
To appear in the Visualization 2002 conference proceedings

1

Interactive Rendering of Large Volume Data Sets

Stefan Guthe Michael Wand Julius Gonser Wolfgang Straßer

WSI/GRIS, University of Tübingen

Abstract
We present a new algorithm for rendering very large volume data
sets at interactive framerates on standard PC hardware. The algo-
rithm accepts scalar data sampled on a regular grid as input. The
input data is converted into a compressed hierarchical wavelet
representation in a preprocessing step. During rendering, the
wavelet representation is decompressed on-the-fly and rendered
using hardware texture mapping. The level of detail used for
rendering is adapted to the local frequency spectrum of the data
and its position relative to the viewer. Using a prototype imple-
mentation of the algorithm we were able to perform an interactive
walkthrough of large data sets such as the visible human on a
single of-the-shelf PC.

Categories and Subject Descriptors: E.4 [Coding and Informa-
tion Theory]: Data Compaction and Compression I.3.1 [Computer
Graphics]: Picture and Image Generation � Graphics processors;
I.3.3 [Computer Graphics]: Picture and Image Generation �
Viewing algorithms

Keywords: Compression Algorithms, Level of Detail Algorithms,
Scientific Visualization, Volume Rendering, Wavelets

1 INTRODUCTION
Many areas in medicine, computational physics and various other
disciplines have to deal with large volumetric data sets that de-
mand for an adequate visualization. An important visualization
technique for the exploration of volumetric data sets is direct
volume rendering: Each point in space is assigned a density for
the emission and absorption of light and the volume renderer
computes the light reaching the eye along viewing rays. The
rendering can be implemented efficiently using texture mapping
hardware: the volume is discretized into textured slices that are
blended over each other using alpha blending [6].

Due to the enormous advances in graphics hardware, it is
nowadays possible to perform this rendering technique in real-
time on cheap of-the-shelf PCs [11, 23, 24]. However, the size of
the data sets that can be processed is still very limited. A realtime
rendering of large data sets (more that 2563 voxel) is currently
infeasible unless massive parallel hardware is used [3].

Most conventional hardware-texturing based approaches to
volume rendering are brute-force methods, requiring a rendering
time linear in the size of the data set. The rendering costs can be
reduced dramatically by using a multi-resolution hierarchy. In this
case, the rendering algorithm performs a projective classification
to adapt the rendering resolution to the distance to the viewer, as
proposed by LaMar et al. [21]. We will show formally in this
paper that the rendering time for this technique is indeed O(log n)
for a data set consisting of n3 voxels. However, two problems still
remain that prevent us from handling very large data sets: The
first problem is the enormous size. The well known visible human
data set [33] consist e.g. of 6.5 GB (2048 × 1216 × 1877 voxel,
12 bit), i.e. it is even larger than the address space of a conven-
tional PC. Thus, the data must be stored out-of-core and swapped

into main memory on demand. This leads to considerable band-
width and latency problems. The second problem is the size of the
voxel data that remains after projective classification: Although
the size is O(log n), the constants in the �O-notation� are still
much too high. The number of voxels exceeds by far the texture
memory as well as the alpha-blending capacities of a commodity
graphics board.

Our novel algorithm uses a hierarchical wavelet representation
to tackle these problems: The volume is stored as a hierarchy of
wavelet coefficients. Only the levels of detail necessary for dis-
play are decompressed and sent to the texturing hardware. The use
of a wavelet representation allows us to compress the data by a
ratio of typically 30:1 without noticeable artifacts in the image.
This way, even very large data sets can be stored in main memory.
The visible human data set can e.g. be stored in 222MB (instead
of 6.5GB). During rendering, the wavelet representation allows us
to analyze the local frequency spectrum in the data set and to
adapt the rendering resolution to it. This way, we can reduce the
size of the voxel set to be rendered considerably with minimal
loss of image quality.

Using these techniques, we are able to render walkthroughs of
large data sets in real time on a conventional PC. We will demon-
strate an interactive walkthrough of the visible human data set at a
resolution of 2562 pixel, 10 frames per second and good image
quality. To our knowledge, our algorithm is the first that achieves
these framerates for data sets of this size on a single of-the-shelf
PC.

As an alternative, one could think of using texture compres-
sion supported by the graphics hardware. However, as shown by
Meissner et. al. [23] this severely reduces the image quality and is
therefore unusable. Also other compression approaches that allow
direct rendering of the compressed data, like vector quantization
[25,26], discreet cosine transformation [38] and fractal compres-
sion [9], do not perform as well as a wavelet based compression
scheme.

The remainder of the paper is structured as follows: In the
next section, we will briefly review related work. Then, we will
describe the hierarchical wavelet representation in Section 3. In
Section 4, we will describe the rendering algorithm and caching
strategies. Results are discussed in Section 5 and the paper con-
cludes in Section 6 with some ideas for future work. The appendix
contains a formal analysis of the running time of the rendering
algorithm.

2 RELATED WORK
Visualization of large volume data sets is a classical problem in
computer graphics. In this section, we will give a brief overview
of related work in the area of volume visualization algorithms,
multi-resolution methods and wavelet-based techniques.

Volume Visualization: The most efficient software-based
technique for direct volume rendering is the shear-warp factoriza-
tion by Lacroute et al. [20]. The technique can be adapted to
exploit 2D-texturing hardware [29], achieving interactive frame
rates. The usage of 3D texture mapping [1] allows for more flexi-
bility and can provide a higher image quality. Recent visualization
algorithms provide advanced shading techniques such as lighting
[24], shadows [4], high quality post-classification using a pre-
integration technique [11], gradient magnitude modulation [34] or

To appear in the Visualization 2002 conference proceedings

2

higher dimensional transfer functions [19]. Our algorithm uses a
pre-integration approach combining lighting and gradient magni-
tude modulation, as described in [23].

