
Computing Semantic Relatedness in German
with Revised Information Content Metrics

Iryna Gurevych and Hendrik Niederlich
EML Research gGmbH

Schloss-Wolfsbrunnenweg 33
69118 Heidelberg, Germany

http://www.eml-research.de/∼gurevych

Abstract

The paper presents an application of informa-
tion content based metrics to compute seman-
tic relatedness of word senses in German. The
main contributions are: an annotation study
based on a revised definition of semantic re-
latedness beyond synonymy, an extension of
Resnik’s (1995) procedure for computing infor-
mation content of concepts for strongly inflected
languages, an application of information con-
tent based metrics to compute semantic relat-
edness of German word senses defined in Ger-
maNet (Kunze, 2004) and a new interpretation
and normalization function for Jiang & Con-
rath’s (1997) distance metric. Semantic related-
ness metrics consistently outperform two base-
lines: a Lesk based algorithm, and one using
Google word co-occurrence statistics.

1 Introduction

Systems computing semantic relatedness should
allow to approximate human intuitions about lexi-
cal semantic relations existing between words.
For example, given the words Glass, Mug and
Jewel, we note that while Glass and Mug dis-
play a fairly close semantic relatedness, the re-
lation between Glass and Jewel is less close ac-
cording to human judgements. Numerous met-
rics were proposed to compute semantic similar-
ity. However, as noted by Hirst & Budanitsky
(2005) similarity is a special case of a more gen-
eral notion, semantic relatedness, which encom-
passes additional lexical semantic relations, such
as meronymy, antonymy, functional association
and more. Also, relatedness is more often re-
quired by NLP applications than just similarity,
e.g. in information retrieval. Therefore, we fo-
cus on semantic relatedness and apply informa-
tion content metrics to this more general task.

No extensive studies or large-scale evaluations
of semantic relatedness algorithms for languages
other than English have been conducted so far, to

our knowledge. As a consequence, we know litt-
le about the applicability of semantic relatedness
metrics to other languages. We study the perfor-
mance of semantic relatedness metrics across sev-
eral parameters. We touch upon methodological
issues in computing semantic relatedness proper
(as opposed to semantic similarity) as an NLP
task – what is about the human performance,
lower and upper bounds for evaluation? The next
parameter is WordNet versus other x-Nets – can
we expect the same performance with resources
constructed following WordNet principles, but di-
vergent in some design decisions and in the cov-
erage? Departing from that, we check the ap-
plicability of the methods developed for English
to other languages – is the performance of the
methods language-specific or will it be similar for
other natural languages?

The remainder of the paper will be structured
as follows: Section 2 presents the design of a
German dataset with human semantic relatedness
judgments, which is followed by a description of
the information content based semantic related-
ness metrics in Section 3. Then, our experiments
on computing information content of GermaNet
concepts and semantic relatedness of word senses
are presented in Section 4. The results are com-
pared with two baselines in Section 5 and are
followed by conclusions and an outline of future
work.

2 Experiments with Subjects

Human judgments of semantic relatedness pro-
vide a gold standard for evaluating the results of
automatic methods. The inter-annotator agree-
ment defines an upper bound for the evaluation
of automatic methods (Resnik, 1995). The main
issues while designing a dataset in our study are
the following: the choice of lexical units comp-



rising the word pairs to be evaluated, the number
of word pairs and human subjects, defining se-
mantic relatedness and the rating scale for human
judgments.

The choice of lexical units is challenging as
there is no well-defined criterion for that. If we
would choose e.g. 65 items randomly, we would
run into the risk of getting an unbalanced dataset
with skewed value distributions, potentially lead-
ing to unreliable evaluations at a later stage. An-
other option is to have a very large dataset chosen
randomly. In this case it becomes problematic
to have a large number of human judges rating
them manually for semantic relatedness. There-
fore, we decided to keep the word pairs from
the psycholinguistic experiment by Rubenstein &
Goodenough (1965) and translate them into Ger-
man. Advantages of this are: our results can be
related (although not directly compared) to the re-
sults for English based on that dataset, the num-
ber of word pairs in the dataset by Rubenstein and
Goodenough (65) is reasonably large to general-
ize. A disadvantage is that we also include only
nouns in the evaluation of semantic relatedness.

