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Abstract

This paper investigates the brain’s response to appealing and unappealing versions
of images. We present results from several ElectroEncephaloGraph (EEG) exper-
iments using images with varying levels of ‘pleasingness’ as stimuli, which shed
light on the preference and perception of pleasing and displeasing image versions.
An analysis of the EEG data shows a distinct and reliable difference in the neural
response to image versions with the same content but different parameter values
for saturation, contrast and brightness. We use this EEG data to create a neural-
feedback loop to automatically optimize these parameters to render more pleasing
image variations.

1

http://www.digibib.tu-bs.de/?docid=00054632 18/11/2013



1 INTRODUCTION

1 Introduction

This paper looks into the question of the ‘pleasingness’ of images and the human
neural response to aesthetically pleasing or displeasing image variations. How
are good and bad images perceived? Is there a way to measure the idea of the
‘pleasingness’ of a photograph or image and to model that measure to create more
appealing versions of the original image?

A great deal of time, money and effort is spent on editing photographs, be they
from a vacation, a wedding, a birth or a graduation. This is especially true of late
with the ubiquitous use of smart phones and applications like Instagram, Aviary
and Photoshop Express that allow you to edit, change and personalize photographs.
Given this proliferation of photo editing applications it becomes increasingly im-
portant to understand the perception of and the preference for an image with a
different ‘look’,‘feel’ or ‘personalization’. Is it possible to determine the individ-
ual preference for an image and to quantify that preference to create individualized
image optimizations?

The problem of defining visual art and its perception is not an easy one and has
an entire field of scientific study dedicated to it. Neuroaesthetics examines the neu-
ral basis of the observation and experience of works of art [Zek00]. Many cognitive
and psychophysical experiments have been conducted to understand the aesthetic
perception of art and the emotions it evokes [CVCM09, WKK+07]. These ex-
periments have shown that pleasant and unpleasant images evoke a reliable and
measurable neural response [PBL+08, SJWH04]. However, most of this work fo-
cuses on understanding the aesthetics of art and does not attempt to use the results
to create more pleasing images.

There are several advantages to developing techniques that merge neuroaes-
thetics with image editing and optimization. An analysis of the emotional and
visual information processing that occurs in the brain and that enables us to make
aesthetic judgements about visual media allows boosting traditional image editing
software. It encourages the development of methodologies that can predict and
automatically personalize an image for an individual user. Also, unlike contem-
porary computer algorithms the human perceptual system perceives an image or
photograph in its entirety and context, instead of just relying on low-level pictorial
description or mid-level content information [WFC+09]. To create aesthetically
pleasing images it is important to understand global, high-level image perception
that incorporates personal tastes, experiences and preferences.

In this study, we hypothesize that images with the same content but different
image parameter values for saturation, contrast and brightness, that create a dif-
ferent ‘look’ or ‘feel’, evoke distinct, reliable and measurable neural responses.
We also hypothesize that based on this neural response, it is possible to optimize
the image parameters to create a more appealing, personalized version of the input
image.

This paper addresses two main questions: Firstly, is it possible to measure
the preference for different image versions using EEG? To answer this question
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1 INTRODUCTION

we analyze the brain’s responses to professionally retouched,deliberately degraded
and neutral versions of the same image (Experiment 1). This data is then used
to train a support vector machine (SVM) to learn what the brain’s response to a
pleasing (professional) or a displeasing image (degraded) version looks like.

The second main question is if it is possible to optimize images based on EEG
signals? We address this question by presenting a neural-feedback loop that varies
image display parameters based on single-trial EEG data (Experiment 2). The sub-
ject’s neural response to the displayed image is measured and a ‘visual appeal’
score is determined in real-time by the previously trained SVM. This score is then
used to drive a numerical optimization routine that varies the image display pa-
rameter values, changing in turn the image being observed by the subject. The
neural-feedback loop drives the displayed output towards an aesthetic optimum for
that individual user (Experiment 2).

