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Abstract
Objects with mirroring optical characteristics are left out of the scope of most
3D scanning methods. We present here a new automatic acquisition approach,
shape-from-distortion, that focuses on that category of objects, requires only a
still camera and a color monitor, and produces range scans (plus a normal and a
reflectance map) of the target.

Our technique consists of two steps: first, an improved environment matte is
captured for the mirroring object, using the interference of patterns with different
frequencies in order to obtain sub-pixel accuracy. Then, the matte is converted
into a normal and a depth map by exploiting the self coherence of a surface when
integrating the normal map along different paths.

The results show very high accuracy, capturing even smallest surface details.
The acquired depth maps can be further processed using standard techniques to
produce a complete 3D mesh of the object.
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1 Introduction
In recent years, research on 3D acquisition led to the development of working
techniques capable of producing digital 3D models of real world objects. These
techniques differ in many aspects, including precision, scanning time, amount
of required human interaction, economic affordability, type of resulting models,
captured attributes, and so on. Another central aspect are the categories of objects
that can be scanned by the specific techniques, i.e., which constraints limit the
possible targets in terms of size, weight, complexity and surface properties.

In particular, theory and practice show that objects with mirroring surface
properties are outside the scope of almost all current standard approaches for high
quality acquisition. In all active scanning methods (e.g., laser scanning, structured
light, time of flight – see [2]) the problem is that the active signal (e.g. projected
pattern or laser) is mainly reflected along the specular direction so that almost no
light reaches the sensor. In addition, specular reflections of an object are effected
by the surface normal and can therefore lead to the effect that the projected pattern
is perceived on the wrong position [1]. Shape from shading based approaches [26]
require the surface to be Lambertian and don’t work for glossy, especially not for
mirroring surfaces. In shape from silhouette approaches [8], beside of the gen-
eral problem of lacking precision, the silhouettes of mirroring objects are hard to
detect automatically since the whole environment is reflected in the object.

However, mirroring objects may nevertheless be scanned by the approaches
mentioned above if they are previously painted (or covered with white dust) to
approximate Lambertian surface behavior. But this is clearly invasive and unprac-
tical for many applications.

All in all, there is an urgent need to use optical techniques to measure the shape
of an object with a specular surface, especially technical components, pieces of
art or even everyday objects -like knifes, forks or keys- without changing their
optical properties.

In this article we present a novel approach,shape from distortion, to recon-
struct the surface of a mirroring object with high precision. It uses only standard,
cheap hardware (a monitor and a camera), and care has been taken to achieve
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relatively short acquisition times. Our approach consists of two steps:

• an improved environment matte extraction that uses the interference of pat-
terns of different frequencies in order to obtain sub-pixel accuracy relative
to the projected pattern,

• followed by a step that converts the matte into a normal and a depth map by
exploiting the self coherence of a surface when integrating the normal map
along different paths.

The process is very modular: even if the second step requires the output of the
first one as input, each can also be used separately in different contexts.

Before giving a more detailed overview over our technique in Section 3 we
will briefly summarize related work by other researchers on the subject of specular
objects scanning.



2 Previous Work on Mirroring
Object Acquisition
Several research groups developed variations of standard range scanning tech-
niques that are capable of scanning specular objects.

In Oren and Nayar [14], 3D surface profiles of specular objects are generated
by observing the movements of virtual (i.e., reflected) features on their surface.
Zheng and Murata [28] extended this approach by rotating a specular object on
a turntable under the illumination of circular-shaped light sources. If there are
no occlusions due to the object shape, a highlight can be observed on all surface
points. While they can derive the complete geometry of an object in a single scan,
the accuracy of the generated models is limited and special hardware is required.

In [1], a laser scanning system is proposed where a shield mask limits the
direction of incident light. The prototype system is able to scan specular as well
as Lambertian surfaces with high accuracy but at a very low speed since each
position on the surface has to be seen under various angles (100 measurement
points in 20 min [19]).

The quality of flat or nearly flat surfaces such as a die or sheet metal has often
been measured by observing the reflection of regular grids (see for example [2]
for an overview). Similar to reflection lines used in geometric modelling [10], the
accuracy of these methods is high because measured surface normals are used to
reconstruct the shape of the object. A similar method has also been proposed by
[11] to measure the shape of the human cornea. Our method also benefits from
this measurement principle in terms of accuracy and extends it to recover dense
range maps of arbitrary shaped objects.

Park and Cho [16] place a specular object in a retroreflective hemisphere and
illuminate its surface with a laser beam. The reflected beam is measured and the
position on the object where it was hit by the retroreflected beam is calculated.
The next beam is directed at this surface point under a different angle. Once the
position and corresponding normal for one surface point is known, the shape and
surface normals of a sufficiently smooth object can be reconstructed recursively.

5



The main problem of this approach is that errors are accumulted in each step and
not corrected. With growing distance from the initial point the data becomes more
and more unreliable.

In their recent work on this subject, Savarese and Perona [23, 24] use a 2D pat-
tern consisting of points identified by the intersection of three coplanar lines, and
manage to recover from their reflection some attributes of the mirroring surface,
i.e. relationships between depth and normal. This can be used to locally recon-
struct the surface itself, if an approximation of its distance is provided, or some a
priori knowledge of the shape of the mirror (a sphere or a flat mirror) is known.
Still, the detection and labelling of elements of the patterns is far from automatic
and indeed quite problematic for not trivially shaped mirror. More important, the
measurements are very sparse. Typically their number in around a dozen, so no
assumption of point-to-point continuity is possible. Therefore, the technique can
be useful as auxiliary rather that substitute for typical range scanning technique.

A technique that captures more the appearance of mirroring objects rather than
their 3D geometry has been presented by Zongker et al. [29]. They introduced
environment mattes which capture how light impinging from the environment is
reflected by the object. We base our acquisition technique on environment matting
and extend this approach. Environment mattes will be revisited and explained in
more detail in Section 4.



