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Abstract

Interactive exploration of animated volume data is required by
many application, but the huge amount of computational time and
storage space needed for rendering does not allow the visualiza-
tion of animated volumes by now. In this paper we introduce an
algorithm running at interactive frame rates using 3dwavelet trans-
forms that allows for anywavelet, motion compensation techniques
and various encoding schemes of the resultingwavelet coefficients
to be used. We analyze different families and orders ofwavelets
for compression ratio and the introduced error. We use a quanti-
zation that has been optimized for the visual impression of the re-
constructed volume independent of the viewing. This enables us to
achieve very high compression ratios while still being able to recon-
struct the volume with as few visual artifacts as possible. A further
improvement of the compression ratio has been achieved by apply-
ing a motion compensation scheme to exploit temporal coherency.
Using these scheme we are capable of decompressing each volume
of our animation at interactive frame rates, while visualizing these
decompressed volumes on a single PC. We also present a number
of improved visualization algorithms for high quality display using
OpenGL hardware running at interactive frame rates on a standard
PC.

Keywords: Time critical Visualization, Compression for Visual-
ization, Volume Rendering

CR Categories: E.4 [Coding and Information Theory]: Data
compaction and compression; I.0.3 [Computer Graphics]: Gen-
eral; I.3.3 [Computer Graphics]: Picture and Image Generation—
Viewing algorithms;

1 Introduction

The large datasets generated by today’s applications need to be
compressed. This is especially the case if the dataset changes over
time. The visualization of animated volume data is very interest-
ing for applications like geologic simulations, or captured medical
volume data that change over time.

To compress these datasets as high as possible, we chose a lossy
compression scheme. This scheme is split into several steps: the
coding of an individual volume dataset usingwavelet transforms,
the quantization and compression of the resultingwavelet coef-
ficients and finally the coding of a whole sequence of volume
datasets. To maximize the compression ratio while minimizing the
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reconstruction error and the decompression time, we investigated a
couple of different approaches for each of these steps.

Our algorithm is the first one capable of decompressing and vi-
sualizing animated volume data at interactive frame rates, utiliz-
ing state-of-the-art video compression algorithms such aswavelet
transforms and motion compensation that have been adapted to 3d
volume data. We also implemented two high quality visualization
algorithms. The first algorithm is based on a shear-warp factoriza-
tion using OpenGL hardware. It has been modified using regis-
ter combiners [24] to fix some serious drawbacks of previous ap-
proaches with texture hardware. The second algorithm uses 3d tex-
tures or register combiners to simulate them.

1.1 Related Work

Wavelet based image compression: A wavelet based image com-
pression has first been proposed and investigated by DeVore et. al.
[11] and by Antonini et. al. [3] by simply extending the one di-
mensionalwavelet transforms for higher dimensions using tensor
productwavelet transforms. An overview of the field ofwavelet
based image compression can be found in Vetterli et. al. [26] or in
Villasenor et. al. [27], while a more general overview is given by
Stollnitz et. al. [25].

Wavelet based volume compression: The wavelet transforma-
tion and compression of non-animated volume datasets has been
thoroughly discussed during the last few years, resulting in on the
fly decompression using the Haarwavelet and a single 3dwavelet
transform [13, 16] or multiple 2dwavelet transforms [22]. Al-
though these compressions allow for fast reconstruction of any sin-
gle sample point and therefore random access within the dataset,
they yield fairly good compression ratios but tend to produce blocky
images at compression ratios close to or beyond 100:1. In contrast
our approach can do compression ratios of up to 200:1.

Wavelet coefficient encoding: Recently developed volume
compression algorithms use run-length encoding, zerotrees intro-
duced by Shapiro [23] or schemes similar to zerotrees that use sig-
nificance maps to encodewavelet coefficients. Since we do not
need to access each single sample point, but rather the whole vol-
ume dataset at once, we are not constrained to pure zerotrees, but
also some combinations using run-length encoding and other, more
general, encoders. For comparison between different encoders, we
combined the zerotrees with a final step of arithmetic encoding [19],
run-length encoding with arithmetic coding and run-length encod-
ing with LZH compression [29].

