TECHNISCHE
UNIVERSITAT
DARMSTADT

Technical Report
08rp015-GRIS

A Multi-View Stereo Implementation on
Massively Parallel Hardware

Mate Beljan, Ronny Klowsky, Michael Goesele

September 2011
Originally written in 2008

Technische Universitat Darmstadt, Germany
Department of Computer Science
Interactive Graphics Systems Group

Preliminary remark

This is a slightly updated version of a conference submission that was rejected in 2008.
Since on one hand GPU technology is progressing very rapidly and on the other hand
this paper is referenced on the Middlebury Multi-view Stereo benchmark page (http://
vision.middlebury.edu/mview/)) we decided to finally publish it as a technical report.

The authors, September 2011

http://vision.middlebury.edu/mview/
http://vision.middlebury.edu/mview/

A Multi-View Stereo Implementation on Massively Parallel Hardware

Mate Beljan, Ronny Klowsky, Michael Goesele

GRIS, TU Darmstadt

Abstract

In recent years, we have seen several approaches to
implement hardware-accelerated multi-view stereo
(MVS) algorithms employing the graphics process-
ing unit (GPU) for fast and parallel computation. To
our knowledge, all of them resort to various render-
ing passes to perform their computations. In con-
trast, modern GPU compute frameworks give ac-
cess to the massively parallel compute capability
of a GPU without forcing users to express their
computations as rendering passes. This allows for
a broader class of algorithms to be executed on a
GPU and improves flexibility and portability.

We implemented a region-growing MVS ap-
proach for NVIDIA’s CUDA framework, tested it
on several data sets, and compared its computation
time and reconstruction quality to an existing CPU
version. For comparable reconstruction quality we
often achieve a moderate speedup which is mainly
limited by scarce register and memory resources of
the current GPU generation.

1 Introduction

Multi-View Stereo (MVS) techniques are an ac-
tive area of research (see e.g, the MVS evaluation
by Seitz et al. [1, 22] for a good overview of re-
cent results). Modern algorithms are surprisingly
accurate and robust and can be applied to a wide
range of input images including so called commu-
nity photo collections (CPC) gathered from Inter-
net photo sharing sites [7]. Such CPCs can consist
of thousands or even millions of images so that re-
construction speed and efficiency become of prime
importance.

Motivated by the drastic drop in performance in-
crease of a single processor from 52 % per year to
20 % per year since 2002 [10], Asanovic et al. [3]
argue that increasing parallelism will be the primary
way to improve performance. Graphics processing
units (GPUs) have traditionally been highly paral-

lel so that the recent introduction of general purpose
computing frameworks [2, 19] by the major vendors
was a logical next step. Exploiting this parallelism
requires, however, problems that are well suited for
the GPU and implementations that match the spe-
cific constraints of the underlying hardware archi-
tecture such as memory access patterns and pro-
gram flow.

We implemented the recent MVS system by Goe-
sele et al. [7] for GPUs using NVIDIA’s Com-
pute Unified Device Architecture (CUDA) [19] and
compared the performance to an optimized CPU
version of the algorithm. To our knowledge, this is
the first MVS implementation on GPUs that does
not use the actual rendering system' to improve
performance but relies solely on the available mas-
sively parallel compute capability. Thus the system
theoretically works on other parallel systems as well
and is not constrained to graphics hardware. Our
contributions are as follows:

e We analyze the existing region-growing MVS
algorithm [7] for parallelism and discuss dif-
ferent granularity options.

e We implement a GPU adapted version using
the CUDA framework which processes a large
number of pixels in parallel.

e We evaluate the algorithms reconstruction
quality for various datasets and compare its
speed to an optimized CPU implementation of
the original algorithm.

The remainder of this paper is organized as fol-
lows: We first discuss related work in Section 2
before we give an overview of the basic MVS ap-
proach and a short introduction to CUDA in Sec-
tion 3. We then introduce the core optimization rou-
tines of the MVS system (Section 4). Section 5 dis-
cusses implementation details and the detailed map-
ping of processes. Some results of our evaluation
can be found in Section 6 before we conclude and
discuss future work in Section 7.

'We do, however, use the texturing units to access bilinearly
interpolated pixel values in the input images.