3

http://www.digibib.tu-bs.de/?docid=00054632 18/11/2013



2 RELATED WORK

2 Related Work

Neuroaesthetics and Perception of Art Much has been written and studied about
art, its aesthetic experience and perception. There have been numerous studies
that have looked at the perception of art ranging from neurophysiology [Zek00,
CVCM09] to psychophysical and perceptual experiments about the categorization
of art [WKK+07, WFC+09]. However, our review will be limited to the most
relevant works within neuroaesthetics.

Wallraven et al. [WFC+09] conduct a study to see if it is possible for an al-
gorithm to cluster paintings the way a human can. They implement and test sev-
eral computational measures sensitive to color, texture and spatial composition and
found that none of the computational measures correlated with the human data.
They hypothesize that this was due to the higher-order processing of the human
brain when viewing works of art.

Zeki [Zek00] argues that no discussion about aesthetics of art is complete with-
out an understanding of its neural basis. Similarly over recent years many ex-
periments have been conducted to understand the neuroanatomical correlates of
aesthetic preference [VG04, SJWH04]. Most relevant to our work are the studies
which show a distinct and reliably different Event Related Potential (ERP) when
viewing pleasant, unpleasant and neutral images [PBL+08, CSB+00]. Cuthbert et
al. [CSB+00] conduct experiments to assess the brain’s reactivity to emotional pic-
tures by recording event-related potentials. Their results show an extended centro-
parietal slow wave that is significantly larger for affective than neutral pictures and
was maintained over a 6-second period.

Most of this work focuses on understanding the aesthetics of art without aim-
ing to use the results to create pleasing images. The case we consider here is that
the content is neutral and has little inherent valence but the appeal of the image
is governed by stylistic means. A classic example are the photographs by Ansel
Adams whose aesthetic appeal is governed predominantly by contrast and bright-
ness [ABdC80].

EEG and emotion There is considerable research that has shown an EEG to
be a reliable means for determining the emotional state of a user during the per-
formance of various tasks [Bos06, HDR08, CKGP06, MRN+08]. One hypothe-
sis for the perception of emotion in the brain is the valence model which postu-
lates that left frontal inactivation is an indicator of a withdrawal response, linked
to negative emotion, while right frontal inactivation is a sign of a positive reac-
tion [SW86]. For a complete overview of the models of emotional processing
please refer to [DEYH05]. Based on these earlier studies we use the EEG to mea-
sure the emotional and visual response to images.

Parameter optimization Different approaches have been proposed to deter-
mine optimal parameter values for various photo editing algorithms [CCV03].
Techniques based on user feedback include Interactive Evolution [Sim91], Inverse
Design [SDS+93, KPC93], and Design Galleries [MAB+97]. A recent example for
automatic lighting parameter optimization was proposed by Shacked et al. [SL01].
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3 EXPERIMENT 1

Figure 1: Original image versions used for SVM training (from MIT-Adobe FiveK
Dataset)

A considerable amount of work has also been done in the area of automatic image
enhancement [KLW12, HKK12]. Commercial applications like Microsoft’s Office
Picture Manager, Adobe’s Lightroom and Adobe Photoshop also feature tools for
the enhancement of photographs.

Related to our optimization approach is the work of Bychkovsky et al. [BPCD11].
In their work, a database of 5 sets of 5000 photos was adjusted by professional
photographers. The result was used for supervised machine learning, focusing on
global tonal adjustments. Once trained, the system is able to learn an individ-
ual’s preference for future adjustments from a small set of images retouched by
the user. We make use of the same dataset, and our approach also makes use of
supervised learning, albeit of user EEG recordings. In contrast to Bychkovsky et
al. [BPCD11], however, our method does not require each new user to go through
the effort of retouching a number of photos first. The motivation behind our ap-
proach is to use EEG to quantify the notion of visual appeal and that emotional
sense of “liking” a particular variation of a picture, a feeling that often-times we
are unable to translate into objective image properties.