Compression of animated data: For compressing animated
volume datasets we can apply some kind of motion prediction and
compensation similar to MPEG [14, 15]. Although the MPEG mo-
tion compensation works very well if applied to the blocks used for
the discrete cosine transformation it leads to some severe problems
if applied unmodified towavelet transformed images as discussed
by Watanabe and Singhal [28]. Their modified motion compensa-
tion, the windowed motion compensation, will be used because of
its significant lower reconstruction error the resulting compression
ratio and its small overhead. These previous 2d algorithms were
adapted for the 3d case for this paper.

Volume visualization: There have also been various approaches
to the visualization of volume datasets needed in the final step of
our algorithm. The visualization using a shear-warp factorization
by Lacroute and Levoy [17] has been adapted to modern graphics
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Figure 1: Wavelet transform of a 1d signal S.

hardware using 2d textures by Brady et. al. [4] to achieve interac-
tive frame rates. A different approach using 3d textures by Akley
[2] has until recently only been available on graphics workstations,
but is starting to show up on standard PC graphics hardware, e.g.
the ATI Radeon graphics adapter. Rezk-Salama et. al. [21] used
standard PC graphics hardware. In this case the NVidia GeForce
graphics adapter is used to implement the tri-linear interpolation
that is needed to simulate 3d textures. We will later use this tri-
linear interpolation to implement the shell rendering proposed for
the ATI Radeon [1] on a GeForce graphics adapter using its register
combiners [24].

1.2 Paper Overview

The algorithm is split into three steps to encode or decode a se-
quence of volumes and an additional step for visualizing each de-
coded volume. In section 2.1 we take a closer look at thewavelet
transforms used, the computational time and the reconstruction er-
ror after applying some quantization to thewavelet coefficients that
will be discussed in section 2.2. Afterwards we will investigate
some compression schemes for these quantizedwavelet coefficients
in section 2.3. Section 3 will be discussing several ways to encode a
sequence of volumes and compare their compression ratio, decom-
pression time and reconstruction error. In section 4 we will discuss
improved visualization methods using standard PC hardware.

2 Single Volumes

The compression of single volumes consists of three steps: the
wavelet transform, the quantization of thewavelet coefficients and
their compressed encoding. A three dimensionalwavelet trans-
form of the whole volume at once, instead of a block-wisewavelet
transform [16, 13], was chosen to maximize the compression ra-
tio for any given quality and avoid blocking artifacts for higher or-
der wavelets. The quantization uses different accuracies for each
kind of wavelet coefficients to minimize the information to be com-
pressed.

2.1 Wavelets

The wavelet transform of a 1d signal can be regarded as the filtering
of this signal with both thewavelet	 and the scaling function�
and the downsampling of the resulting signals by a factor of 2 (see
figure 1). Thewavelet is a high pass filter and the scaling function
a low pass filter. Note that the total amount of information is not
modified. It is just a change of the basis of the function space. The
part of thewavelet transform up to now is calledanalysisof the
signal, while the following part is calledsynthesis. The values of H
and L are calledwavelet coefficients in the discrete case. The re-
construction upsamples the transformed signals again, filters them
using	0 for the high sub band, thewavelet coefficients representing
high frequencies and�0 for the low sub band, thewavelet coeffi-
cients representing low frequencies. The two resulting signals are
added together and reproduce the original signal without any loss.
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Figure 2: Single step of three dimensional translation (L=low pass
filtered, h=high pass filtered) and complete recursive decomposi-
tion.

To transform signals of higher dimension, we apply the 1d
wavelet transform in all three dimensions separately, resulting in
a 3d tensor productwavelet transform [25] as seen in the left part of
figure 2. After the firstwavelet transform of the whole volume, we
apply the 3dwavelet transform to the low sub band recursively. We
repeat this step four times to get the sub bands seen in the right part
of figure 2. Any furtherwavelet transforms does usually not reduce
the size of the compressed volume, but rather introduce more visual
artifacts.

Previous approaches of volume compression used the simple
Haarwavelets. Higher orderwavelets on the other hand have some
properties that make them very suitable for implementation of a
compression algorithm, such as more than one vanishing moment,
i.e. polynomials that map to a singlewavelet coefficient only. The
Daubechieswavelets [7] are thewavelets with maximum vanishing
moments at a given support. But there is also a major drawback
when using higher orderwavelets due to their longer support. If we
want to reconstruct a signal using awavelet of support greater than
2, we need a periodic extension of the original signal and therefore
for each of the sub bands as this is the only way to maintain the
same number ofwavelet coefficients for any family ofwavelets re-
gardless of their support. Although this might seem to solve all our
problems with higher orderwavelets, we have to keep in mind that
our volume is not of periodic nature and may therefore have very
high contrast between its opposite surfaces.

