
High-Quality Rendering of Varying Isosurfaces
with Cubic Trivariate C1-continuous Splines

Thomas Kalbe, Thomas Koch, and Michael Goesele

GRIS, TU Darmstadt

Abstract. Smooth trivariate splines on uniform tetrahedral partitions
are well suited for high-quality visualization of isosurfaces from scalar
volumetric data. We propose a novel rendering approach based on spline
patches with low total degree, for which ray-isosurface intersections are
computed using efficient root finding algorithms. Smoothly varying sur-
face normals are directly extracted from the underlying spline representa-
tion. Our approach is using a combined CUDA and graphics pipeline and
yields two key advantages over previous work. First, we can interactively
vary the isovalues since all required processing steps are performed on
the GPU. Second, we employ instancing in order to reduce shader com-
plexity and to minimize overall memory usage. In particular, this allows
to compute the spline coefficients on-the-fly in real-time on the GPU.

1 Introduction

The visualization of discrete data on volumetric grids is a common task in var-
ious applications, e.g., medical imaging, scientific visualization, or reverse engi-
neering. The construction of adequate non-discrete models which fit our needs
in terms of visual quality as well as computational costs for the display and
preprocessing is an interesting challenge. The most common approach is tri-
linear interpolation [1, 2], where the tensor-product extension of univariate linear
splines interpolating at the grid points results in piecewise cubic polynomials.
A sufficiently smooth function is approximated with order two, but in general,
reconstructions are not smooth and visual artifacts, like stair-casing or imper-
fect silhouettes, arise. However, the simplicity of this model has motivated its
widespread use. Tri-quadratic or tri-cubic tensor-product splines can be used to
construct smooth models. These splines lead to piecewise polynomials of higher
total degree, namely six and nine, which are thus more expensive to evaluate.

In order to alleviate these problems, we use cubic trivariate C1-splines [3] for
interactive visualizations of isosurfaces from volumetric data with ray casting.
The low total degree of the spline pieces allows for efficient and stable ray-patch
intersection tests. The resulting spline pieces are directly available in Bernstein-
Bézier–form (BB-form) from the volumetric data by simple, efficient and local
averaging formulae using a symmetric and isotropic data stencil from the 27-
neighborhood of the nearest data value. The BB-form of the spline pieces has
several advantages: well-known techniques from CAGD, like de Casteljau’s al-
gorithm and blossoming, can be employed for efficient and stable evaluation of

2 Thomas Kalbe, Thomas Koch, and Michael Goesele

the splines. The derivatives needed for direct illumination are immediately avail-
able as a by-product. The convex hull property of the BB-form allows to quickly
decide if a given spline patch contributes to the final surface.

A first GPU implementation for visualization with cubic trivariate splines has
been given by [4]. Data streams of a fixed isolevel were prepared on the CPU and
then sent to the GPU for visualization. This preprocess, which takes a couple of
seconds for medium-sized data sets (≥ 2563 data values), has to be repeated for
each change of isolevel. However, in many applications it is essential to vary the
isosurface interactively in order to gain deeper understanding of the data (see
Fig. 1). In this work, we significantly accelerate the preprocess using NVIDIA’s
CUDA framework and achieve reconstruction times which are even below the
rendering times of a single frame. In addition, current innovations of the graphics
pipeline in Shader Model 4.0, like instancing, allow us to compute all necessary
spline coefficients on-the-fly directly in the vertex shader. Therefore, we do not
need to inflate the data prior to visualization, but merely store the volume data as
a texture on the GPU. In addition, geometry encoding is simplified and memory
overhead is reduced. Combining these contributions, we significantly improved
the usability of high-quality trivariate splines in real-world applications.

