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Introduction

We propose a novel rendering approach based on smooth
trivariate splines defined w.r.t. uniform tetrahedral partitions.
The splines are given in piecewise Bernstein-Bézier-form (BB-
form) and are well suited for high-quality visualizations of iso-
surfaces from scalar volumetric data. Compared to tri-linear
or higher-order tensor product splines, trivariate splines in BB-
form have several advantages:
• well-known algorithms (de Casteljau, blossoming) exist

• artifacts resulting from tri-linear interpolation (e.g., stair-
casing) are significantly reduced, while the total degree of
the splines does not exceed three

• the low polynomial degree makes stable evaluation and in-
tersection of spline patches very efficient

• smooth gradients are directly available as a by-product

• the convex hull property of the BB-form allows for quick
tests if a spline patch contributes to the surface

• data stencils are small (the direct 27-neighborhood is used)
While our rendering algorithm is based on previous work
(e.g., [1, 2, 3]), it is non-trivial to handle millions of smoothly
connected spline patches simultaneously. We thus have signifi-
cantly improved the usability of trivariate splines in real-world
applications:
• interactive reconstruction and visualization of isosurfaces

using a combined CUDA and graphics pipeline

• shader complexity and overall memory usage are signifi-
cantly reduced, e.g., from using instancing

• spline coefficients are computed on-the-fly on the GPU

Mathematical Background

We use smooth quasi-interpolating splines [4] defined w.r.t.
uniform type-6 tetrahedral partitions, where each data cube is
split into 24 congruent tetrahedra.
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On each tetrahedron T , the spline pieces are given in their
piecewise BB-form, i.e.,

s|T =
∑

i+ j+k+`=3

Bi jk`bi jk`,

with the cubic Bernstein polynomials Bi jk` and the scalar BB-
coefficients bi jk`. On each T , the bi jk` are associated with the 20
domain points ξi jk` and are directly available from appropriate
weightings of the data values in a symmetric 27-neighborhood
of the centering value f (vi jk),

bξ =
∑

i0, j0,k0

ωi0 j0k0
f (vi+i0, j+ j0,k+k0

), i0, j0, k0 ∈ {−1, 0,1},

with ωi0, j0,k0
∈ R+. The weights are chosen such that smooth-

ness conditions as well as reconstruction guarantees for the
splines and its derivatives are fulfilled.

Details of the GPU Algorithm

Our GPU algorithm is organized as a combined CUDA and
OpenGL pipeline:

cube classification

cube compaction

tetrahedron classification

tetrahedron compaction

CUDA

geometry instancing

vertex shader

fragment shader

OpenGL

render loop

change of isosurface

The CUDA kernels are invoked for each change of isosurface:
• determine all the tetrahedra contributing to the surface

• use BB-hull property for quick tests if cubes or tetrahedra
can be discarded

• the world coordinate translation of each contributing tetra-
hedron is packed into an array Tactive,i, where i = 0, . . . , 23,
i.e., we have an array for each of the different tetrahedra in
the type-6 partition

• use parallel prefix scans [5] from the CUDA data parallel
primitives library for array compaction

• the arrays Tactive,i describe the bounding geometry of our
spline surface
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Visualization is done in a hy-
brid rasterization / ray cast-
ing approach where we use
instancing to draw the bound-
ing geometry.

• associated vertex and fragment programs for each type of
tetrahedron to avoid conditional branches

• vertex programs set up various parameters for later ray-
patch intersection tests

• spline coefficients are calculated on-the-fly from the volume
data

• alternatively, a pre-calculated subset ΓQ is used, from which
the remaining coefficients are obtained by simple averaging

The fragment programs perform the ray-patch intersection
tests:
• we obtain a univariate cubic BB-curve restricted along the

ray from trivariate blossoming

• solve monomial form
∑3

i=0 x i · t i for the ray parameter t with
a simple and efficient Newton root finding algorithm: five

iterations with t j+1 =
t2

j ·(x2+2·t j·x3)−x0

t j·(2·x2+3·t j·x3)+x1
are sufficient to find

precise intersections without notable artifacts

• take the first valid zero where all components of the associ-
ated barycentric coordinates (obtained from a linear inter-
polation) are non-negative

• no trigonometrics or recursion needed

• no ray exit points w.r.t. T needed in order to clip the inter-
sections to the geometry

• gradients for later illumination are almost directly available
from further linear interpolations and a few dot products

Results
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We have shown that interactive and high-quality visualization
of volume data with varying isosurfaces can be efficiently per-
formed on modern GPUs. We conclude with a summary of the
main features:
• our approach benefits strongly from the mathematical prop-

erties of the splines

• surface reconstruction and rendering are performed inter-
actively using a combined CUDA and graphics pipeline

• surface reconstruction in less than one frame

• the obtained ray-patch intersections are precise, which is
necessary for, e.g., texturing and volume clipping

• we can compute the spline coefficients on-the-fly or, alterna-
tively, we use pre-calculated subsets of coefficients (higher
memory consumption with slightly better frame times)

• the method scales well with the fast developing perfor-
mance of modern GPUs and will directly benefit from in-
creased numbers of multiprocessors and texture units

• the proposed algorithm can be used for an interactive vari-
ation of isolevels, as well as for applications where the data
itself varies over time, e.g., simulations and animations
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