We asked 24 subjects (native speakers of Ger-
man) to rate 65 word pairs on a scale from 0 to
4 for semantic relatedness. Semantic relatedness
was defined in a broader sense than just simi-
larity. To determine the upper bound of perfor-
mance for automatic semantic relatedness algo-
rithms, we computed a summarized correlation
coefficient for a set of 24 judges. This is based on
the interclass reliability analysis in statistics. To
get the average, we computed the bivariate cor-
relations for all judges pairwise and then pooled
them using Fisher’s z transformation, yielding
z = 1.1266. This number is transformed back
to a correlation coefficient, yielding r = .8098,
which is statistically significant. We observe that
the correlation coefficient in our study, i.e. the
upper bound for evaluating the system’s perfor-
mance on the relatedness task, is lower than what
had been reported by Resnik (1995) for the simi-
larity task, r = .8848. This is caused by relaxed
rating criteria based on a broader definition of se-
mantic relatedness. Though this leads to more di-
verse human judgments, they are reliable to serve
as an evaluation dataset for computational meth-
ods.

3 Information Content Based Metrics

Typically, ICMs employ the structure of the word-
net (in our case, GermaNet) hierarchy together
with additional corpus-based evidence, which is
called information content. Information content
values of GermaNet concepts are required to com-
pute the semantic relatedness score of a con-
cept pair. Resnik (1995) introduced the notion
of information content and the first metric based
on it (in the following abbreviated as res). Se-
mantic similarity between two words w1 and w2

is defined as the information content value of
their lowest common subsumer (LCS) as given in
Equation 1:1

simc1,c2 = max
c∈S(c1,c2)

[− log p(c)] (1)

where S(c1, c2) is the set of concepts which sub-
sume both c1 and c2 and − log p(c) is the infor-
mation content. The probability p is computed
as the relative frequency of words (representing
that concept) in a corpus (the discussion of this
follows in Sections 4.1 and 4.3, Equation 5). In
evaluating Resnik’s metric, we use the GermaNet
hierarchy to determine the lowest super class for
a pair of concepts. If multiple inheritance occurs,
we select the LCS with the highest information
content as this is the one maximizing their seman-
tic relatedness.

Jiang & Conrath (1997) proposed to combine
edge- and node-based techniques in counting the
edges and enhancing it by the node-based calcu-
lation of the information content as introduced by
Resnik (1995). The method is abbreviated as jcn.
The distance between two concepts c1 and c2 is
formalized as given in Equation 2:

distc1,c2 = IC(c1)+IC(c2)−2×IC(LCS(c1, c2))
(2)

where IC is the information content value of the
concept, and LCS(c1, c2) is the lowest common
subsumer of the two concepts.

The third method is that of Lin (1998) (referred
to as lin). He defined semantic similarity us-
ing a formula derived from information theory.
This metric is sometimes called a universal se-
mantic similarity metric as it is supposed to be

1For all methods, c1 and c2 are concepts (word senses)
corresponding to w1 and w2.



application-, domain-, and resource independent.
According to it, similarity is given in Equation 3:

simc1,c2 =
2 × log p(LCS(c1, c2))

log p(c1) + log p(c2)
(3)

4 Experiments with ICMs for German

4.1 Frequency Estimations

Frequencies of concepts (synsets) in GermaNet
were estimated using a German newspaper cor-
pus taz (see www.taz.de). This corpus covers a
wide variety of topics and has about 172 million
tokens. The number of tokens representing nouns
is 52,490,873. They correspond to 2,326,397 dis-
tinct word forms and 1,912,577 unique stems.

