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Abstract

Interactive exploration of animated volume data is required by
many application, but the huge amount of computational time and

reconstruction error and the decompression time, we investigated a
couple of different approaches for each of these steps.

Our algorithm is the first one capable of decompressing and vi-
sualizing animated volume data at interactive frame rates, utiliz-

storage space needed for rendering does not allow the visualizaing state-of-the-art video compression algorithms suctvaselet

tion of animated volumes by now. In this paper we introduce an
algorithm running at interactive frame rates usingigavelet trans-
forms that allows for anyvavelet, motion compensation techniques
and various encoding schemes of the resultiagelet coefficients

to be used. We analyze different families and ordersvavelets

for compression ratio and the introduced error. We use a quanti-
zation that has been optimized for the visual impression of the re-
constructed volume independent of the viewing. This enables us to

achieve very high compression ratios while still being able to recon-
struct the volume with as few visual artifacts as possible. A further

transforms and motion compensation that have been adapted to 3d
volume data. We also implemented two high quality visualization
algorithms. The first algorithm is based on a shear-warp factoriza-
tion using OpenGL hardware. It has been modified using regis-
ter combiners [24] to fix some serious drawbacks of previous ap-
proaches with texture hardware. The second algorithm uses 3d tex-
tures or register combiners to simulate them.

1.1 Related Work

improvement of the compression ratio has been achieved by apply-wavelet based image compression: A wavelet based image com-
ing a motion compensation scheme to exploit temporal coherency.pression has first been proposed and investigated by DeVore et. al.
Using these scheme we are capable of decompressing each volumg 1] and by Antonini et. al. [3] by simply extending the one di-

of our animation at interactive frame rates, while visualizing these

mensionalwavelet transforms for higher dimensions using tensor

decompressed volumes on a single PC. We also present a numbegroductwavelet transforms. An overview of the field wfavelet
of improved visualization algorithms for high quality display using based image compression can be found in Vetterli et. al. [26] or in
OpenGL hardware running at interactive frame rates on a standardvillasenor et. al. [27], while a more general overview is given by

PC.

Keywords. Time critical Visualization, Compression for Visual-
ization, Volume Rendering

CR Categories. E.4 [Coding and Information Theory]: Data
compaction and compression; 1.0.3 [Computer Graphics]: Gen-
eral; 1.3.3 [Computer Graphics]: Picture and Image Generation—
Viewing algorithms;

1 Introduction

The large datasets generated by today’s applications need to

compressed. This is especially the case if the dataset changes ov

time. The visualization of animated volume data is very interest-
ing for applications like geologic simulations, or captured medical
volume data that change over time.

To compress these datasets as high as possible, we chose a los

compression scheme. This scheme is split into several steps: th
coding of an individual volume dataset usingvelet transforms,
the quantization and compression of the resultivayelet coef-
ficients and finally the coding of a whole sequence of volume
datasets. To maximize the compression ratio while minimizing the
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Stollnitz et. al. [25].

Wavelet based volume compression: The wavelet transforma-
tion and compression of non-animated volume datasets has been
thoroughly discussed during the last few years, resulting in on the
fly decompression using the Haaavelet and a single 3davelet
transform [13, 16] or multiple 2dvavelet transforms [22]. Al-
though these compressions allow for fast reconstruction of any sin-
gle sample point and therefore random access within the dataset,
they yield fairly good compression ratios but tend to produce blocky
images at compression ratios close to or beyond 100:1. In contrast
our approach can do compression ratios of up to 200:1.

Wavelet coefficient encoding: Recently developed volume

bé:ompression algorithms use run-length encoding, zerotrees intro-
eq!Jced by Shapiro [23] or schemes similar to zerotrees that use sig-

nificance maps to encodeavelet coefficients. Since we do not
need to access each single sample point, but rather the whole vol-
ume dataset at once, we are not constrained to pure zerotrees, but
also some combinations using run-length encoding and other, more

neral, encoders. For comparison between different encoders, we
combined the zerotrees with a final step of arithmetic encoding [19],
run-length encoding with arithmetic coding and run-length encod-
ing with LZH compression [29].

