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Introduction

Details of the GPU Algorithm

We propose a novel rendering approach based on smooth
trivariate splines defined w.r.t. uniform tetrahedral partitions.
The splines are given in piecewise Bernstein-Bézier-form (BB-
form) and are well suited for high-quality visualizations of iso-
surfaces from scalar volumetric data. Compared to tri-linear
or higher-order tensor product splines, trivariate splines in BB-
form have several advantages:

* well-known algorithms (de Casteljau, blossoming) exist

e artifacts resulting from tri-linear interpolation (e.g., stair-
casing) are significantly reduced, while the total degree of
the splines does not exceed three

* the low polynomial degree makes stable evaluation and in-
tersection of spline patches very efficient

e smooth gradients are directly available as a by-product

e the convex hull property of the BB-form allows for quick
tests if a spline patch contributes to the surface

* data stencils are small (the direct 27-neighborhood is used)

While our rendering algorithm is based on previous work
(e.g., [1, 2, 3]), it is non-trivial to handle millions of smoothly
connected spline patches simultaneously. We thus have signifi-
cantly improved the usability of trivariate splines in real-world
applications:

e interactive reconstruction and visualization of isosurfaces
using a combined CUDA and graphics pipeline

e shader complexity and overall memory usage are signifi-
cantly reduced, e.g., from using instancing

e spline coefficients are computed on-the-fly on the GPU

Mathematical Background

We use smooth quasi-interpolating splines [4] defined w.r.t.
uniform type-6 tetrahedral partitions, where each data cube is
split into 24 congruent tetrahedra.
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On each tetrahedron T, the spline pieces are given in their
piecewise BB-form, i.e.,

sly = Z Bijkebijkes
i+j+k+0=3
with the cubic Bernstein polynomials B;j;, and the scalar BB-
coefficients b;;,,. On each T, the b;;;, are associated with the 20
domain points &;;;, and are directly available from appropriate
weightings of the data values in a symmetric 27-neighborhood
of the centering value f(v;;),
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with w; ; , € Z". The weights are chosen such that smooth-
ness conditions as well as reconstruction guarantees for the
splines and its derivatives are fulfilled.

Our GPU algorithm is organized as a combined CUDA and
OpenGL pipeline:
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render loop

change of isosurface

The CUDA kernels are invoked for each change of isosurface:
* determine all the tetrahedra contributing to the surface

e use BB-hull property for quick tests if cubes or tetrahedra
can be discarded

 the world coordinate translation of each contributing tetra-
hedron is packed into an array Tactive i wherei =0,...,23,
i.e., we have an array for each of the different tetrahedra in
the type-6 partition

e use parallel prefix scans [5] from the CUDA data parallel
primitives library for array compaction

* the arrays T,.tjve; describe the bounding geometry of our

spline surface

Visualization is done in a hy-
brid rasterization / ray cast-
ing approach where we use
instancing to draw the bound-
ing geometry.

viewing
rays

e associated vertex and fragment programs for each type of
tetrahedron to avoid conditional branches

e vertex programs set up various parameters for later ray-
patch intersection tests

* spline coefficients are calculated on-the-fly from the volume
data

* alternatively, a pre-calculated subset I'; is used, from which
the remaining coefficients are obtained by simple averaging

The fragment programs perform the ray-patch intersection
tests:

e we obtain a univariate cubic BB-curve restricted along the
ray from trivariate blossoming

. 3 ; .
* solve monomial form ), x;-t for the ray parameter t with

a simple and efficient Newton root finding algorithm: five
t3-(xp+2:t;°X3)—Xg
ti-(2:x+3:t;-x3)+x,
precise intersections without notable artifacts

iterations with t;,; = are sufficient to find
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e take the first valid zero where all components of the associ-
ated barycentric coordinates (obtained from a linear inter-

polation) are non-negative

* no trigonometrics or recursion needed

* no ray exit points w.r.t. T needed in order to clip the inter-
sections to the geometry

 gradients for later illumination are almost directly available
from further linear interpolations and a few dot products

Results
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We have shown that interactive and high-quality visualization
of volume data with varying isosurfaces can be efficiently per-
formed on modern GPUs. We conclude with a summary of the
main features:

 our approach benefits strongly from the mathematical prop-
erties of the splines

e surface reconstruction and rendering are performed inter-
actively using a combined CUDA and graphics pipeline

e surface reconstruction in less than one frame

* the obtained ray-patch intersections are precise, which is
necessary for, e.g., texturing and volume clipping

e we can compute the spline coefficients on-the-fly or, alterna-
tively, we use pre-calculated subsets of coefficients (higher
memory consumption with slightly better frame times)

e the method scales well with the fast developing perfor-
mance of modern GPUs and will directly benefit from in-
creased numbers of multiprocessors and texture units

 the proposed algorithm can be used for an interactive vari-
ation of isolevels, as well as for applications where the data
itself varies over time, e.g., simulations and animations
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