All 5184 measured results
(black) are sorted ascending. The x-axis shows the rank of the configurations. Our predictor requires 3x CB (black cross)
and 36x CS (red) samples to predict the performance of the remaining CP (blue). The five best predicted configurations
are indicated in orange. On the right we show a detail view of the best performing configurations, where circles indicate the
predicted and crosses the real value.

it is slower than the best found configuration in the same
group.

6. EVALUATION
To evaluate our predictor based profiling, we use multiple
benchmarks with different memory access characteristics.
We apply three benchmarks ranging from simple algorithms
up to entire applications. Each of these has other optimiza-
tion difficulties, such as only one optimal solution for any
architecture or input data (BitonicSort), input sensitive op-
timal solutions (KD-Tree), and an extremely high number
of degrees of freedom (Reyes).

For the evaluation we compare an exhaustive search (E), a
simple greedy algorithm (G), an evolutionary algorithm (A),
a random sampler (R) (which samples the same amount of
configurations as our approach) and our predictor (P). If
applicable for the benchmark and search algorithm, we ex-
ecute them with and without watch-dog (a W is added to
the abbreviation of the algorithm if enabled). For complete-
ness we also show the results for always choosing AoS or
SoA as layout, while all other parameters such as memory
placement, transposition and L1 cache config, are set fixed
to their default value.

The greedy algorithm, as it is also used by Liu et al. [15],
only varies the values for one independent dimension at the
same time. Every value of this dimension is executed in all
combinations with the shared dimensions. If the watch-dog
is enabled, it always kills a kernel execution, as soon as the
time exceeds the time of the best configurations, that has
been found so far.

The evolutionary algorithm is based on the work of Storn
and Price [24] which is also the foundation of the approach
of Jordan et al. [13]. Our implementation uses a population
size of 10 and terminates if it has not found a better solution
in 3 generations. These parameters have shown to be a
good trade off between good quality and low profiling time
for our optimization problem. For kernels with very few
variants it supports a shortcut option to directly execute an
exhaustive search instead if the number of configurations is
very low, which is faster in this case, as the compilation for
all configurations can be done in parallel, instead in multiple

population runs. The nature of an evolutionary algorithm
prohibits the usage of the watch-dog as this would remove
the ability to cross-over or mutate configurations, as only
the best would not be killed.

As mentioned in the introduction, this paper focuses on
searching a good configuration for a single kernel and there-
fore does not find a global optimal solution for all kernels in
an application. This would require to find a common con-
figuration for all arrays, that are shared between different
kernels. Currently our algorithm does not supported this
(neither do the other adaptive algorithms). We will discuss
this matter later as part of the future work.

6.1 Hardware and Software
All evaluations have been performed on two systems. The
first is equipped with 2x Intel Xeon E5-2670, 32 GB RAM,
NVIDIA Tesla K20, SUSE Enterprise Server 11.3 and CUDA
7.0 (driver version 346.46). The second system consists of 2x
Intel Xeon E5649, 48 GB RAM, NVIDIA GeForce GTX980,
Ubuntu 14.04 and CUDA 7.0. (driver version 346.59)

Depending on the architecture, the number of possible con-
figurations varies as, e.g., the GTX980 no longer supports
adjusting the size of the L1 cache. Configurations that are
limited by the hardware are automatically excluded from
the profiling.

To compare the quality of the algorithms, we compare the
kernel execution time that our auto-tuner achieves with the
time that the original implementation of the benchmarks
takes. Except for the BitonicSort, all of these have been
hand tuned for a particular architecture by their respective
authors. For time measuring we use the nvprof command
line tool.

6.2 Benchmarks
In the following we will explain the benchmarks we are us-
ing. Square brackets indicate which kernel is performing the
described operation.