2 Related work

Techniques for visualizations of gridded scalar data can be categorized into two
general classes. Full volume rendering, where the equations of physical light
transport are integrated throughout the volume, commonly along viewing rays,
and the somewhat less complex isosurfacing. In the latter case, we are interested
in the zero contour of a continuous implicit function which approximates or inter-
polates the discrete values given at the grid points. We can classify isosurfacing
further into methods that obtain discrete representations of the surfaces, e.g.,
triangle meshes. A standard approach in this area is marching cubes [5]. Alter-
natively, we are only interested in visualizations of the isosurfaces, which is often
done by ray casting, where the first intersection of each viewing ray with the
surface is determined for later illumination. The recent development of graphics
processors has been a massive impulse for interactive volume graphics on con-
sumer hardware (see [6] for a survey). Interactive techniques exist for full volume
rendering, isosurface visualization and reconstruction, e.g, [7–10]. Still, most of
these approaches are based on tri-linear interpolation and therefore trade visual
quality in favor of rendering speed. Gradients can be pre-computed at the grid
points, at the cost of increased memory and bandwidth consumption. Alterna-
tively, the gradients are computed on-the-fly using central differences, which is
an expensive operation. Either way, the obtained gradients are not smooth, and
visual artifacts arise. To circumvent these problems, higher-order filter kernels,
e.g., smooth tri-cubic or tri-quartic box splines, have been proposed [2, 11]. One
of the few successful implementations of interactive isosurface visualization with
higher order filtering has been given by [12]. These splines lead to polynomials of
total degree nine, for which no exact root finding algorithms exist. Furthermore,

Lecture Notes in Computer Science 3

Fig. 1. Blending of different isosurfaces from real-world data sets. From left to right :
VisMale (2563 voxels), Tooth (2562 × 161 voxels), and Foot (2563 voxels). VisMale
and Tooth are smoothed with a Gaussian filter on the GPU. Choosing the desired
isosurfaces and smoothing to an appropriate degree is an interactive process.

data stencils are large (usually the 64-neighborhood), and important features
might be lost resulting from the large support of the filter kernels.

We use smooth trivariate splines defined w.r.t. uniform tetrahedral parti-
tions. Here, the filter kernels are small and isotropic. Since the total degree of
the polynomial pieces does not exceed three, we can choose suitable starting val-
ues for an iterative root finding algorithm, such that precise intersections with
the isosurface are obtained in a stable and efficient way. No further refinements,
e.g., near the surface’s silhouette, are needed. For an example see Fig. 7, right.
An approach for interactive visualization using trivariate splines, has been given
by [4]. While this work was the first to allow for real-time rendering of up to
millions of smoothly connected spline patches simultaneously, it is based on the
common principles described by, e.g, [13–15]. These methods project the bound-
ing geometry of the polynomials in screen space and perform intersection tests
and illumination during fragment processing. [4] rely on a CPU preprocessing of
the data for each change of isovalue, which can be done only off-line. Further-
more, memory requirements for the storage of spline coefficients are substantial.
In this paper, we shift the preprocessing to the GPU in order to allow for an
interactive change of isosurface. To do that, we use parallel prefix scans as de-
scribed in [16, 17]. In addition, we show how to reduce memory overhead to a
minimum using current innovations in the graphics pipeline.

3 Trivariate splines and the BB-form

In this section, we give a brief outline of the basic terminology and mathematical
background of trivariate splines in BB-form on tetrahedral partitions, along with
a description of the calculation of the spline coefficients. These coefficients can
be directly obtained from the volume data by simple averaging formulae.

4 Thomas Kalbe, Thomas Koch, and Michael Goesele

ξ0030 ξ0003

ξ3000

ξ0021 ξ0012

ξ1020

ξ2010

ξ1002

ξ2001

ξ1011

Fig. 2. Left : the cube partition ♦ of the domain Ω. Middle: the type-6 partition is
obtained by first subdividing each cube into six pyramids, which are then further split
into four congruent tetrahedra each. Right : the zero contour of a single cubic trivariate
spline patch s|T within it’s bounding tetrahedron T . The domain points ξijk` associated
with the BB-coefficients bijk` of the front-most triangle are shown.

3.1 Preliminaries and basic notation

For n ∈ N let V := {vijk = (ih, jh, kh) : i, j, k = 0, . . . , n} be the cubic grid
of (n + 1)3 points with grid size h = 1/n ∈ R. We define a cube partition
♦ = {Q : Q = Qijk} of the domain Ω, where each Qijk ∈ ♦ is centered at vijk
and the vertices of Qijk are (2i± 1, 2j ± 1, 2k ± 1)t · h/2, see Fig. 2, left.