Compression of animated data: For compressing animated
volume datasets we can apply some kind of motion prediction and
compensation similar to MPEG [14, 15]. Although the MPEG mo-
tion compensation works very well if applied to the blocks used for
the discrete cosine transformation it leads to some severe problems
if applied unmodified tavavelet transformed images as discussed
by Watanabe and Singhal [28]. Their modified motion compensa-
tion, the windowed motion compensation, will be used because of
its significant lower reconstruction error the resulting compression
ratio and its small overhead. These previous 2d algorithms were
adapted for the 3d case for this paper.

Volumevisualization: There have also been various approaches
to the visualization of volume datasets needed in the final step of
our algorithm. The visualization using a shear-warp factorization
by Lacroute and Levoy [17] has been adapted to modern graphics
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Figure 1: Wavelet transform of a 1d signal S. ) ) ) ) )
Figure 2: Single step of three dimensional translation (L=low pass

filtered, h=high pass filtered) and complete recursive decomposi-

hardware using 2d textures by Brady et. al. [4] to achieve interac- ton.

tive frame rates. A different approach using 3d textures by Akley
[2] has until recently only been available on graphics workstations, ¢ ianals of higher di . v the 1d
but is starting to show up on standard PC graphics hardware, e.g, 10 ransform signals of higher dimension, we apply the 1c

the ATl Radeon graphics adapter. Rezk-Salama et. al. [21] useo|Wavelet transform in all three dimensions separately, resulting in

standard PC graphics hardware. In this case the NVidia GeForce2 3d tensor produstavelet transform [25] as seen in the left part of
graphics adapter is used to implement the tri-linear interpolation figure 2. After the firstvavelet transform of the whole volume, we

that is needed to simulate 3d textures. We will later use this tri- 2PPly the 3dvavelet transform to the low sub band recursively. We
linear interpolation to implement the shell rendering proposed for FePeat this step four times to get the sub bands seen in the right part

the ATI Radeon [1] on a GeForce graphics adapter using its register©f figure 2. Any furthewavelet transforms does usually not reduce
combiners [24]. the size of the compressed volume, but rather introduce more visual

artifacts.
Previous approaches of volume compression used the simple
1.2 Paper Overview Haarwavelets. Higher ordewavelets on the other hand have some
) ] o properties that make them very suitable for implementation of a
The algorithm is split into three steps to encode or decode a se-compression algorithm, such as more than one vanishing moment,
quence of volumes and an additional step for visualizing each de-j.e. polynomials that map to a singheavelet coefficient only. The
coded volume. In section 2.1 we take a closer look attheelet Daubechiesvavelets [7] are thevavelets with maximum vanishing
transforms used, the computational time and the reconstruction er-moments at a given support. But there is also a major drawback
ror after applying some quantization to thavelet coefficients that  when using higher ordevavelets due to their longer support. If we
will be discussed in section 2.2. Afterwards we will investigate ant to reconstruct a signal usingvavelet of support greater than
some compression schemes for these quantizaglet coefficients 2, we need a periodic extension of the original signal and therefore
in section 2.3. Section 3 will be discussing several ways to encode afor each of the sub bands as this is the only way to maintain the
sequence of volumes and compare their compression ratio, decomsame number ofiavelet coefficients for any family afavelets re-
pression time and reconstruction error. In section 4 we will discuss gardless of their support. Although this might seem to solve all our
improved visualization methods using standard PC hardware. problems with higher orderavelets, we have to keep in mind that
our volume is not of periodic nature and may therefore have very
. high contrast between its opposite surfaces.
2 Slngle Volumes A better way of extending our signal for higher ordeavelets
would be a symmetric extension, i.e. the signal is mirrored at it's
The compression of single volumes consists of three steps: theborders. Although this removes our border problem, we now need
wavelet transform, the quantization of thavelet coefficients and ~ symmetricwavelets [9]. Yet constructing a symmetric@velet is
their compressed encoding. A three dimensiomalelet trans- not possible, as we require thavelet to be orthonormal to guaran-
form of the whole volume at once, instead of a block-wiseelet tee a change of the basis of the functional space. Although itis pos-
transform [16, 13], was chosen to maximize the compression ra- sible to construcivavelets that are as symmetric as possible, i.e. the
tio for any given quality and avoid blocking artifacts for higher or-  Coiflets proposed by Coifman and later constructed by Daubechies
der wavelets. The quantization uses different accuracies for each[10], they can still not be used with symmetric extension. How-
kind of wavelet coefficients to minimize the information to be com- ever, if we use a different filter for reconstruction, we can construct
pressed. symmetric, so called bi-orthogonalavelets. The CDRwvavelets
introduced by Cohen, Daubechies and Feauveau [6] are the most
widespread bi-orthonormavavelets used for image encoding and
2.1 Wavelets will also be used in addition to Hamravelets, Daubechies Wavelets