BitonicSort: BitonicSort [3] is a parallel sorting algorithm
used in many GPU applications. In our implementation we

are sorting an AoS consisting of four integer values with 64,
32, 16 and 8 Bit, which are used as columns. If the first
column matches, we sort the values of the second column
and so on, so that we end up with a list of items sorted for
each column in ascending order. The application consists of
two kernels. One of these [BS] is used for iterations where
shared memory can be efficiently used to cache data, while
the other [BG] directly operates on global memory. We limit
the input data to integer values between 0 and 1023 (for the
8 Bit value, it is truncated) so that the probability of equal
numbers in one column is increased, which ensures that we
do not only sort the first column. For the evaluation we
execute seven different data sets with item counts ranging
from 64 Ki to 4 Mi. The data sets vary significantly with sets
consisting of random numbers, but also sets with partially
ascending or descending sorted segments. The implementa-
tion we are testing against is the only benchmark that uses
a näıve AoS layout. It has a total of 36/12 (K20/GTX980)
different kernel implementations.

KD-Tree Builder: This benchmark is a KD-Tree Builder,
which resembles the work of Popov et al. [21]. The applica-
tion consists of eight kernels. Two of these perform the
main algorithm, while the others mainly perform mainte-
nance tasks, with a very low total execution time.

The first main kernel [KB] discretizes a triangulated scene
in multiple bins which are separated by equidistant planes
in all three dimensions. Then all triangles in the scene are
processed and the number of starting and ending triangles in
a bin are counted. In the last step a prefix and postfix sum
are executed on the starting and ending values. With these
values, the kernel calculates a building heuristic that is used
to select the best split plane. Our optimizable version uses
an adjustable preprocessor implementation, which is able to
buffer the binning results in local memory instead of using
an atomicAdd on shared memory.

The second kernel performs the splitting of a subtree and
stores all necessary data in two different data segments. Ad-
ditionally it has to perform some recalculations if a triangle
is located on the split plane [KS].

The maintenance kernel [KA] is run at the beginning of the
application once, to calculate the Axis Aligned Bounding
Boxes for the input geometry. [KI] initializes the default
data for each iteration step. [KO] and [KL] calculate nec-
essary offsets for storing the results of the [KS] kernel. [KH]
compacts the header data if subtrees have been marked as
a leaf node, which are then no longer present in the next
iteration. [KF] is a post processing kernel for [KS].

All kernels are build in a fashion that they can process mul-
tiple subtrees in parallel. This application has a total of
570 k/190 k (K20/GTX980) configurations.

We run this application using 32 bins and the Happy Bud-
dha1 model, which consists of 1 M triangles. The imple-
mentation we are comparing against uses a mixed set of
data structures such as AoS, SoA or hierarchical-AoS (e.g.
aabb[a].point[b].dim[c]).

1http://graphics.stanford.edu/data/3Dscanrep/

Reyes: Our last benchmark is based on the REYES ren-
dering system [6]. It renders higher order surface patches by
adaptively dividing them into micro-polygons of sub-pixel
size. Our implementation follows [20] and consists of four
kernels. The first kernel subdivides the surface patches into
micro-polygons [RB]. After each execution of this kernel
we run a compaction kernel [RC]. These kernels loop un-
til all patches have sub-pixel size. The third kernel [RD]
projects each micro-polygon into the world coordinate sys-
tem and shades it, storing the results in a fragment buffer.
This buffer stores the depth and color of a pixel and is then
used in a fourth kernel [RT] to extract the color informa-
tion, downsample it to the final resolution and store it in an
OpenGL texture which can be displayed. This application
uses a high amount of different array types which results in a
total of 2.4 M/809 k (K20/GTX980) possible combinations.

For our evaluation we run the application and render one
frame. As model we are using the Utah Teapot and render it
at 7680 x 4320 px which is then downsampled to 1920 x 1080
px in the last kernel to compensate for aliasing effects. The
implementation we are testing against has been hand tuned
for a GTX680 on which it achieves real-time performance.
Further the application is mainly computationally and not
memory bound.