3 Overview
In order to obtain the 3D geometry we observe images of a nearby monitor that
are reflected in the mirroring object. The shape of the object is recovered by
investigating the way the perceived reflection of the monitor is distorted. We call
this processshape from distortion.

To represent the distortion we use an environment matte [29, 3] which is a
general way to model the optical interactions between an object and its surround-
ings. Our system consists of, first, capturing a matte, and then using it to produce
a range map representing the surface of the investigated object. The next two
Sections are dedicated to one phase each:

Section 4 describes a new automatic way to capture the environment matte
with high accuracy: we capture 5 images of the object while it reflects repetitive
patterns of different frequencies displayed on a nearby monitor (Fig. 3.1a). These
images are used to construct the matte with sub-pixel precision (Fig. 3.1b), i.e.,
for each pixel in the captured images we compute the exact 2D position of the
point where the reflected ray hits the monitor.

In Section 5 we describe how the geometry of the object in the form of a depth
and a normal map (Fig. 3.1c) is reconstructed from the resulting matte. Given the
position of the monitor and a tentative normal at each pixel, the environment matte
relates the normals to corresponding depth values, and vice versa. Since both are
initially unknown we apply another constraint to find their absolute values: we
minimize the incoherence of the surface that occurs integrating the normal map
along different paths.

The final output of the presented algorithm is a standard range image, a 2D
data structure that for each point stores the distance of the scanned object along
the corresponding ray (Fig. 3.1d) enriched by a normal map, plus a reflectance
map derived directly from the matte. A complete model of the object can be
constructed out of multiple range maps using well known techniques for scan
alignment [17, 22], merging [6, 20], and surface simplification [4].

The described steps of our approach are in practice preceded by a calibration
procedure which is explained in Section 6. We need to recover the response of
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Figure 3.1: The big picture ofshape from distortion: the target object is pho-
tographed (a) while reflecting some pattern displayed by a monitor. The captured
images are used (b) to compute an environment matte (c) from which we extract
a normal map together with a depth map (d) that are embedded into the final 3D
range scan (e).

the camera to the intensity of the monitor with respect to the three color channels,
since colored stripe patterns are applied during scanning. Further, a calibration
of the intrinsic camera parameters is performed, and the relative monitor position
is measured. This calibration has to be done only once and can be reused for
subsequent scans as long as the monitor and the camera are not moved.

Finally, in Section 7 we show some experimental results and in Section 8 we
conclude and give some directions for future work.



4 Matting extraction
In this section we describe an algorithm to acquire anEnvironment Mattethat cap-
tures with sub-pixel precision the way mirroring objects reflect their environment.

4.1 Previous Matting Techniques

Matting is a category of 2D techniques that consists, in the general case, in cap-
turing how the environment (in most cases a far background) is filtered, reflected,
occluded, etc., by a target object (given a fixed illumination and viewpoint). This
information is then typically used to synthesize images where the same foreground
object is realistically shown in a different, possibly synthetic, environment.

The most simple matte, known as blue (or, more recently, green) screen matte [25],
records for each pixel a real value in the interval[0..1] modelling how much of the
background is visible at that pixel. This technique is widely used in cinematogra-
phy to replace the background of an arbitrary scene. The information is captured
at each frame showing the object in front of a homogeneous blue, yellow or green
background.

More information is recovered by an environment matte [29, 3], which stores
at each pixel position(u, v) a texture coordinate~o(u, v) into an environment tex-
ture corresponding to the texel that is visible at(u, v) after being reflected/refracted
by the object. The object can then be placed into arbitrary backgrounds while
maintaining its reflection characteristics. Actually the original environment matte
does not store the coordinate of a single point but the rectangular area of the en-
vironment texture that contributes to the considered pixel. In our implementation
we only use the main reflection direction.

In [29] Zongker et al. extracted the necessary information~o(u, v) from a series
of images of reflected binary encoded stripes displayed by a monitor that is placed
at the position of the virtual texture. Here, the frequency of the pattern is doubled
from frame to frame using 1, 2, 4,. . . , 2n stripes. The low frequency patterns de-
termine a rough approximation of the location of~o(u, v), while higher frequency
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ones provide a more and more accurate refinement of that estimate. Similar ap-
proaches of spatio-temporal modulation of the illumination are commonly used in
other 3D scanning applications, e.g. [21]. Unfortunately, in current approaches
the accuracy of the system is limited by the resolution of the projected pattern
with the highest frequency. Furthermore, little information is obtained from the
images with lower frequencies which only roughly determine the position.

The environment matting technique has further been extended in two ways
[3]: the first one increases the quality. It assumes that a pixel value at(u, v)
results from an area of the texture weighted by a Gaussian rather than a rectangular
region. A stripe with Gaussian profile is swept smoothly over the monitor. The
stream of 100 to 300 frames is recorded by a video camera to obtain the position
~o(u, v) and the spatial extend of the Gaussian filter that has to be applied.

Another improvement reduces the effort of capturing the matte to just a single
frame, allowing real-time mattes. However, it only works for background textures.
The binary stripe pattern is replaced by smoothly-varying transition of pure red,
green and blue color, a planar slice through the rgb cube. The resulting matte
consists of the texture coordinates~o(u, v) and an opacity valueα(u, v). While
the acquisition is considerably accelerated it also introduces a lot of noise. To
improve quality, the recovered matte is filtered by combining neighboring pixels
which limits the accuracy.

4.2 Our Matte

In our approach the matte is defined by the following attributes at each pixel(u, v):

• the 2D position~o(u, v) where the ray through pixel(u, v), reflected by the
object, intersects the monitor.~o(u, v) will be recovered with sub-pixel pre-
cision with respect to the resolution of the monitor which is required for
accurate 3D reconstruction.

• the reflectanceα(u, v) as a color vector, encoding the perceived attenuation
of light emitted by the monitor. For a perfect mirrorα(u, v) will be (1, 1, 1)T

while for points outside the silhouette of the object it will be(0, 0, 0)T .