The wavelet transform of a 1d signal can be regarded as the filtering@"d Coiflets.

of this signal with both thevavelet¥ and the scaling functio®

and the downsampling of the resulting signals by a factor of 2 (see 2 2 Quantization

figure 1). Thewavelet is a high pass filter and the scaling function

a low pass filter. Note that the total amount of information is not After thewavelet transform, the complete volume is represented by
modified. It is just a change of the basis of the function space. The wavelet coefficients in floating point values, enabling us to recon-
part of thewavelet transform up to now is callezhalysisof the struct the original volume correctly. To reduce the data to be stored
signal, while the following part is calleslynthesisThe values of H while maintaining a minimum error i> norm, we first have to
and L are calledvavelet coefficients in the discrete case. The re- choose the dead zone [26], i.e. the range that will be mapped to
construction upsamples the transformed signals again, filters themzero, for each different region efavelet coefficients seen in fig-
using¥’ for the high sub band, theavelet coefficients representing  ure 2 to cut down the number of non-zewavelet coefficients. The
high frequencies an@’ for the low sub band, thevavelet coeffi- remaining coefficients then have to be scaled and quantized appro-
cients representing low frequencies. The two resulting signals arepriately for the further compression. To take the sensitivity of the
added together and reproduce the original signal without any loss. human visual system for different frequencies into account, we use
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Table 1: Factorg for quantization f * maxQuant) and dead zone
(1 + f * maxDead) of different levels and regions of theavelet
coefficients, resulting i f * maxQuant + 1 possible quantized
values pemwavelet coefficient.

Figure 3: Order of traversion within a region wfavelet coeffi-
cients.

results in a severe loss of decoding speed.

This already results in fairly good compression ratios while
needing very little time for decompression, but there is still a very
simple and effective way to further improve the compression. The
LZH algorithm [29] compresses a repeating sequence of different
values by storing the reference to the last appearance of the same

ub string. While the compression, due to the searching for match-
ng strings within a given range of previously compressed coeffi-

individual dead zones and scaling factors with different regions of
the transformed volume after all coefficients have been normalized
to a range of—1, 1].

There is only one region oflavelet coefficientd.L L, that has
been transformed using the low pass filter only. At each of the
five recursion levels there are three regions that have been filtere

through the high pass filter ondeLH;/LHL;/HLL;, three re- cients. takes qui - ;

. 8 X , 4 4 , quite long, the additional time needed for decompres-
gions that have been high pass filtered twid€ H;/H LH:/HHL; oo e nearly not noticeable. Reading the compressed data may
and only one region that has been high pass filtered three times

HHH,;. Since we treat all three directions equally only the num- ?gggcgz zﬁg&lztfgfg?;égacr;éggdmg uncompressed data due to the
ber of high or low pass filters applied to each region are of interest. :

This delivers a total of 16 different regionswhvelet coefficients. a n-l;lj? n?gtrggr\?;?.%g r(?;tgssgtp \E\?enhoe\l/i//: Eg gggigggg’n?urt Jgsriztno:gl?os
With a user defined global maximumazQuant for the num- ' P

ber of coefficients and a global maximum dead z Dead the beyond 100:1 for single volumes. The aim of arithmetic coding is

dead zones and quantizaton steps are defined as ollows.For 10 e S S ECREETR St i i iterval. The main
the intervall0, 1] is split intornazQuant steps while the dead zone :

. i 4 . part of every compression using arithmetic coding is the model that
is defined ad + Fm‘”cDead as large as the difference between angjates the incoming symbols into intervals and vice versa. As
two quantized values. The maximum number of coefficients and the hege models can be very powerful, they can be used to implement
relative size of the dead zone for the remaining regionsafelet any compression algorithm.