2 Related Work

There is a large body of previous work on multi-
view stereo systems. We therefore refer to a recent
survey and evaluation study by Seitz et al. [1, 22]
for an overview and classification of existing tech-
niques. We focus here on MVS approaches with
GPU-based components. All of these make use of
the classical rendering pipeline with programmable
extensions such as vertex and fragment shaders.

The earliest MVS system on GPU by Yang et
al. [26] applies a plane-sweep stereo approach. Im-
ages from multiple views are projected on planes
at different candidate depths. For each pixel, the
depth value with the most consistent color is se-
lected and stored in a depth map. Subsequent ap-
proaches extend this technique by operating in a
multi-resolution framework [5, 25] or by introduc-
ing multiple sweeping directions [6]. Merrell et al.
[18] fuse multiple depth maps from a plane sweep-
ing approach with a visibility-based algorithm on
the GPU.

Hornung and Kobbelt [11] create an efficient
pipeline for volumetric photo-consistency estima-
tion that maps visual hull computation, visibility
determination, and photo-consistency computation
to various rendering passes on a GPU. Surface ex-
traction is performed using a standard volumetric
graph-cut approach [24]. Several authors propose
variational multi-view stereo schemes [14, 16, 21]
that again apply basic rendering techniques such as
projective texture mapping or shadow mapping to
accelerate the computation. Gong and Yang [8] and
Zach et al. [27] describe stereo matching techniques
based on dynamic programming that make exten-
sive use of GPU computations.

Most recently, Hornung et al. [12] propose a
view selection technique that selects suitable image
sets for MVS reconstruction. The compute intensive
parts of the algorithm are performed on the GPU.

In contrast to all of these approaches, we do not
benefit from the various features of a GPU’s ren-
dering pipeline (except for bilinearly interpolated
texture access). Instead, we treat it as a massively
parallel processing system and implement a version
of the MVS approach by Goesele et al. [7] that pro-
cesses multiple pixels in parallel. The core of this
approach is a per-pixel non-linear optimization of
depth and surface normal. This algorithm maps well
onto the CUDA compute framework [19] which is

based on a single instruction multiple data (SIMD)
architecture [17].

3 Overview

In this section, we briefly review the MVS approach
by Goesele et al. and describe the main features
of CUDA that are relevant for our implementation.
Please see the original publications [7, 19] for more
detailed discussions.

3.1 MYVS Algorithm

The basic MVS algorithm [7] takes as input a set
of images captured under controlled or uncontrolled
conditions (e.g., community photo collections from
Internet photo sharing sites). The images are pro-
cessed with a Structure-from-Motion (SfM) system
[4, 23] yielding extrinsic and intrinsic calibration
data for the subset of images that were successfully
registered. In addition, the matched SfM features
yield a sparse representation of the scene geometry
and are used to initialize the region-growing.

The core of the algorithm is the computation of
depth maps for each registered input image (called a
reference view). In the global view selection step, it
first determines a set of neighbor views which will
potentially be used in the next phase for correla-
tion based matching. For each pixel in the reference
view, the local view selection determines a propi-
tious subset of neighboring views. These views are
used to estimate depth and surface normal using a
robust version of multi photo geometric constraint
(MPGC) matching [9].

The general idea is to match pixel intensities in
an n xn neighborhood around the pixel in the refer-
ence view to the corresponding patches in the neigh-
boring views by iteratively adjusting depth, normal
and color scale. The color scale models illumina-
tion differences between views. For speed and sta-
bility reasons, the normals are only updated every
fifth iteration (see also the pseudo code of the al-
gorithm in Figure 1). Pixel intensities are compared
between views using normalized cross correlation
(NCC) as photometric consistency measure. The
process stops on convergence or when a maximum
number of iterations is reached.

Instead of processing the pixels in arbitrary or-
der, the depth map computation follows the region
growing approach by [20] which processes pixels in

processPixel (s, t, dh, dh_s, dh_t){
updateColorScale ();
for (int i=1; i<=MAXITERATIONS; i++){
if(i %5 == 0){
updateDepthAndOrientation ();
updateColorScale ();
}
else
updateDepthOnly ();
computeNCC () ;
checkConvergence ();

}
}

Figure 1: Pseudo code for depth, normal, and color
scale optimization of a single pixel. Mathematical
details of the functions are described in Section 4.
Implementation details are given in Section 5.

the reference view in prioritized order according to
their estimated matching confidence.