3 Experiment 1

Our studies were conducted in two steps. The first set of experiments was to de-
termine if it is even possible to reliably detect a measurable neural response to
different image versions with varying levels of pleasingness where image content
stays the same.

2 male and 8 female, healthy participants of an average age of 25 years and
with normal or corrected-to-normal vision took part in collecting the EEG data.
All participants had average experience with digital footage and no involvement
in professional image rendering or editing. The participants were instructed orally
and received a training session with a small image set but the same experimental
set-up to prepare them for the procedure. It is important to note that these 10
participants who provided the data for this experiment were different from the ones
that took part in the neural-feed back loop testing in Experiment 2.
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3.1 Stimuli 3 EXPERIMENT 1

Figure 2: EEG 32 electrodes layout according to the international 10-20 system

3.1 Stimuli

The basic stimuli for this experiment consisted of 23 randomly selected images
from the MIT-Adobe FiveK Dataset [BPCD11], Fig. 1. The database has a total
of six stylistically different versions of each image, the original photo plus five
different, professional photographer-modified variations. This dataset was chosen
because we wanted to use a publicly available dataset that had not only the orig-
inal image, but also professionally enhanced versions to teach the classifier what
‘good’ enhancements are. We also deliberately chose a dataset with neutral images,
as opposed, i.e, to IAPS [LBC99], because we wanted to measure the emotional
response to the ‘look’ of an image rather than to its content. Since all images in the
database are aesthetically pleasing to a certain degree, we created two additional
image versions by either over-saturating or under-exposing them. This was neces-
sary to be able analyze the differences between the brain’s response to a visually
appealing image (expertly retouched) and one that is not (over-saturated or under-
exposed). Our assumption that deliberately degraded image versions are perceived
as less appealing than the original version or the professionally retouched versions
was evidenced by user responses.
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3.2 Procedure 3 EXPERIMENT 1

3.2 Procedure

The participants, upon arrival at the lab were asked to read and sign consent forms.
They were told they would see a sequence of images and were instructed to men-
tally judge their preference or liking for each image. They were made to feel com-
fortable while the Biosemi 32-electrode cap and electrodes were attached [bio13](Fig. 2).
An EEG was recorded with 32 electrodes according to the international 10-20 sys-
tem. Additionally, a 4 channel EOG and mastoids were recorded which were used
as a reference to remove data with accidental eye movements. The recorded data
was referenced to the mastoids and filtered with a high-pass filter with a cut-off
frequency of 0.1 Hz to remove DC-offset and drifts.

To gather our data, we presented all participants with the original photo, two
of the expert-retouched versions, as well as our over-saturated and under-exposed
versions, totalling 5 versions per photo and 115 different images overall. Each par-
ticipant was shown the same 115 images. The order in which the different photos
were shown was randomized, with all versions of the same photo appearing after
each other but in random order. Each image was shown for a total of 2 seconds, fol-
lowed by a fixation screen (gray background with a white dot in the center) shown
for 700ms.

At the end of each trial (all versions of one photo), the participants were shown
all versions of the photo as thumbnails and asked to select the one they liked least.
This was timed so as to not give them any opportunity to compare and analyse the
images, but to quickly select one based on their initial preference. This task was
given to focus and keep their attention on the images and to validate our assumption
that the bad versions were disliked the most.

3.3 Results

The user responses obtained during the experiment show that the two ‘bad’ versions
were selected 79% The participants response to image preference correlates with
the EEG data where the bad version 2 was disliked the most 48% of the time
whereas bad version 1 was disliked the most 31% of the time. This data verifies our
assumption that the bad versions really were disliked the most and the photographer
versions were more appealing.