We produced a part-of-speech (POS) tagged
version of the corpus using the TreeTagger
(Schmid, 1997). Resnik (1995) counted each
word (noun) in the corpus as an occurrence of
each synset subsuming it in a conceptual hier-
archy. However, applying this procedure to a
German corpus poses a problem, as the words
are highly inflected. This means that any in-
flected form of a word which does not coincide
with a base form represented in GermaNet will
be missed. We employed a German version of
the Porter algorithm to stem both the word forms
in word frequency lists and the GermaNet word
senses.2 As a result of stemming, word frequency
lists are transformed into stem frequency lists.
The reduction of different word types to a single
stem may influence the data undesirably. How-
ever, as the effect is marginal, it is unlikely to
bias the results considerably and can so far be ne-
glected. To solve the issue of stem disambigua-
tion, a special preprocessing component would be
required.

4.2 GermaNet Coverage

GermaNet is a German wordnet which adopted
the major properties and database technology
from Princeton’s WordNet. However, GermaNet
displays some structural differencies and con-
tent oriented modifications. Its designers relied
mainly on linguistic evidence rather than psy-
cholinguistic motivations. Example of discrepan-
cies between GermaNet and WordNet are e.g. that
GermaNet employs artificial, i.e. non-lexicalized

2http://snowball.tartarus.org/german/stemmer.html.

concepts, and adjectives are structured hierarchi-
cally as opposed to WordNet. Currently, Ger-
maNet includes about 40000 synsets with more
than 60000 word senses modelling nouns, verbs
and adjectives. E.g., the entry for “Brot” (Engl.
bread) looks as follows: Sense 1 Brot => Back-
ware => ?festes Nahrungsmittel => Nahrung,
Nahrungsmittel, Lebensmittel, Esswaren, Essen,
Speisen => Objekt.

Based on the stemming process described
above, we analyzed the GermaNet coverage of
the newspaper corpus. The results of this anal-
ysis are summarized in Table 1, where “+” before
a number corresponds to the attribute “found” and
“-” means not found. We present the percentage
of tokens and stems which could or could not be
mapped to a GermaNet word sense, and the pro-
portion of synsets that could be assigned an in-
formation content value. Striking about the num-
bers is the low coverage of stems. The coverage
is significantly higher for tokens, especially for
nouns and adjectives. We can explain this as fol-
lows: The main source of the stems not found in
GermaNet are compounds, which is an extremely
productive form of word composition in Ger-
man, e.g. Beschäftigungsverhältnis (Engl. em-
ployment relation), Informationsmarketing (Engl.
marketing of information), Betriebssystemkennt-
nis (Engl. knowledge about operating systems).
The most compounds are low frequent words in
German, whereas non-compound words are fre-
quent and are covered rather well by GermaNet.
Nevertheless, considering that the vast part of
synsets in GermaNet finally get an IC value as-
signed, the calculation of information content in
general seems not to be affected heavily by this
effect.

Stems Tokens Synsets
Nouns +1.4% / -98.6% +65% / -35% +83% / -17%
Verbs +8% / -92% +34% / -66% +91% / -9%
Adject. +2.2% / -97.9% +73% / -27% +98% / -2%
Total +2% / -98% +60% / -40% +88% / -12%

Table 1: GermaNet coverage of the corpus.

4.3 Computing Information Content Values

Resnik (1995) defined the procedure to com-
pute information content from word frequencies.
However, as we showed, the formula has to be re-



written for stems in strongly inflected languages,
such as German. The resulting scheme is given in
Equation 4, where count(n) is a function which
returns the sum of occurrences for a particular
stem n, and stems(c) is the set of stems sub-
sumed by a concept c. The mapping to Ger-
maNet is implemented on the basis of a stem as-
sociated with a certain POS. On the other hand,
stemmed string representations of word senses
in GermaNet are associated with distinct part-of-
speech, too.

freq(c) =
∑

n∈stems(c)

count(n) (4)

p(c) = freq(c)/N (5)

The concept probabilities are then computed ac-
cording to Resnik’s original proposal as the rel-
ative frequency, s. Equation 5, where N is the
total number of stems (equal to the total number
of original words as stems are in fact “pointing”
to them), which could be found in GermaNet.