7. EXPERIMENTAL RESULTS
In the following we present and analyze our experimental
results. We analyze each benchmark separately for quality,
time required for the profiling and the impact and overhead
of the watch-dog. Figure 4 and 5 show the speed up that all
search algorithms achieved compared to the optimal solution
found using an exhaustive search. All results are normalized
by the performance of the original benchmark implementa-
tion. Further we show the speed up for choosing only AoS
or SoA as implementation, which a näıve programmer might
do. For these cases all transposition, L1 cache and memory
dimensions are set to their default value, while the layout di-
mensions are either AoS or SoA. Figure 8 shows the percent-
age of total execution time for a single kernel for the AoS,
the original and the optimized implementation. In Figure 6
we show the profiling speed up compared to an exhaustive
search while in Table 1 the total profiling time as well as how
much more time the algorithm required is shown, compared
to the fastest. Figure 7 shows the average and 90% confi-
dence interval of the watch-dog overhead compared between
the results from the exhaustive search with and without it.
We only compare kernel executions, that have not been ter-
minated. In the end we discuss the optimal configurations of
the kernels, and what steps have to be done during a normal
application run, to achieve an optimal performance. Further
we discuss if a purely AoS or SoA layout suffices to achieve
an overall satisfactory performance.

BitonicSort: As can be seen in Figure 4, all algorithms
achieve the same execution speed up on this benchmark,
even the random sampler. This is not surprising as all algo-
rithms sample nearly the entire solution space, as a total of
36 configurations is too small. Further, as shown in Figure 6
and Table 1, no algorithm terminates faster than the exhaus-
tive search, often they are slower. The reason for this is the
compile process. The exhaustive search schedules all config-
urations for compilation at the same time. Caused by the

http://graphics.stanford.edu/data/3Dscanrep/

0
.9

9

0
.9

9

0
.9

3

0
.9

6 1
.1

7

0
.9

8

1
.3

9

1
.6

5

0
.9

7

0
.9

7 1
.1

8

1
.0

0

1
.4

0

1
.6

7

1
.1

5 1
.2

6

1
.2

5

1
.2

01
.3

9

1
.6

6

1
.1

2 1
.2

5

1
.1

9

1
.1

91
.4

0

1
.6

6

1
.0

8

1
.1

3

1
.1

9

1
.1

91
.4

0

1
.6

6

1
.0

8

1
.1

3

1
.1

9

1
.1

81
.4

0

1
.6

6

1
.0

9

1
.1

4

1
.1

9

1
.1

91
.4

0

1
.6

6

1
.0

8

1
.1

3

1
.1

9

1
.1

7

1
.3

9

1
.6

6

1
.0

2 1
.1

7

1
.1

9

1
.1

81
.3

9

1
.6

6

0
.9

9 1
.1

3

1
.1

1

1
.1

8

1
.4

0

1
.6

6

1
.0

7 1
.2

3

1
.1

9

1
.1

8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

GTX980 K20 GTX980 K20 GTX980 K20

Bitonic KD-Tree Reyes

Sp
ee

d
 U

p

AoS SoA E EW P PW G GW R RW A

Figure 4: Total execution speed up for all benchmarks.

0

1

2

3

4

GTX980 K20 GTX980 K20 GTX980 K20 GTX980 K20 GTX980 K20 GTX980 K20

BS BG RB RC RD RT

Bitonic Reyes

Sp
ee

d
 U

p

AoS SoA E EW P PW G GW R RW A

0

2

4

6

8

GTX980 K20 GTX980 K20 GTX980 K20 GTX980 K20 GTX980 K20 GTX980 K20 GTX980 K20 GTX980 K20

KB KI KA KL KO KS KH KF

KD-Tree

Sp
ee

d
 U

p

AoS SoA E EW P PW G GW R RW A

Figure 5: Execution speed up achieved over all kernel executions compared to the original implementation.