Merging the depth maps obtained for each input
image provides a dense 3D point cloud represent-
ing the scene. With the additional knowledge of the
surface normal at each point, Poisson surface recon-
struction [13] can be applied to get a final mesh.

The main opportunity for parallelization of the
algorithm lies in the per-pixel estimation of depth
and surface normal. This requires processing a set
of pixels with highest priority in parallel which may
slightly decrease the quality of the results whereas
offering almost linear speedup with the number of
available processors.

3.2 Compute Unified Device Architecture

The Compute Unified Device Architecture (CUDA)
distinguishes between the host which runs the main
program in a standard serial fashion and the mas-
sively parallel device (the GPU). In order to use
the GPU for compute purposes, a host program can
launch a kernel on the device which consists of
a large number of threads (typically thousands or
even millions of threads) executing the same pro-
gram in parallel. Threads are organized in blocks
of warps with currently 32 threads per warp. All
threads in a warp execute the same instructions si-
multaneously in a SIMD fashion whereas different
warps in the same block execute the instructions in-
dependently.

All threads in a block have access to a com-
mon fast shared memory in order to exchange data.

Threads in different blocks can only exchange data
via the much slower main memory of the graphics
card (global memory). Physically, a graphics card
contains multiple multiprocessors. A block is al-
ways executed on a single multiprocessor. In order
to make efficient use of the hardware it is therefore
essential to run at least as many blocks in a ker-
nel as there are multiprocessors on the card. In ad-
dition, the number of threads per block should be
high enough to hide latencies encountered during
memory access. The number of threads per block
is, however, often limited by other resources such
as the number of registers or the amount of shared
memory available per multiprocessor.

4 Optimization

To process a single pixel with coordinates (s, t)
of the reference view (see Section 3), we optimize
depth and normal of the corresponding 3D point. In
order to do that an nxn neighborhood surrounding
(s, t) is matched with a set of neighboring views ob-
tained by the local view selection. With I and I}
denoting the intensities in the reference view and
the neighboring view k, respectively, and cj, being
the color scale, an ideal case would result in

I(s+it+j)=ci - Ii(s+i,t+5) (1)

for all neighboring views £k = 1...m, for all
c € {0, 1, 2} representing the three color channels
and for all ,j € {—251... 2%} The positions
(341, t+7) in the corresponding neighboring views
are computed using the calibration data. In the fol-
lowing we will omit the parameters s, ¢, § and # to
simplify matters.

In order to find a good match, we minimize the
following error derived from Equation 1 in a least
squares sense for all pixels in the neighborhood

> TR 4) — ek Ti(i,5)%.)
k,i,j,c

This is performed in an iterative way (see Fig-
ure 1) by either adjusting only the color scale cj,
by changing both depth and normal of the current
sample, or by modifying only the depth.

4.1 Color Scale Update

To obtain the optimal color scale we take the deriva-
tive with respect to cj,, set it to zero, and solve for

c. This yields

Zk,i,j,c I}C%(Zh])) I]?(i,j)
Zk,i,j,c Il?(%])2

3)

c
Cr —

4.2 Combined Depth and Normal Update

To estimate the surface normal we encode the nor-
mal direction using per-pixel distance offsets hs and
h:. These offsets correspond to the per-pixel rate of
change of depth in the s and ¢ directions, respec-
tively (see Figure 2). Linearizing Equation 1 with
respect to the depth leads to

I5(i,7) = ¢k - Te (4, 5) + (4)
5 - W - (dh + i dhs + j dhy)

where dh, dhs, dh: are the differences of the op-
timal values to the initial estimations of h, hs, ht,
respectively.

Equation 4 can be regarded as a system of

3mn? linear equations for the three unknowns
dh,dhs,dh:. With

aIf(3,5) .0If(3,5) .0If(3,7)

. oh on oh

A = Cg, N . e
In(i,) = I£(i,3) - €
b= -
T
x = (dh,dhs, dhy)
we can rewrite Equation 4 as
Az =b. (5)

From Madsen et al. [15] we know that the optimal
solution ™ in a least squares sense solves

(AT Az = A"b. (6)

The matrix AT A is a symmetrical 3 x3 matrix and
can thus be easily inverted if det(AT A) # 0. Ma-
trix A can be decomposed in matrices Ay contain-
ing only the rows of the kth view. This yields A A
as the componentwise sum

ATA =" Af Ay (7
k=1

We will use this decomposition to compute A A
efficiently in parallel.