We consider trivariate splines on the type-6 tetrahedral partition ∆6, where
eachQ is subdivided into 24 congruent tetrahedra. This is done by connecting the
vertices of Qijk with the center vijk. Each of the resulting six pyramids is then
further split into four tetrahedra, see Fig. 2, right. The space of cubic trivariate
C1 splines on∆6 is defined by S1

3 (∆6) = {s ∈ C1(Ω) : s|T ∈ P3, for all T ∈ ∆6},
where C1(Ω) is the set of continuously differentiable functions on Ω, P3 :=
span{xνyµzκ : 0 ≤ ν + µ + κ ≤ 3} is the 20-dimensional space of trivariate
polynomials of total degree three, and T is a tetrahedron in ∆6. We use the
BB-form of the polynomial pieces, i.e.

s|T =
∑

i+j+k+`

bijk`Bijk`, i+ j + k + ` = 3,

where the Bijk` = 3!
i!j!k!`!φ

i
0φ
j
1φ
k
2φ

`
3 ∈ P3 are the cubic Bernstein polynomi-

als w.r.t a tetrahedron T = [v0,v1,v2,v3] ∈ ∆6. For each T , we set v0 to
the center of it’s cube Q, v1 to the centroid of one of the faces of Q and
v2,v3 to the vertices of Q sharing a common edge. The barycentric coordinates
φ(x) = (φ0(x), φ1(x), φ2(x), φ3(x))t of a point x = (x, y, z, 1)t w.r.t. a non-
degenerate T are the linear trivariate polynomials determined by φν(vµ) = δν,µ,
ν, µ = 0, . . . , 3, where δν,µ is Kronecker’s symbol. They are given by the linear
system of equations

φ(x) =

(
v0 v1 v2 v3

1 1 1 1

)−1

· x. (1)

The BB-coefficients bijk` ∈ R are associated with the 20 domain points
ξijk` = (iv0 + jv1 + kv2 + `v3)/3, see Fig. 2, right, and we let D(∆6) be the
union of the sets of domain points associated with the tetrahedra of ∆6. As

Lecture Notes in Computer Science 5

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8 fijk

1
24

1
24

5
24

1
24

1
24

5
24

5
24

5
24 fijk

1
96

1
96

1
32

1
32

1
96

1
32

7
48

1
96

1
32

7
48

13
48

13
48 fijk

Fig. 3. The masks for the coefficients associated with the domain points ξ0003 (left),
ξ0021 (middle) and ξ0111 (right) for the shaded tetrahedron in Qijk. The remaining
coefficients of ΓQijk follow from symmetry and rotations. Black dots denote data values.

pointed out by e.g. [18], the BB-form is especially useful for defining smoothness
conditions between neighboring polynomial pieces. Let T, T̃ be two neighboring
tetrahedra sharing a common face F = T ∩ T̃ = [v0,v1,v2], then a cubic spline
s on T ∪ T̃ is continuous (s ∈ S0

3) if s|T (x) = s|T̃ (x), x ∈ F . Using the BB-form,
we have s ∈ S0

3 if bijk0 = b̃ijk0 and a continuous spline s is uniquely defined by
the coefficients {bξ : ξ ∈ D(∆6)}. Furthermore, s is C1-continuous across F iff

b̃ijk1 = bi+1,j,k,0 φ0(ṽ3) + bi,j+1,k,0 φ1(ṽ3) + bi,j,k+1,0 φ2(ṽ3) + bi,j,k,1 φ3(ṽ3), (2)

where i+ j + k = 2 and ṽ3 is the vertex of T̃ opposite to F . Smoothness of the
splines on ∆6 is thus easily described when considering only two neighboring
polynomial pieces. The complexity of the spline spaces arises from the fact that
smoothness conditions have to be fulfilled not only between two neighboring
patches, but across all the interior faces of ∆6 simultaneously.

We can evaluate a spline patch s|T (x) with de Casteljau’s algorithm. Set b[0]ijk` =

bijk`, a de Casteljau step computes b[η]ijk`, i+j+k+` = 3−η, as the inner product

of (φ0(x), φ1(x), φ2(x), φ3(x))t and (b[η−1]
i+1,j,k,`, b

[η−1]
i,j+1,k,`, b

[η−1]
i,j,k+1,`, b

[η−1]
i,j,k,`+1)t with

s|T (x) = b
[3]
0000. In addition, the (3 − 1)th step provides the four independent

directional derivatives
∂s|T (x)

∂φν(x)
= b[2]ν , ν = 0, . . . , 3, (3)

where ν ∈ N4
0 is the vector with a 1 at position ν and 0 everywhere else. With

s|T = p and using the chain rule, we have

∂p(x)

∂xι
=
∑
ν

∂s|T (x)

∂φν(x)
· ∂φν(x)

∂xι
, ι ∈ 1, 2, 3, (4)

with the gradient∇s|T (x) = (∂p/∂x1, ∂p/∂x2, ∂p/∂x3)t. Since each φν is a linear
polynomial, the ∂φν/∂xι are scalar constants characterized by the barycentric
coordinates of the ιth Cartesian unit vector eι w.r.t. T .