1
.0

0

0
.8

5

1
.0

3

1
.1

4

0
.9

8

1
.0

3

0
.9

6

0
.9

2

3
7

4
.7

6

1
,3

2
7

.8
0

3
,5

4
7

.4
5

8
,6

5
7

.2
9

0
.9

4

1
.0

0

3
8

7
.4

8

1
,5

8
8

.1
8

3
,3

8
7

.0
7

9
,3

9
5

.9
4

0
.9

5

1
.0

3

1
3

8
.5

8 8
6

5
.2

1

9
3

0
.3

4

2
,8

8
2

.7
5

0
.9

0

0
.8

4

1
5

8
.1

3 9
5

6
.4

0

9
8

7
.2

7

3
,1

1
1

.3
0

1
.0

0

0
.8

3

1
5

3
.1

5

3
5

2
.7

7 2
,8

5
1

.0
1

3
,8

7
3

.2
6

1
.0

0

1
.0

5

1
5

5
.8

6

4
8

5
.3

5 2
,8

4
2

.3
6

3
,8

3
4

.5
9

1
.0

0

0
.9

1

7
0

.5
7 3

3
5

.6
4

9
4

9
.3

5

1
,9

0
0

.4
6

0.1

1

10

100

1000

10000

GTX980 K20 GTX980 K20 GTX980 K20

Bitonic KD-Tree Reyes

Sp
ee

d
 U

p

EW P PW G GW R RW A

Figure 6: Profiling speed up of all algorithms compared to an exhaustive search. (logarithmic scale)

GTX980 E EW P PW G GW R RW A

Bitonic 50s (1.0x) 50s (1.0x) 53s (1.0x) 53s (1.1x) 53s (1.1x) 56s (1.1x) 50s (1.0x) 50s (1.0x) 50s (1.0x)

KD-Tree 2d 15h 4m 3s (387.5x) 2d 13h 10m 9s (375.8x) 10m 6s (1.0x) 9m 46s (1.0x) 27m 18s (2.8x) 23m 56s (2.5x) 24m 42s (2.5x) 24m 17s (2.5x) 53m 37s (5.5x)

Reyes 4d 16h 45m 28s (3547.5x) 4d 19h 5m 45s (3621.0x) 1m 54s (1.0x) 1m 60s (1.0x) 7m 16s (3.8x) 6m 51s (3.6x) 2m 22s (1.2x) 2m 23s (1.2x) 7m 8s (3.7x)

K20

Bitonic 1m 50s (1.1x) 2m 9s (1.2x) 1m 59s (1.1x) 1m 50s (1.1x) 1m 47s (1.0x) 2m 11s (1.3x) 2m 12s (1.3x) 1m 45s (1.0x) 2m 1s (1.2x)

KD-Tree 11d 12h 47m 28s (1588.2x) 10d 2h 42m 12s (1392.6x) 12m 30s (1.2x) 10m 27s (1.0x) 19m 12s (1.8x) 17m 22s (1.7x) 47m 5s (4.5x) 34m 13s (3.3x) 49m 29s (4.7x)

Reyes 10d 19h 28m 2s (9395.9x) 10d 12h 4m 34s (9128.3x) 1m 48s (1.1x) 1m 39s (1.0x) 5m 24s (3.3x) 5m (3.0x) 4m 1s (2.4x) 4m 4s (2.5x) 8m 12s (4.9x)

Table 1: Time required to gather all necessary profiling data. Fastest algorithm is highlighted. Shown factors are relative to
best algorithm.

12.15
238.04 143.28 174.56 149.64

1,897.37

0

500

1,000

1,500

2,000

GTX980 K20 GTX980 K20 GTX980 K20

Bitonic KD-Tree Reyes

A
ve

ra
ge

 (
µ

s)

-4,000

-2,000

0

2,000

4,000

GTX980 K20 GTX980 K20 GTX980 K20

Bitonic KD-Tree Reyes

9
0

%
 C

o
n

fi
d

en
ce

Figure 7: Average overhead and 90% confidence interval
caused by the watch-dog compared to the same kernel with-
out it.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AoS BL O AoS BL O AoS BL O AoS BL O AoS BL O AoS BL O

GTX980 K20 GTX980 K20 GTX980 K20

Bitonic KD-Tree Reyes

P
er

ce
n

ta
ge

 o
f

To
ta

l K
er

n
el

 R
u

n
ti

m
e

BG BS KA KI KB KO KL KS KF KH RB RC RD RT

Figure 8: Percentage of total runtime per kernel for AoS,
baseline (BL) and the optimized version (O).

very low amount of configurations and high number of cores
on the test machines, the process is done entirely in par-
allel. Contrary the adaptive algorithms schedule multiple
compilation runs and therefore have a serialization, which
causes longer profiling times. This shows, that for appli-
cations with very small configuration counts, an exhaustive
search suffices and is most likely faster than any adaptive
algorithm.

