
UKP-WSI: UKP Lab Semeval-2013 Task 11 System Description

Hans-Peter Zorn† and Iryna Gurevych†‡

†Ubiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science, Technische Universität Darmstadt

‡Ubiquitous Knowledge Processing Lab (UKP-DIPF)
German Institute for Educational Research and Educational Information

www.ukp.tu-darmstadt.de

Abstract

In this paper, we describe the UKP Lab sys-
tem participating in the Semeval-2013 task
“Word Sense Induction and Disambiguation
within an End-User Application”. Our ap-
proach uses preprocessing, co-occurrence ex-
traction, graph clustering, and a state-of-the-
art word sense disambiguation system. We
developed a configurable pipeline which can
be used to integrate and evaluate other com-
ponents for the various steps of the complex
task.

1 Introduction

The task “Evaluating Word Sense Induction and
Word Sense Disambiguation in an End-User Ap-
plication” of SemEval-2013 (Navigli and Vanella,
2013) aims at an extrinsic evaluation scheme for
WSI to overcome the difficulties inherent to WSI
evaluation. The task requires building a WSI sys-
tem and combining it with a WSD step to assign the
induced sentences to example instances.

Word sense disambiguation (WSD) is the task
of determining the correct meaning for an ambigu-
ous word from its context. WSD algorithms usu-
ally choose one sense out of a given set of possible
senses for each word. A resource that enumerates
possible senses for each word is called a sense in-
ventory. Manually created inventories come usually
in form of lexical semantic resources, such as Word-
Net or more specifically created inventories such as
OntoNotes (Hovy et al., 2006).

Word sense induction (WSI) on the other hand
aims to create such an inventory from a corpus in

an unsupervised manner. For each word that should
be disambiguated, a WSI algorithm creates a set of
context clusters that will be used to define and de-
scribe the senses.

We build our system upon the open-source DKPro
framework 1 and a corresponding WSD component.

Input for the task comes as two files. One contains
the search queries, also referred as topics. Sense in-
duction will be performed for each of those topics.
The second file contains 6400 entries from the re-
sult pages of a search engine. Each entry consists of
the title, a snippet and the URL of the corresponding
web page.

2 Related Work

One of the early approaches to WSI (Schütze, 1998)
maps words into a vector space and represents
word contexts as vector-sums and use cosine vec-
tor similarity, clustering is performed by expectation
maximization (EM) clustering. Dorow and Wid-
dows (2003) use the BNC to build a co-occurrence
graph for nouns, based on a co-occurrence fre-
quency threshold. They perform Markov clustering
on this graph. Pantel and Lin (2002) proposes a
clustering approach called clustering by committee
(CBC). This algorithm first selects the words with
the highest similarity based on mutual information
and then builds groups of highly connected words
called committees. It then iteratively assigns the re-
maining words to one of the committee clusters by
comparing them to the averaged the committee fea-
ture vectors. This exploits the assumption that two

1http://code.google.com/p/dkpro-core-asl/

or more words together disambiguate each other,
Bordag (2006) extends on this idea by using word
triples to form non-ambiguous seed-clusters. Many
approaches use a variety of graph clustering algo-
rithms for WSI: Others (Klapaftis and Manandhar,
2010a; Klapaftis and Manandhar, 2010b) use hierar-
chical agglomerative clustering on hierarchical ran-
dom graphs created from word co-occurrences. Di
Marco and Navigli (2012) use word sense induc-
tion for web search result clustering. They intro-
duce a maximum spanning tree algorithm that op-
erates on co-occurrence graphs built from large cor-
pora, such as WaCky (Baroni et al., 2009). The
system by Pedersen (2010) employs clustering first-
and second-order co-occurences as well as singular
value decomposition on the co-occurrence matrix,
which is clustered using repeated bisections. Jur-
gens (2011) employ a graph-based community de-
tection algorithm on a co-occurrence graph. Distri-
butional approaches for WSI include LSA Van de
Cruys and Apidianaki (2011) or LDA (Brody and
Lapata, 2009).

3 Our Approach

Our system consists of two independent parts. The
first is a batch process that creates database con-
taining co-occurrence statistics derived from a back-
ground corpus. The second is the actual WSI and
WSD pipeline doing the result clustering. Both parts
include identical preprocessing steps for segmenta-
tion and lemmatization.