A better way of extending our signal for higher orderwavelets
would be a symmetric extension, i.e. the signal is mirrored at it’s
borders. Although this removes our border problem, we now need
symmetricwavelets [9]. Yet constructing a symmetricwavelet is
not possible, as we require thewavelet to be orthonormal to guaran-
tee a change of the basis of the functional space. Although it is pos-
sible to constructwavelets that are as symmetric as possible, i.e. the
Coiflets proposed by Coifman and later constructed by Daubechies
[10], they can still not be used with symmetric extension. How-
ever, if we use a different filter for reconstruction, we can construct
symmetric, so called bi-orthogonalwavelets. The CDFwavelets
introduced by Cohen, Daubechies and Feauveau [6] are the most
widespread bi-orthonormalwavelets used for image encoding and
will also be used in addition to Haarwavelets, Daubechies Wavelets
and Coiflets.

2.2 Quantization

After thewavelet transform, the complete volume is represented by
wavelet coefficients in floating point values, enabling us to recon-
struct the original volume correctly. To reduce the data to be stored
while maintaining a minimum error inL2 norm, we first have to
choose the dead zone [26], i.e. the range that will be mapped to
zero, for each different region ofwavelet coefficients seen in fig-
ure 2 to cut down the number of non-zerowavelet coefficients. The
remaining coefficients then have to be scaled and quantized appro-
priately for the further compression. To take the sensitivity of the
human visual system for different frequencies into account, we use
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level LLH LHH HHH dead zone
0 0:80 0:60 0:50 0:33
1 0:80 0:60 0:50 0:60
2 0:60 0:40 0:30 0:60
3 0:30 0:20 0:15 0:60
4 0:13 0:08 0:06 1:00

Table 1: Factorsf for quantization (f �maxQuant) and dead zone
(1 + f �maxDead) of different levels and regions of thewavelet
coefficients, resulting in2f �maxQuant + 1 possible quantized
values perwavelet coefficient.

individual dead zones and scaling factors with different regions of
the transformed volume after all coefficients have been normalized
to a range of[�1; 1].

There is only one region ofwavelet coefficientsLLL0 that has
been transformed using the low pass filter only. At each of the
five recursion levels there are three regions that have been filtered
through the high pass filter onceLLHi/LHLi/HLLi, three re-
gions that have been high pass filtered twiceLHHi/HLHi/HHLi

and only one region that has been high pass filtered three times
HHHi. Since we treat all three directions equally only the num-
ber of high or low pass filters applied to each region are of interest.
This delivers a total of 16 different regions ofwavelet coefficients.

With a user defined global maximummaxQuant for the num-
ber of coefficients and a global maximum dead zonemaxDead the
dead zones and quantization steps are defined as follows. ForLLL0
the interval[0; 1] is split intomaxQuant steps while the dead zone
is defined as1 + 4

15
maxDead as large as the difference between

two quantized values. The maximum number of coefficients and the
relative size of the dead zone for the remaining regions ofwavelet
coefficients within the range of[�1; 1] can be seen in table 1. The
dead zone and the quantization steps have been adapted to represent
similar amounts of visual contrast depending on the underlying fre-
quency, according to the threshold contrast sensitivity function [12]
that represents the sensitivity of the human visual system for con-
trast at different frequencies.

The user definesmaxQuant = 127 + quality � 128 and
maxDead = 20�(255�quality)=255 by specifying thequality
parameter in the range[0; 255] to easily define the compression ra-
tio while trying to minimizing the visual loss and drop in PSNR.