coefficients within the range ¢f-1,1] can be seen in table 1. The The most simple model presented by Moffat, Neal and Witten
dead zone and the quantization steps have been adapted to represgily) that can be applied for encoding owavelet coefficients is the
similar amounts of visual contrast depending on the underlying fre- adaptive model. At the beginning of each regiomaivelet coeffi-
quency, according to the threshold contrast sensitivity function [12] jons the intervals of each quantized coefficient are of equal size
that represents the sensitivity of the human visual system for con- 5, the counter of their references is set to one. After encoding a

trast at different frequencies. coefficient, the corresponding counter is increased by one and all

The user definesnazQuant = 127 + quality x 128 and intervals are resized accordingly. As the counters are organized in a
maz Dead = 20 % (255 — quality) /255 by specifying thejuality binary tree, the intervals are o?ﬂ{/ to be computed if the c%rrespond-
parameter in the rande, 255] to easily define the compression ra- 4 coefficient is encoded. The time needed for the computation
tio while trying to minimizing the visual loss and drop in PSNR. ofthese intervals and therefore the compression or decompression
time needed for a single coefficient@log(n)) with n being the

2.3 Encoding number of possible coefficients. Therefore the decompression gets
faster as the number of possiblavelet coefficients decreases.

After the quantization step we have to encode waelet coeffi- There is also a way to implement an optimized kind of run-

cients to store them using as few memory and decompression timdength encoding into the model. After a zero is encoded, the model
as possible. To choose the right type of compression, we first haveswitches tozero mode While in zero modgethe arithmetic coder

to take a close look at the data to be compressed. The goal of thealways receives the interval between 0 and 1, i.e. it does not en-
guantization was to cut as many coefficients as possible down tocode anything, as long as the coefficients that are to be compressed
zero, so the most simple and fastest compression can be achievetemain zero. After receiving a non-zero coefficient, the arithmetic
by run-length encoding all zeros. To produce as few overhead ascoder receives a combined interval representing the number of ze-
possible, we just compress a runsozeros by storing followed ros received and the newavelet coefficient. The number of ze-
by n — 1. Therefore a singl® becomes a sequence ®f0 and ros is stored similar to the run-length encoding. Upnt@eros

is therefore the only way that the compressed data will expand. are stored using only a single interval, while values beyoarate

If n exceeds the number of possible quantization steps, the run isstored by an interval that notifies+ zeros. Using a value of 127
split into several compressed sequences. We also have to specify §or n showed up to be very good for nearly all datasets and quan-
traversal order through the regions of thavelet coefficients. The tizations, resulting in 128 intervals for run-length encoding that are
fastest way to encode and decodewlavelet coefficients is to store  updated using the same adaptive scheme as used fovahelet
each line within a region ofvavelet coefficients individually (see  coefficients. Therefore the length of each run is compressed in a
figure 3a). While this already produces long runs of zeros, there is more optimal way than by a run-length encoding prior to the arith-
a more sophisticated methods for achieving even longer runs. Sim-metic coding. An additional optimization is to store a bit-pattern,
ilar to the zero trees [23], we use a depth first traversal through anthat is also encoded arithmetically using only two symbols, to mark
octree that holds all ouwvavelet coefficients within each region of  unusedwavelet coefficients. This results in the compression of a
wavelet coefficients separately (see figure 3b). As regions of zeroregion consisting of zeros to this previously stored bit-pattern only.
coefficients are more likely to be stored in a single run, this delivers ~ The last method of compressing thavelet coefficients is the
even longer runs of zeros. However the non-linear memory accesszerotree coding of Shapiro [23] combined with an arithmetic en-
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Figure 4: Previous image and current image (upper row). Differ- a) E ﬂ [ b) [
ential image, standard motion compensation and windowed motion 2 3 0o 2 3 1

compensation (lower row).

coder using an adaptive model. Although this might seem the most
natural way to exploit the huge amount of zeros and the hierarchical
nature of thewavelet coefficients, this turns out not to be the best

encoder most of the time and also by far the slowest one. Figure 6: Reconstruction and storage order for different types of

volumes and sequences, similar to MPEG. a) motion compensated
differences b) motion compensation only, ¢) popular MPEG order