The pipeline (Figure 1) first performs Word Sense
Induction, resulting in an induced sense inventory.
A WSD algorithm then uses this inventory to dis-
ambiguate all instances of the search query within a
document. Finally a result writer will produce the
cluster mappings used by the evaluation system. It
uses a majority vote on all instances of the target
word within the snippet.

The sense induction algorithm is based on graph
clustering on a co-occurrence graph, similar to the
approach by Di Marco and Navigli (2012). Our ap-
proach differs from previous work in the way we
perform a greedy search for additional context and
how it combines WSI with an advanced WSD step
using lexical expansions. Moreover, we consider
our generic UIMA-based WSD and WSI system as

words # co-occurrences
Wikipedia 3,011,397 96,979,920
WaCky 8,687,711 441,005,478

Table 1: Size of co-occurrence databases

a useful basis for experimentation and evaluation of
WSI systems.

3.1 Preprocessing

The topics and snippets are read by a custom collec-
tion reader. If the web-page can be downloaded at
the URL that corresponds to the result, it is cleaned
by an HTML parser and the plain text is appended
to the snippet. As further steps we segment and lem-
matize the input. We apply the same preprocessing
to snippets, queries and the corpora.

3.2 Co-occurrence Extraction

We calculate the log-likelihood ratio (LLR) (Dun-
ning, 1993) and point-wise mutual information
(PMI) (Church and Hanks, 1990) of a word pair co-
occurring at sentence level using a modified version
of the collocation statistics implemented in Apache
Mahout 2. Even when sorting the co-occurrences by
PMI, we employ a minimum support cut-off based
on the LLR, all pairs with a log-likelihood ratio < 1
are discarded. Table 1 gives an overview about the
obtained co-occurrence pairs.

3.3 Clustering Algorithm

The algorithm is a two-step approach that first cre-
ates an initial clustering of a graph G = (V,E)
and then improves this clustering in a second step.
The initial step (Algorithm 1) starts by retrieving the
top n = 150 most similar terms for the target word
by querying the co-occurrence database we created
in section 3.2. These represent vertices in a graph.
We then construct 3 a minimum spanning tree (mst)
by inserting edges {vi, vj} from the co-occurrence
database. The weight w({vi, vj}) of each edge is
set to the inverse of the used similarity measure dist
(LLR or PMI) between those terms. The minimum
spanning tree then is cut into subtrees be iteratively

2http://mahout.apache.org
3For all of our graph operations, we employ the igraph li-

brary for R, http://igraph.sf.net

Figure 1: WSI and WSD Pipeline

removing the edge with the highest edge between-
ness (betweeness) (Freeman, 1977) until the size of
the largest component of G falls below a threshold
Sinitial.

Algorithm 1 initialClusters
V (G0)← top n most similar words to target word
w(vi, vj)← dist(termi, termj)
G← mst(G0)
V (G)← V (G) \ vtarget
while max(|C(G)|) > Sintitial do

E(G)← E(G) \ argmaxe(betweeness(e))
end while

The resulting partitioning of the graph is the start-
ing point for the second phase of the algorithm,
which we call expand/join step (Algorithm 2). Dur-
ing this step, the algorithm looks iteratively at all
clusters of size s smaller than Smax = 9 (deter-
mined empirically), starting with the largest ones.
From each of these clusters, it constructs a query to
the co-occurrence database, retrieving all terms that
significantly co-occur together with all terms in the
respective cluster and with the target word. This list
of terms is then compared to all clusters Clarge with
|C| > s . If the normalized intersection between one
of those Clarge is above a threshold t = 0.3 (deter-
mined empirically), we assume that the Csmall rep-
resents the same sense as the Clarge and merge those
clusters. If this is not the case for any of the larger
clusters, we assume that Csmall represents a sense
of its own extend the cluster by adding edges be-
tween vertices representing the expansion terms and
Csmall.