Regarding the content, our matte is very similar to the real-time captured matte
[3]. However, our application scenario demands a much higher accuracy so that
a single image is not sufficient to recover a high quality matte. Even more im-
portant, we have to avoid filtering and want to be able to reconstruct the value
of ~o(u, v) for each pixel of the captured image totally independent on the values
of neighboring pixels. This is because the origin of a reflected ray may change
drastically for relatively small variations of the surface normal. Combining values



Figure 4.1: PatternsM1..4 sent to the monitor to capture the reflected environment
matte.
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Figure 4.2: Each striped pattern shown in Figure 4.1 is perceived in the camera as
a repetition of the following values of red, green, blue (up to a scale).

from neighboring pixels thus would introduce too large errors. Finally, we want
to keep the number of required images as low as possible.

The new pattern scheme we apply for the matte extraction consists of four
images. The patternsM1...4 (visible in Figure 4.1) are striped along different di-
rections. After calibration (see Section 6) the repeated period of the stripes is
perceived by the camera as the periodic function shown in Fig 4.2: the signal is
built out of hat functions for the RGB color channels displaced in such a way that
they always sum up to one.

For each location(u, v), the quadruple of observed color valuesci, i ∈ [1..4]
for the four patterns is sufficient to determine~o(u, v) robustly with sub-pixel pre-
cision: we first determine the position (or phase)x1..4 inside one stripe for each
of the four patterns; using the interference patterns we then recover the number of
the stripey1..4 in which the point is located.

A perceived color pixelci identifies uniquelyxi as the abscissa, inside the
function presented in Fig. 4.2, that best matches the RGB color values ofci. We
find xi using the following algorithm:

1. The three color values are sorted yieldingci[min] ≤ ci[med] ≤ ci[max]
(minimum, median, maximum).

2. The order of the color channels locatesxi inside one of the 6 region where
each region is delimited by the intersection of the r, g, b hat functions of
Figure 4.2.



3. The exact position ofx′
i ∈ [0..1) within the region is found by

x′
i =

ci[med] − ci[min]

(ci[max] − ci[min]) + (ci[med] − ci[min])
(4.1)

Considering the magnitude ofci[med] with respect to the minimal and maxi-
mal values takes into account darkening due to absorbed light. Additionally,
it also works correctly if the minimum value is not zero. This reduces er-
rors introduced by ambient lighting and color shifts. In an ideal case the
minimum value would always be zero by construction of the signal.

4. The finalxi is given by the value ofx′
i scaled and biased taking into account

the region it belongs to.

xi =
regionNr − 1

6
± x′

i

6
(4.2)

Repeating this algorithm for each colorc1...4 one ends up with four valuesx1..4,
each valuexi identifying where, inside a still unknown stripeyi, the origin~o(u, v)
of the monitor point reflected to pixel(u, v) is located. The unknownsyi are found
by exploiting the interference of the four patterns.

In fact, the two diagonal patternsM3 andM4 have a different period for the
stripes thanM1 andM2, e.g., each row ofM1 has 5 repetitions while each row of
M3 has only 4. Since 4 and 5 are coprimes, there is only one solutiony1...4 that
corresponds to the valuesx1...4. To find it we need to solve the system

ox = (x1 + y1)/5 (4.3)

oy = (x2 + y2)/5

ox + oy = (x3 + y3)/4

ox − oy = (x4 + y4)/4

where the unknowns areox, oy, i.e. the coordinates of matte position~o, and the
integer valuesy1..4, with y1,2 ∈ 0, . . . , 4 andy3,4 ∈ 0, . . . , 3. Note that in the
system all the variables are relative to an(u, v) position on the matte, therefore
we omitted all the (u,v) indexes. The system is solved by

4y1 − 5(y3 + y4) = 4x1 − 5x3 + 5x4 (4.4)

4y2 − 5(y3 − y4) = 4x2 − 5x3 − 5x4

Since the left sides of both equations represent integer values, we round the
values of the two right sides, that are just constants, to their closest integer values



i1 andi2 respectively (the magnitude of the rounding can be used as a measure of
our confidence for the value of~o at that position). What remains to solve is

4y1 − 5d1 = i1 (4.5)

4y2 − 5d2 = i2

whered1 andd2 are the sum and the difference betweeny3 andy4, i.e. d1 =
(y3 + y4) andd2 = (y3 − y4).

The Equations 4.5 are two simple Diophantic Equations to be solved sepa-
rately yielding

(y1, d1) = i1(3, 4) + k1(5, 4) (4.6)

(y2, d2) = i2(3, 4) + k2(5, 4)

for anyk1,2 ∈ IN. We chose fork1 (andk2) the only value that putsy1 (andy2) in
the required interval[0..4].

With the valuesd1 andd2 we trivially compute values fory3 andy4. As an
error recovery procedure, if the sum ofd1 andd2 turns out to be odd, we know
that one of the two roundings ofi1 andi2 has been done in the wrong way: we can
take the one which is further away from its closest integer value and re-perform
its rounding in the opposite way (decreasing the confidence value accordingly).

Plugging they1..4 into (4.4) we get an overdetermined system to find the result
~o = (ox, oy) for the given pixel: the redundancy is used reduce errors.

In principle we could use the confidence values to reject bad or noisy mea-
surements. However, we did not need to in practice, as the matte we computed
showed high confidence for all the point with sufficient reflectanceα, i.e. at all
points where the original signal is not severely darkened (see Sec. 4.3 later).

4.2.1 Number of Stripes

The number of stripes used within one pattern is quite important. Ideally, the
accuracy of the reconstructed~o(u, v) will be increased with a higher number of
stripes. Assuming that thexi are always determined with the same accuracy no
matter how many stripes are displayed, they represent a quantity varying at a
higher rate resulting in higher precision.