3 Volumetric Animation

To store animated volumes rather than single volumes effectively
requires to exploit the temporal coherency between consecutive vol-
umes. The most simple way to exploit the temporal coherency is
storing the difference between the current and the previous volume
rather than the current volume. Although this already reduces the
compressed data significantly, it is not sufficient for storing large
volumetric animations, therefore we have adapted the motion com-  The solution to this problem is the windowed motion compen-
pensation used for video encoding. sation introduced by Watanabe and Singhal [28]. The blocks are
extended td 22 overlapping blocks and filtered by a function with

i . a cosine falloff at both ends (see figure 5) in all three directions as
3.1 Motion Compensation the sum of all neighboring window scaling functions and therefore
the sum of all voxel weights with the window is already one. Al-
though the computational overhead introduced by these overlapping
blocks is with a theoretical value @375 very high, it shows up
that this has no severe impact on the performance in practice, due to
the higher number of cache hits if the volume is reconstructed voxel
by voxel, rather than block by block. The volume that has to be en-
coded usingvavelet transforms does no longer have regions of high
contrast, as seen in figure 4 and therefore \eseelet coefficients
differ from zero.

another drawback using this simple approach. Due to the nature
of the quantization scheme applied to the differential images these
wavelet coefficients will be quantized very strong and therefore re-
sultin a large error.

The easiest way is to store differential volumes only, as seen in fig-
ure 4 (shown for 2d images for clarification). As this is not very
effective for ourwavelet compression scheme, we implemented a
simple motion prediction and compensation. The motion predic-
tion is done by simple block matching &f blocks between the
two volumes. The motion compensation is done before the differ-
ential encoding to reduce the differential content. A block of high
similarity, i.e. minimum mean square error, in the previous image is
computed by searching this minimum starting from a motion vector
of length0 using15 steps in all three directions. This is similar to Similar to the naming conventions of the MPEG compression
finding the correct motion vector using optical flow methods. This [14, 15], awavelet compressed volume is called I-volume (see fig-
results in31® possible motion vectors that have to be stored using ure 6). We use two different ways to reconstruct an individual vol-
some kind of encoding. The search for the local minimum mean- ume using motion compensation. The P-volume is reconstructed by
square error guarantees that most of the resulting motion vectorsusing a motion compensated version of the previous I- or P-volume
will be of zero length or at least close to zero length making an and wavelet compression of the difference between this predicted
arithmetic encoding with a simple adaptive model the best choice and the actual volume. The B-volume is reconstructed by using
as encoder. a weighted average between a motion compensated version of the

The usual, i.e. MPEG, method for computing a motion com- last and the next I- or P-volume similar to the compression scheme
pensated image is to map each block of the to be constructed vol-used in MPEG compression as seen in figure 6. There is no fixed
ume onto a block of the previous volume as seen in figure 4 for sequence of |-, P- and B-volumes but any sequence of P- or B-
two dimensional images. However in combination withvelet volumes between two I-volumes can be defined. Note that the vol-
transformation, this results in severe problems if the motion vec- umes are not stored in their original order, but in the order of their
tors of two neighboring blocks are different, i.e. regions of high first usage, i.e. the B-volumes are stored after the next P- or I-
contrast are present. Usimgavelet transformation, these high con- volume. In our experiments, we analyzed various sequences for
trasts result in largevavelet coefficients in regions that correspond compression ratio and visual impression. It turned out that using
to high frequencies and therefore low compression ratios. There isthe popular MPEG sequence (figure 6c) delivers the best results.
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parency (a), register combiner (b), 3d texture (c) and raycasting (d).

perspective viewer
4 Playback
Figure 8: Different distance$between textures introduced by dif-
The single volumes of the animation are decompressed in their stor-ferent viewing points and perspective distortion and correction of
age order rather than in the order of playback. To compensate thethese differences using 3d textures.
different times needed for the decompression of an individual vol-
ume, we have to take a closer look at the decompressed volumes

for each new time step. For this we choose the third sequence Nfor better visualization algorithms. Due to the exponential behav-

figure 6. In a setup step, the first I-volume and the first P-volume f th it d the lack of this kind of ti ithin th

are decoded to make sure that all the volumes for interpolation of lor of the opacity and the lack of this Kind ot operation within the
combiner, we have to simulate this exponential falloff. The main

the next volume (a B-volume) are present. The second and the third: RS . .
h ; . idea for the approximation is to interpolate between the opacity and
volume are decoded without any special treatment. Reaching thethe squared opacity at each pixel of the display. In order to do so,

fourth volume, the already decoded P-volume, we decode the next, jiiq 4 texture to look up suitable weights for the linear and