Algorithm 2 expandJoin
Require: G is a minimum spanning forest

for s = Smax → 1 do
for all Csmall(G), |Csmall| = s do

expansions← querys(v1, .., vi)
for all components Clarge ∈ G, |Clarge| > s
do

if |Clarge ∩ expansions|/|Clarge| > t
then
Clarge ← Clarge ∪ Csmall

else
Csmall ← Csmall ∪ expansions

end if
end for

end for
end for

3.4 Word Sense Disambiguation

We use the DKPro WSD framework, which imple-
ments various WSD algorithms, with the same sys-
tem configuration as reported by Miller et al. (2012).
It uses a variant of the Simplified Lesk Algorithm
(Kilgarriff et al., 2000). This algorithm measures
the overlap between a words context and the tex-
tual descriptions of senses within a machine read-
able dictionary, such as WordNet. The senses that
have been induced in the previous step are provided
to the framework as a sense inventory. Instead of us-
ing sense descriptions, we now compute the overlap
between the sense clusters and the context of the tar-
get word. The WSD system expands both the word
context and the sense clusters with synonyms from a
distributional thesaurus (DT), similar to Lin (1998).
The DT has been created from 10M dependency-

Run F1 ARI RI JI # clusters avg cl. size
wacky-llr 0.5826 0.0253 0.5002 0.3394 3.6400 32.3434
wp-llr 0.5864 0.0377 0.5109 0.3177 4.1700 21.8702
wp-pmi 0.6048 0.0364 0.5050 0.2932 5.8600 30.3098

Table 2: Results for the submitted runs

parsed sentences of English newswire for word simi-
larity4. Besides knowledge-based WSD, the DT also
has been successfully used for improving the perfor-
mance of semantic text similarity (Bär et al., 2012).
The WSD component disambiguates each instance
of the search query within the snippet and web page
individually.

4 Results

The clustering was evaluated using four different
metrics as described by Di Marco and Navigli
(2012). The Rand index and its chance-adjusted
variant ARI are common cluster evaluation metrics.
The adjusted rand index gives special weight to less
frequent senses. The Jaccard index (JI) disregards
the cases where two results are assigned to differ-
ent clusters in the gold standard, therefore it is less
sensitive to the granularity of the clustering. The
F1-Measure gives more attention to the individual
clusters and how they cover the topics in the gold
standard.

We submitted several runs for different configura-
tions of the co-occurrence database (Table 2). Be-
tween runs, we did not modify the configuration of
the sense induction or disambiguation step. The
first run used collocations extracted from WaCky
scored by LLR metric (wacky-llr), and two others
used Wikipedia as background corpus. One of the
Wikipedia based runs used PMI as association met-
ric (wp-pmi), the other one used LLR (wp-llr). The
run on the larger ukWac corpus scored best with re-
gard to the Jaccard measure, but worst in the ad-
justed Rand index measure. We attribute low scores
for ARI to the fact that our system did not induce
certain less frequent senses, resulting in small aver-
age number of clusters. The coarse grained clusters
however, have been assigned quite well by our WSD
system, as shown by relatively high Jaccard Index.

4The software used to create the DT is available from
http://www.jobimtext.org

For the Wikipedia-based runs, the clustering based
on PMI produced more clusters and therefore scored
higher on the F1 measure than the LLR-based run.
Due to an error in the implementation our submis-
sions contained only a single sense for 20% of the
senses. However, we repeated our experiments with
a correctly configured system which produced only
slightly different results.

5 Conclusion

We presented our word sense induction and dis-
ambiguation pipeline for search result clustering.
Our contribution is a sense induction algorithm that
incrementally retrieves more context from a co-
occurrence database and the integration of WSI and
WSD into a UIMA-based pipeline for easy experi-
mentation. The system scored best with regard to
Jaccard similarity of clusters, while performing low
especially with the Adjusted rand index. We assume
that our sense granularity was too low for this task
and failed to create clusters for rare senses. This
could be improved by making the merge phase of
the induction algorithm less eager. Furthermore,
increasing the size of the background corpus, e.g.
by combining the both corpora that have been used
could increase the size of the context clusters espe-
cially for rare senses, which should further improve
the performance in these cases. We attribute the
good results with regard to the F1 and Jaccard mea-
sures also to our state-of-the-art word sense disam-
biguation step and the use of the distributional the-
saurus.

6 Acknowledgements
We thank Tristan Miller for helping us with the
DKPro WSD framework and Chris Biemann for
providing the distributional thesaurus. This work
has been supported by the Volkswagen Foundation
as part of the Lichtenberg-Professorship Program
under grant No. I/82806.