2.3 Encoding

After the quantization step we have to encode thewavelet coeffi-
cients to store them using as few memory and decompression time
as possible. To choose the right type of compression, we first have
to take a close look at the data to be compressed. The goal of the
quantization was to cut as many coefficients as possible down to
zero, so the most simple and fastest compression can be achieved
by run-length encoding all zeros. To produce as few overhead as
possible, we just compress a run ofn zeros by storing0 followed
by n � 1. Therefore a single0 becomes a sequence of0 0 and
is therefore the only way that the compressed data will expand.
If n exceeds the number of possible quantization steps, the run is
split into several compressed sequences. We also have to specify a
traversal order through the regions of thewavelet coefficients. The
fastest way to encode and decode thewavelet coefficients is to store
each line within a region ofwavelet coefficients individually (see
figure 3a). While this already produces long runs of zeros, there is
a more sophisticated methods for achieving even longer runs. Sim-
ilar to the zero trees [23], we use a depth first traversal through an
octree that holds all ourwavelet coefficients within each region of
wavelet coefficients separately (see figure 3b). As regions of zero
coefficients are more likely to be stored in a single run, this delivers
even longer runs of zeros. However the non-linear memory access
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Figure 3: Order of traversion within a region ofwavelet coeffi-
cients.

results in a severe loss of decoding speed.
This already results in fairly good compression ratios while

needing very little time for decompression, but there is still a very
simple and effective way to further improve the compression. The
LZH algorithm [29] compresses a repeating sequence of different
values by storing the reference to the last appearance of the same
sub string. While the compression, due to the searching for match-
ing strings within a given range of previously compressed coeffi-
cients, takes quite long, the additional time needed for decompres-
sion is nearly not noticeable. Reading the compressed data may
even be slightly faster than reading uncompressed data due to the
reduced amount of disc access.

The compression ratios up to now are quite good, but for storing
an animated volume dataset, we have to achieve compression ratios
beyond 100:1 for single volumes. The aim of arithmetic coding is
basically to store a sequence of intervals using as few bits as possi-
ble by storing the shortest bit string within this interval. The main
part of every compression using arithmetic coding is the model that
translates the incoming symbols into intervals and vice versa. As
these models can be very powerful, they can be used to implement
any compression algorithm.

The most simple model presented by Moffat, Neal and Witten
[19] that can be applied for encoding ourwavelet coefficients is the
adaptive model. At the beginning of each region ofwavelet coeffi-
cients, the intervals of each quantized coefficient are of equal size
and the counter of their references is set to one. After encoding a
coefficient, the corresponding counter is increased by one and all
intervals are resized accordingly. As the counters are organized in a
binary tree, the intervals are only to be computed if the correspond-
ing coefficient is encoded. The time needed for the computation
of these intervals and therefore the compression or decompression
time needed for a single coefficient isO(log(n)) with n being the
number of possible coefficients. Therefore the decompression gets
faster as the number of possiblewavelet coefficients decreases.

There is also a way to implement an optimized kind of run-
length encoding into the model. After a zero is encoded, the model
switches tozero mode. While in zero mode, the arithmetic coder
always receives the interval between 0 and 1, i.e. it does not en-
code anything, as long as the coefficients that are to be compressed
remain zero. After receiving a non-zero coefficient, the arithmetic
coder receives a combined interval representing the number of ze-
ros received and the newwavelet coefficient. The number of ze-
ros is stored similar to the run-length encoding. Up ton zeros
are stored using only a single interval, while values beyondn are
stored by an interval that notifiesn+ zeros. Using a value of 127
for n showed up to be very good for nearly all datasets and quan-
tizations, resulting in 128 intervals for run-length encoding that are
updated using the same adaptive scheme as used for thewavelet
coefficients. Therefore the length of each run is compressed in a
more optimal way than by a run-length encoding prior to the arith-
metic coding. An additional optimization is to store a bit-pattern,
that is also encoded arithmetically using only two symbols, to mark
unusedwavelet coefficients. This results in the compression of a
region consisting of zeros to this previously stored bit-pattern only.

The last method of compressing thewavelet coefficients is the
zerotree coding of Shapiro [23] combined with an arithmetic en-
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Figure 4: Previous image and current image (upper row). Differ-
ential image, standard motion compensation and windowed motion
compensation (lower row).

coder using an adaptive model. Although this might seem the most
natural way to exploit the huge amount of zeros and the hierarchical
nature of thewavelet coefficients, this turns out not to be the best
encoder most of the time and also by far the slowest one.