To analyze the data we averaged all the trials from all participants over elec-
trodes P04,PO3,Oz,O1 and O2 for each image category (bad1,bad2,p4,p5 and orig-
inal). We then ran two tailed t-tests on the data to determine if the response to each
image category was in-fact distinct. The results are as follows:

1. Original vs. Bad Version 1 : p = 5.2 × 10−16

2. Original vs. Bad Version 2: p = 5.5 × 10−5

3. Original vs. Photographer Version 4: p = 2.9 × 10−13

4. Original vs. Photographer Version 5: p = 0.91
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3.3 Results 3 EXPERIMENT 1

Figure 3: Left Hemisphere (F3/F7) versus Right Hemisphere (F4/F8) response to
different image versions.

5. Bad Version 1 vs. Photographer Version 4: p = 2.8 × 10−7

6. Bad Version 1 vs. Photographer Version 5: p = 0.021

7. Bad Version 2 vs. Photographer Version 4: p = 5.1 × 10−20

8. Bad Version 2 vs. Photographer Version 5: p = 1.3 × 10−8

Given the rejection of the null hypothesis (p < 0.05) in the above cases there
is sufficient evidence for the statistical significance of the results. The only case
where the null hypothesis is not rejected is between the original image and the
photographer version 5. This means that the original and the photographer version
5 evoked a similar visual response in the brain. The response to the bad and the
photographer enhanced versions was distinct not only from each other but also the
original.

We conducted a second analysis of the EEG data from the frontal electrodes
which also revealed a distinct response to the presented image versions. Previous
data from EEG studies and emotion has provided evidence of lateralization of emo-
tion in the frontal cortex [SW86] which predicts right hemisphere dominance for
negative emotions and left for positive. Fig. 3 shows the response from electrodes
F3/F7 (averaged) and F4/F8 (averaged) which are located in the front of the head
corresponding to the frontal cortex. F3/F7 are in the left frontal hemisphere and
F4/F8 in the right (Fig. 2). The data shows a higher relative power increase for the
bad images over electrodes F4 and F8 (right hemisphere) while electrodes F3 and
F7 (left hemisphere) show a higher power increase for images P4 and P5 (photog-
rapher enhanced versions). Given the complexity of the human brain and the many
hypothesis concerning the experience and perception of emotion [DEYH05], this

8

http://www.digibib.tu-bs.de/?docid=00054632 18/11/2013



4 EXPERIMENT 2

Figure 4: The framework for the optimization loop requires a training phase, which
needs to be conducted only once (Experiment 1). The loop optimizes the image
until an optimal version is created.

is but one explanation of the difference in potential observed between the right and
left hemisphere.

4 Experiment 2

For the second experiment we were interested in investigating if it is possible to
train a classifier to detect a positive or negative response to an image version from
a single trial. This classifier was incorporated into a neural feedback loop to de-
termine a score of ‘pleasing’ or ‘displeasing’ for each image version shown. An
optimization algorithm then varied the image parameters towards an appealing op-
timum.

Fig. 4 shows the main components of our EEG-driven optimization loop. There
is a one-time training phase required to teach the classifier the difference between
the neural response to ‘good’ versus ‘bad’ visual stimuli (Experiment 1). The user
sees an image, and the EEG is measured and sent to the Support Vector Machine
(SVM)-based classifier. The classifier calculates a score, in real-time from the EEG
data reflecting the user’s ‘liking’ for the image. The optimizer, in turn, varies three
image parameters, contrast, brightness and saturation, in response to the score. The
algorithm then re-renders the image corresponding to the new parameter values,
which is again displayed to the user.

The optimization framework is applicable to any rendering algorithm whose
output varies depending on some set of parameter values. The modular set-up
allows for easy replacement of the rendering component to optimize different pa-
rameters.
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4.1 Single Trial EEG Data Analysis 4 EXPERIMENT 2