As can be seen in the total and profiling speed up, the watch-
dog neither improves the search speed, nor does it negatively
influence the outcome. Furthermore, the overhead caused by
the watch-dog is minimal (see Figure 7).

KD-Tree: For the KD-Tree we can see that no algorithm
achieves the same performance as the exhaustive search. On
the GTX980 all algorithms except for the random sampler
reach 7-9% speed up, compared to 15% for the exhaustive
search. The reason for this lies in the [KS] kernel. The
kernel implementation itself is at an occupancy border, so
that increasing register usage causes a drop of occupancy.
As this resource usage can hardly be predicted, none of the
algorithms can compensate this in any way.

On the K20, the evolutionary algorithm achieves nearly the
same performance as the exhaustive search, while the other
algorithms reach up to 13% less performance. As the register
count on the K20 is equal to the GTX980, the explanation
is the same.

As before, the watch-dog hardly influences the achieved per-
formance. The speed up drops 1-3% for the exhaustive
search and random sampler, where it is 0-1% for the other
algorithms. Figure 7 shows that the average overhead is

minimal again, but the confidence interval is very high for
the GTX980. We actually do not have an explanation for
this; it could be caused by the way the internal nano second
timer values are polled and distributed onto the threads.

However, our algorithm is 387 to 1588 times faster than an
exhaustive search, as well as 5.5 times faster than the other
adaptive algorithms, which reduces a 53 minute long profil-
ing down to less than 10 minutes (see Figure 6). Although
the random sampler profiles the exact same amount of con-
figurations as our approach does, it is significantly slower as
it has to compile nearly every configuration it is executing,
while our algorithm mostly reuses the same configurations.

Reyes: In the Reyes benchmark on the K20, all algorithms
achieve nearly the same performance as the exhaustive search,
while the performance is 6% slower on the GTX980. This
is caused by the [RD] kernel, which is entire computational
bound. This means that most configurations achieve the ex-
act same performance, so that the gradient (which all adap-
tive algorithms are based on) is close to zero between most
of the over 700 k configurations. The Kepler architecture is
less efficient on atomic operations, so that there is a slight
shift from purely computational to memory boundness. This
helps the algorithms to find better solutions.

As can be seen in Figure 7, the average overhead for the
watch-dog is very high on the K20. The reason for this is
again the less efficient atomic operations. At the beginning
of a kernel, our watch-dog stores the initial value of the
nano second timer using an atomicMin. The high number
of blocks of the [RD] kernel causes here a blocking of the
kernel. Nevertheless, as can be seen in the benchmarks, this
additional overhead has no negative impact on the decision
of the algorithms.

Also in this benchmark, our algorithm outperforms the other
adaptive algorithms up to factor 4.9. Further we are 3387 to
9396 times faster than the exhaustive search, which reduces
the execution time from nearly 11 days down to 2 minutes.

7.1 Discussion
Figure 9 shows the percentage of how often which layout,
transposition, memory or L1 cache option was used in the
optimal configurations. The results show that there is no
clear option that is superior to the others, but that the
optimal solution requires a carefully chosen mixture of all
available options.

Very surprising is the result of the optimal L1 cache setting,
as preferring shared memory (SM) is the default CUDA be-
havior. However, in the Bitonic and KD-Tree it is only in
less than 20% of the cases the optimal choice. For the Reyes
benchmark it is optimal in about 50% of the cases.

Additionally on the memory usage of the KD-Tree we can
see, that depending on the input data and workload of a
kernel, the optimal implementation varies. The [KB] kernel
is able to store its binning results in either shared or local
memory. As can be seen, in a certain amount of cases, local
memory is preferred. The reason for this is, that in the
first iterations there are only a few, but very big subtrees,
where the binning causes a lot of bank conflicts. In later

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

G
TX
9
8
0

K
2
0

G
TX
9
8
0

K
2
0

G
TX
9
8
0

K
2
0

Bitonic KD-Tree Reyes

AoS SoA AoSoA

(a) Layout

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GTX980 K20 GTX980 K20

KD-Tree Reyes

Global Texture Shared Local

(b) Memory

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GTX980 K20 GTX980 K20

KD-Tree Reyes

- T1 T2 T3 T4 T5

(c) Transposition

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bitonic KD-Tree Reyes

K20

SM L1 EQ

(d) Cache

Figure 9: Percentage of how often which layout, memory, transposition or cache configuration was used to achieved the best
performance. - for transposition means untransposed. As high dimensional arrays can be transposed in multiple ways, these
transpositions have been assigned different numbers.

iterations the number of subtrees increases while their size
shrinks significantly, as the triangles are split among the
subtrees. This change causes that the advantage of the local
memory turns into an disadvantage. To compensate this,
a different implementation of the kernel has to be chosen
dynamically during runtime, depending on the workload, to
achieve optimal performance.