3 Volumetric Animation

To store animated volumes rather than single volumes effectively
requires to exploit the temporal coherency between consecutive vol-
umes. The most simple way to exploit the temporal coherency is
storing the difference between the current and the previous volume
rather than the current volume. Although this already reduces the
compressed data significantly, it is not sufficient for storing large
volumetric animations, therefore we have adapted the motion com-
pensation used for video encoding.

3.1 Motion Compensation

The easiest way is to store differential volumes only, as seen in fig-
ure 4 (shown for 2d images for clarification). As this is not very
effective for ourwavelet compression scheme, we implemented a
simple motion prediction and compensation. The motion predic-
tion is done by simple block matching of83 blocks between the
two volumes. The motion compensation is done before the differ-
ential encoding to reduce the differential content. A block of high
similarity, i.e. minimum mean square error, in the previous image is
computed by searching this minimum starting from a motion vector
of length0 using15 steps in all three directions. This is similar to
finding the correct motion vector using optical flow methods. This
results in313 possible motion vectors that have to be stored using
some kind of encoding. The search for the local minimum mean-
square error guarantees that most of the resulting motion vectors
will be of zero length or at least close to zero length making an
arithmetic encoding with a simple adaptive model the best choice
as encoder.

The usual, i.e. MPEG, method for computing a motion com-
pensated image is to map each block of the to be constructed vol-
ume onto a block of the previous volume as seen in figure 4 for
two dimensional images. However in combination withwavelet
transformation, this results in severe problems if the motion vec-
tors of two neighboring blocks are different, i.e. regions of high
contrast are present. Usingwavelet transformation, these high con-
trasts result in largewavelet coefficients in regions that correspond
to high frequencies and therefore low compression ratios. There is
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Figure 5: Scaling function used for the cosine windowed motion
compensation with neighboring windows.
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Figure 6: Reconstruction and storage order for different types of
volumes and sequences, similar to MPEG. a) motion compensated
differences b) motion compensation only, c) popular MPEG order

another drawback using this simple approach. Due to the nature
of the quantization scheme applied to the differential images these
wavelet coefficients will be quantized very strong and therefore re-
sult in a large error.

The solution to this problem is the windowed motion compen-
sation introduced by Watanabe and Singhal [28]. The blocks are
extended to123 overlapping blocks and filtered by a function with
a cosine falloff at both ends (see figure 5) in all three directions as
the sum of all neighboring window scaling functions and therefore
the sum of all voxel weights with the window is already one. Al-
though the computational overhead introduced by these overlapping
blocks is with a theoretical value of2:375 very high, it shows up
that this has no severe impact on the performance in practice, due to
the higher number of cache hits if the volume is reconstructed voxel
by voxel, rather than block by block. The volume that has to be en-
coded usingwavelet transforms does no longer have regions of high
contrast, as seen in figure 4 and therefore lesswavelet coefficients
differ from zero.

Similar to the naming conventions of the MPEG compression
[14, 15], awavelet compressed volume is called I-volume (see fig-
ure 6). We use two different ways to reconstruct an individual vol-
ume using motion compensation. The P-volume is reconstructed by
using a motion compensated version of the previous I- or P-volume
and wavelet compression of the difference between this predicted
and the actual volume. The B-volume is reconstructed by using
a weighted average between a motion compensated version of the
last and the next I- or P-volume similar to the compression scheme
used in MPEG compression as seen in figure 6. There is no fixed
sequence of I-, P- and B-volumes but any sequence of P- or B-
volumes between two I-volumes can be defined. Note that the vol-
umes are not stored in their original order, but in the order of their
first usage, i.e. the B-volumes are stored after the next P- or I-
volume. In our experiments, we analyzed various sequences for
compression ratio and visual impression. It turned out that using
the popular MPEG sequence (figure 6c) delivers the best results.
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a) b) c) d)

Figure 7: Visualization using stack of textures with uniform trans-
parency (a), register combiner (b), 3d texture (c) and raycasting (d).

4 Playback

The single volumes of the animation are decompressed in their stor-
age order rather than in the order of playback. To compensate the
different times needed for the decompression of an individual vol-
ume, we have to take a closer look at the decompressed volumes
for each new time step. For this we choose the third sequence in
figure 6. In a setup step, the first I-volume and the first P-volume
are decoded to make sure that all the volumes for interpolation of
the next volume (a B-volume) are present. The second and the third
volume are decoded without any special treatment. Reaching the
fourth volume, the already decoded P-volume, we decode the next
P-volume as this one is needed for the next B-volume. After decod-
ing the next two B-volumes, we start decoding the next sequence,
starting with it’s I-volume. Before displaying the first volume of
this new sequence, we decode the next P-volume and reach the
same state as at the beginning of our decoding. Thus we only have
to decode one volume at a time, resulting in smoother playback of
our volumetric animation.