P-volume as this one is needed for the next B-volume. After decod- o, 2o 4, values using the angle between the viewer and the sur-
ing the next two B-volumes, we start decoding the next sequence, ¢, .o \ormal. A first approach for generating this lookup texture is to
starting with it's I-volume. Before displaying the first volume of 00 yne distance minus ode- 1 between two slices as weight for

this new sequence, we decode the next P-volume and reach th . :
same state as at the beginning of our decoding. Thus we only have(?he squared opacity. Although this roughly represents the correct

b e alpha values, there is still a large error for small values, i.e. very
to decode one volume at a time, resulting in smoother playback of J -1 : P
; s ’ transparent region nin figure 9. Sin lar rror in a ver
our volumetric animation. ansparent regions, as see gure 9. Since a large error in a very

To achieve an on the fly decompression in real time. we have to transparent region produces much more visual artifacts than a large
P datddaliol decor¥1 - .0?1 Using LZH coding the bottle- €Y in @ very opague region as the error is accumulated in regions
. ; 5 :
into their correct position, therefore we restrict our self to storing the relative mean square errde£ror /orig.alpha)”), by storing

them line by line rather than in the octree depth first order. Most of H(d) instead ofd — 1. The relative mean square error is given by
the time this reduced the compression ratio slightly but makes bet- 2 1 9 d

ter usage of the write cache and thus speeds up the decompression / / (1~ t(d)a +t(d)a” —a dadd or (1)
significantly. Using the arithmetic coding, we have an integer mul- d=1 Ja=0 «@

tiplication and an integer division as part of the main interval coder

and therefore no need to optimize the writing of teavelet coeffi- Lol Z#d Hda? — ot
cients in terms of cache hits, as this does not result in any noticeable / ( (d)a +Hd)a” — a da 2
speedup. a=0 @

for a specific value ofl. Since we don’t have to specify(d) but
4.1 Visualization only need its values for a limited number of distandesnd with
a limited accuracy we can minimize the previous equation numer-

We still need a high guality visualization in real-time to display our ically by trying all 256 possible values fa(d). As already men-
decoded volume data. The fastest way of visualizing a volume us-tioned this reduces the error for all but the very opaque regions. The
ing standard pc hardware is the usage of a texture stack along theapproximation of the exponential falloff now only produces the er-
main viewing direction as proposed by Brady et. al. [4]. This stack ror seen in figure 10. The resulting visualization can be seen in
of textures is combined using planes along each texture and alphdigure 7b.
blending hardware. As we need a stack of textures for each of the Although this approach removes most of the problems men-
main viewing directions, this results in storing the volume three tioned above, there are still some small visual artifacts if we move
times in texture memory. However, during playback of a volumet- from one texture stack to another. The easiest way to remove this
ric animation, the viewing direction only changes between different effect is to render the volume from all three directions and combine
volumes and therefore a single stack of textures is sufficient. The the resulting images using a weighted average. This can also be
usage of textures also enables us to easily define a transfer funcdone very effectively using texture hardware. The major drawback
tion between the values stored in the volume and the ones storedf this approach is that we have to transfer all three texture stacks
in the texture stack. Although this gives a good first impression of to the graphics adapter, resulting in a severe loss of speed.
the dataset (see figure 7a), modern pc hardware allows for more so- Another way to render the dataset with correct transparencies
phisticated algorithms, that do not produce as many artifacts as thisis to utilize 3d textures and shells (small subsections of a sphere)
approach. which completely avoids the switching of texture stacks and per-

Up to now we ignored the effects seen in figure 8 that lead to spective distortion. Unfortunately among the consumer hardware
some severe problems if we change from one texture stack to an-only the ATl Radeon, that has also been used for testing purposes,
other, or if we rotate a dataset, as the opacity of the volume seamsis able to handle 3d textures in hardware. On the other hand, the
to change. The register combiner of the GeForce GPU from NVidia GeForce is able to do tri-linear interpolation between any two slices
allows us to modify the opacity of the volume data depending on of our dataset, as shown by Rezk-Salama et al. [21], so all we have
the angle between the surface normal and the vector pointing fromto do is make sure that no polygon needs any interpolation between
the viewing location to a point on the surface and therefore allows three or more slices during their construction as seen in figure 8.
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| wavelet | I-vol. | P-vol. [ B-vol. [ ratio |

