Eurographics Symposium on Parallel Graphics and Visualization (2014)

M. Amor Lopez and M. Hadwiger (Editors)

EGPGYV, 2014. This is the author version of the work. It is
posted here by permission of Eurographics for your personal
use. Not for redistribution. The definitive version is available at
http://diglib.eg.org/.

Auto-Tuning Complex Array Layouts for GPUs -
Supplemental Material

Nicolas Weber and Michael Goesele

Graduate School of Computational Engineering, TU Darmstadt, Germany

1. Supplemental Material

This is the supplemental material for the paper “Auto-Tuning
Complex Array Layouts for GPUs”. We provided additional
evaluation results for the KD-Tree Binning Example (Sec-
tion 2), another representation of how the decision tree
shown in the paper looks in parameter space (Section 3)
as well as the complete source code of an application us-
ing CUDA Driver API compared to the same source code
implemented using MATOG (Section 4).

2. KD-Tree Binning Example

Figure 1 shows the speedup of the learned solution over the
optimal speedup. To obtain these results, we ran the appli-
cation with all test cases and all possible memory layouts.
With these results, we have been able to determine an op-
timal memory layout for each test case. Then we compared
these optimal results with the memory layout that MATOG
chose. The highlighted area indicates the area between being
faster than the baseline and the optimal speedup. Our max-
imal speedup for the GTX680 is 9.83, while the complete
mode has an average speedup of 2.47 and the small mode of
2.39. If we would have always selected the best solution, our
average speedup would have been 2.99. For the GTX570,
our maximal speedup is 4.78, while the complete mode has
an average speedup of 2.12 and the small mode of 2.28. The
average of all optimal solutions for the GTX570 is 2.51.

3. Decision Tree Example

Figure 2 shows the decision tree for choosing the best global
memory layout for storing the axis aligned bounding boxes
(AABBS) of the triangles in the KD-Tree Binning kernel ex-
ample as a tree. Figure 3 shows the tree as flattened para-
meter space. The points in the this figure represent the test
samples for the four used scenes, the used bin count and the
resulting best memory layout. Each cell represents a mem-
ory layout that is assumed to work best for the given argu-
ments. E.g., an execution using a model with 200,000 trian-
gles and 320 bins would select AoSoA as layout. As already

(© The Eurographics Association 2014.

<176,103 >5.794.099

Triangle Count

v <685.235, <5.794.099 v
Bin Count | | Bin Count | | Bin Count I
Texture Texture Texture Texture
Memory Memory Memory Memory

Ao0SoA AoSoA AoSoA
>384 >384
SoA So.

Figure 2: Tree representation of decision tree

i

@ AoS (baseline) ESoA AoSoA Texture Memory

512 | n
448
384
320
256
192
128
64

BIN COUNT

0 176,103 685,235 5,794,099 INF
TRIANGLE COUNT

Figure 3: Parameter space representation of decision tree

mentioned, the decision boundaries are always located in the
center between two test samples. As stated in the paper, for
the Bitonic Sort example only SoA is chosen for the best lay-
out. Therefore the tree only consists of one node. The layouts
chosen for the REYES example are shown in Table 1.

http://diglib.eg.org/

N. Weber & M. Goesele / Auto-Tuning Complex Array Layouts for GPUs - Supplemental Material

GTX570 SMALL

X slower than baseline O faster than baseline @ optimal

ACHIEVED SPEEDUP

OPTIMAL SPEEDUP

1 2 3 4 5

GTX570 COMPLETE

X slower than baseline O faster than baseline @ optimal

ACHIEVED SPEEDUP

OPTIMAL SPEEDUP

-
o

=
o

ORr NWRUON® O

ORr NWHUON ® O

GTX680 SMALL

X slower than baseline faster than baseline optimal
5 5
=
=}
w
w
a
wv
[a)
g / 4 .
w 2
T
] 3
< T\ 4
—
e
e
it o OPTIMAL SPEEDUP
2 3 4 5 6 7 8 9 10

GTX680 COMPLETE

slower than baseline faster than baseline optimal

ACHIEVED SPEEDUP
~

T3
4 4
>+
LI
4 r_‘ s 254
el OPTIMAL SPEEDUP
2 3 4 5 6 7 8 9 10

Figure 1: Evaluation results for the KD-Tree Binning example for GTX570 and GTX680 containing all 40 test results.

0
1 2 3 4 5
Variable | Complete | Small
Global Memory (all kernels)
Prefer L1 Cache false false
Primitives AoS AoS
Z-Buffer AoS AoS
Texture untransposed | untransposed
Projection Matrix transposed transposed
Bound and Split
Prefer L1 Cache false false
Primitives AoS AoS
Projection Matrix | untransposed | untransposed
Compact
Prefer L1 Cache | true | true
Dice and Shade
Prefer L1 Cache false false
Control Points SoA AoS
Primitives Ao0SoA AoS
Projection Matrix | untransposed | untransposed
Triangles AoS AoS
Paint Texture
Prefer L1 Cache | false | false

Table 1: This table shows the chosen memory layouts for the
REYES example for global and shared memory. Each kernel
can use different layouts for the shared memory as well as
preferring L1 cache or shared memory.