Trivariate blossoming [19] is a generalization of de Casteljau’s algorithm,
where the arguments may vary on the different levels. For any xη, η ∈ 1, 2, 3

6 Thomas Kalbe, Thomas Koch, and Michael Goesele

with φη = φ(xη), we denote the blossom of s|T as bl[φ1,φ2,φ3], meaning that
the first step of de Casteljau’s algorithm is carried out with φ1, the second step
with φ2 and the third with φ3. It is easy to see that bl[φη,φη,φη] = s|T (xη).
In addition, the blossom is multi-affine

bl[. . . , α · φη + (1− α) · φ̄η, . . .] = α · bl[. . . ,φη, . . .] + (1− α) · bl[. . . , φ̄η, . . .], (5)

for α ∈ R, and symmetric, i.e., for a permutation σ = (σ(1), σ(2), σ(3)) we have

bl[φ1,φ2,φ3] = bl[φσ(1),φσ(2),φσ(3)].

These properties of the blossom enable us to find intersections of rays with a
spline patch in an efficient way, see Sect. 4.4.

3.2 The approximating scheme

For smooth approximations of the given data values f(vijk), associated with the
grid points vijk, we use quasi-interpolating cubic splines as described in [3], which
approximate sufficiently smooth functions with order two. The BB-coefficients bξ
for each tetrahedron are directly available from appropriate weightings of the
data values in a symmetric 27-neighborhood of the centering data value f(vijk),

bξ =
∑

i0,j0,k0

ωi0j0k0f(vi+i0,j+j0,k+k0), i0, j0, k0 ∈ {−1, 0, 1},

where the ωi0j0k0 ∈ R are constant and positive weights. A determining set
Γ ⊆ D(∆6) is a subset of the domain points with associated BB-coefficients, from
which the remaining coefficients for each s|T can be uniquely identified from the
smoothness conditions. We use a symmetric determining set ΓQ for each Q ∈ ♦,
formed by the coefficients associated with the domain points ξ00k`

⋃
ξ0111, where

k + ` = 3. For a tetrahedron, ξ0030 and ξ0003 are vertices of Q, ξ0021 and ξ0012
are on the outer edges of Q, and ξ0111 corresponds to the centroid of the face
v1,v2,v3. We show the weights for the coefficients of the determining set in
Fig. 3. The weights for the remaining coefficients follow from the smoothness
conditions (see Eq. 2) and can also be found in [3, 4].

4 Trivariate splines – GPU visualization

In this section, we give an overview of our GPU-algorithm for efficient visual-
ization of varying isosurfaces, see also Fig. 4, left. In the first part, we use a set
of CUDA kernels, which are invoked for each change of isolevel or data set. The
kernels determine all the tetrahedra which can contribute to the final surface
and prepare the appropriate data structures. The second part uses vertex and
fragment programs for the visualization of the surface in a combined rasteriza-
tion / ray casting approach. For a 2-dimensional example of the visualization
principle see Fig. 4, right top. For each active tetrahedron, i.e., tetrahedra con-
tributing to the surface, the bounding geometry is processed in the OpenGL
pipeline. The vertex programs initialize various parameters, such as the viewing
rays, the BB-coefficients and appropriate barycentric coordinates. The fragment
programs then perform the actual ray-patch intersection tests.

Lecture Notes in Computer Science 7

cube classification

cube compaction

tetrahedron classification

tetrahedron compaction

CUDA

geometry instancing

vertex shader

fragment shader

OpenGL

render loop

change of isosurface

eye

×
×

×
×
×
×
×

viewing
rays

screen

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q0 Q2 Q3 Q6

Qclass

Qscan

Qactive

1

Fig. 4. Left : Overview of our our GPU algorithm. The CUDA part specifies the relevant
cubes and tetrahedra, respectively, when the isovalue or data set is modified. The
visualization is using the rendering pipeline. Right top: 2-dimensional illustration of
the ray casting principle. On each triangle satisfying the convex hull property (dark
shaded), the corresponding BB-curve is intersected with the viewing rays. Right bottom:
parallel stream compaction with prefix scans. For each entry with a 1 in Qclass, Qscan

contains an unique address into the compressed array Qactive. The sum of the last
entries of Qclass and Qscan gives the size of Qactive. Illustration based on [17].