4.3 Depth Only Update

In the majority of iterations, we keep the normal
fixed, i.e., the estimates for hs and h;, and update
only the depth. Linearizing Equation 1 we thus only
introduce dh while the terms dhs and dh; in Equa-
tion 4 are dropped. We therefore minimize

c /. - c c/s n c aIC 'za j
Z (Ir(4,7) —ck - Ii (2, 5) —ck - LT -dh)*.

— oh
k,i,7,c

8)

Similarly to updating the color scale (Section 4.1)
we take the derivative with respect to the depth h,
set it to zero, and solve for dh resulting in

dh = 1 . 9

o OIS(i,5)) 2
Z <Ck kah)

k7i7j7c

[c c/s 5 c 810 AlaA'
S Uil g) — e - 130G, 3)) e 2D

k,i,5,¢

4.4 Computing NCC

Computation of the convergence criterion and the
photometric consistency measure relies on the nor-
malized cross correlation between the neighbor-
hood in the reference view and an individual neigh-
boring view k. The NCC between two patches con-
taining pixel intensities {z; }i=1...» and {y; }i=1...»
is defined as

2 i1 (@i — %) (ys — Y)
\/Z?:1(xi —2)%- > (Wi —)
(10)
where Z and ¥ are the mean intensity values in each
patch.

NCCy =

5 Massively Parallel Implementation

As discussed in Section 3.1, the goal of our imple-

mentation is to process multiple pixels in parallel.

This can be done at different granularity, e.g.,

e one thread per pixel,

e one thread per pixel and neighboring view, or

e one thread per pixel, neighboring view, and ele-
ment in the nxn neighborhood of the pixel.

Efficient processing using only one thread per pixel

requires processing a large number of pixels in par-

allel. Each thread then uses a large number of scarce

resources (shared memory, registers) which limits

Figure 2: Encoding surface normal using hs and h; [7]. Left: The window centered at pixel (s, t) in the refer-
ence view corresponds to a point x (s, t) at a distance h(s, t) along the viewing ray 7r (s, t). Right: Cross-
section through the window to show parametrization of the window orientation as depth offset h,(s,t).

the number of threads actually running in parallel.
Therefore, performance is likely to be bad.

On the other hand, using one thread per pixel,
neighboring view, and element is also expected to
have sub-optimal performance. The limitation in
this case is the remaining serial fraction — the part
of the algorithm that can only be executed by a sin-
gle thread per pixel (see Chapter 2.5 of Mattson et
al. [17] for a discussion of this effect).

We therefore choose the intermediate solution
with one thread per pixel and neighboring view. The
optimization is performed by a single kernel which
receives as arguments an array of positions and ini-
tial values for h, hs, and h; as well as the number of
pixels in the array that should be processed. Upon
completion it returns the computed parameters and
confidence values which are processed by the host
program. This includes copying of results to the out-
put depth map and adding neighbors to the priority
queue as in the original algorithm [7].

5.1 Memory Layout

We store and access all images on the GPU as tex-
tures using either nearest neighbor sampling (ref-
erence view) or bilinear interpolation (neighboring
views). The corresponding projection matrices are
stored in constant memory. Since we need to ac-
cess the same image values and image gradient
values for the nxn neighborhood in all neighbor-
ing views multiple times per iteration, we keep a
cached version in global memory. This cached ver-
sion is updated once per iteration saving a large
amount of computations (mainly projection of the

point coordinates into the neighboring views) and
texture accesses. Note that access to global mem-
ory and texture access have the same latency if
the sample is not in the texture cache so that this
saves mostly computation time plus some accesses
to constant memory to retrieve the projection ma-
trices. All other per-thread or per-pixel values are
stored in registers or shared memory.