(© The Eurographics Association 2014.

N. Weber & M. Goesele / Auto-Tuning Complex Array Layouts for GPUs - Supplemental Material

4. MATOG Code Example

This section shows the changes that have to be applied to an application using CUDA Driver API to be ported to MATOG. We
show the original source code on the left side, while showing the changed code on the right side. The application itself consists
of five files.

We highlighted lines which differ in both codes. If the line marked magenta it has changed while if it is marked green it
means that there is no corresponding line in the other code.

4.1. CMakeLists.txt

This file defines a CMake project, which is used to generate platform independent projects e.g. for Make or Visual Studio.
MATOG uses CMake as well to compile its library and the kernels. That is why the MATOG variant does not require any
CUDA_COMPILE_PTX calls, as these are done automatically by including the MATOG generated CMake project. Further the
application has to be linked to the MATOG library.

Driver API MATOG

1 # minimum cmake version 1 # minimum cmake version

2 CMAKE_MINIMUM_REQUIRED(VERSION 2.8) 2 CMAKE_MINIMUM_REQUIRED(VERSION 2.8)

3 3

4 # project name 4 # project name

5 PROJECT() B 5 PROJECT()

6 6

7 # find cuda 7 # find cuda

8 FIND_PACKAGE(CUDA) 8 FIND_PACKAGE(CUDA)

9 9
10 10 # include MATOG lib
11 I 11 INCLUDE()
12 12

13 # target 13 # target

14 CUDA_ADD_EXECUTABLE(example main.cpp) 14 CUDA_ADD_EXECUTABLE(example main.cpp)
15 TARGET_LINK_LIBRARIES (example) . 15 TARGET_LINK_LIBRARIES (example

myLib)
16 SET(CUDA_NVCC_FLAGS 16
)

17 17

18 # compile ptx 18

19 CUDA_COMPILE PTX(PTX_FILE) 19
20 CUDA_ADD_LIBRARY (module) 20
21 21
22 # rename ptx file after compilation 22
23 GET_FILENAME_COMPONENT (FILENAME NAME) 23
24 STRING (REGEX REPLACE 24

FILENAME)
25 STRING (REGEX REPLACE FILENAME 25
)
26 26
27 # create PTX folder 27
28 EXECUTE_PROCESS (COMVAND —E 28
make_directory)
29 29
30 # move to build/ptx folder 30
31 ADD_CUSTOM_COMMAND(TARGET module PRE_LINK COMMAND 31
—E rename
)

(© The Eurographics Association 2014.

N. Weber & M. Goesele / Auto-Tuning Complex Array Layouts for GPUs - Supplemental Material

4.2. Matog.xml

This Matog.xml is used by the MATOG library generator. It defines the used data structures and GPU code files. In this example
we use an Array of Structs with two integer and one float field. We further declare this type to be shared, so that a implementation
for the shared memory is generated as well. The file module.cu is the only CUDA module we are using.

Driver API MATOG
1 1 <matog version= >
2 2 <cuda mincc= />
3 3 <cmake libname=
4 4
5 5 </cmake>
6 6 <code>
7 7 <struct name=
8 8 <field name=
9 9 <field name=
10 10 <field name=
11 11 </struct>
12 </code>

13 </matog>

4.3. DataFormat.h

<kernels>module.cu</kernels>

shared= >
type= />
type= />
type= />

The file DataFormat.h contains the struct definition, which is used by the host and the device. It is not necessary for the usage

with MATOG, as the library generator provides headers to access the data.

Driver API MATOG
1 struct Data { 1
2 int a; 2
3 int b; 3
4 float c; 4
5 s 5

(© The Eurographics Association 2014.

N. Weber & M. Goesele / Auto-Tuning Complex Array Layouts for GPUs - Supplemental Material

4.4. Module.cu

This file contains the GPU implementation of our example. In contrast to the existing implementation, four changes are nec-
essary. The first one is to include the generated implementation. The second change is, that MATOG does not use pointers to
pass data to the kernel but a real object instance. Further the initialization of the shared memory is performed by a template.
The last change is, that MATOG does not allow to directly access the struct itself, and therefore it is not possible to copy data
from global to shared memory by copying the array positions. Therefore MATOG has a special copy method, which takes care
of this process.

Driver API MATOG

1 #include <cuda.h> 1 #include <cuda.h>

2 #include "DataFormat.h" . 2 #include "Data.cu"

3 3

4 extern { 4 extern {

5 __global__ void function(Datax data) { . 5 __global__ void function(Data data) {

6 // define shared 6 // define shared

7 __shared__ Data shared[128]; . 7 __shared__ DataShared <128> shared;

8 8

9 /! copy to shared 9 // copy to shared

10 shared[threadldx .x] = data[threadldx.x + . 10 shared.copyToShared (data, blockIdx.x * blockDim.

blockIdx .x * blockDim.x]; X);

11 11

12 // sync 12 /1 sync

13 __syncthreads () ; 13 __syncthreads () ;