Multi-resolution rendering: Multi-resolution volume render-
ing algorithms use a spatial hierarchy to adapt the resolution to
the projection onto the screen: An octree or a similar spatial data
structure is built for the data set. Each node of the octree contains
a representation of the volume within its bounding box at a spe-
cific resolution. During rendering, nodes from the hierarchy are
selected such that their resolution matches the display resolution.
The technique was first proposed by Chamberlain et al. [8] in the
context of rendering of surface models. They prove a logarithmic
running time if surface fragments are distributed uniformly in
space. We will derive a similar result for the volumetric case.

A similar technique was applied to volume rendering by
LaMar et al. [21]: The octree nodes store volume blocks resam-
pled to a fixed resolution that are rendered using 3d-texturing
hardware. Weiler et al. [35] propose an extension to the algorithm
to avoid discontinuity artifacts between different levels of detail.
These techniques can handle volume data sets that do not fit
completely into the texture memory of the graphics hardware.
However, the data must still fit into main memory. Therefore,
large data sets like the visible human cannot be processed. Our
algorithm improves on this by using a more efficient wavelet
representation that allows storing data sets that are larger by one
or two orders of magnitude. Additionally, we use a refined error
criterion for the selection of octree nodes. It automatically adapts
to the local smoothness of the data set, as proposed by Boada et
al. [5] for the case of orthographic projection.

Wavelet Based Techniques: Wavelet-based encoding has be-
come a standard technique for 2d-image compression [31]. The
technique has been applied to the compression of volume data by
several authors. Nguyen et al. [27] propose a blockwise compres-
sion scheme: The volume is divided into a regular grid of blocks
which are compressed independently. Guthe et al. [16] propose a
higher order wavelet compression scheme with extensions for
encoding animated data sets. The method does not allow for
access to parts of the volume without decompression of the whole
data set. In our paper, we use the same basic techniques for en-
coding the volume data set as in the two aforementioned papers.
However, our data structure provides a multi-resolution hierarchy
with fast access to each node in the hierarchy.

To render large data sets using wavelet-based representations,
two directions have been followed up to now: Firstly, several ray-
casting techniques were proposed that operate on a wavelet repre-
sentation [17, 18, 30, 36]. However, raycasting of large data sets
is not possible at interactive frame rates unless massive parallel
hardware is used [3].

A second technique renders �x-ray� images directly from the
wavelet representation by adding splats corresponding to the basis
functions [15]. Unfortunately, it is not possible to extend this
elegant technique to conventional volume rendering with emis-
sion and absorption effects.

3 WAVELET HIERARCHY
The first step of our algorithm is to convert the volume data,
which is given as a three-dimensional array of integers with fixed
precision (usually 8-16 bits), into a compressed wavelet represen-
tation during preprocessing. This representation is much more
compact and allows for an efficient extraction of different levels
of detail of the data set, since the wavelet transformation is
equivalent to applying a series of lowpass and highpass filters to
the original data. To be able to decompress parts of the data set
efficiently, we apply a blockwise wavelet compression strategy.

3.1 Blockwise Hierarchical Compression
of Volume Data

Firstly, we divide the data sets into cubic blocks of (2k)3 vox-

els (in practice, k = 16 is a good choice). Then, we apply the wave-
let filters to each block. This results in a lowpass filtered block of
k3 voxels and (2k)3

 - k3 wavelet coefficients representing different
high frequency components that are no longer present in the
lowpass filtered block (see Figure 1 and Figure 2). We carry on
this scheme hierarchically: We group a cube of 8 adjacent lowpass
filtered blocks to again obtain a block of (2k)3 voxels. Then we
can apply the filtering algorithm to this block recursively until
only a single block is left. The result of this procedure is an octree
(see Figure 2): Each node of the octree describes a volume of k3
voxels and contains a set of high frequency coefficients that allow
for the reconstruction of the child nodes from the current node.
The resolution of a child node is twice as high (in each dimen-
sion) as that of a parent node. The lowpass filter of the specific
wavelets we use assures that the downsampled data in the inner
nodes does not show relevant aliasing artifacts.

3.1.1 Wavelet Basis
As basis functions, symmetric biorthogonal spline wavelets [10]
are a good choice, as they lead to good compression results (they
are also used in the JPEG 2000 standard). We use the tensor
product construction (non standard decomposition, [31]) to obtain
a three-dimensional basis of these functions. This means that the
three-dimensional filtering is performed by applying the one
dimensional filter in all three dimensions successively. We im-
plemented the filtering using the integer wavelet transformation
algorithm by Calderbank et al. [7] based on lifting steps. It pro-
vides some performance benefits: Firstly, all calculations can be
performed using 16 bit integer arithmetic [32], saving memory
and bandwidth in comparison to the floating point algorithm. The
operations can be implemented efficiently using SIMD instruc-
tions like MMX. We use the Intel C++ compiler that applies some
of these optimizations automatically. Secondly, the algorithm
needs only about half the number of operations of the normal
wavelet transformation algorithm.

For the examples in our paper, we use a linearly interpolating
spline wavelet. This wavelet basis already allows for a very good
compression ratio but it has still a small filter support (5/3 for the
lowpass/highpass filter). A small support is desirable as the run-
ning time of the (de-)compression algorithm is linear in the num-
ber of non-zero entries in the (reconstruction) filter matrix.
However, the strongest argument for choosing this wavelet is the
property that an increase of the resolution with zero wavelet coef-
ficients leads to a linear interpolation of the low resolution func-
tion, which is consistent with the interpolation performed by the
texturing hardware used for rendering. This results in fewer pop-
ping artifacts when the resolution changes.