4.4 Application of ICMs

We applied Resnik’s and Lin’s metrics in a
straightforward manner based on the information
content values of GermaNet concepts computed
as outlined above. The results are based on 57 out
of 65 word pairs in the evaluation dataset as the
rest were missing in GermaNet. They are sum-
marized in terms of interclass correlation coeffi-
cient, yielding rres = .7152 and rlin = .7337. As
noted in Hirst & Budanitsky (2005), jcn returns
semantic distance, rather than a similarity value.
Its implementation poses several additional ques-
tions: (1) What is the distance of two word senses
belonging to the same synset? (2) What is the dis-
tance of two word senses with no lowest common
subsumer? (3) How to compute the distance be-
tween a hyperhym and its hyponym? (4) How to
evaluate the distance scores as opposed to relat-
edness scores output by alternative metrics?

(1) The distance from the word sense to it-
self is represented by zero. Therefore, we
believe that the distance of two word senses
belonging to the same synset should be non-
zero. This number can be defined as the
smallest (minimum) distance value given a spe-
cific concept hierarchy. In order to compute

it, we adopt the proposal by Sid Patwardhan
outlined in http://groups.yahoo.com/group/wn-
similarity/message/8. We assign the minimum
distance value (given the GermaNet hierarchy
and a specific corpus as the basis of information
content) to synonymous word senses (this value
should approach 0). In doing that, we look for
the concept with the lowest IC value in the cor-
pus. Typically, this is the concept Object in Ger-
maNet. The frequency count of this concept mi-
nus 1 models a very similar concept, which is not
identical to the one under consideration. From
this, we can compute the IC value of an artificial
concept and obtain the lowest value of distance
possible for GermaNet given our particular cor-
pus. E.g. the distance between “Edelstein” (Engl.
gem) and “Juwel” (Engl. Jewel) is set to 3.4787E-
08 according to this.

(2) Contrary to that, the distance of two word
senses with no LCS should be assigned the max-
imum distance value distmax. We compute
distmax according to Equation 2, where we as-
sume that the two concepts compared are the ones
with the highest IC in our data (17.3441) and their
lowest common superclass is the one with the
smallest IC value (.17) in our data. This maxi-
mizes the possible distance value und results in
distmax = 34.348 for our data.

(3) Another special case of semantic distance
occurs, if a subclass, e.g. “Forst” (Engl. forest)
is compared with a superclass, e.g. “Wald” (Engl.
wood). Then, the distance becomes negative. We
take the absolute value for distance, as the direc-
tion is not essential in this case.

(4) Hirst & Budanitsky (2005) suggest evalu-
ating by applying a correlation measure to dis-
tance values, whereas a negative correlation value
is obtained (as distance is the opposite of simi-
larity). Following this suggestion, we obtained
the correlation r = −.5292. We investigated this
matter and noticed that the bad correlation coef-
ficient is due to 16 (!) out of 57 word pairs in
our data, which do not have a lowest common
superclass. According to the jcn algorithm, we
assign distmax = 34.348 to them. The next
highest value of semantic distance is 21.97, and
the distribution of scores is skewed. Pedersen



et al. (2004) convert semantic distance into sim-
ilarity by taking the reciprocal of semantic dis-
tance simc1,c2 = 1/distc1,c2. This changes the
correlation to a positive number. However, the
transformation is not linear and thus affects the
distribution of scores, yielding a worse correla-
tion coefficient on our data of r = .2915.