4.1 The CUDA kernels

For each Q ∈ ♦, we first start a kernel thread that computes the coefficients
for the determining set ΓQ, from which the remaining coefficients can be found
quickly using simple averaging. The cube classification tests if the coefficients
of ΓQ are either below or above the isolevel. In this case, it follows from the
convex hull property of the BB-form that the patches in Q cannot contribute
to the surface and we can exclude Q from further examination. Otherwise, Q
contains at least one tetrahedron with a visible patch. The result of the classifi-
cation is written in the corresponding entry of a linear integer array Qclass of size
(n+ 1)3: we write a 1 in Qclass if Q passes the classification test and a 0 other-
wise. From this unsorted array Qclass, we construct a second array Qscan of the
same size using the parallel prefix scan from the CUDA data parallel primitives
(CUDPP) library. For each active cube, i.e., cubes with a 1 in Qclass, Qscan then
contains an unique index corresponding to the memory position in a compacted
array Qactive. Since we use an exclusive prefix scan, the sum of the last entries
of Qclass and Qscan gives the number of active cubes a for the surface. In the
compaction step, we reserve memory for the array Qactive of size a. For each
active Qijk, we write the index i + j · (n + 1) + k · (n + 1)2 in Qactive at the
position given by the corresponding entry of Qscan, see Fig. 4, right bottom.

8 Thomas Kalbe, Thomas Koch, and Michael Goesele

Similarly, we perform a compaction for the active tetrahedra. Since we use
instancing for later rendering of the tetrahedra, we reserve 24 arrays Tclass,i,
where each Tclass,i has size a and corresponds to one of the 24 different orienta-
tions of tetrahedra in ∆6. For each active cube Q, a kernel thread performs the
classification for T0, T1, . . . , T23 ∈ Q, now using the convex hull property of the
BB-form on the tetrahedra. Note that the BB-coefficients for Q have to be cal-
culated only once and are then assigned to the corresponding domain points on
the tetrahedra using a constant lookup table. The following stream compaction
works exactly as described above, except that here we use 24 distinct arrays
Tscan,i, and the compaction is performed by a set of 24 kernels (one for each
type of tetrahedron), which write their results into the arrays Tactive,i. These ar-
rays are interpreted as pixel buffer objects, which can be directly used to render
the bounding geometry of the spline patches.

4.2 Geometry instancing setup

The 24 arrays Tactive,i give us all the information needed to visualize the surface.
In order to encode the necessary bounding geometries, i.e., the active tetrahedra,
in the most efficient way, we construct a triangle strip for each generic tetrahe-
dron of ∆6 in the unit cube [−0.5, 0.5]3. These 24 triangle strips are then stored
as separate vertex buffer objects (VBOs). Each VBO is used to draw all the
active tetrahedra of it’s type with a call to glDrawArraysInstanced, where the
number of tetrahedra is given by the size of Tactive,i.

4.3 Vertex shader computations

We use 24 different shader sets, one for each of the different types of tetrahedra.
Since each tetrahedron has it’s dedicated vertex and fragment programs, we can
avoid conditional branches. For every vertex vµ, µ = 0, 1, 2, 3, of a tetrahedron T ,
the vertex program first determines T ’s displacement vQ from a texture reference
into Tactive,i. For later computation of the ray-patch intersection (see Sect. 4.4),
we find the barycentric coordinates φν,µ, ν = 0, 1, 2, 3 as φν,µ(vµ) = δν,µ. In
addition, a second set of barycentric coordinates φ̄ν,µ, corresponding to the unit
length extension of the vector defined by vµ+vQ and the eye point e is computed
as φ̄ν,µ(v̄) = φ̄ν,µ(vµ + (vµ − (e − vQ))/||vµ − (e − vQ)||). To do this, we use
Eq. 1, where the matrices are pre-computed once for each generic tetrahedron.
The barycentric coordinates φν,µ, φ̄ν,µ are interpolated across T ’s triangular faces
during rasterization. Finally, we have to determine the 20 BB-coefficients of s|T .
This can be done in the following way: first, we read the data values f(vQ) and
it’s neighbors from the volume texture. For one patch, only 23 of the 27 values
have to be fetched, corresponding to 23 texture accesses. Then, we can directly
obtain the bijk` according to Sect. 3.2. Alternatively, we can pre-compute the
determining set for each Q in a CUDA kernel and store them as textures. Then,
only the remaining coefficients for s|T need to be computed. This method is less
memory efficient, but leads to a slightly improved rendering performance. For a
comparative analysis, see Sect. 5.