Our compression algorithm is block based. As the support of
the filter is several voxels, we need a special treatment at the
borders of the blocks. We use symmetric extension [10]: The
original data is just mirrored at the border. This allows for a re-
construction without storing additional wavelet coefficients for
values outside the block because our basis functions are symmet-
ric.

As known from image compression literature, a blockwise
compression can lead to discontinuity artifacts at the borders
between different blocks. However, such artifacts only become
visible at high compression ratio. In our work, we are interested in
near-lossless compression because we do not want to introduce
relevant compression artifacts into the renderings.

To appear in the Visualization 2002 conference proceedings

3

3.1.2 Compression
The compression consists of two steps: Firstly, wavelet coeffi-
cients of low importance are discarded and secondly, the wavelet
coefficients must be encoded in a compact bit stream.

We reduce the number of wavelet coefficients to be stored by
defining a threshold below which all coefficients are mapped to
zero. Setting the threshold to zero leads to lossless compression:
Due to the integer wavelet transform, there is no quantization
error [7]. The fully lossless setting already permits compression
ratios of up to 4:1 for typical data sets.

After choosing the relevant wavelet coefficients, they must be
encoded efficiently. Codebook based approaches such as LZW
(Lemple Ziv Welsh) or LZH (Lemple Ziv Huffman) can not be
applied for this task since the codebook itself is larger than the
data contained in a single node of our hierarchy most of the time.
Progressive and embedded encoding schemes [13,14,22] on the
other hand need some of the data of their parent nodes during
decompression. To circumvent this, we use entropy coding with a
suitable encoding model:

The coefficients are first mapped to positive values: Odd val-
ues represent positive coefficients (c → c×2-1) while even values
representing negative coefficients (c → c×(-2)). For compression
of these values, two different algorithms have been implemented.
Arithmetic coding, using the same model as Guthe and Straßer
[16], is the best choice for maximum compression at a lossless or
nearly lossless setting.

Run-length encoding combined with a fixed Huffman encoder
on the other hand results in a very fast decompression, about ten
times faster than arithmetic coding. The fixed model for the
Huffman coder is defined as follows. A run of zeros is marked by
a leading 0 bit. The following 7 bits store the number of consecu-
tive zeros. This results in 1 to 128 zeros encoded in a single byte.
Any other coefficient is converted into a positive value and stored
by using n 1 bits, with n being the minimum number of bits
needed to represent the coefficient. After a 0 bit the coefficient is
stored using n-1 bits without the first bit.

The compression ratio for run-length Huffman coding at a
lossless setting is lower (in practice about 10-15%) than for
arithmetic coding. For a very lossy setting, the run-length Huff-
man coder is sometimes even able to outperform the arithmetic
coder in terms of compression ratio since the adaptive model of
the arithmetic coder is optimized for a large number of non-zero
coefficients. To obtain higher compression ratios, sub-trees of the
hierarchy containing only zero coefficients are completely
stripped away. This stripping has more influence on the compres-
sion ratio than the coding of the blocks itself. For the compression
setting used in the example walkthroughs, the increase of com-
pression ratio is about 15% for the run-length Huffman coder and
about 3% for arithmetic coding. This gain increases dramatically
if the compression becomes more lossy.

4 RENDERING
From the perspective of the rendering algorithm, we have now a
representation of the volume data in form of a multi-resolution
octree: The root node in the tree contains a very rough approxima-
tion of the data set and the resolution can be increased by a factor
of 2 (in each dimension simultaneously) by going downwards the
hierarchy to a child node. Our task is to extract the information
relevant for a certain point of view. This is done in two steps:
Firstly, we perform a projective classification step to adjust the
resolution of the data set to the screen resolution (Section 4.1).
Secondly, we incorporate a consideration of the approximation
error into the classification algorithm to further reduce the amount
of data to be processed in each frame (Section 4.2). After extract-
ing a suitable level of detail from the wavelet tree, we render the
volume data using hardware texture mapping (Section 4.3). Ren-
dering of walkthrough animations can be accelerated substantially
by applying a suitable caching scheme (Section 4.4).

4.1 Projective Classification
Firstly, we need to extract nodes from the octree so that the reso-
lution of these nodes matches the display resolution. Nodes out-
side the view frustum should be excluded from rendering. The
task can be done using a straightforward algorithm originally
proposed by Chamberlain et al. [8]: We traverse the hierarchy
recursively, starting from the root node. For each node, we test
whether it is located completely outside the view frustum. In this
case, we stop the traversal, ignoring the current node. Otherwise,
we determine the spacing between the voxel grid and project it to
the screen. If it is equal to or below the screen resolution, we pass
the node to the renderer. Otherwise, if the voxel resolution is still
too coarse, we subdivide the node and apply the algorithm recur-
sively to all 8 children.

This technique was already applied to volume data by LaMar
et al. [21]. We will proof in the appendix that the technique re-
duces the rendering time for an n3 voxel grid from Θ(n3) to
Θ(log n). However, the analysis also shows that the constants
hidden in the �O-notation� are very high. For a close-up of a
volume with a depth of 2048 voxels, we still obtain more than 230
million voxels after projective classification (see appendix for
details). This is about 4 times more than the texture memory of a
typical contemporary graphics board (230MB versus 64MB).
Therefore, we need a refined classification criterion for a further
reduction.