To achieve an on the fly decompression in real time, we have to
further optimize the decompression. Using LZH coding the bottle-
neck of the algorithm is writing the decodedwavelet coefficients
into their correct position, therefore we restrict our self to storing
them line by line rather than in the octree depth first order. Most of
the time this reduced the compression ratio slightly but makes bet-
ter usage of the write cache and thus speeds up the decompression
significantly. Using the arithmetic coding, we have an integer mul-
tiplication and an integer division as part of the main interval coder
and therefore no need to optimize the writing of thewavelet coeffi-
cients in terms of cache hits, as this does not result in any noticeable
speedup.

4.1 Visualization

We still need a high quality visualization in real-time to display our
decoded volume data. The fastest way of visualizing a volume us-
ing standard pc hardware is the usage of a texture stack along the
main viewing direction as proposed by Brady et. al. [4]. This stack
of textures is combined using planes along each texture and alpha
blending hardware. As we need a stack of textures for each of the
main viewing directions, this results in storing the volume three
times in texture memory. However, during playback of a volumet-
ric animation, the viewing direction only changes between different
volumes and therefore a single stack of textures is sufficient. The
usage of textures also enables us to easily define a transfer func-
tion between the values stored in the volume and the ones stored
in the texture stack. Although this gives a good first impression of
the dataset (see figure 7a), modern pc hardware allows for more so-
phisticated algorithms, that do not produce as many artifacts as this
approach.

Up to now we ignored the effects seen in figure 8 that lead to
some severe problems if we change from one texture stack to an-
other, or if we rotate a dataset, as the opacity of the volume seams
to change. The register combiner of the GeForce GPU from NVidia
allows us to modify the opacity of the volume data depending on
the angle between the surface normal and the vector pointing from
the viewing location to a point on the surface and therefore allows
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Figure 8: Different distancesd between textures introduced by dif-
ferent viewing points and perspective distortion and correction of
these differences using 3d textures.

for better visualization algorithms. Due to the exponential behav-
ior of the opacity and the lack of this kind of operation within the
combiner, we have to simulate this exponential falloff. The main
idea for the approximation is to interpolate between the opacity and
the squared opacity at each pixel of the display. In order to do so,
we build a texture to look up suitable weights for the linear and
squared� values using the angle between the viewer and the sur-
face normal. A first approach for generating this lookup texture is to
store the distance minus oned�1 between two slices as weight for
the squared opacity. Although this roughly represents the correct
alpha values, there is still a large error for small values, i.e. very
transparent regions, as seen in figure 9. Since a large error in a very
transparent region produces much more visual artifacts than a large
error in a very opaque region as the error is accumulated in regions
of high transparency, we optimize the lookup texture to minimize
the relative mean square error ((error=orig:alpha)2), by storing
t(d) instead ofd� 1. The relative mean square error is given by

Z
2

d=1

Z
1

�=0

(1� t(d))�+ t(d)�2 � �d

�
d�dd or (1)

Z
1

�=0

(1� t(d))�+ t(d)�2 � �d

�
d� (2)

for a specific value ofd. Since we don’t have to specifyt(d) but
only need its values for a limited number of distancesd and with
a limited accuracy we can minimize the previous equation numer-
ically by trying all 256 possible values fort(d). As already men-
tioned this reduces the error for all but the very opaque regions. The
approximation of the exponential falloff now only produces the er-
ror seen in figure 10. The resulting visualization can be seen in
figure 7b.

Although this approach removes most of the problems men-
tioned above, there are still some small visual artifacts if we move
from one texture stack to another. The easiest way to remove this
effect is to render the volume from all three directions and combine
the resulting images using a weighted average. This can also be
done very effectively using texture hardware. The major drawback
of this approach is that we have to transfer all three texture stacks
to the graphics adapter, resulting in a severe loss of speed.