But, if the stripes are too close, the computation ofy1...4 becomes more and
more unstable. Sinceyi are discrete values they are either computed correctly or
deviate a lot from the correct solution. Their computation is very robust but if too
many stripes are present the system may undergo more errors than it can handle.
In these cases it would probably make sense to use the computedyi of neighboring
pixels to detect and correct errors, something we do not exploit currently.



In our implementation we use 5 stripes along thex axis for the vertical pattern
and 4 repetitions for the horizontal one. The diagonal patterns are slanted by
45 degrees, resulting in 4 repetitions along thex axis. As required 4 and 5 are
coprimes. Another desired property is that the patterns have more or less the same
frequency. At the chosen frequency, they1..4 present little or no errors, while the
x1..4 still provides enough precision.

4.3 Color Shift

Our pattern scheme is naturally resistant against darkening because of the scaling
in Step 3 of the algorithm in Section 4.2. That means a good matte can be captured
even if captured color values do not sum up to one because only a fraction of the
original brightness is reflected by the surface. The ability of the system to work
independently of the obtained brightness is important, since it leaves some free-
dom in factors like camera exposure time, and gives robustness against absorption
by the mirroring surfaces.

Aa another good quality, the zero-order continuity of the used periodic func-
tions (see Fig. 4.2) gives to the system a relative resistance to the blurring resulting
from the aliasing of the CCD.

On the other hand, the use of colored patterns makes the technique prone to
errors due to color shift, mainly occurring as a consequence of two factors:

• reflective surfaces that color the light they reflect, such as golden surfaces;
or

• differences in the color irradiated by a pixel of the monitor into different
directions.

These effects may vary from pixel to pixel over the image.
One way to make the matte acquisition more robust against color shifts is to

take a reference imagecα of the object reflecting just a white image displayed
on the monitor. The color information at each pixel is then used to normalize
the subsequent values of the corresponding channels of the pixelsc1..c4. Color
shift due to any of the mentioned reasons will affect both thecα and the other
images in the same way. The error can therefore be drastically reduced by a per-
pixel, per-channel normalization withcα, at the cost of just one extra image. This
normalization has proven to be sufficient for our cases. The values ofcα are also
directly used as the the reflectance channelα(u, v) of the matte. Values that are
too dark are clamped to 0 and ignored (they are considered to be either outside the
silhouette of the object, or part of the object that is not mirroring, or a part of the
object that is not lit by the monitor).



5 Geometry Reconstruction
In this section we describe how the geometry is reconstructed from the acquired
environment matte. Like in conventional 3D range scanning (e.g., laser based) the
geometry will be recovered as a range map, i.e., at every pixel of the environment
matte we compute a depth value (the distance between the principle point of the
camera and the surface point visible at the considered pixel).

To reconstruct the geometry of the entire surface of the scanned object, mul-
tiple range maps are necessary, each obtained by a single matte captured from a
different viewpoint. Since we produce the same output data as in conventional 3D
scanning (range maps) the same tools can be used to post-process them in order
to reciprocally align them, merge them, fill holes, and so on [17, 4].

The process of deriving a range map from an environment matte, i.e., the core
process of shape from distortion, can be seen as a mixture of shape from shading
and standard triangulation-based range scanning approaches. The transformation
of a normal map into a depth map and vice versa is similar to the problems in
shape from shading, where reflectance is used to compute a normal map which
further is integrated into a depth map. Our method is similar to triangulation-based
approach, since the depth to normal relation is given by the triangle determined
by the camera, the surface point and the active light source, in our case the point
of the monitor intersecting the reflected ray.

The major difference to both approaches is that none of the resulting quanti-
ties, depth values or normal directions, are measured directly but rather found by
a stable optimization. The depth values are obtained by two major steps. At first,
a random initial depth value is assigned to a random point and propagated through
the whole matte, at the same time constructing both the depth map and a normal
map. Both maps are further refined to obtain a more consistent field. In the second
step we optimize the initial depth value with respect to the self coherence of the
surface.
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5.1 Data Structures and Terminology

We use the following explicit data structures, each organized as a 2D map of the
same size as the environment matte (which is also the size of the input pictures):

• a distance scalar fieldd(u, v), coding in each position the distance from the
point of view to the surface of the object (along the viewing ray at position
(u, v))

• a normal field~n(u, v), coding the normal of that point

In the rest of this section we will furthermore use the following terminology:

• as in the previous section,α(u, v) and~o(u, v) refer to the reflectance and
the origin field of the input matte;

• ~r(u, v) denotes the viewing ray through the pixel(u, v) of the matte (obvi-
ously this data is not stored, but implicit given by the intrinsic and extrinsic
camera parameters)

• the monitor function~m : R2 → R3 maps the 2D position of a pixel on
the monitor~o(u, v) to the 3D position of the pixel in world space. How to
determine~m is described in Section 6.

At the end of the process, the output consists of the distance fieldd(u, v),
optionally enriched by the normal values of~n(u, v), or/and by the reflectance
α(u, v).

5.2 Converting Distance to/from Normals

Before solving the entire problem, let us first resolve a pair of related, trivial
subtasks.

Let us assume that the current point of view~PoV is in the origin. If we knew
the depth at a single pointd(u, v) along the normalized ray~r(u, v) from the origin
as well as the origin of the reflected light on the monitor~m(~o(u, v)), then surface
normal at that positionn(u, v) can directly be computed as

~n(u, v) =
1

2

(
(~m(~o(u, v)) − d(u, v) · ~r(u, v))

‖(~m(~o(u, v)) − d(u, v) · ~r(u, v)‖ − ~r(u, v)

)
(5.1)

(see Figure 5.1).
Likewise, given~n(u, v) we can compute the only value ford(u, v) that satisfies

d(u, v) · ~r(u, v) = ~m(~o(u, v)) − k(2~r(u, v) · ~n(u, v)) ~n(u, v) + ~r(u, v)) (5.2)
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Figure 5.1: Relationship between the surface normal~n(u, v) and distanced(u, v)
(along the ray~r(u, v) given the 3D position~m(~o(u, v)) of the light origin (the
monitor pixel at position~o(u, v)).