4.2 View-dependent Priority Schedule
In most data sets, only a few regions contain high frequency
details (e.g. due to sharp borders). Most regions can be sampled at
a low sampling rate without sacrificing detail resolution. We
utilize this observation to reduce the amount of voxels that has to

k3 voxel k3 voxel

lowpass

k3 voxel (2) - k k3 3

highpass

wavelet
coefficients

root
(lowpass
filtered)

wavelet
coefficients
(highpass
filtered)

each block of wavelet coefficients is
compressed separately

Figure 1: Construction of the wavelet tree. Figure 2: The compressed wavelet tree.

slices

viewing planeviewer

Figure 3: Multi-resolution rendering with
view-plane aligned slices.

To appear in the Visualization 2002 conference proceedings

4

be processed by the renderer: For each node in the wavelet tree,
the L2 error compared to the original data is measured during
compression. During rendering we use this error as weight for the
selection of nodes: Let E(i) be the L2 error of the normalized basis
functions for the wavelets in the subtree below the node i. For leaf
nodes, E(i) := 0.We can assign each node i a priority
P(i) := E(i) / z(i), with z(i) being the minimum depth of a voxel in
the node. Dividing by z(i) accounts for the projection on the
screen: The priority of nodes near the viewer should be higher
than that of nodes far away. If z(i) = 0, we set the priority to infin-
ity.

Using this priority function, we perform a generalized projec-
tive classification: We choose a maximum amount of voxel that
we are able to process in the rendering stage. This is usually
determined by the texture memory of the graphics board. We
create a priority queue and insert the root node r of the hierarchy
into the queue with priority P(r). Then we successively fetch the
node with the highest priority from the queue, decompress its high
frequency wavelet coefficients and insert the child with the high-
est priority into the queue. A flag is set for the node to indicate
that the child node has been added to the queue (all other children
would still be drawn using the low resolution representation from
the parent node). If all children are in the priority queue, the
parent node is removed from the queue. Nodes with a projected
voxel distance that is already equal to or below the screen resolu-
tion are not subdivided. The algorithm stops if the maximum
amount of voxels for the nodes in the queue is reached.

4.3 Rendering of Blocks
Up to now, we have chosen a set of tree nodes, each containing k3
voxels (on a regular grid) that provide a suitable approximation to
the original volume for the current view point. To render these
voxels, we use hardware texture mapping: We draw all blocks in
back-to-front order. The order can be established easily by enforc-
ing a back-to-front traversal order of the octree. For each block, a
3d-texture is created and loaded onto the graphics hardware. We
place viewplane aligned slices into the block (see Figure 3) and
render these slices in back-to-front order. Alpha blending delivers
the volume integrals along viewing rays for all pixel on the
screen.

For each block, we have to apply a classification function that
assigns RGBα values to the scalars in a user defined way. To
obtain a high rendering quality, especially in areas close to the
viewpoint where the original data set is undersampled, we apply
pre-integrated rendering [11]: We consider two adjacent slices in
a block (called a slab) and determine the scalars at the position
where the viewing ray enters and leaves the slab. For all 2562
possible combinations of entry and exit values, the volume inte-
gral is precomputed numerically. The scalar values between entry
and exit point are interpolated linearly. The precomputed lookup
table is stored as a 2562 RGBα texture on the graphics hardware.
As hierarchy blocks of different resolution also have a different
slice spacing, we compute such a preintegration lookup table for
each possible slice spacing. During rendering, two adjacent slices

are accessed by the texturing hardware. The scalar values at the
entry and exit position are read from the texture using bilinear
interpolation. The two values are interpreted as two dimensional
texture coordinates that are used to fetch the preintegrated RGBα-
value from the precomputed preintegration texture using depend-
ent texture lookups [2, 28].

The trilinear interpolation performed by the texturing hard-
ware needs special attention: The hardware is not able to interpo-
late across the borders of the octree blocks. This can lead to
objectionable artifacts that reveal the underlying block structure.
Our solution to this problem is straightforward: For each block to
be rendered, we also fetch its 7 neighbors with the next higher x-,
y- and z-coordinates from the octree (Figure 4). If these nodes are
not present in the rendering set, the corresponding node is also
decompressed and cached, but the neighbor�s neighbors are of
course not reconstructed. This lookup is not very expensive as a
neighbor search in an octree can be done in expected time of
O(1). We enlarge the block to be rendered by one voxel in x-, y-
and z-direction and store the neighboring values there1. Using the
additional voxels, we can perform a continuous linear interpola-
tion (Figure 5). The texture memory necessary for rendering is
increased by this technique because adjacent blocks overlap each
other by one voxel. The overhead is k3 - (k-1)3 for k3 voxels. For
163 voxel blocks we obtain an overhead of 21% and for 323 voxel
blocks, the overhead is 10%.

For the examples in our paper, we also implemented some ad-
ditional shading techniques like gradient magnitude modulation
and classification of material properties. Details on the implemen-
tation of theses techniques using texturing hardware can be found
in Meissner et al. [23]. The gradient information necessary is
computed on-the-fly after the decompression of the volume data
using a three dimensional Sobel operator.

4.4 Caching
Although our wavelet decompression algorithm already achieves a
very high performance, we would not be able to perform an inter-
active walkthrough if we decompressed the wavelet representation
for each frame from the scratch. It is not possible to perform a
decompression and texture upload at a similar speed as the 3d-
texturing is done by the graphics card on current hardware archi-
tectures. Fortunately, this is not necessary either, as we may an-
ticipate reusing most of the decompressed data for subsequent
frames. Therefore, we use three cache areas to store blocks for
reuse:

Firstly, we cache decompressed volume blocks from the oc-
tree. To obtain a node in the octree, we must access its parent
node, decompress the high frequency coefficients stored in the
node and apply the reconstruction filter to obtain all 8 child
nodes. The nodes consist of blocks of k3 16 bit integers. The
decompressed wavelet coefficients are not cached as these are
only needed once to obtain the child nodes which are already
cached. Caching is done according to an LRU-scheme. To maxi-
mize the performance of our algorithm, the user defines a fixed
amount of cache memory. If we run short of memory, we always
delete that decompressed leaf node in tree that was not accessed
by the renderer for the longest time.