14 14

15 // calculate something 15 // calculate something

16 for(int i = 0; i < threadldx.x; i++) 16 for(int i = 0; i < threadldx.x; i++)

17 { 17 {

18 shared[threadldx .x].c = shared[threadldx .x]. 18 shared[threadldx .x].c = shared[threadIdx.x].
¢ + shared[threadIldx.x].a / (float) ¢ + shared[threadIldx.x].a / (float)
shared[i].b; shared[i].b;

19 } 19 }

20 20

21 /! copy to global 21 // copy to global

22 data[threadldx .x + blockIdx.x * blockDim.x].c = 22 data[threadldx .x + blockIdx.x * blockDim.x].c =

shared [threadldx .x].c; shared [threadldx .x].c;

23 } 23 }

24) 24}

(© The Eurographics Association 2014.

N. Weber & M. Goesele / Auto-Tuning Complex Array Layouts for GPUs - Supplemental Material

4.5. Main.cpp

This file contains the host implementation of the application. There are some minor changes necessary. First of all, the MATOG
and the data structure header have to be included. Further the CUDA module and function have to be loaded using the MATOG
function loadFunction instead of the Driver API calls. The array itself has to be instantiated as a class and not as an array. As
MATOG does not allow direct access to the GPU data from the host, it is necessary to use the special copy methods instead of
the cuMemcpyXtoX methods. For the arguments passed to the kernel itself, MATOG requires two changes. The first one is, that
we have a so called GPUObject, which is a class instance, which can directly be used by the kernel itself. It can be created using
the function getGPUObject. Further we require the argument list to be zero terminated. The reason for this is, that CUPTI does
not tell how many arguments are passed to the kernel but as we read the argument list during our optimization, we need some
kind of list terminator. The kernel call itself and the memory access does not have to be changed.

Driver API
1 #include <cuda.h>
2 #include <stdio.h>
. 3 #include "DataFormat.h"
4
5
6
7 int main(int argc, charsx argv) {
8 // init driver api
9 culnit(0);
10
11 // get device
12 CUdevice device;
13 cuDeviceGet(&device , 0);
14
15 // create context
16 CUcontext context;
17 cuCtxCreate(&context, 0, device);
18
19 // load module
20 CUmodule module ;
| i cuModuleLoad(&module ,)
22
23 // load function
24 CUfunction function;
. 25 cuModuleGetFunction(&function , module,)
26
27 // init host data
B 28 Datax host = new Data[1024];
29
30 for(int i = 0; i < 1024; i++) {
31 host[i].a = i;
32 host[i].b = 1023 — i;
33 host[i].c = 03
34 }
35
36 // init device data
37 CUdeviceptr data;
38 cuMemAlloc(&data , 1024 x sizeof (Data));
39
40 /1 copy data
.41 cuMemcpyHtoD (data , host, 1024 x sizeof(Data));
42
43 // prepare arguments
44
. 45 void* args[] = {&data};
46
47 /] execute kernel
48 cuLaunchKernel (function, 8, 1, 1, 128, 1, 1, 0, 0,
args, 0);
49
50 /1 sync
51 cuCtxSynchronize () ;
52
53 /1 copy data
.54 cuMemcpyDtoH (host , data, 1024 % sizeof(Data));

(SN IN N NV RN

RN — — —
FORN RS0 AWN —

]
[)
G

26
27

29
30
31
32
33
34
35
36
37
38
39
40

42
43

44
P
46
47

48

49
50
51
52
53

b 54

MATOG

#include <cuda.h>
#include <stdio.h>
#include "Data.h"
#include <Matog.h>
using matog :: Matog;

int main(int argc, charsx argv) {
// init driver api
culnit(0);

// get device
CUdevice device;
cuDeviceGet(&device , 0);

/] create context
CUcontext context;
cuCtxCreate(&context , 0, device);

// load module + function
CUmodule module;

CUfunction function;
Matog :: loadFunction (s , module ,
function);

// init host data
Data& host = xnew Data(1024);

for(int i = 0; i < 1024; i++) {
host[i].a = i;
host[i].b = 1023 — i;
host[i].c = 0

// copy data
host.copyHostToDevice () ;

// prepare arguments

Data :: GPUObject obj = host.getGPUObject() ;

voidx args[] = {&obj, 0};

// execute kernel

cuLaunchKernel (function, 8, 1, 1, 128, 1, 1, 0, 0,
args, 0);

/1 sync
cuCtxSynchronize () ;

/1 copy data
host.copyDeviceToHost () ;

(© The Eurographics Association 2014.

N. Weber & M. Goesele / Auto-Tuning Complex Array Layouts for GPUs - Supplemental Material

56 /l print

57 for(int i = 0; i < 1024;
58 printf (s
59 }

60

61 /] free

62 delete [] host;

63 cuMemFree (data) ;

64

65 // return

66 return 0;

67 |}

(© The Eurographics Association 2014.

i

i++) |

host[i].c);

56
57
58
59
60
61
o
63
64
65
66
67

11

print

for(int i = 0;
printf (

}

/] free

delete &host;

/l return
return 0;

i < 1024;

i

i++) {

host[i].c);