4.1 Single Trial EEG Data Analysis

A well-known problem in analyzing single trial EEG data is the poor signal-to-
noise ratio. Traditionally, this has been tackled using the Discrete Windowed
Fourier Transform (DWFT), producing a full frequency spectrum for a short time-
span (usually one second). This approach either has poor temporal resolution, e.g.
one frequency spectrum for each second of data, or produces large amounts of
redundant information. On the other hand, the Discrete Wavelet Transformation
(DWT) only produces a very rough frequency spectrum consisting of octaves only.
However, it also adapts the temporal resolution to the frequency resulting in no
redundant information being generated. Given a discrete input signal f(t) and the
wavelet filter pair consisting of a low-pass filter g(t) and a high-pass filter h(t), the
general discrete wavelet transform is defined as follows.

s0 (t) = f (t) (1)

sn+1 (t) =
∞∑

k=−∞
sn (k) g (2t− k) (2)

dn+1 (t) =
∞∑

k=−∞
sn (k)h (2t− k) (3)

This transformation can also be written as a series of lifting steps via factoriza-
tion [SS00]. For the cubic B-Spline wavelets, this leads to the following definition.

dn+1 (t) = sn (2t+ 1) (4)

− 9

16
sn (2t+ 2) +

1

16
sn (2t+ 4)

− 9

16
sn (2t) +

1

16
sn (2t− 2)

sn+1 (t) = sn (2t) (5)

+
9

32
dn+1 (t)−

1

32
dn+1 (t+ 1)

+
9

32
dn+1 (t− 1)− 1

32
dn+1 (t− 2)

The advantage of this factorization is the easy invertability of the above equations.
In fact the cubic B-Spline wavelet can be defined by writing inverse wavelet trans-
form in lifting steps to produce cubic B-Spline functions for a given single wavelet
coefficient rather than creating the original functions g (t) and h (t) in frequency
space. When comparing to Fourier Transforms, the DWT somewhat resembles
the Discrete Cosine Transform (DCT) as the kernel functions are symmetric and
it does not produce any phase information. While this is an advantage as far as
redundancy goes, it causes issues with phase-shift of input signals as frequencies
get dropped if they are off-phase. To produce the same frequency response, even if
an input signal is shifted in time, we use the Complex Discrete Wavelet Transform

10

http://www.digibib.tu-bs.de/?docid=00054632 18/11/2013



4.2 Classifier 4 EXPERIMENT 2

(CDWT) as implemented by Olkkonen et al. [OPOZ06] using a separate Hilbert
Transform followed by two wavelet transformations. To analyze the EEG data, we
cut out a two second chunk starting half a second before the image is presented.
We then remove the baseline drift from this signal to avoid introducing erroneous
high frequencies in the Hilbert Transformation. After the Wavelet Transformation,
we only use the coefficients dn (t) corresponding to the one second starting right
when the image is being presented. The additional data was required for padding
in the Hilbert Transform. Similar to Mustafa et al. [MGM12a], we only keep the
frequency bands corresponding to the 5Hz - 20Hz range. The complex wavelet
coefficients sn (t) are then multiplied with their complex conjugate in order to get
the power in each frequency band.

4.2 Classifier

We use a standard support vector machine [CL11] for all classification tasks. For
the training, we performed a standard 5-fold cross-correlation test to search for
the best set of training parameters. The data is split randomly into 5 groups of
equal number trials. Using a C-SVM with a Radial Basis Function e−g|xi−xj |2

(RBF) classifier and a set of fixed parameters, the support vector machine is trained
with data from 4 groups and tested against the trials in the remaining group. This
process is repeated until all trials have been classified. As proposed by Chang
and Lin [CL11], the process is repeated until the best set of parameters has been
found. The final SVM is then trained with all of the training data and stored for
running the optimization loop as it takes several hours to search the best parameters
with the above approach. To minimize over-fitting and to reduce the amount of data
being processed, we average the wavelet coefficients like Mustafa et al. [MGM12a]
over time down to 8 complex coefficients per channel for one second of EEG data.
Once the SVM has been trained, we use the probabilistic version, i.e. the one that
produces not only a classification but also a confidence value of how accurate the
classification is, for generating a score value for any new EEG input. The score
value is simply defined as the confidence of the input belonging to the class of
good images. Note that a confidence below 50% means the image is more likely to
be to belong to the class of bad images.