Secondly, we have to create 3d-textures from the cache. The
texture contains the scalar values and optionally the correspond-
ing gradient field for advanced shading effects2. Using again an
LRU scheme, we fetch the most recently used subset of decom-

1 As textures must have extents of a power of two, we must use blocks of
size 2n-1 in the wavelet tree (e.g.153 voxel).
2 The gradients are stored as 8 bit RGB values and the scalars are stored in
the alpha channel of the RGBα texture. The shading is done using pixel
shaders similar to the approach of Meissner et al. [23].

right
neighbor

upper-
 right

neighbor

block

upper
neighbor

 texture block

drawn to screen

voxel

Figure 4: Copying data from
neighbors for the 3d-texture

blocks.

Figure 5: Texture interpola-
tion, the blocks overlap each

other by half a voxel.

To appear in the Visualization 2002 conference proceedings

5

pressed blocks and convert them into OpenGL texture objects.
Gradient maps are computed at this point, if necessary.

Thirdly, the texture objects must be uploaded to the texture
memory of the graphics adapter before rendering. This is done
automatically by the OpenGL driver, again using an LRU caching
scheme. By setting corresponding memory restrictions (see Sec-
tion 4.2), the renderer assures that we do not use more texture
objects per frame as fit into a given amount of video memory, thus
avoiding cache thrashing.

5 RESULTS
In this section, we discuss the results obtained with a prototype
implementation of our algorithm. The algorithm was implemented
in C++ using OpenGL with nVidia extensions for rendering. All
benchmarks were performed on a 2Ghz Pentium 4 PC with 1GB
of ram and an nVidia GeForce 4 Ti4600 graphics board with
128MB of local video memory. In the following, we start with a
description of three example data sets that we use to evaluate our
algorithm. Then, we discuss the influence of the compression
efficiency on the running time and image quality. After that, we
discuss the results for interactive examination of the three exam-
ple data sets.

5.1 Example Data Sets
We use three different data sets for the evaluation of our algo-
rithm. All three are too large to be visualized at interactive fram-
erates using conventional brute-force rendering approaches.

The first data set is a computer tomography scan of a Christ-
mas tree [37] at a resolution of 512 × 512 × 999 voxel with 12 bits
per voxel. The data set was acquired at the technical university of
Vienna to provide a large benchmark scene for volume rendering
algorithms. The other two data sets are the visible human male
and female data sets [33]. Both are computer tomography scans of
a male and a female human body. We use the variants of the data
sets that are registered against the cryosection RGB images. The
visible human male data set has a resolution of 2048 × 1216 × 1877
voxel and the visible human male data set has a resolution of
2048 × 1216 × 1734 voxel. The example renderings were made
using gradient based lighting and a classification function with
several semi-transparent iso-surfaces. The iso-surfaces correspond
to high derivatives in the classification function. These settings
are very sensitive to noise and other reconstruction errors in the
volume data and thus allow a good evaluation of the errors intro-
duce by our rendering technique.

5.2 Compression Efficiency
In the compression algorithm, we have the option to use different
encoding algorithms for the wavelet coefficients. We have imple-
mented two alternatives: arithmetic coding and run-length Huff-
man coding. The decompression speed heavily depends on the
compression algorithm. Using arithmetic coding, we achieve a
decompression speed of 4.5 MB/s, including the wavelet recon-
struction. The run-length Huffman codec is able to decompress 50
MB/s (including the wavelet reconstruction). The compression
ratio of the arithmetic coding is typically only about 10% to 15%
higher than that of the run-length Huffman coding. Therefore, we
use the run-length Huffman coding for all examples in our paper.

A second parameter of the compression algorithm is the
threshold for removing small wavelet coefficients prior to encod-
ing. If we keep all coefficients, we obtain a lossless compression
scheme. Using lossless compression, we achieve a compression
ratio of 3.9:1 (arithmethic coding) and 3.4:1 (RLE-Huffman
coding) for the Christmas tree data set. The visible human data
sets could not be compressed using the lossless settings because

the compressed data and the caches would exceed the 2GB ad-
dress space. For higher compression ratios, we must apply lossy
compression: Figure 6 shows the dependency between compres-
sion ratio and reconstructed signal quality for the three different
test data sets: We obtain a peak signal-to-noise ratio (PSNR) of 60
dB for a compression ratio3 of about 12:1 (1 bit per voxel), while
a PSNR of 50 allows a compression ratio of roughly 50:1 (0.25
bits per voxel). Figure 8 shows a visual comparison of the render-
ing results for the Christmas tree data set. The compression ratios
obtained by our algorithm at a given PSNR are close to the results
of Nguyen and Saupe [27]. These results show that it is possible
to achieve good compression results although we use only linear
interpolating wavelets and blockwise compression.

Another important parameter is the block size used for the
construction of the wavelet hierarchy. If we use small blocks, we
are able to classify the data according to local frequency spectra
and projected size very accurately. However, we have high hierar-
chy traversal costs. If we use larger blocks, the traversal costs
decrease but we must process more voxels for the same image
quality because our classification is less accurate. Additionally,
the block size must be a power of two (minus one, for neighbor-
ing voxels, see Section 4.3) due to OpenGL restrictions. In prac-
tice, 313 blocks are not adaptive enough and 73 blocks introduce
too much overhead. 153 blocks are a good compromise. We use
this block size in all examples in this paper.