5.2 Parameter Update

Figure 3 shows the pseudo code for the function call
that updates dh, dhs, and dh: according to Section
4.2. This code is executed by each thread, i.e., once
for each pixel and neighboring view. It first com-
putes the elements of ArT A, and AL"D indepen-
dently for each thread. Note that AT Ay, is sym-
metric so that only elements of the upper diagonal
are computed. In the next step, the contributions of
the neighbors to AT A and ATb are summed us-
ing multiple reductions (a tree-based reduction can
compute the sum of 2" numbers in n steps using
n/2 threads, see Mattson et al. [17] for details). The
3x3 matrix A" A is then inverted explicitely (in the
case of det(ATA) # 0) and the updates of dh, dh,
and dh; are computed serially using a single thread
per pixel.

Other functions that compute only the depth up-
date dh, the color scale ¢, or the normalized cross
correlation and confidence values operate according
to the same pattern. They first compute the contri-
bution of each neighboring view k in parallel and
collect the results per pixel using one or multiple
reductions.

updateDepthAndOrientation (int windowNrBlock, int neighborNr) {
// compute matrix and vector elements, note that ATA is symmetric
float3 all=al2=al3=a22=a23=a33=alb=a2b=a3b=0;
for (int index=0; index < WINDOWSAMPLES; index++) {
// read image data for reference view and current neighbor

float3 IR = I_R(windowNrBlock, index);
float3 Ik = I_k(windowNrBlock, neighborNr, index);
float3 Ik_dh = I_k_dh(windowNrBlock, neighborNr, index)

% c_k[windowNrBlock][neighborNr];

all += Ik_dhxIk_dh;

al2 += Ik_dhx(Ik_dh*xoffset_i(index));

al3 += Ik_dhx(Ik_dh*xoffset_j(index));

a22 += (Ik_dhxoffset_i(index)) x (Ik_dhxoffset_i(index));
a23 += (Ik_dhxoffset_i(index)) * (Ik_dhxoffset_j(index));
a33 += (Ik_dhxoffset_j(index)) * (Ik_dhxoffset_j(index));

alb += Ik_dh*(IR — Ik*xc_k[windowNrBlock][neighborNr]);

a2b += (Ik_dhxoffset_i(index)) * (IR — Ik*c_k[windowNrBlock][neighborNr]);
a3b += (Ik_dhxoffset_j(index)) * (IR — Ik*c_k[windowNrBlock][neighborNr]);

}

// sum contribution from all neighbors using reduction;

store in ata, atbh

shared float3 sum[windowNrBlock][neighborNr]=all;
for (unsigned int s = NEIGHBORCOUNT/2; s > 0 ; s >>= 1) {

if (neighborNr < s) {

sum[windowNrBlock][neighborNr] += sum[windowNrBlock][neighborNr + s];

}
}

ata[windowNrBlock][0] = sum[windowNrBlock][0];
// same reduction for the remaining elements of ata, atb

// invert the symmetric matrix ATA explicitly
// solve for the depth and orientation parameters using a single

if (neighborNr == 0) {

}
}

if det(ATA)!= 0 and
thread

Figure 3: Pseudo code for updateDepthAndOrientation. Each thread executes this function for its pixel po-
sition (encoded as windowNrBlock) and neighboring view (encoded as neighborNr). WINDOWSAMPLES is
the number of elements in the neighborhood around the pixel, i.e., WINDOWSAMPLES=nxn=n?. NEIGH-
BORCOUNT is the number of neighboring views currently active.

5.3 Local View Selection

Local view selection plays an important role in the
original MVS algorithm [7] since it allows to ex-
clude non-matching views from the optimization.
It also reduces the computational cost by operating
only on a subset of neighboring views (the active
views) and ensures parallax between these views.

We implemented a modified version of local view
selection. Initially, we use all neighboring views for
each pixel’s optimization and remove views form
the active set if the photometric consistency mea-

sure fails for that view. The optimization stops if
less than a given number of views are active. This
implementation avoids complex local view selec-
tion operations on the GPU. Since samples are com-
puted from more neighboring views, the quality of
the depth maps typically improves.

Unless noted otherwise, we used four active
views out of eight neighboring views selected by
the local view selection for CPU code. The GPU
works as above requiring at least four active views.

6 Results

We compare our work with the results of an im-
proved implementation of the MVS code provided
by the authors [7]. Due to various optimizations,
this code is about ten times faster than the orig-
inal code while maintaining the quality of the re-
sults. In addition, radial distortion of input images
from CPCs is no longer corrected in a preprocess-
ing step relying on a database of known camera pa-
rameters. Instead, the radial distortion parameters
are included in the estimation of intrinsic parame-
ters during the SfM phase which improves overall
accuracy.