References
Daniel Bär, Chris Biemann, Iryna Gurevych, and Torsten

Zesch. 2012. UKP: Computing Semantic Textual
Similarity by Combining Multiple Content Similarity
Measures. In Proceedings of First Joint Conference on
Lexical and Computational Semantics (*SEM), pages
435–440.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and
Eros Zanchetta. 2009. The WaCky wide web: a
collection of very large linguistically processed web-
crawled corpora. Language Resources and Evalua-
tion, 43(3):209–226, February.

Stefan Bordag. 2006. Word Sense Induction: Triplet-
Based Clustering and Automatic Evaluation. In Pro-
ceedings of the 11th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 137–144, Trento, Italy.

Samuel Brody and Mirella Lapata. 2009. Bayesian
Word Sense Induction. Computational Linguistics,
(April):103–111.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicogra-
phy. Computational Linguistics, 16(1):22–29, March.

Antonio Di Marco and Roberto Navigli. 2012. Cluster-
ing and Diversifying Web Search Results with Graph-
Based Word Sense Induction. Computational Linguis-
tics, pages 1–46, November.

Beate Dorow and Dominic Widdows. 2003. Discover-
ing corpus-specific word senses. In Proceedings of the
Tenth Conference on European Chapter of the Associ-
ation for Computational Linguistics - EACL ’03, vol-
ume 2, page 79, Morristown, NJ, USA, April. Associ-
ation for Computational Linguistics.

Ted Dunning. 1993. Accurate Methods for the Statistics
of Surprise and Coincidence. Computational Linguis-
tics, 19(1):61 – 74.

Linton C Freeman. 1977. A set of measures of centrality
based on betweenness. Sociometry, 40(1):35–41.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
the 90% solution. pages 57–60, June.

David Jurgens. 2011. Word Sense Induction by Commu-
nity Detection. In HLT ’11: Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics Human Language Technologies, pages 24–
28, Portland, Oregon.

Adam Kilgarriff, Brighton England, and Joseph Rosen-
zweig. 2000. English Senseval: Report and Results.
In Proceedings of the 2nd International Conference on
Language Resources and Evaluation, Athens, Greece.

Ioannis P. Klapaftis and Suresh Manandhar. 2010a. Tax-
onomy learning using word sense induction. In Hu-
man Language Technologies: The 2010 Annual Con-

ference of the North American Chapter of the Asso-
ciation for Computational Linguistics, number June,
pages 82–90. Association for Computational Linguis-
tics.

Ioannis P. Klapaftis and Suresh Manandhar. 2010b.
Word sense induction & disambiguation using hier-
archical random graphs. In Proceedings of the 2010
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 745–755. Association for
Computational Linguistics, October.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. In Proceedings of the 36th annual
meeting on Association for Computational Linguistics,
volume 2, pages 768–774, Morristown, NJ, USA, Au-
gust. Association for Computational Linguistics.

Tristan Miller, Chris Biemann, Torsten Zesch, and Iryna
Gurevych. 2012. Using Distributional Similarity for
Lexical Expansion in Knowledge-based Word Sense
Disambiguation. In Proceedings of the 24th In-
ternational Conference on Computational Linguistics
(COLING 2012).

Roberto Navigli and Daniele Vanella. 2013. SemEval-
2013 Task 11: Evaluating Word Sense Induction &
Disambiguation within An End-User Application. In
Proceedings of the 7th International Workshop on Se-
mantic Evaluation (SemEval 2013), in conjunction
with the Second Joint Conference on Lexical and Com-
putational Semantcis (*SEM 2013), Atlanta, USA.

Patrick Pantel and Dekang Lin. 2002. Discovering word
senses from text. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge dis-
covery and data mining - KDD ’02, page 613, New
York, New York, USA, July. ACM Press.

Ted Pedersen. 2010. Duluth-WSI: SenseClusters applied
to the sense induction task of SemEval-2. In Proceed-
ings of the 5th International Workshop on Semantic
Evaluation, pages 363–366, Stroudsburg, PA, USA,
July. Association for Computational Linguistics.

Hinrich Schütze. 1998. Automatic word sense discrim-
ination. Computational Linguistics, 24(1):97–123,
March.

Tim Van de Cruys and Marianna Apidianaki. 2011. La-
tent semantic word sense induction and disambigua-
tion. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 1476–1485, Portland,
Oregon, June. Association for Computational Linguis-
tics.