Figure 5.2: Given a ray and a 3D position of the light source, a one dimensional
space of solutions, consisting of a surface normal and a distance, are possible.



for somek > 0. In other words, the knowledge of the value of the matte~o(u, v)
allows us to uniquely compute the normal from the depth of the surface point
visible at(u, v), and the other way around.

There also exists a second way to deduce either of the two fields~n(u, v) and
d(u, v) from the other under certain assumptions about surface continuity (see
Section 5.4.1): given the values of~n(u, v) we can integrate them to obtain the
depth fieldd(u, v) propagating an initial depth estimation, similarly to what is
done in shape from shading approaches [26, 13]. Likewise, given the depth values
d(u, v) one can easily derive the normal at one point, e.g., as the normal of a plane
fitted to the depth values of neighboring pixels.

5.3 Depth Extraction

Unfortunately, we know initially neither the values ofd(u, v) nor ~n(u, v). An
initial approximation of the two fields is found by propagating an initial guess for
the depth value at one point through the whole matte:

1. Start with an arbitrarily chosen initial point(u0, v0) inside the matte and
assign a random distanced(u0, v0) to it. How to determine a proper initial
depth value is explained in Section 5.4. A boundaryΓ is initialized consist-
ing of only the point(u0, v0).

2. Compute the normals using point-wise Equation 5.1 of all boundary points.

3. Compute the depthd(un, vn) of every untouched point(un, vn) neighboring
to any boundary point(uΓ, vΓ), based on the depth valued(uΓ, vΓ) using the
surface tangent implicitly given by~n(uΓ, vΓ). Add the point(un, vn) to the
boundary. If the point does not have any untouched adjacent points, remove
it from the boundary.

4. Repeat from 2 until all points are processed;

For a more robust algorithm, before processing a point in Step 3, we wait until
k ≥ Np neighboring points around a given pointd(un, vn) have been processed
(apart from the initial one). Its depth value is then computed as the average of the
depth predicted as above, estimated by thek different directions. This produces
more accurate results, and is also a natural way to filter out error prone points: if
a given point is never reached at leastNp times, we just drop it from the scan. In
our implementation we usedNp = 3 out of the eight neighbors surrounding one
point.



In a second phase we refine the initial approximation of both fields exploiting
the dependency of one point on its complete neighborhood until two consistent
fields are found:

1. Integrate the current normal field~n(u, v) into the distance fieldd(u, v);

2. ∀(u, v) use Equation 5.1 to compute the new~n(u, v) from the currentd(u, v);

3. repeat from 1 until convergence.

In this second phase we take into account the surface continuity along all di-
rections, as opposed to theNp directions during the boundary propagation in the
initial phase.

Note that both phases are based in a point-wise computation of~n fromd (using
Equation 5.1), and a local conversion ofn to d (using normal integration). In
theory, we could have used a dual approach that uses Equation 5.2 instead to
obtaind from~n per pixel, in conjunction with a derivation process (fitting normals
to the depth field) to locally determine~n from d. We prefer the former approach
since both involved computations seem to be more robust than the ones of the
latter.

5.4 Initial Depth

The discussed algorithm proved to converge fast in all tested cases. In fact it
converges “too much”: starting with different initial guesses of the depthd(u0, v0)
at an arbitrary chosen point, different surfaces are reconstructed.

In other words, the per-point ambiguity shown in Figure 5.1 results globally in
an ambiguity between large, more or less flat objects far away or small, strongly
curved objects close to the camera (see Figure 5.3). In fact, the normals of patches
that are assumed to be far away from the camera tend to point towards the camera:
it is easy to see that~n(u, v) in Equation 5.1 converges to−~r(u, v) whend(u, v)
tends to infinity.

The ambiguity consists of a single undetermined scalar value for the entire
patch. We aim at solving it without requiring anything more than the information
present in a single matte. Although the correct depth could easily be recovered by
a second matte done with a second monitor position, this would increase the acqui-
sition time and effort considerably since the monitor position has to be changed
and thus recalibrated at each scan (it is not possible to just use two monitors,
switching them on one at a time, because, in order for them to light two non-
disjoint mattes, they would require a positioning that would make one obscure the
other).



Figure 5.3: Intuitive sketch showing the relationship of the overall shape, size and
position of the resulting range scan depending on the initial depth estimate.

Figure 5.4: The basic case of incoherence that must be summed over the whole
surface in all directions to evaluate the total incoherence.

The basic fact we will exploit to obtain the correct depth with just a single
matte is that not all of the possible shapes solving the ambiguity are equally self
coherent. The form of incoherence we address is the one depicted in Figure 5.4,
where the depth estimate of a given points (A) along a ray~r0 is propagated along
two different paths, namelyABC andAB′C ′, to the same ray~r2, but leading to
different depth values at that ray. For each of the two paths the depth along the
starting ray determines the normal at that point, which in turn determines the delta
of depth to the next ray. As already described, both in the initial estimation and
in the refinement phases we average theC andC ′ depth values of any considered
propagation directions to compute the final, most consistent depth value forC.
However, the variance of the values for different paths can be used as the measure
of incoherence we need. This measure is further integrated over all points in the
matte.

Plotting a graph of this error measure versus the initial depth estimate (e.g.
Figure 5.5 left) we always observed a well defined minimum. This minimum
determines the correct depth. Since there is no obvious way to treat the function
in an analytical way, we need to find this minimum with an iterative method.