5.3 Interactive Walkthroughs
We applied our algorithm to render an interactive walkthrough of
the three test data sets. The results are shown in Figure 9 (see also
the accompanying video for a real-time capture of the walk-
throughs). The resolution of the output image is 2562 pixel for all
tests. The Christmas tree data set was compressed using lossless
compression (3.4:1), the visible human data sets were compressed
using lossy compression. (40:1 for the femal and 30:1 for the male
data set). The preprocessing time was 1 hour for the Christmas
tree and about 5 hours for each of the two visible human data sets.
The preprocessing times are dominated by hard disk access (seek
times). The CPU-utilization was only 6-7% during compression.

During the walkthrough, we can adjust the quality parameter
to trade off image quality for rendering speed. The quality pa-
rameter is given as the maximum projected error value for the
rendered hierarchy nodes. We use three different settings with
high, medium and lower image quality. The high quality settings
uses up to 2048 blocks and a maximum projective error of 1/128
(an average error of 1/128 of the peak signal per pixel for each
block) and therefore shows only very little artifacts due to a re-
duced resolution. Nevertheless, we still obtain an average framer-
ate of 3-4 frames per second during the walkthrough. The low
quality settings uses only 512 blocks and a maximum projective
error of 1/32 thus permitting framerates of about 10 frames per
second at an acceptable image quality. The medium quality setting
is a good compromise with 1024 blocks and a maximum projec-
tive error of 1/64: The image quality is still high at a rendering
speed of about 7 frames per second. The rendering speed for the
visible human male data set is lower than that of our other test
data sets, because the data set contains more noise. Thus, a higher
voxel resolution is necessary to obtain the same projected error as
in the other example scenes.

The cache efficiency for our walkthrough settings is very
high. During the high quality rendering of our test dataset, only
40-60 blocks have to be decompressed per frame and 20-30 tex-
tures have to be constructed on the average. If we deactivate the
caching, i.e. perform wavelet decompression, gradient calculation,
and transfer to graphics memory from the scratch for each frame,

3 All compression ratio measurements are based on 12 bit datasets.

To appear in the Visualization 2002 conference proceedings

6

we obtain an average framerate of 0.3 fps for all of our test scenes.
This is also the limit framerate if we had no temporal coherence,
i.e. a turn of 180 degrees or moving to a random position within
the dataset. For this test, the renderer was configured for highest
quality, i.e. to use exactly 2048 volume blocks. Thus, the framer-
ate corresponds to a processing speed of 614 blocks per second or
10 MB of texture data per second.

To measure the exact timing of each part of the visualization
is not an easy task in itself. This is due to the concurrent execu-
tion, i.e. decompression and gradient calculation are already
executed while waiting for the last frame to complete rendering.
For the example walkthrough animations about 6% of the time are
spend for decompressing blocks and an additional 5% are spend
for the gradient calculations. Transferring the textures onto the
graphics board consumes another 1% of the time (part of this
already runs in parallel), while the vast majority of the time with
88% is spend for the actual rendering, i.e. the processor is waiting
for the graphics hardware.

The animation still shows some popping and discontinuity ar-
tifacts due to different resolutions in the rendered blocks. This is
only a minor problem for high quality settings, but clearly visible
for the low resolution settings. It should be quite straightforward
to reduce these artifacts by employing mipmapping and tech-
niques similar to [35]. This will be subject of future work.

6 CONCLUSIONS
We presented a rendering algorithm for the visualization of very
large data sets. The algorithm uses a hierarchical wavelet repre-
sentation to store very large data sets in main memory. The algo-
rithm extracts the levels of detail necessary for the current view
point on-the-fly. An error metric that minimized the loss of high
frequency information in the projected image is used to determine
a suitable level of detail. This technique allows interactive walk-
throughs of large volume data sets like the visible human data set
on a single commodity PC. To our knowledge, our algorithm is
the first that achieves an interactive visualization of data set of
this size on a single PC.

Our rendering algorithm scales provably good. Thus, we be-
lieve that data sets of even much larger size than the visible hu-
man data set can be processed. To overcome the storage problems
if even the compressed data set does not fit into main memory any
longer, we should generalize our caching technique to swapping
to hard disk. We believe that the compressed representation will
be useful in an out-of-core scenario, too, as it can significantly
reduce the necessary bandwidth. A special problem of out-of-core
rendering is latency due to hard disk seek times. To circumvent
this problem, the data must be transferred in large blocks and
stored in caches in main memory. A (at least lossless) compres-
sion scheme would be useful to reduce the corresponding memory
overhead. Other future directions should include improved ren-
dering techniques to minimize discontinuity artifacts between

different resolutions [35] and a generalization to full RGBα vol-
ume data without classification, for example for rendering the
cryosection visible human data, too. It would also be interesting
to examine whether the wavelet coefficients in each block can be
used more effectively to obtain a better adaptation of the render-
ing resolution to the local frequency spectrum.

ACKNOWLEDGEMENTS
Part of this work has been funded by the SFB grant 382 of the

German Research Council (DFG).

APPENDIX: Analysis
How efficient is octree-based projective classification? To answer this
question we first assume that we could discretize the volume in voxels of
arbitrary size (see Figure 7). Parameters to the algorithm are a camera
position and a constant vertical viewing angle of α. We also assume
w.l.o.g.4 that the original resolution of the voxel grid exactly matches the
display resolution of w × h pixel at the near clipping plane znear. To cover
the whole volume, we add m layers of resampled cube-shaped voxels with
side length voxelsize(i), i = 1..m, so that the projected size of the larger
voxel still matches the display resolution. Let zi be the depth of voxel layer
i. Then obviously zi + 1 = zi + voxelsize(i) and

voxelsize(i) = iz
h 2

2tanα = q·zi with
2

2tan
:

h
q α

= .