All results were computed on a Linux PC with an
Intel Quadcore CPU with 2.66 GHz equipped with
a NVIDIA GeForce 8800 GT and a NVIDIA Tesla
C870. The Tesla C870 was used to run the CUDA
Version 1.1 code since it is only used for comput-
ing and does not run the graphical display. It con-
tains 16 multiprocessors with 8192 registers and
16384 bytes of shared memory per multiprocessor.

We tested the system on three datasets: The tem-
pleFull dataset from the Middlebury benchmark [1],
the Florence dataset consisting of 458 images of the
Duomo in Florence captured under outdoor condi-
tions, and the CPC of the Statue of Liberty down-
loaded from Internet photo sharing sites.

6.1 Registers vs. Local Memory

The number of pixels processed in parallel on a
single multiprocessor is limited by the number of
available registers or the amount of shared mem-
ory. CUDA allows to limit the number of registers
per thread at compile time using the maxrregcount
compiler flag.

We tested several configurations with different
number of registers per thread (see Table 1). In each
case, we selected the maximum number of pixels
per thread while avoiding partially filled warps, i.e.,
the number of pixels must be a multiple of four.
Given constant memory access time, all configura-
tions would have almost identical run time.

The 16x8 configuration with 62 registers per
thread maximizes the amount of registers while
minimizing local memory usage and yields the best
performance. We therefore performed all further re-
constructions with this configuration. Note that the
32x 8 configuration returns an invalid number of re-
constructed samples due to an error in CUDA.

Figure 4: View from the Statue of Liberty dataset
and reconstructed depth maps. b) Optimized CPU
version with 8 neighbors and view selection
(113261 samples). ¢) GPU version with 8 neighbors
(119603 samples).

6.2 Performance on CPU vs. GPU

Tables 2 and 3 show the performance of various
versions of the algorithm. There are two versions
— original and optimized — of the CPU implementa-
tion with active local view selection. Additionally,
we modified the optimized CPU implementation to
work with the local view selection algorithm of the
GPU version as described in Section 5.3. If this al-
gorithm is initialized with only four neighboring
views, local view selection is effectively turned off.

The original CPU implementation is about an or-
der of magnitude slower than all other versions. Re-
garding time per reconstructed sample, our GPU
version is faster than the comparable CPU version
except for the Florence dataset with eight neigh-
bors. This exception is probably caused by the low
number of actually reconstructed samples (about
10% less than the other versions).

Applying local view selection in the CPU case
results in an additional speedup as already discussed
in the original paper by Goesele et al. [7].

6.3 Quality of Reconstruction

As shown in Table 2, the number of reconstructed
samples in the templeFull dataset is almost equal for
the corresponding CPU and GPU versions. This is
also visually apparent in Figure 5 which shows the
reference view and renderings of the reconstructed
depth maps.

configuration registers | registers local shared total GPU | recon-
(pixels xneighbors) per per memory memory time structed
thread block per thread | per block samples

8x8 83 5312 120 byte 2876byte | 0.592037s 2191

16x8 62 7936 120 byte 5700 byte | 0.496031s 2191

16x8 48 6144 200 byte 5700byte | 0.516032s 2191

32x8 32 8192 716 byte 11348 byte | 0.464029s 1843

44x8 16 5632 760 byte 15584 byte | 0.864054s 2191

Table 1: Run times for processing the initial SfM features of View 123 from the templeFull dataset [1]
using different configurations of threads. We varied the number of registers per thread using the compile
flag maxrregcount which shifts register content to local memory. The number of threads per block is always
a multiple of the warp size (32) to avoid partially filled warps. Note that the configuration 32x 8 uses all
available registers but yields an invalid number of reconstructed samples due to an error in CUDA. The last
configuration is limited to 44 x 8 threads due to insufficient shared memory.

templeFull dataset execution time | GPU time | reconstructed time
samples per sample

optimized CPU with 4 neighbors 23.26s — 83673 0.278 ms
GPU with 4 neighbors (32x4) 20.81s 12.36s 80972 0.257 ms
original CPU with view selection 335.38s — 92823 3.613ms
optimized CPU with view selection 30.27 s — 99511 0.304 ms
optimized CPU with 8 neighbors 53.40s — 99371 0.537 ms
GPU with 8 neighbors (16 x8) 49.06 s 34.53s 99623 0.492 ms