A problem is that the error function tends to zero when the initial distance
parameter goes to infinity. In fact, if the object is far enough then all the nor-
mals will approximately point towards the viewer (see Figure 5.3) and the normal
map will be artificially coherent. A natural solution is to weight the measured
incoherence with the inverse of the dot product of the view point and the normal



Figure 5.5: A plot of the computed incoherence integrated over the surface and all
directions (y axis, in logarithmic scale) versus the initial depth estimation (x axis,
in mm.). A minimum clearly exists, corresponding to the real distance of the ob-
ject from the camera. The three plotted lines correspond to the incoherence of the
surface right after the initial estimate, after one refinement, or after 5 refinements
(note that the error decreases but the abscissa of the minimum stays the same).
The function is shown without (left) and with (right) an extra weighting to take
into account the flattening effect for far away objects (see text).

computed at the initial point with that depth, that is, the inverse of the typical delta
of depth between two neighboring points. With this adjustment the error function
proved to have just a single local minimum (see Figure 5.5 right), so we can ap-
ply the Golden Section Search method to find the minimum with great accuracy
using few iterations. The weighting sometimes moves the computed minimum by
a fraction of a millimeter, but we believe that this estimate is more accurate.

Time can be saved if during each iteration of the Golden Ratio Search only
the initial step of the matte to depth map conversion (see Section 5) is executed.
The refinement iterations afterwards reduce the error but we never observe any
significant change of the position of the minimum (see Figure 5.5).

This measure of self coherence makes intuitively sense and gives good results,
that is, the estimated distance to the camera is comparable, but much more accu-
rate, to those that we measured with any empirical method on the physical object.
We tested the overall accuracy of the method by using our scanning technique
over a known object (see Section 7.2).

Although the method produces highly accurate results it unfortunately breaks
down for too small regions. If one region consists of too few connected, usable
points the measure of self coherence is no longer reliable, reducing the overall
accuracy.



5.4.1 Continuity Assumption

During both the normal-to-depth or depth-to-normal conversion, the algorithm
assumes that the surface is first-order continuous.

In practice, we do not really have to worry about gradient discontinuity (an-
gles that are totally steep): real object scans never present them and even when the
object itself present very steep angles, these are made a little smoother by the blur-
ring inherent in the image acquisition system. In fact, the problem only occurred
when testing the technique on synthetic images, never when using real pictures.

Another case of discontinuity arise for the zero-order (apparent) depth discon-
tinuity due to self-occlusion. Typically depth discontinuities can be observed as
separated regions/patches in the matte. At a depth discontinuity the normal of the
surface will almost invariably be oriented orthogonally to the view direction, and
therefore during matte acquisition it would not show the reflection of the monitor,
which in all useful configuration is in front, not behind, the object with respect to
the camera. Parts of the object not reflecting the monitor are black in the matte
and are therefore automatically ignored by the algorithm.

5.4.2 Disjoint Patches

If the extracted matte presents more than one connected region of usable pixels
(we will refer to them as mattepatches), than each of them will be handled sep-
arately, each with a differently determined optimal initial depth. The result will
be different patches within the same range and normal map. These patches, even
if they are disjointed, are reciprocally aligned (that is, their relative position is
fixed), and they can be treated as a single scan for any further processing if they
are large enough for a reliable depth estimation.

5.4.3 Interreflections

One more issue is how to solve the problem caused by multiple reflections. The
matte captures the reflections of a reflection as well as a simple reflection. In
principle, if properly exploited, this could be an advantage rather than a problem,
since double reflections provide information on both surfaces reflecting the ray.
However it is not clear how to analyze those observations. It would be important,
if not to exploit multiple reflections, to at least detect and ignore them.

Some factors make detection possible. First of all, parts of the object lighted
(in the pictures, and therefore in the matte) by multiple reflections tend to be sep-
arated from those showing single reflections. So, in the vast majority of cases,
either the captured colors of all pixels in the patch are due to multiple reflections
or all pixel values are due to a single reflection. Another observation is that a patch



caused by multiple reflections produces depth maps that show an incoherence (in
the sense explained in Section 5.5) several order of magnitude bigger than single
reflection patches. Finally, multiple reflection patches typically are also signifi-
cantly darker. At present, we did not experiment using some, or a combination, of
these factors to detect multiple reflection patches automatically.



6 Calibration
In order to reference the measured data, it is necessary to perform the following
calibration steps:

• calibration of the intrinsic camera parameters

• calibration of the response curve of the monitor/camera combination

• calibration of the monitor position and shape relative to the camera

The first two steps must be done only once per choice of equipment (camera, mon-
itor) and per lens setting whereas the position of the monitor must be determined
at the beginning and whenever one of the two is moved. While our method has
been designed so that a given position of camera-monitor could be easily used for
multiple scans by just moving the target object, sometimes it may be desirable to
move one of them to get a larger scan (i.e. more of the target object reflecting the
monitor).

6.1 Intrinsic Camera Parameters

The intrinsic camera parameters such as focal length, lens distortion and central
projection point must be known in order to relate a pixel position in the image
to a position on space. It is not sufficient to rely on data in the camera and lens
specification as the focal length changes for example with the subject distance.
We used a standard method similar to Zhang et al. [27] to recover the intrinsic
parameter of our camera system.

6.2 Photometric Calibration

Our approach uses color information to infer the screen position that illuminates a
surface point. Similar to a shape from shading system, we therefore have to ensure
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Figure 6.1: Test image used for the calibration procedure. Left: pure red, green,
blue, and white color patches. Middle: single color ramps. Right: dual color
ramps as used in the patterns.

that the acquisition system is photometrically calibrated. In particular, we have to
ensure that the system is linear, i.e., that an image of a linear ramp displayed on
the monitor is captured by the camera system again a linear ramp. Furthermore,
crosstalk between the color channels in the captured images should be avoided.
For our scanner, we therefore have to calibrate both the display and the acquisition
system.

Within our imaging pipeline there are two places that require calibration:

• the display system where the RGB values of pixels in the original pat-
terns are interpreted by the computer (which might include application of a
gamma factor or an ICC profile) and displayed on the monitor

• the acquisition system where the camera will normally detect a different
RGB signal as the spectral responses of the CCD sensors do usually not
match the spectral emission of the monitor phosphors. After some color
processing by the camera (possibly including the application of a response
curve), the raw image signal is available.