This recurrence leads to zi = znear(1+q)i. Let zfar be largest depth of a voxel
in the volume. Then we can bound the number of layers of resampled
voxels to:

 ()
()1log

log
+

=
q

zz
m nearfar

Thus, the number of resampled voxels is m·w·h. Note that the ratio
znear/zfar is always bounded by the maximum diameter of the data set
(measured in voxels). For a volume of n3 voxels the diameter is at most

3n ∈ O(n). Therefore, we obtain a total amount of O(log n) resampled
voxels.

Up to now, our analysis still neglects the fact that we cannot access
resampled voxels of arbitrary size but only octree nodes. This leads to two
different kinds of overhead: Firstly, we are forced to use blocks of k3
voxels (typically k = 16) of the same, fixed resolution. Secondly, we can
choose the resolution in powers of 2 only (in each dimension). We con-
sider the overhead due to the blocking first: Using some elementary
trigonometry, we see that the number of voxels per unit length does not
increase by more than a factor of

h
k

max
2tan2

31
αρ +=

between the foremost and the most distant voxel in each block. The bound
can be derived by considering blocks diagonal to the viewing direction
and comparing the number of voxels per unit length. The voxel density

4 There is no problem if the near clipping plane is closer to the viewer: As
the discretization in voxel is never finer than the original resolution of the
data set, there are always less than w·h·cot α ∈ O(1) voxel in front of znear.

0

20

40

60

80

0 1 2 3 4
Bits per Voxel

PS
N

R

Arithmetic
RLE Huffman

0

20

40

60

0 0,1 0,2 0,3 0,4 0,5
Bits per Voxel

PS
N

R

female, artihm.
female, rle-Huff.
male, arithm.
male, rel-Huff.

α
pixel
ww ×× hh

zznear

zz11

 voxelsize((zzii))

Figure 6: PSNR for Christmas tree dataset, and the visible human dataset. The compression of the male
dataset is not as good as for the female dataset because of a higher noise in the ice surrounding the body.

Figure 7: Analysis of the projective
classification strategy (appendix).

To appear in the Visualization 2002 conference proceedings

7

per unit area is given by the density per unit length squared. Thus, the
average factor of increase of voxels due to the blocking in blocks of k3
voxels is given by:

 ())1/(
3
1

3
1/)(

3

1

2 −−=−= ∫ max
max

maxblock

max

dxxoverhead ρρρ
ρ

For typical block sizes k, this leads only to a small overhead (h = 256, α =
45°):

k 8 16 32 64 128
overhead 4,6% 9,2% 19,0% 40,2% 88,9%

However, the overhead is increased due to the fact that the resolution can
be changed only in powers of two. This is easy to quantify: If we assume
that we need all scales of resolution between 13 and 23 voxels with equal
probability, we obtain an average oversampling factor of 75.32

1
3 =∫ dxx .

This factor usually dominates the factor due to the blocking.
Example: For a resolution of 2562 pixel, 90° vertical viewing angle,

and a depth of 2048 voxels we obtain 858 layers containing 56 million
resampled voxels. The approximation with an octree with blocks of 163
voxels increases the amount of voxels to at most 230 million voxels. A
20483 data set contains 8.6 billion voxels.

In conclusion, we see that projective classification using an octree
leads to a running time logarithmic in the size of the input data. However,
the constants hidden in the O-notation are fairly high. Thus, the algorithm
scales very good but additional techniques are necessary to obtain interac-
tive performance, as described in our paper.

References
[1] Akeley, K: RealityEngine graphics. In: Siggraph 93 Conference

Procedings, 109�116, 1993.
[2] ATI. Developer Relations. http://www.ati.com/
[3] Bajaj, C., Ihm, I, Koo, G., Park, S.: Parallel Ray Casting of Visible

Human on Distributed Memory Architectures. In: Data Visualization
'99, 1999.

[4] Behrens, U., Ratering, R.: Adding shadows to a texture-based
volume renderer. In: IEEE Symposium on Volume Visualization,
IEEE, ACM SIGGRAPH, 39�46., 1998.

[5] Boada, I., Navazo, I., Scopigno, R.: Multiresolution volume
visualization with a texture-based octree. In: The Visual Computer,
17(3), 185�197. Springer, 2001.

[6] Cabral, B., Cam, N., Foran, J.: Accelerated Volume Rendering and
Tomographic Reconstruction Using Texture Mapping Hardware.
Symposium on Volume Visualization, 1994.

[7] Calderbank, R., Daubechies, I., Sweldens, W. Yeo, B.: Wavelet
transforms that map integers to integers. Technical Reprort,
Department of Mathematics, Princeton University, 1996.

[8] Chamberlain, B., DeRose, T., Lischinski, D., Salesing, D., Snyder, J.
Fast rendering of complex environments using a spatial hierarchy. In:
Graphics Interface �96, 132�141, 1996.

[9] Cochran, W.O., Hart, J.C., Flynn, P.J.: Fractal Volume Compression.
In: IEEE Transactions on Visualization and Computer Graphics,
313-322, December 1996

[10] Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Lecture
Notes Nr. 61, SIAM, 1992.

[11] Engel, K., Kraus, M., Ertl., T.: High-quality pre-integrated volume
rendering using hardware-accelerated pixel shading. In: Proc. of
Eurographics/SIGGRAPH Workshop on Graphics Hardware, 2001.

[12] Ertl, T., Westermann, R., Grosso, R.: Multiresolution and
hierarchical methods for the visualization of volume data. Future
Generation Computer Systems, 15(1), 31�42, 1999.