Haar 47.363] 47.022] 40.613] 1:27.30
Daubechies 4 48.673| 47.784| 40.756| 1:30.96
Coiflets 6 48.615| 47.751| 40.750| 1:33.27
CDF 2/6 49.015| 47.990| 40.787| 1:34.28

1ror

Table 2: PSNR comparison between differeatvelets using maxi-
14 mum quality, the popular MPEG like sequence and arithmetic com-
16 pression.

distance

SN B ONoo

original alpha

Figure 9: Resulting absolute error introduced by using a simple
lookup texture.
a) b)
| I I
6 c) d)
1stance
original alpha 150 18
250 2 Figure 11: Static volume compressed at a ratio of about 40:1 us-

ing Haarwavelet , Daubechiewavelet (b, support 4), Coiflets (c,
support 6) and CDWavelet (d, support 2/6yavelets.

Figure 10: Resulting absolute error in the range of 0 to 255 intro-

duced by using an optimized lookup texture, to produce less relative

error error/orig.alpha). better preserves features. The original volume can be seen in the

color plates.

) o . ) ) The PSNR of |- and P-volumes also depends on the compression
Using this simple but very effecpve trick, we are able to simulate ratio as seen in figure 12. The quality of the B-volumes on the
3d textures on a GeForce graphics adapter. other hand does only roughly depend on this quality setting (see

There is still one problem left, the undersampling along the view- figure 12), as these volumes are not reconstructed usiglet
ing axis. We only sample at the resolution equal to the distance transforms but using motion compensation only.
between two slices, as seen in figure 7c. The undersampling can  As already mentioned, the decompression times achieved using
only be removed by using more shells which is not very effective arithmetic encoding depend on the quantization used, as both the
due to the limited precision of the frame buffer or by using ray- number of zeros increases and the depth of the tree that has to be
casting. Although raycasting produces the best results (as seen inpdated dynamically decreases. Using LZH encoding, neither of
f|gure 7d), It can not be Used fOI’ interactive V|Sual|zat|0n Of our ani- these two properties does have any effect on the decompression
mated datasets using standard PC hardware due to the time consumimes as seen in table 3. The LZH encoding performs a lot bet-
ing calculations that have to be carried out. Another option is to Use ter than the arithmetic encoding in terms of speed (up to two times
aSpeCIal purpose hardWare W|th|n a Standard PC SUCh as the V|Zarqaster using h|gh quahty Settings) but worse in terms Of Compres_
11 [18] or the VolumePro [20]. However special purpose hardware sjon ratio (about 30% more compressed data at moderate to high
is not as widely spread as the need for volume visualization. quality). This allows for about 4 frames per second regardless of

the chosen quality. Note that the speed on the second configuration

is not limited by the decompression time, but rather by the memory
5 Results bandwidth during the 3diavelet transform.

As seen in figure 13 the PSNR of the B-volumes (the dotted line)

All tests have been carried out on an AMD K7 running at 800 MHz is significantly lower for high quality volume animations. Remov-
using a GeForce 2 graphics adapter (first configuration) or on aning the motion compensation at these high quality settings results
AMD K7 running at 1000 MHz using a Radeon graphics adapter in an improvement of the PSNR but also increases the size of the
(second configuration). compressed data, as seen in table 4. At a lower quality setting, the

As expected the usage of higher ordevelets does notonly re-  PSNR increases if we use motion compensation again while also
duce the size of the compressed volumes while enlarging the Peak-decreasing the size of the compressed data. Testing different quali-
Signal to Noise Ratio (PSNR) as seen in table 2, but does also sig-ties and sequences demonstrated that the popular MPEG sequence
nificantly improve the visual impression as seen in figure 11 and (the first sequence in figure 4) should always be used with only one
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55 1 | sequence | ratio (255)[ PSNR ] ratio (15) | PSNR |
50 IBBPBBPBB 34.28:1 | 43.308] 173.64:1] 26.159
45 == IBB 28.84:1 | 43.702| 160.70:1 | 26.040
& 40 / e —e— [-Volumes IPP 13.77:1 48.408 | 168.85:1| 20.396
Z 35 D/D —a- P-Volumes I 10.09:1 | 49.004| 153.43:1| 20.089
&~ - --a-- B-Volumes
30 = 7?
25 /. Table 4: Comparison between different sequences using CDF
20 E,/g/ wavelet with support 2/6, arithmetic encoding and maximum (in-
0.04 0 ‘08 0 ‘16 0 ‘32 termediate) quality.
bpv
P [ configuration | 2dtextures| 3d textures]
Figure 12: Average PSNR of each different kind of volume against | GeForce2, AMD K7 800 MHz|  78.62 fps| 12.03 fps
bits per voxel (CDFwavelet with support 2/6 and popular MPEG Radeon, AMD K7 1000 MHz | 116.26 fps| 10.01 fps