Lecture Notes in Computer Science 9

Fig. 5. Varying isosurfaces for a synthetic function of Chmutov type, f(x, y, z) = x16 +
y16 + z16 − cos(7x)− cos(7y)− cos(7z), sampled from a sparse grid (643 data points)
with real-time reconstruction and rendering times.

4.4 Fragment shader computations

For every fragment of a front-facing triangle, the fragment program performs the
actual ray-patch intersection. To do this, we need an univariate representation
of s|T restricted along the viewing ray. Using trivariate blossoming, we obtain an
univariate cubic BB-curve which can be easily intersected. In addition, we can re-
use intermediate results from the blossoms for quick gradient calculation and do
not need to determine the exit point of the ray w.r.t. T . Using the interpolated
barycentric coordinates φ = (φ0, φ1, φ2, φ3) and φ̄ = (φ̄0, φ̄1, φ̄2, φ̄3) obtained
from rasterization, we can read off the univariate BB-coefficients directly from
the blossoms, setting b30 = bl[φ,φ,φ], b21 = bl[φ,φ, φ̄], b12 = bl[φ̄, φ̄,φ], and
b03 = bl[φ̄, φ̄, φ̄], see Sect. 3. Since intermediate results can be re-used, the first
step of de Casteljau’s algorithm, which accounts for ten inner products each,
has to be performed for φ and φ̄ only once. We proceed in the same way for
the second de Casteljau step with b[1]ijk`(φ) (resulting from the first step with φ)

and φ, as well as b[1]ijk`(φ̄) and φ̄, where i + j + k + ` = 2, using in total eight
inner products. Finally, the blossoms are completed with four additional inner
products using b[2]ijk`(φ) and b[2]ijk`(φ̄), i+ j + k + ` = 1, which correspond to the
remaining de Casteljau steps on the last level.

Next, the monomial form of the BB-curve,
∑3
i=0 xi · ti, is solved for the

ray parameter t. There exist several ways to find the zeros of a cubic equation.
[14] choose an analytic approach, whereas [15] apply a recursive BB-hull subdi-
vision algorithm. Since the first method involves trigonometric functions and the
second does not converge very quickly, we opt for an iterative Newton approach.
As starting values we choose t(0)1 = −x0/x1, t

(1)
1 = (1

4 (x3 +x2)−x0)/(3
4 ·x3 +x2 +

x1) and t(2)1 = (2 ·x3 +x2−x0)/(3 ·x3 +2 ·x2 +x1). Note that this corresponds to
the first Newton iteration starting with 0, 1/2, and 1, respectively. Four additional
iterations with t(µ)

j+1 = ((t(µ)
j)2(x2 + 2 · t(µ)

j x3)−x0)/(t(µ)
j (2 ·x2 + 3 · t(µ)

j x3) +x1),
µ = 0, 1, 2, suffice to find precise intersections without notable artifacts. For each
solution t ∈ t(µ)

5 , the associated barycentrics φ(x(t)) are found by a simple linear
interpolation with φ and φ̄. We take the first valid zero t, where all the com-
ponents of φ(x(t)) are positive, if it exists, and discard the fragment otherwise.