Further we can see that both GPUs differ in their optimal
configurations. This makes it necessary to tune an applica-
tion towards a specific GPU.

Overall the results clearly show the advantage of auto-tuning
frameworks, as these can adapt the application to a specific
hardware and changing workload, with hardly any user in-
teraction, while hand tuning always is very time consuming
and often also error prone.

8. CONCLUSION
In this paper we have presented a prediction guided pro-
filing algorithm for reducing the time required for empirical
profiling. Our approach is designed for complex applications
with hundreds of thousands or millions of configurations and
is able to speed up the profiling process up to 9396 times
over an exhaustive search, reducing the profiling time from
10 days 19 hours down to less than 2 minutes, while achiev-
ing nearly the same performance. Compared to other state
of the art profiling algorithms we outperform these by up to
factor 5.5, while achieving the same quality.

Further we introduced a watch-dog which helps to decrease
the profiling time, by terminating the execution of kernel
runs in bad configurations. None of the profilings was neg-
atively influenced by the watch-dog.

As previously mentioned, our auto-tuner is at the moment
only able to find optimal configurations for each kernel sepa-
rately, as data that is shared between different kernels is not
taken into consideration. Caused by adaptive profiling, it is
not guaranteed to have all necessary results available, to cal-
culate an optimal global solution for this (this is a problem
for all algorithms that only partially profile the optimization
space, not only of ours). That is why we want to investi-
gate how to find global optimal layouts for this shared data,

without the need to convert these between the execution of
different kernels. One solution would be to use a prediction
model to fill the gaps. As shown in Figure 3, our prediction
follows the measured results, but the predicted value can
have a relative offset. This is too imprecise to actually use
it as a real prediction model, so it cannot be used to esti-
mate the performance of the non measured configurations.
We want to investigate options to improve our prediction.

Further we have observed that the optimal solution of a
kernel can vary, depending on the input data. Therefore we
want to establish a prediction comparable to Muralidharan
et al. [17], which dynamically chooses the best configuration
during runtime, depending on the kernel’s input data.

9. ACKNOWLEDGEMENTS
The work of Nicolas Weber is supported by the ’Excellence
Initiative’ of the German Federal and State Governments
and the Graduate School of Computational Engineering at
Technische Universität Darmstadt.

10. REFERENCES
[1] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski,

Q. Zhao, A. Edelman, and S. Amarasinghe.
PetaBricks: A Language and Compiler for Algorithmic
Choice. In Proc. PLDI, 2009.

[2] J. Ansel, S. Kamil, K. Veeramachaneni,
J. Ragan-Kelley, J. Bosboom, U.-M. O’Reilly, and
S. Amarasinghe. OpenTuner: An Extensible
Framework for Program Autotuning. In Proc. PACT,
2014.

[3] K. E. Batcher. Sorting Networks and Their
Applications. In Proc. SJCC, 1968.

[4] B. Catanzaro, M. Garland, and K. Keutzer.
Copperhead: Compiling an Embedded Data Parallel
Language. Technical report, 2010.

[5] I.-H. Chung and J. K. Hollingsworth. Using
Information from Prior Runs to Improve Automated
Tuning Systems. In Proc. IEEE SC, 2004.

[6] R. L. Cook, L. Carpenter, and E. Catmull. The Reyes
Image Rendering Architecture. In Proc. SIGGRAPH,
1987.

[7] P. de Oliveira Castro, E. Petit, A. Farjallah, and

W. Jalby. Adaptive sampling for performance
characterization of application kernels. CCEP, 2013.

[8] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and
J. Vitek. Terra: a multi-stage language for
high-performance computing. In Proc. SIGPLAN
PLDI, 2013.