like sequence).

Table 5: Time needed for visualization of a static volume dataset on
the two different configurations (without any decompression).

quality | arithmetic| fpsl [ fps2 | LZH | fpsl | fps2 ]

255 34.28:1 | 1.58] 1.77] 25.89:1 ] 3.23| 3.62

127 77.28:1 | 2.06| 2.34| 56.10:1 | 3.25| 3.62

63 109.69:1 | 2.35| 2.74| 82.32:1 | 3.25| 3.62 " . . .
31 150.34:1 | 2.64 | 3.01| 134.59:1| 3.27| 3.62 out any additional loss of data. Usmg a transfer function of hlgh
15 173641 | 280! 3.17 1 171.15:1| 3.28| 3.62 contrast will emphasize visual artifacts. Our example animation

(figure 11) has an absolute derivative of 5 in the alpha component
of the transfer function. A transfer functions of lower contrast will

. ; ; : : allow for a compression ratio of 100:1 and beyond without visual
Table 3: Comparison regarding compression ratio and frames Per. rifacts.

second (using 2d textures on system 1 and 2) between different en-
coders using various qualities, the popular MPEG like sequence and

the CFD wavelet with support 2/6. 6 Conclusion & Future Work

In this paper we have shown a very efficient approach to decom-
exception. If we desire a nearly lossless compression of every vol- press and visualize animated volume datasets in real time on stan-
ume, rather than every third volume, we should use only I-volumes dard pc hardware. Thiavored compression scheme uses a quality
or I-volumes and P-volumes as this will result in the highest possi- setting of 63 and the popular MPEG sequence with either arith-
ble PSNR. metic or LZH coding. The presented algorithm does not exploit the

Although the 2d textures are a lot faster on both configurations possibility for parallelization of thevavelet transform or the mo-
than the 3d textures (see table 5), we still get interactive frame ratestion compensation and therefore leaves a lot of room for further
on both configurations that do not have a heavy impact on the play-optimization using a single processor (3DNow or SSI instructions)
back speed of a compressed volume animation. On the other handand multiple processors. Although the sole visualization of each
the optimized 2d textures running on the GeForce2 graphics adaptervolume is quite fast, this part can also be split up into several sub-
do not need any additional time and sometimes even produce leswvolumes that are to be rendered using a cluster of standard PCs.
visual artifacts as the 3d textures (see volume borders in figure 14). Replacing thevavelet transform with the corresponding lifting

steps according to Daubechies and Sweldens [8] is a further possi-

If we wish to compress a volume animation without generating ble optimization that also enables us to implement a lossless com-
too many noticeable visual artifacts that will playback at interactive pression scheme using integeavelet transforms as supposed by
frame rates of about 4 frames per second on our testing configu-Calderbank [5]. However lifting steps only pay off feravelets
rations, we achieve compression ratios of about 50:1 using CDF with longer support that have not been examined in our experiments
wavelets, a quality setting of about 127, the popular MPEG se- by now.
quence and LZH encoding. If we need high compression ratios
rather than fast visualization, we are able to reach a ratio of about
75:1 by replacing the LZH encoding by arithmetic encoding with- 7 Acknoledgem ets
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Figure 14: Comparison between different kinds of visualization us-
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Original engine dataset Compression ratio 200:1, Haaravelet Compression ratio 200:1, CDkavelet

Original lobster dataset Compression ratio 100:1, CDFavelet Original volume 1000 of an animation of
2000 volumes

I-only sequence, quality 63, compression rati®-only sequence, quality 63, compression MPEG sequence, quality 63, compression
31:1, I-Volume ratio 50:1, P-Volume ratio 110:1, B-Volume