To calibrate the display system, we first determine the response curve resp. the
opto-electronic conversion function (OECF) of the camera using some standard
method (e.g., [18, 7, 12]). If the camera does not have a linear response, applying
the inverse of the response curve transfers the images into a linear camera color
space.

To remove crosstalk between the three color channels, which is mainly caused
by the different spectral characteristics of the monitor and the camera, a simple
basis transform in the linear camera color space is sufficient. An image such
as Figure 6.1 containing pure red, green, and blue color patches is displayed on



Figure 6.2: The three color ramps red to green. green to blue and blue to red. Top:
their first approximation, i.e., linear ramps sent to the monitor and captured by
the camera lead to irregular, non linear functions. Bottom: the final ramps after
calibration are linear and well separated.

the monitor, captured with the camera and linearized. The corresponding image
valuesR, G, andB are assembled in a basis transform matrixM . The inverse of
M can be used to separate the colors:
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In theory, this calibration depends also on the reflective material of the target
object, different materials requiring different separation. In practice, we found
out that, using the precautions about color shift presented in Section 4.3, a single
matrix is usually good enough for any material.

To calibrate the display system, we have to capture the response curve of the
monitor by displaying a linear ramp for each color channel varying from 0 to the
maximal value (see Figure 6.1, middle). By inverting the captured ramp, we can
now generate patterns that are displayed as linear ramps on the monitor and are
captured and interpreted as linear ramps with a clear separation of the channels.

Any error made (or not compensated for) by the above calibration steps can
lead to artifacts such as crosstalk between the color channels and to non-linearities
in the captured matte. The quality of the calibration can therefore be judged by an-
alyzing images of dual color ramps which are used in the patterns (see Figure 6.1,
right). During our experiments, we achieved a high linearity of the linear ramps
and a good separation of the color channels as can be seen in Figure 6.2.



6.3 Geometric Calibration

In the reconstruction phase, we need to know the monitor function~m (see Sec-
tion sec:reconstruction), that is, the exact location of each pixel on the monitor
relative to the camera in order to interpret the captured mattes correctly. This task
can be split in two parts: modeling the position of each pixel relative to the moni-
tor (a one-time calibration) and recovering the position of the monitor. In our case
it was sufficient to model the monitor as a flat rectangle, with pixels evenly spaced
on it. If the monitor is not flat or regular enough, it might be necessary to model
the shape of the monitor more accurately.

An obstacle in detecting the monitor position is the fact that typically the mon-
itor is not directly visible from the camera. Instead, both the monitor and the
camera are facing a similar direction, so that the camera can capture monitor light
reflected by the target object. The monitor position measurement can still be easily
performed using a single picture, with the aid of some mirroring sample objects
with known, very simple, geometry such as mirroring spheres.

Given their size and position in a captured image (and the intrinsic camera
parameters), it is easy to compute their position relative to the camera using basic
projective geometry (see for example [5]). The position of each corner of the
reflected monitor on the spheres identifies a reflected ray (the normal of the sphere
is known) along which the real monitor corner must lie. Using several spheres in
a single image, it is possible to compute the corners as the intersection of these
rays. The monitor (modeled as a rectangle of known dimensions) is fitted in those
corners. If a flat mirror is used as calibration object, the position of the monitor
can be determined in a similar way.

For our experiments we used two metal spheres with 60 mm diameter for
the calibration. The spheres are roughly located at the same position and have
approximately the same size as the objects to be scanned. This way it is possible to
capture the matte after the position calibration without changing the focus setting
of the lens which would invalidate the intrinsic calibration.

The calibration remains valid as long as the camera and the monitor are left in
place. Fortunately, our technique requires a single matte (which is captured with
images all shot leaving both the monitor and the camera in the same position), in
order to extract a range scan. Given that the object can be moved, it is possible
to keep the camera and monitor fixed and just rotate the object to perform all the
needed scans.



7 Results
In this section, we present some results obtained using our technique to scan
three objects – a polished metal sphere with 60 mm diameter and two identical
plumbery objects, to one of which we added some artificial dents. As the two
phases of our algorithm can also be used separately, we will present the results for
each phase individually.

7.1 Matte Capture and Extraction

Our measurement setup consists of a standard 19” CRT monitor for displaying the
patterns and a high quality Kodak DCS 560 digital still camera (see Figure 7.1).
Due to their huge view dependent color shift, most current flatscreen monitors
cannot be used for display although they are much lighter and easier to move
during setup. All experiments have been performed in our photo studio [9] which
has been specially designed to keep the influence of the environment on such
measurements as low as possible.

Figure 7.2 shows some results of our matte capture and extraction algorithm.
At first, we show the object reflecting the white monitor imagecα (a), and two of
the four patternsc1, c4 (b,c). In order to illustrate the quality of the extracted matte,
we colored each of its points using the reconstructed origin field~o(u, v) to index a
checker pattern (d). Note that the stripes on the sphere are of equal width proving
that there is no systematic error in our system when deriving the position of the
reflected monitor pixel from image colors. The irregularity in the the middle of
the image corresponds to a real, extremely tiny imperfection of the used mirroring
sphere. In Subfigure (e), a photograph instead of the checker pattern is used for
the mapping. The resulting image can be compared with a real picture showing
the original object reflecting the same photograph displayed by the monitor (f).
Apart from a color mismatch which we did not correct for, the two images are
almost identically.

All mattes have been computed on a standard PC (Athlon 1.4 GHz 512 MB).
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Figure 7.1: The setup used during our experiments. The patterns are displayed
on a 19” CRT monitor and reflected off the target object (here the metal sphere
in front of the monitor). The images are captured with a high quality digital still
camera.

Computing a matte with over 100K points takes less than a second.