Another way to render the dataset with correct transparencies
is to utilize 3d textures and shells (small subsections of a sphere)
which completely avoids the switching of texture stacks and per-
spective distortion. Unfortunately among the consumer hardware
only the ATI Radeon, that has also been used for testing purposes,
is able to handle 3d textures in hardware. On the other hand, the
GeForce is able to do tri-linear interpolation between any two slices
of our dataset, as shown by Rezk-Salama et al. [21], so all we have
to do is make sure that no polygon needs any interpolation between
three or more slices during their construction as seen in figure 8.
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Figure 9: Resulting absolute error introduced by using a simple
lookup texture.
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Figure 10: Resulting absolute error in the range of 0 to 255 intro-
duced by using an optimized lookup texture, to produce less relative
error (error=orig:alpha).

Using this simple but very effective trick, we are able to simulate
3d textures on a GeForce graphics adapter.

There is still one problem left, the undersampling along the view-
ing axis. We only sample at the resolution equal to the distance
between two slices, as seen in figure 7c. The undersampling can
only be removed by using more shells which is not very effective
due to the limited precision of the frame buffer or by using ray-
casting. Although raycasting produces the best results (as seen in
figure 7d), it can not be used for interactive visualization of our ani-
mated datasets using standard PC hardware due to the time consum-
ing calculations that have to be carried out. Another option is to use
a special purpose hardware within a standard PC such as the Vizard
II [18] or the VolumePro [20]. However special purpose hardware
is not as widely spread as the need for volume visualization.

5 Results

All tests have been carried out on an AMD K7 running at 800 MHz
using a GeForce 2 graphics adapter (first configuration) or on an
AMD K7 running at 1000 MHz using a Radeon graphics adapter
(second configuration).

As expected the usage of higher orderwavelets does not only re-
duce the size of the compressed volumes while enlarging the Peak-
Signal to Noise Ratio (PSNR) as seen in table 2, but does also sig-
nificantly improve the visual impression as seen in figure 11 and

wavelet I-vol. P-vol. B-vol. ratio
Haar 47.363 47.022 40.613 1:27.30
Daubechies 4 48.673 47.784 40.756 1:30.96
Coiflets 6 48.615 47.751 40.750 1:33.27
CDF 2/6 49.015 47.990 40.787 1:34.28

Table 2: PSNR comparison between differentwavelets using maxi-
mum quality, the popular MPEG like sequence and arithmetic com-
pression.

a) b)

c) d)

Figure 11: Static volume compressed at a ratio of about 40:1 us-
ing Haarwavelet , Daubechieswavelet (b, support 4), Coiflets (c,
support 6) and CDFwavelet (d, support 2/6)wavelets.

better preserves features. The original volume can be seen in the
color plates.

The PSNR of I- and P-volumes also depends on the compression
ratio as seen in figure 12. The quality of the B-volumes on the
other hand does only roughly depend on this quality setting (see
figure 12), as these volumes are not reconstructed usingwavelet
transforms but using motion compensation only.

As already mentioned, the decompression times achieved using
arithmetic encoding depend on the quantization used, as both the
number of zeros increases and the depth of the tree that has to be
updated dynamically decreases. Using LZH encoding, neither of
these two properties does have any effect on the decompression
times as seen in table 3. The LZH encoding performs a lot bet-
ter than the arithmetic encoding in terms of speed (up to two times
faster using high quality settings) but worse in terms of compres-
sion ratio (about 30% more compressed data at moderate to high
quality). This allows for about 4 frames per second regardless of
the chosen quality. Note that the speed on the second configuration
is not limited by the decompression time, but rather by the memory
bandwidth during the 3dwavelet transform.

As seen in figure 13 the PSNR of the B-volumes (the dotted line)
is significantly lower for high quality volume animations. Remov-
ing the motion compensation at these high quality settings results
in an improvement of the PSNR but also increases the size of the
compressed data, as seen in table 4. At a lower quality setting, the
PSNR increases if we use motion compensation again while also
decreasing the size of the compressed data. Testing different quali-
ties and sequences demonstrated that the popular MPEG sequence
(the first sequence in figure 4) should always be used with only one
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Figure 12: Average PSNR of each different kind of volume against
bits per voxel (CDFwavelet with support 2/6 and popular MPEG
like sequence).