[13] Fowler, J.E., Fox, D.N.: Embedded Wavelet-Based Coding of Three-
Dimensional Oceanographic Images with Land Masses. In: IEEE
Transactions on Geoscience and Remote Sensing, 284-290,
February 2001

[14] Fowler, J.E., Fox, D.N.: Joint Embedded Coding of Data and Grid
Using First-Generation Wavelet Transforms. In: IEEE Data
Compression Conference, 432-442, 2002

[15] Gross, M.H., Lippert, L., Dittrich, R. Häring, S.: Two methods for
wavelet-based volume rendering. In: Computers and Graphics,
(21)2, 237-252, 1997.

[16] Guthe, S., Straßer, W.: Real-time decompression and visualization of
animated volume data. In: IEEE Visualization 2001, 2001.

[17] Ihm, I., Park, S.: Wavelet-based 3D compression scheme for very
large volume data. In: Graphics Interface �98, 107�116, 1998.

[18] Kim, T., Shin, Y.: An efficient wavelet-based compression method
for volume rendering. In: Pacific Graphics �99, 147�157, 1999.

[19] Kniss, J., Kindelmann, G., Hansen, C.: Interactive volume rendering
using multi-dimensional transfer functions and direct manipulation
widgets. In: IEEE Visualization 2001, 255�262, 2001.

[20] Lacroute, P., Levoy, M.: Fast volume rendering using a shear-warp
factorization of the viewing transformation. In: Computer Graphics,
28 (Annual Conference Series), 451�458, 1994.

[21] LaMar, E.C., Hamann, B., Joy, K.I.: Multiresolution techniques for
interactive texture-based volume visualization. In: IEEE
Visualization �99, pages 355�362, 1999.

[22] Machiraju, R., Zhu, Z., Fry, B., Moorhead, R.: Structure Significant
Representation of Computational Field Simulation Datasets. In:
IEEE Transactions on Visualization and Computer Graphics, April-
June 1998

[23] Meißner, M., Guthe, S., Straßer, W.: Interactive Lighting Models and
Pre-Integration for Volume Rendering on PC Graphics Accelerators.
In: Graphics Interface 2002, 209-218, 2001.

[24] Meißner, M., Hoffmann, U. Straßer, W.: Enabling Classification and
Shading for 3D Texture Mapping Based Volume Rendering using
OpenGL and Extensions. In: IEEE Visualization �99, 207�214,
1999.

[25] Ning, P., Hesselink, L.: Vector Quantization for Volume Rendering.
In: Workshop on VolVis �92, 69-74, 1992

[26] Ning, P., Hesselink, L.: Fast Volume Rendering of Compressed Data.
In: IEEE Visualization �93, 11-18, 1993

[27] Nguyen, K.G., Saupe, D.: Rapid High Quality Compression of
Volume Data for Visualization. In: Computer Graphics Forum,
20(3), 2001.

[28] NVIDIA. Developer Relations. http://www.nvidia.com.
[29] Rezk-Salama, C., Engel, K., Bauer, M., Greiner, G., Ertl, T.:

Interactive Volume Rendering on Standard PC Graphics Hardware
using Multi-Textures and Multi-Stage Rasterization. In:
Eurographics/SIGGRAPH Workshop on Graphics Hardware, 2000.

[30] Rodler, F.: Wavelet based 3D compression with fast random access
for very large volume data. In: Pacific Graphics �99, 108�117, 1999.

[31] Stollnitz, E.J., DeRose, T.D., Salesin, D.H.: Wavelets for Computer
Graphics: Theory and Applications, Morgan Kaufmann, 1996.

[32] Sweldens, W., Schröder, P.: Building your own wavelets at home. In:
�Wavelets in Computer Graphics�, SIGGRAPH Course Notes, 1996.

[33] The National Library of Medicine. The Visible Human Project.
http://www.nlm.nih.gov/research/visible/visible_human.html.

[34] Van Gelder, A., Kim, K.: Direct Volume Rendering with Shading via
Three-Dimensional Textures. Symposium on Volume Visualization,
23-30, 1996.

[35] Weiler, M., Westermann, R., Hansen, C. Zimmerman, K., Ertl, T.:
Level-of-detail volume rendering via 3d textures. In: IEEE Volume
Visualization and Graphics Symposium, 2000.

[36] Westermann, R.: A multiresolution framework for volume rendering.
In: Symposium on Volume Visualization, 51�58, 1994.

To appear in the Visualization 2002 conference proceedings

8

[37] Christmas Tree Data Set.
http://ringlotte.cg.tuwie.ac.at/datasets/XMasTree/XMaxTree.html

[38] Yeo, B-L., Liu, B.: Volume Rendering of DCT-Based Compressed
3D Scalar Data. In: IEEE Transactions on Visualization and Com-
puter Graphics, 29-43, March 1995

(a) lossless compression,
compression ratio 3.4:1

(b) compression ratio 8.8:1,

PSNR 63 dB

(c) compression ratio 66:1,

PSNR 53 dB

(d) compression ratio 195:1,

PSNR 48 dB

Figure 8: comparison of the image quality at different compression ratios (Christmas-tree data set)

(a) high quality, 3.1 fps

(b) medium quality, 7.6 fps

(c) low quality, 9.8 fps

(d) high quality, 3.3 fps

(e) medium quality, 6.6 fps

(f) low quality, 9.5 fps

(g) high quality, 2.8 fps

(h) medium quality, 5.4 fps

(i) low quality, 7.1 fps

Figure 9: Comparison of the image quality for interactive walkthroughs of the Christmas tree, visible human female and visible human male data
set. The framerates were measured as averages for a camera path through the whole data set. The image resolution is 256 × 256 pixel.