4.3 Optimizer - Nelder Mead

In order to optimize our given set of parameters to produce a pleasing image, we
not only need a score function that tells us how good any given image is but also
an optimization algorithm that changes the parameters. Given the amount of noise
contained in our score function, we cannot use derivative information and thus
have to resort to direct evaluation methods. Furthermore, we assume that our score
function has a single maximum, i.e. it is unimodal, and we are interested in finding
a good value close to this maximum rather than its exact location. For the actual
optimization, i.e. the task of finding new parameters to test for, we chose the
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4.4 Evaluation 4 EXPERIMENT 2

very simple Nelder-Mead heuristic [NM65]. Even though it is know to sometimes
not converge beyond a certain point, it is still sufficient to produce an improved
image [KLT03] given the amount of noise we encounter. The main advantage of the
Nelder-Mead heuristic is its fast convergence compared to other direct evaluation
methods. The initial step in every Nelder-Mead driven optimization is to set up the
initial simplex x1...xn+1, consisting ofN +1 locations, i.e. parameter settings, for
N parameter, and evaluate the score function at these locations. In our case this
means starting with some initial parameter settings, presenting the corresponding
image, capturing the EEG data, processing the data and running it through the SVM
to produce the score value. Once the initial simplex has been set up (Fig. 5(a)),
new parameter settings are generated based on a specific set of rules and a cost
function (Figure 5(b-f)), i.e. one minus the score value in our case. The basic idea
is to ”walk´´ the cost function f(x) downhill and eventually reduce the size of the
simplex. After each step, the new simplex contains the parameter settings with the
lowestN+1 corresponding cost values, i.e. the ones with the images rated highest.
In detail, the Nelder-Mead algorithm works as follows after setting up the initial
simplex (letter correspond to Figure 5, α = 1, γ = 2, ρ = −1

2 ,σ = 1
2 )

1. Order vertices so that f(x1) ≤ f (x2) ≤ ... ≤ f (xn+1). If we are happy
with the results so far go to (f).

2. Reflect xn+1 at the center of gravity of all other vertices xO = 1
n (x1 + ...+ xn)

of the simplex to produce xr = xO + α (xo − xn+1) and evaluate the cost
function. If f(xr) < f(x1) go to step (e), otherwise if f (xr) < f (xn),
replace xn+1 with xr and go back to (a).

3. Contract the simplex by generation xc = xO + ρ (XO − xn+a) so that it lies
between xr and xO. If f (xc) < f (xn+1), replace xn+1 with xc and go back
to (a).

4. Reduce the simplex by replacing all xi expect x1 with xi = x1+σ (xi − x1),
evaluate the cost function for all new vertices and go back to (a).

5. Expand the simplex by calculating xe = xo + γ (xo − xn+1). If f (xe) <
f (xr), replace xn+1 with xe and go back to (a). Otherwise, replace xn+1

with xr and go back to (a).

6. Output xn as the best vertex, i.e. set of parameters.

Once the simplex is sufficiently small enough or after a given number of iterations,
we stop the optimization process and simply output the parameters corresponding
to the highest encountered score value.

4.4 Evaluation

To test our loop, we varied the basic image parameters saturation, brightness and
contrast to see if we could obtain aesthetically pleasing versions of the original
image.

12
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4.5 Procedure 4 EXPERIMENT 2

Figure 5: Iteration steps in Nelder-Mead heuristic: (a) setting up initial simplex,
(b) reflection, (c) contraction, (d) reduction, (e) expansion, (f) end of optimization