10 Thomas Kalbe, Thomas Koch, and Michael Goesele

0ms 100ms 200ms 300ms 400ms

Chmutov c = 0.21

2.3 · 105 tetrahedra

ΓQ 8.3MB, Tactive 0.9MB

57ms
64ms

40ms
28ms

Tooth c = 0.45

7.3 · 105 tetrahedra

ΓQ 13.5MB, Tactive 2.8MB

93ms
108ms

70ms
52ms

Vismale c = 0.19

3.2 · 106 tetrahedra

ΓQ 56.1MB, Tactive 12.5MB

120ms
177ms

312ms
196ms

Asian Dragon c = 0.5

3.5 · 106 tetrahedra

ΓQ 59.3MB, Tactive 13.4MB

143ms
201ms

323ms
208ms

MRI Head c = 0.36

4.8 · 106 tetrahedra

ΓQ 85.7MB, Tactive 18.3MB

141ms
211ms

466ms
357ms

Reconstruction
on-the-fly

Reconstruction
determining sets

Frame time
on-the-fly

Frame time
determining sets

Fig. 6. Left : MRI scan (1922 × 126 voxels) volume clipped with the plane x = 0.
Right : timings of the reconstruction process and the visualization (using precomputed
determining sets as well as on-the-fly spline coefficient computations) for selected data
sets and isovalues c. For each data set, the number of active tetrahedra, the size of the
determining set ΓQ and for the geometry encoding Tactive, respectively, are given.

From the multi-affine property of the blossom (see Eq. 5), it follows that the
directional derivatives b[2]ν (φ(x(t))) (see Eq. 3) are obtained by a linear interpo-
lation of b[1]ν (φ) and b[1]ν (φ̄), with the ray parameter t, followed by a de Casteljau
step on the second level using φ(x(t)) Finally, we calculate the gradient for later
illumination according to Eq. 4 with three additional scalar products. Here, the
∂φν/∂xι are pre-computed for each of the 24 different generic tetrahedra.

5 Results and Discussion

We demonstrate our results with a series of data sets: Tooth, VisMale and Foot
(see Fig. 1) are publicly available from the Universities of Tübingen and Erlan-
gen, and the US Library of Medicine. Fig. 5 is an example of synthetic data
obtained from a sparsely sampled smooth function. Fig. 6, left, shows a MRI
scan of the head of one of the authors. Finally, the Asian Dragon (Fig. 7) is gen-
erated from a signed distance function on the original triangle mesh. All results
demonstrate the high visual quality and smooth shading of our method.

Note that the low total degree of the spline patches allows us to obtain pre-
cise intersections, even for the objects’ silhouettes, without resorting to interval
refinements or similar approaches (see Fig. 7, right). Precise intersections are
also needed for procedural texturing (see Fig. 5 and 7), and for volume clipping
with arbitrary planes and surfaces (see Fig. 6, left). Furthermore, the obtained
intersections are exact w.r.t. z-buffer resolution, which allows us to combine ray-
casted isosurfaces with standard object representations, i.e., triangle meshes.

The table in Fig. 6, right, summarizes the performance for the chosen data
sets and lists typical isovalues c, the number of active tetrahedra, as well as the
size of the determining set ΓQ and the geometry encoding Tactive. Timings were
recorded on a GeForce GTX 285 and CUDA 2.2. For each data set, the first

Lecture Notes in Computer Science 11

Fig. 7. Ray casted isosurface of the Asian Dragon head (2563 voxels) with noise-based
procedural texturing. Right : close-up into the Dragons’ mouth where the C1-continuous
boundary curves on the outside of each cube of ♦ are shown in black.

two bars show the timings of our GPU kernels (see Sect. 4.1), which are invoked
when the surface needs to be reconstructed. The on-the-fly computation of co-
efficients is slightly faster than preparing the determining sets, since less data is
written. The most expensive part in the reconstruction is the classification, i.e.,
the determination of the array Qclass. This could be improved by using appro-
priate spatial data structures, e.g., min/max octrees, but the recursive nature
of these data structures makes an efficient implementation challenging. In addi-
tion, the data structures have to be rebuilt if the data itself changes over time,
which is not necessary in our simpler approach. Still, for our largest data sets
the reconstruction times are in a range of a few hundred ms and in most cases
even below the rendering times of a single frame. Compared to former optimized
CPU reconstruction based on octrees [4], we achieve significant speed-ups of up
to two orders of magnitude.

The per-frame rendering times in Fig. 6, right, are given for a 1280 × 1024
view port with the surface filling the entire screen. This corresponds to a worst-
case scenario, where all active tetrahedra need to be processed and the number
of tetrahedra is the limiting factor in both approaches (on-the-fly coefficients and
using determining sets). The bottleneck is then determined by the vertex shader
complexity. The fact that our on-the-fly vertex programs have about 1/3 more
instructions than the version using determining sets is thus directly reflected
in the rendering times. An analysis of our fragment programs with NVIDIA’s
tool ShaderPerf yields a peak performance of more than 430 Mio. fragments
per second. Thus, fragment processing is already very efficient and further im-
provements should concentrate on the vertex programs, load balancing, and the
reduction of processed geometry during rendering. E.g., for close inspections of
the surface, significant speed ups can be achieved from hierarchical view frustum
culling, where whole areas of the domain can be omitted and less tetrahedra are
processed in the pipeline. This requires splitting up the arrays Tactive based on
a coarse spatial partition of ♦. As [4] have shown, in this case we can expect
that frame-rates increase by an order of magnitude.