quality arithmetic fps1 fps2 LZH fps1 fps2
255 34.28:1 1.58 1.77 25.89:1 3.23 3.62
127 77.28:1 2.06 2.34 56.10:1 3.25 3.62
63 109.69:1 2.35 2.74 82.32:1 3.25 3.62
31 150.34:1 2.64 3.01 134.59:1 3.27 3.62
15 173.64:1 2.80 3.17 171.15:1 3.28 3.62

Table 3: Comparison regarding compression ratio and frames per
second (using 2d textures on system 1 and 2) between different en-
coders using various qualities, the popular MPEG like sequence and
the CFD wavelet with support 2/6.

exception. If we desire a nearly lossless compression of every vol-
ume, rather than every third volume, we should use only I-volumes
or I-volumes and P-volumes as this will result in the highest possi-
ble PSNR.

Although the 2d textures are a lot faster on both configurations
than the 3d textures (see table 5), we still get interactive frame rates
on both configurations that do not have a heavy impact on the play-
back speed of a compressed volume animation. On the other hand,
the optimized 2d textures running on the GeForce2 graphics adapter
do not need any additional time and sometimes even produce less
visual artifacts as the 3d textures (see volume borders in figure 14).

If we wish to compress a volume animation without generating
too many noticeable visual artifacts that will playback at interactive
frame rates of about 4 frames per second on our testing configu-
rations, we achieve compression ratios of about 50:1 using CDF
wavelets, a quality setting of about 127, the popular MPEG se-
quence and LZH encoding. If we need high compression ratios
rather than fast visualization, we are able to reach a ratio of about
75:1 by replacing the LZH encoding by arithmetic encoding with-
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Figure 13: PSNR of each kind of volume of the first 500 volumes
of a 2000 volume animation (CDFwavelet with support 2/6, maxi-
mum quality and popular MPEG like sequence).

sequence ratio (255) PSNR ratio (15) PSNR
IBBPBBPBB 34.28:1 43.308 173.64:1 26.159
IBB 28.84:1 43.702 160.70:1 26.040
IPP 13.77:1 48.408 168.85:1 20.396
I 10.09:1 49.004 153.43:1 20.089

Table 4: Comparison between different sequences using CDF
wavelet with support 2/6, arithmetic encoding and maximum (in-
termediate) quality.

configuration 2d textures 3d textures
GeForce2, AMD K7 800 MHz 78.62 fps 12.03 fps
Radeon, AMD K7 1000 MHz 116.26 fps 10.01 fps

Table 5: Time needed for visualization of a static volume dataset on
the two different configurations (without any decompression).

out any additional loss of data. Using a transfer function of high
contrast will emphasize visual artifacts. Our example animation
(figure 11) has an absolute derivative of 5 in the alpha component
of the transfer function. A transfer functions of lower contrast will
allow for a compression ratio of 100:1 and beyond without visual
artifacts.

6 Conclusion & Future Work

In this paper we have shown a very efficient approach to decom-
press and visualize animated volume datasets in real time on stan-
dard pc hardware. Thefavored compression scheme uses a quality
setting of 63 and the popular MPEG sequence with either arith-
metic or LZH coding. The presented algorithm does not exploit the
possibility for parallelization of thewavelet transform or the mo-
tion compensation and therefore leaves a lot of room for further
optimization using a single processor (3DNow or SSI instructions)
and multiple processors. Although the sole visualization of each
volume is quite fast, this part can also be split up into several sub-
volumes that are to be rendered using a cluster of standard PCs.

Replacing thewavelet transform with the corresponding lifting
steps according to Daubechies and Sweldens [8] is a further possi-
ble optimization that also enables us to implement a lossless com-
pression scheme using integerwavelet transforms as supposed by
Calderbank [5]. However lifting steps only pay off forwavelets
with longer support that have not been examined in our experiments
by now.
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Original engine dataset Compression ratio 200:1, Haarwavelet Compression ratio 200:1, CDFwavelet

Original lobster dataset Compression ratio 100:1, CDFwavelet Original volume 1000 of an animation of
2000 volumes

I-only sequence, quality 63, compression ratio
31:1, I-Volume

P-only sequence, quality 63, compression
ratio 50:1, P-Volume

MPEG sequence, quality 63, compression
ratio 110:1, B-Volume
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