4.5 Procedure

We evaluated our method with 15 users who did not participate in the SVM train-
ing phase (Experiment 1). Their average age was 25 years, and they had no pro-
fessional experience in image editing. The evaluation experiment was done on 12
randomly selected photos from the MIT-Adobe FiveK Dataset [BPCD11] which
had not been used for SVM training, Fig. 8. For each photo, the optimization loop
was initialized with the original image version and each image version was shown
for 2 seconds. The optimization loop was varied the three parameters saturation,
brightness and contrast. The possible range for each parameter was set to allow
significant variations in image appearance but without becoming unnatural. This
was done to limit the otherwise large solution space and shorten optimization time.
For each photo, the user was shown subsequently optimized versions based on the
classifier score while watching the images. The users were asked to look at the
rendered pictures and think about how they liked it. They were then shown a rating
screen (1 - 5) and asked to rate the image. Optimization terminated either when it
converged or after a maximum of 20 iterations 8(1-5 minutes total). This was be-
cause for most people the images converged within this number of iterations after
which the same image versions started to repeat. To be able to evaluate the SVM
classifier-generated visual appeal scores, the classifier scores generated for each
image version during the experiment were displayed to the experimenter only (not
the participant) during testing.

Results

The optimization loop created distinct versions of the original images (Fig.7,8).
These versions were unique to each individual and distinct from the photographer
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http://www.digibib.tu-bs.de/?docid=00054632 18/11/2013



4.5 Procedure 4 EXPERIMENT 2

Figure 6: EEG data snippets for all participants and all images viewed, over the
electrodes PO4, PO3,Oz, O1 and O2 (Fig.2), split by classifier-assigned score to
‘good’ (green) and ‘bad’ (red) image versions during optimization.

enhanced-versions. After each image optimization we had detailed discussions
with the participants regarding the optimized images. Most of the participants
preferred their own optimized version over the original image. To validate these
results, we compared the user rating obtained during optimization for the original
image with the final, optimized version: 86% of the time the optimized version
was preferred to the original. Interestingly, often times it was not the accuracy of
the image in terms of color or details that the users were interested in but more
often than not, their preference for the enhanced image was based on how it made
them feel. This is explained to some extent by the data gathered from the previous
experiment where the emotional response to different images as seen in Fig. 3 was
distinct based on image aesthetics. Our discussions with the users also revealed
that they preferred working with images that offered the possibility for creative
enhancements. For example, all users enjoyed looking at and enhancing the City
photo, Fig. 7a, while the house photo was considered rather uninteresting, Fig. 8o.

How valid is the classier assigned score in terms of how it correlates with the
actual neural response? To investigate how the classifier works and to see what the
actual EEG data that it is classifying looks like, we plotted the power change over
time, for all the users over all optimization runs (Fig.6). The data was split into
two groups based on the classifier assigned score: low scored EEG data(< 0.5)
and highly scored EEG data (> 0.5). Fig. 6 shows the distinct difference in the
power increase for EEG data that the classifier gave a low or high score to. The
p-value from the t-test between the data for high and low scores was < 0.05, in-
dicating a statistically significant difference between the two groups. The image
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4.5 Procedure 4 EXPERIMENT 2

(a) Original input image

(b) Optimized version 1 (c) Optimized version 2

(d) Optimized version 3 (e) Optimized Version 4

Figure 7: EEG-Optimized results are unique for each indivual and competitive in
terms of visual appeal with the photographer enhanced versions.
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5 CONCLUSIONS AND OUTLOOK

versions which evoked the greatest visual response at ≈ 200ms after stimulus on-
set, were given a low score by the classifier since they were least liked [MGM12b].
We observe that the power over time goes down for low rated EEG data whereas
for EEG data with a high score the power stays up. This analysis shows that the
classifier is indeed able to predict a score that corresponds to the subjects neural
reaction to an image version. Although it is possible to generate a score which to
an extent corresponds to the actual neural reaction, it is an estimate. This is be-
cause the classifier scores are derived from a binary decision regarding the image.
The classifier is trained to detect good and bad images from the EEG feedback.
This binary decision is then converted into a weighted average score based on the
classifier’s confidence and so the scores contain a certain amount of noise.