Table 2: Run times and number of reconstructed samples for the MVS algorithms operating on View 123 of
the templeFull dataset [1]. Execution time gives the overall process time of the MVS algorithm without file
access. GPU time only measures the kernel time and memory transfer between host and GPU. Reconstructed
samples gives the number of samples in the computed depth map. Time per sample is the ratio of execution
time to number of reconstructed samples. The different algorithms are described in Section 6.2.

Florence dataset execution time | GPU time | reconstructed time
samples per sample
optimized CPU with 4 neighbors 90.39s — 318916 0.283 ms
GPU with 4 neighbors (32x4) 72.42s 42.53s 281998 0.257 ms
optimized CPU with view selection 201.45s — 616780 0.327 ms
optimized CPU with 8 neighbors 284.39 s — 618951 0.459 ms
GPU with 8 neighbors (16 x8) 283.17s 194.03 s 563047 0.503 ms

Table 3: Run times and number of reconstructed samples for the MVS algorithms operating on a view from
the Florence dataset. See Table 2 for a description of the different columns.

For an objective quality measure, we submitted
a version of the reconstructed templeFull dataset
to the Middlebury multi-view stereo evaluation site
[1]. We achieved an accuracy of 0.79mm and a com-
pleteness of 92.2%.

In contrast to that, there is a clear difference in the
number of reconstructed samples for the other two
examples. While the view from the Florence dataset
(see Table 3 and Figure 6) has less reconstructed
samples in the GPU version, the reconstructed view
from the Statue of Liberty dataset (Figure 4) has
more samples in the GPU version.

b)

d)

Figure 5: View 123 from the templeFull dataset [1] and reconstructed depth maps. b) Optimized CPU
version with 4 neighbors. ¢) GPU version with 4 neighbors. d) Optimized CPU version with 8 neighbors

and view selection. ¢) GPU version with 8 neighbors.

r

c)

Figure 6: View from the Florence dataset and reconstructed depth maps. b) Optimized CPU version with 8
neighbors and view selection. ¢) GPU version with 8 neighbors.

7 Conclusion and Future Work

We showed that it is possible to implement a region-
growing multi-view stereo system on a GPU using
the CUDA framework. Unlike previous hardware
accelerated multi-view stereo algorithms, this prob-
lem does not naturally and efficiently map to mul-
tiple rendering passes due to the required process-
ing order defined by the priority queue. Note that
grave violation of processing order will often re-
sult in reconstruction faults caused by convergence
of the non-linear optimization to wrong local min-
ima. Our algorithm processes only a small number
of pixels from the top of the priority queue in par-
allel thereby approximately fulfilling the ordering
constraint. It therefore yields different but still high-
quality reconstruction results compared to a serial
version.

As shown in Section 6, we achieve comparable
computation times to the strongly optimized CPU
version. In various cases, we even surpass the per-
formance of the optimized CPU version by up to
10 %. The GPU performance of the studied MVS

algorithm mostly depends on memory access laten-
cies. Since the number of registers and the amount
of shared memory is insufficient on current hard-
ware, we are forced to rely on slow global or local
memory in the computations. Due to the same rea-
sons, we are unable to compensate for the resulting
latency by running more threads in parallel.

Since scarce resources on a multiprocessor are
a common bottleneck in CUDA implementations,
we expect that future hardware generations will al-
leviate this problem. The proposed algorithm will
immediately benefit from this development with-
out redesign. In contrast, reaching a similar speedup
for the already optimized CPU version will re-
quire substantial changes and efforts as predicted by
Asanovic et al. [3].

References

[1]
(2]
(3]

(4]

[5]

[6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

Multi-view stereo evaluation web page.
http://vision.middlebury.edu/mview/.

AMD. AMD stream computing: Software
stack. White paper, AMD, 2007.

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J.
Gebis, P. Husbands, K. Keutzer, D. A. Patter-
son, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The Landscape of Parallel
Computing Research: A View from Berkeley.
Technical report, EECS Department, Univer-
sity of California, Berkeley, 2006.