[9] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem,
M. Houston, J. Y. Park, M. Erez, M. Ren, A. Aiken,
W. J. Dally, and P. Hanrahan. Sequoia: Programming
the Memory Hierarchy. In Proc. IEEE/SC, 2006.

[10] P. Guo, H. Huang, Q. Chen, L. Wang, E.-J. Lee, and
P. Chen. A Model-driven Partitioning and
Auto-tuning Integrated Framework for Sparse
Matrix-vector Multiplication on GPUs. In Proc.
TeraGrid, 2011.

[11] T. D. Han and T. S. Abdelrahman. HiCUDA: A
High-level Directive-based Language for GPU
Programming. In Proc. GPGPU, 2009.

[12] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun.
Green-Marl: A DSL for Easy and Efficient Graph
Analysis. In Proc. ASPLOS, 2012.

[13] H. Jordan, P. Thoman, J. J. Durillo, S. Pellegrini,
P. Gschwandtner, T. Fahringer, and H. Moritsch. A
Multi-objective Auto-tuning Framework for Parallel
Codes. In Proc. SC, 2012.

[14] K. Kofler, B. Cosenza, and T. Fahringer. Automatic
Data Layout Optimization for GPUs. In Proc.
Euro-Par, 2015.

[15] Y. Liu, E. Z. Zhang, and X. Shen. A cross-input
adaptive framework for GPU program optimizations.
In Proc. IPDPS, 2008.

[16] T. Lutz, C. Fensch, and M. Cole. PARTANS: An
Autotuning Framework for Stencil Computation on
multi-GPU Systems. ACM TACO, 2013.

[17] S. Muralidharan, M. Shantharam, M. Hall,
M. Garland, and B. Catanzaro. Nitro: A Framework
for Adaptive Code Variant Tuning. In Proc. IPDPS,
2014.

[18] NVIDIA. CUDA Developers Network.
http://developer.nvidia.com/. [online, accessed on
06.09.2015].

[19] NVIDIA. Cuda Programming Guide.
http://docs.nvidia.com/cuda/cuda-c-programming-
guide/. [online, accessed on
06.09.2015].

[20] A. Patney and J. D. Owens. Real-Time Reyes-Style
Adaptive Surface Subdivision. ACM TOG, 2008.

[21] S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek.
Experiences with Streaming Construction of SAH
KD-Trees. In Proc. IEEE IRT, 2006.

[22] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris,
F. Durand, and S. Amarasinghe. Halide: A Language
and Compiler for Optimizing Parallelism, Locality,
and Recomputation in Image Processing Pipelines. In
Proc. SIGPLAN PLDI, 2013.

[23] E. Rubin, E. Levy, A. Barak, and T. Ben-Nun. Maps:
Optimizing massively parallel applications using
device-level memory abstraction. ACM TACO, 2014.

[24] R. Storn and K. Price. Differential Evolution - A
Simple and Efficient Heuristic for Global Optimization
ofer Continuous Spaces. GO, 1997.

[25] N. Weber and M. Goesele. Auto-Tuning Complex
Array Layouts on GPUs. In Proc. EGPGV, 2014.

[26] R. C. Whaley and J. J. Dongarra. Automatically
Tuned Linear Algebra Software. In Proc. SC, 1998.

[27] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU
Compiler for Memory Optimization and Parallelism
Management. In Proc. PLDI, 2010.

[28] Y. Zhang and F. Mueller. Auto-generation and
Auto-tuning of 3D Stencil Codes on GPU Clusters. In
Proc. CGO, 2012.

	Introduction
	Related Work
	GPU Memory Access Optimizations
	Exhaustive Search Based Auto-Tuning
	Adaptive Profiling Methods

	Auto-Tuner Design
	Supported Optimization Dimensions
	Watch-dog Timer
	Code Modifications
	Execution & Runtime

	Predictor
	Prediction Theory

	Implementation
	Real World Implementation
	Watch-Dog

	Evaluation
	Hardware and Software
	Benchmarks

	Experimental Results
	Discussion

	Conclusion
	Acknowledgements
	References