We also randomly split the data from each group (< 0.5 and > 0.5) into two
separate groups to see how closely they were related. Each sub-group (a and b) is
very close to the average of the two, i.e., that the individual EEG data within the
larger group corresponds well to the average. To determine if there is statistically
a difference between each subgroup and the average we ran two-tailed t-tests with
the resulting p-values indicating that each subgroup belong to the same population
as the main group:

1. (< 0.5) vs.(> 0.5): < 0.05

2. (< 0.5) vs. (< 0.5a): 0.85

3. (< 0.5) vs. (< 0.5b): 0.85

4. (< 0.5a) vs.(< 0.5b): 0.75

5. (> 0.5) vs. (> 0.5a): 0.9

6. (> 0.5) vs. (> 0.5b): 0.9

7. (> 0.5a) vs. (0.5b): 0.85

These p-values indicate that within the two groups of EEG data with scores as-
signed either< 0.5 or> 0.5, individual EEG trials belong to the same population.

5 Conclusions and Outlook

Our study has shown that it is possible to detect a difference in the neural response
to image versions with a different ‘look’ or ‘feel’. An analysis of the ERP and
the power increase over different electrodes has shown a statistically significant
difference in the perception of images which have been retouched differently. We
have also shown that it is possible to use these neural responses to train a support
vector machine to ‘learn’ the difference between the neural response to pleasant
and unpleasant image versions. This is validated using EEG data from the testing
of the optimization loop and conducting t-tests that showed a statistical difference
between EEG data given a high and a low classifier score.
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Our method can be applied in conjunction with any computational algorithm
where varying certain parameters will produce a visually different output. Here, we
have tested it on images and with a limited number of parameters. Given the NM
optimizer’s polynomial complexity, increasing the number of variable parameters
from 3 to 4 is likely to increase the time to convergence by about 50%.

Our experiments indicate that it requires at least one second of presentation
time and recorded EEG data to reliably estimate the “visual appeal” of an image
(in our experiments we showed each image for 2 seconds). In our current imple-
mentation, one iteration step takes 30ms for data processing. Our framework works
well with applications that elicit large changes in visual stimuli; it does not work
well very well with small changes in the image. This is because an EEG does not
pick up small neural changes in response to minute changes in images.

This initial study opens up exciting areas for further work. Would it be possible
to optimize the content of an image as opposed to just its display parameters? How
well will this approach work with more complicated image manipulations, like
blurring, editing the background or foreground of the image? Is it possible to
detect a neural response to changes in texture/edges information within an image?
Of particular interest to us for further exploration is the possibility of gathering
enough EEG to be able to create a predictive model for this optimization loop that
mimics what an average person’s response to an image might be.

Another intriguing application would be, for example, to use EEG-driven photo
personalization in conjunction with Facebook’s Instagram application [Lon11]. At
the moment, however, a few obstacles to its use outside the lab remain to be solved.
One challenge is, of course, the bulky EEG system itself, including head cap, 32
electrodes and wires. We would like to test our approach with the Emotiv EEG
neuroheadset [Emo12] which is wireless and gel-less and can be used anywhere.
The Emotiv headset contains most of the same electrodes that we used in this study
for our data analysis (Fig.2) and so conceivably the shift would be possible. This
would allow our method to be accessible to everyone, requiring no skill or knowl-
edge of EEG measurements or image editing.
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5 CONCLUSIONS AND OUTLOOK

(a) Original Swan Im-
age

(b) EEG-optimized versions

(c) Original Church Image (d) EEG-optimized versions

(e) Original Flower
Image

(f) EEG-optimized versions

(g) Original Gas Sta-
tion Image

(h) EEG-optimized versions

(i) Original House
Image

(j) EEG-optimized versions

(k) Original Carnival
Image

(l) EEG-optimized versions

(m) Original People
Image

(n) EEG-optimized versions

(o) Original Red
House Image

(p) EEG-optimized versions

Figure 8: Original images used for testing (left) along with some of the EEG opti-
mized versions from different participants
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