M. Brown and D. G. Lowe. Unsupervised 3D
object recognition and reconstruction in un-
ordered datasets. In Proc. 3DIM, pages 56—63,
2005.

N. Cornelis and L. V. Gool. Real-time con-
nectivity constrained depth map computation
using programmable graphics hardware. In
Proc. CVPR, pages 1099-1104, 2005.

D. Gallup, J.-M. Frahm, P. Mordohai,
Q. Yang, and M. Pollefeys. Real-time plane-
sweeping stereo with multiple sweeping
directions. In Proc. CVPR, 2007.

M. Goesele, N. Snavely, B. Curless, H. Hoppe,
and S. M. Seitz. Multi-view stereo for com-
munity photo collections. In Proc. ICCV,
2007.

M. Gong and Y.-H. Yang. Near real-time
reliable stereo matching using programmable
graphics hardware. In Proc. CVPR, pages
924-931, 2005.

A. Gruen and E. Baltsavias. = Geometri-
cally constrained multiphoto matching. Pho-
togrammetric Engineering and Remote Sens-
ing, 54(5):633-641, May 1988.

J. Hennessey and D. Patterson. Computer Ar-
chitecture: A Quantitative Approach. Morgan
Kauffman, 2007.

A. Hornung and L. Kobbelt. Robust and ef-
ficient photo-consistency estimation for vol-
umetric 3d reconstruction. In Proc. ECCV,
pages 179-190, 2006.

A. Hornung, B. Zeng, and L. Kobbelt. Image
selection for improved multi-view stereo. In
Proc. CVPR, 2008.

M. Kazhdan, M. Bolitho, and H. Hoppe. Pois-
son surface reconstruction. In Proc. SGP,
pages 61-70, 2006.

10

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

P. Labatut, R. Keriven, and J.-P. Pons. Fast
level set multi-view stereo on graphics hard-
ware. In Proc. 3DPVT, pages 774-781, 2006.
K. Madsen, H. B. Nielsen, and O. Tingleff.
Methods for non-linear least squares problems
(2nd ed.). Technical report, Informatics and
Mathematical Modelling, Technical Univer-
sity of Denmark, DTU, 2004.

J. Mairal, R. Keriven, and A. Chariot. Fast
and efficient dense variational stereo on gpu.
In Proc. 3DPVT, pages 97—-104, 2006.

T. G. Mattson, B. A. Sanders, and B. L.
Massingill. Patterns for Parallel Program-
ming. Addison Wesley, 2004.

P. Merrell, A. Akbarzadeh, L. Wang, P. Mor-
dohai, and J.-M. Frahm. Real-time visibility-
based fusion of depth maps. In Proc. ICCV,
2007.

NVIDIA. CUDA Programming Guide Version
1.1,2007.

G. P. Otto and T. K. W. Chau. ‘Region-
growing’ algorithm for matching of terrain
images. Image Vision Comput., 7(2):83-94,
1989.

J.-P. Pons, R. Keriven, and O. Faugeras. Mod-
elling dynamic scenes by registering multi-
view image sequences. In Proc. CVPR, pages
822-827, 2005.

S. M. Seitz, B. Curless, J. Diebel,
D. Scharstein, and R. Szeliski. A com-
parison and evaluation of multi-view stereo
reconstruction algorithms. In Proc. CVPR,
pages 519-528, 2006.

N. Snavely, S. M. Seitz, and R. Szeliski. Photo
tourism: Exploring photo collections in 3D. In
Proc. SIGGRAPH, pages 835-846, 2006.

G. Vogiatzis, P. H. S. Torr, and R. Cipolla.
Multi-view stereo via volumetric graph-cuts.
In Proc. CVPR, pages 391-398, 2005.

R. Yang and M. Pollefeys. Multi-resolution
real-time stereo on commodity graphics hard-
ware. In Proc. CVPR, pages 211-220, 2003.
R. Yang, G. Welch, and G. Bishop. Real-
time consensus-based scene reconstruction us-
ing commodity graphics hardware. Computer
Graphics Forum, 22(2):207-216, 2003.

C. Zach, M. Sormann, and K. Karner. Scanline
optimization for stereo on graphics hardware.
In Proc. 3DPVT, pages 512-518, 2006.