7.2 Geometry Reconstruction

A summary of the results of the geometry reconstruction phase is given in Fig-
ure 7.3. To check the accuracy of the reconstructed geometry, the 60 mm metal
sphere was used as a test target (that diameter of that sphere was known with very
high precision). As the table shows, in a range-scan of 75k range points the RMS
to an optimal sphere with 60 mm diameter is as small as21µm. Figure 7.4 shows
how the error is distributed over the scan of the sphere. The scan shows a very
high accuracy and very low noise. We believe that these small errors are mainly
due to inaccurate intrinsic camera parameters, and secondarily due to the errors in
the monitor position estimation.

As a test for a more complicated object consisting of multiple, independent
patches, we reconstructed the geometry of the plumbery objects. For the first one
without dents whose matte is visible in Figure 7.2, we show the reconstruction of
the normal field~n(u, v) and the distance fieldd(u, v) in Figure 7.5. The figure
further displays the corresponding geometry (rendered adding a trivial connectiv-
ity to the range points identified by the distance field). Finally, in Figure 7.6 we
show some results for the dented plumbery object, concerning both the acquired
matte and the reconstructed geometry.



(a) (b) (a) (b)

(c) (d) (c) (d)

(e) (f) (e) (f)

Figure 7.2: Matte captured for a mirroring sphere and a plumbery object. Sub-
figures (a), (b) and (c) show the input images reflecting patternscα, c1, c4. In
Subfigure (d) and (e), the captured matte is shown using the origin field~o(u, v) to
index a checkered board (d), or an image (e). As reference, (f) shows pictures of
the real objects mirroring the image. See Picture 7.6 for another example.



60mm. plumbery plumbery
sphere object object
matte (clean) (dented)

Number of pixels 75K 38K 108K
Number of Patches 1 2 2

Time Initial Depth Est. (s) 11.9 7.6 20.0
Time Refinement (s) 5.2 3.0 7.5
Time Total (s) 17.1 15.1 27.5

Est. Initial Depth (mm) 756.716 819.640 998.426
Measured Coherence before Refinement (nm) 385 284 220
Measured Coherence after Refinement (nm) 275 263 210
RMS error (µm) 21 — —

Figure 7.3: Results for three test cases: a matte of the metal sphere, of the
plumbery object, and of the dented plumbery object. When multiple patches are
present, all data refer to the computation of the largest patch. The coherence row
reports, in nanometers, the quantity described in Section 5.4 before it is weighted,
averaged over all valid scan points. The number of pixels corresponds also to the
number of range points in the resulting range map. The errors for the plumbery
objects cannot be quantified for lack of reference data.

Figure 7.4: Error distribution in a scan of a sphere with 60 mm diameter similar
to Figure 7.2 left. The error is shown as signed distance to an optimal sphere in
µm.



Figure 7.5: Geometry reconstructed from the extracted matte of the plumbery
object visible in Figure 7.2. From left to right: the close-up of the normal field
~n(u, v) rendered with Lambertian surface properties reveals even small details.
The distance fieldd(u, v), visualized with isovalued lines. The resulting geometry,
32K faces, rendered from a slightly different point of view. (see Picture 7.6 for
another example).

Figure 7.6: Results of measuring the dented plumbery object. From top left to
bottom right: one of the original pictures shot to capture the matte, the extracted
matte indexing a checkered pattern, the resulting depth map (isolines) and a ren-
dering of the reconstructed geometry.



8 Conclusion
The presented method is a large step towards recovering the surface geometry of a
mirroring surface – an important problem not only in computer graphics but also in
industrial applications [2]. Due to the basic acquisition principle (an environment
matte is related to the first derivative of a surface), the achieved precision is very
high and even small details can be recovered accurately.

The acquired scans are range maps that can be dealt directly with existing, well
studied techniques developed in other contexts of range scanning. The acquisition
time for a single scan is quite reasonable and only standard, cheap hardware com-
ponents are required.

The technique consists from two components that can also be used indepen-
dently and in different contexts: The proposed environment matting scheme shows
an efficient way to improve the precision of environment matting to sub-pixel ac-
curacy. In cases where the matte extraction is difficult due to the reflection prop-
erties of a targeted object, using a more slow and robust environment matting
method can improve the acquired matte. Such a matte can nevertheless be used as
input for the surface reconstruction.
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9 Future Work
The size of the scanned area is limited by the fact that only surface points are
scanned for which the reflection of the monitor is seen by the camera (a limitation
similar to the ones common in triangulation based 3D scanners). An easy exten-
sion of our work would therefore be to replace the monitor with a hemispherical
projection screen or a cave. In principle, this requires only an additional calibra-
tion phase to recover the geometry of the projection screens.

This limitation poses also new problems on the still largely open field of scan
planning: to maximize the surface area acquired by a single scan, one must max-
imize the portion of the object reflecting the monitor into the camera. A locally
optimal position could be automatically found by some appropriate search. Such
an automated planning system be especially useful in combination with a robot
controlled acquisition environment [15].

One more issue is how to deal with multiple reflections. As already noted, this,
if properly exploited, could be an advantage rather than a problem, since double
reflections provide information on both surfaces reflecting the ray. But, while de-
tecting multiple reflections is comparatively easy (as discussed in Section 5.4.3),
it is quite difficult to integrate them into a coherent depth map.

Another promising research issue consists in the possible use of a similar
shape from distortion approach to reconstruct transparent objects such as glass or
some types of plastics. The basic concept would be to capture a matte with light
from the monitor shining through the object. Its shape is reconstructed by look-
ing at the distortions caused by refraction and reflection. This would be a further
significant and very useful extension of the scope of 3D acquisition in general,
as transparent objects represent, similarly to mirroring ones, an extremely trou-
blesome yet needed category. It will likely be very challenging to reconstruct the
geometry, partly because refractions are more complicated then reflections, partly
because each light ray affected by the object at all is likely to undergo multiple re-
fractions and reflections during its monitor-to-camera path. As a side effect, work
in this direction could be helpful in exploiting and using multiple reflection matte
patches.
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