12 Thomas Kalbe, Thomas Koch, and Michael Goesele

6 Conclusion

We have shown that interactive and high-quality visualization of volume data
with varying isosurfaces can be efficiently performed on modern GPUs. Both,
isosurface reconstruction and rendering, are hereby performed using a combined
CUDA and graphics pipeline. Our approach benefits strongly from the mathe-
matical properties of the splines. Memory requirements for geometry encoding
are significantly reduced using instancing. The method scales well with the fast
developing performance of modern graphic processors, and will directly bene-
fit from increased numbers of multiprocessors and texture units. The proposed
algorithm can be used for an interactive variation of isolevels, as well as for appli-
cations where the data itself varies over time, e.g., simulations and animations.

References

1. C.L. Bajaj. Data Visualization Techniques. John Wiley & Sons, 1999.
2. S. Marschner, R. Lobb. An evaluation of reconstruction filters for volume rendering.

IEEE Vis., 100–107, 1994.
3. T. Sorokina, F. Zeilfelder. Local Quasi-Interpolation by cubic C1 splines on type-6

tetrahedral partitions. In IMJ Numerical Analysis, 27:74–101, 2007.
4. T. Kalbe, F. Zeilfelder. Hardware-Accelerated, High-Quality Rendering Based on

Trivariate Splines Approximating Volume Data. Eurographics, 331–340, 2008.
5. W.E. Lorensen, H.E. Cline. Marching cubes: A high resolution 3D surface con-

struction algorithm. SIGGRAPH 87, 21(5):79–86, 1987.
6. M. Hadwiger, P. Ljung, C. Rezk-Salama, T. Ropinski. GPU-based Ray Casting.

In Annex Eurographics, 2009.
7. J. Krüger, R. Westermann. Acceleration techniques for GPU-based volume ren-

dering. IEEE Vis., 287–292, 2003.
8. J. Mensmann, T. Ropinski, K. Hinrichs. Accelerating Volume Raycasting using

Occlusion Frustum. IEEE/EG Symp. on Vol. & Point-Based Gr., 147–154, 2008.
9. NVIDIA CUDA Compute Unified Device Architecture. NVIDIA Corp., 2008.

10. N. Tatarchuk, J. Shopf, C. DeCoro. Real-Time Isosurface Extraction Using the
GPU Programmable Geometry Pipeline. SIGGRAPH 2007 courses, 122–137, 2007.

11. L. Barthe, B. Mora, N. Dodgson, M.A. Sabin. Triquadratic reconstruction for in-
teractive modelling of potential fields. In Shape Modeling Int., 145–153, 2002

12. M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, M. Gross. Real-Time Ray-Casting
and Advanced Shading of Discrete Isosurfaces. CGF, 24(3):303–312, 2005

13. G. Reis. Hardware based Bézier patch renderer. In Proc. of IASTED Visualization,
Imaging, and Image Processing (VIIP), 622–627, 2005.

14. C. Loop, J. Blinn. Real-time GPU rendering of piecewise algebraic surfaces. In
ACM Trans. on Graphics, 25(3):664–670, 2006.

15. J. Seland, T. Dokken. Real-Time Algebraic Surface Visualization. In Geometric
Modelling, Numerical Simulation, and Optimization, Springer, 163–183, 2007.

16. G. Blelloch. Vector Models for Data-Parallel Computing. In The MIT
Press,Cambridge, MA, 1990

17. M. Harris, S. Sengupta, J. D. Owens. Parallel Prefix Sum (Scan) with CUDA. In
GPU Gems 3, Addison-Wesley, 677–696, 2007.

18. M.-J. Lai, L.L. Schumaker. Spline functions on Triangulations. Cambridge Univer-
sity Press, 2007.

19. L. Ramshaw. Blossoming: A Connect-the-Dots Approach to Splines. 1987.