In order to minimize the role of extremely
small and extremely large numbers in the distance
values, which skew the distribution of scores, we
need a special normalization function. This func-
tion should map the scores to the range from 0 to
1, with small numbers for little and large numbers
for high semantic relatedness. We define the nor-
malization function given in Equation 6 using the
hyperbolic tangent function:

simc1,c2 = 1 − (tanh(distc1,c2 × c)) (6)

where distc1,c2 is a distance score for a pair of
concepts and c is a special constant. This constant
can be determined by solving Equation 6, which
results in Equation 7. In this transformation, we
assume that distavg is the distance value of a word
pair with an average human semantic relatedness
score in a given dataset (5.2 for our data):3 This
value should be mapped to simc1,c2 = .5 in our
application. Given this:

c = atanh(.5)/distavg ≈ .55/distavg (7)

The correlation coefficient for jcn is r = −.5292
if no normalization is performed and r = .7379 if
the scores are normalized as described above.

5 Evaluation

We designed and implemented two baselines to
determine semantic relatedness. The first base-
line compares the performance of information
content metrics to a dictionary based approach,
the Lesk algorithm (Lesk, 1986) operating on the
glosses from traditional dictionaries written by
human authors. The correlation between the num-
ber of stem overlaps in textual definitions of word
senses and human judgments of semantic relat-
edness yielded r = .5307. The second base-
line for the evaluation was represented by word
co-occurrence counts obtained from querying the

3Not necessarily corresponding to an arithmetic average.

Web through Google. Semantic relatedness was
computed according to Equation 8, where hitsw1

and hitsw2 are the frequencies of words w1 and
w2. The correlation of Google based results with
human judgments of semantic relatedness was
.5723. The result seems quite impressive (the
Lesk based baseline yielded r = .5307), if we
consider that the method does not require any so-
phisticated knowledge sources and is conceptu-
ally simple. It should be noted that we tried sev-
eral other established measures of lexical asso-
ciation, e.g., PMI and log-likelihood on Google
counts, but the results were always worse than
those achieved by Equation 8.

simw1,w2 = hitsj/hitsw1 + hitsj/hitsw2 (8)

In Figure 1, we summarize the results of our ex-
perimental work. All information content based
metrics perform well and approach the human
performance. This is generally consistent with the
findings of other researchers for English. How-
ever, there are a couple of reasons why the abso-
lute results are lower than those in previous stud-
ies with WordNet, where ICMs achieved a corre-
lation of about .8 with human judgments.

Figure 1: Evaluation results.

Information content based metrics perform
poorly for the word pairs, which do not have a
common subsumer, such as “car” and “journey”,
“food” and “rooster”. GermaNet displays quite
a large proportion of such cases where no LCS
is found (28%). Though we work on translated
English word pairs, the number of cases without
LCS is higher than for WordNet, as GermaNet is
not modeled in the same detail. This causes a cer-
tain decrease in performance.

In fact, coverage is a general problem with
existing wordnets. Semantic relations beyond



hypernymy are covered insufficiently and some-
times even inconsistently. As they are rather
part of world knowledge, further developments
of lexical-semantic nets in the direction of ontol-
ogy should be pushed forward. An error source
for semantic relatedness metrics is also the id-
iosyncracy of some modeling decisions in Ger-
maNet. For example, “Coast” is modeled as
a subclass of Geographical area and Location,
whereas “Shore” is a subclass of Border and At-
tribute. The same happens to “Hill” and “Moun-
tain”. Being parts of different hierarchies, these
words do not have an LCS and receive a zero
score of semantic relatedness.

One of the major inherent drawbacks of ICMs
is that they make semantic relatedness dependent
on the subsumption hierarchy. This way, they
minimize the role of lexical-semantic relations
beyond hypernymy, which are essential to relat-
edness in general. Therefore, not only we need
that such relations are modeled in sufficient detail
(which is still not the case), but also that the met-
rics are extended to include those relations into
the models of semantic relatedness.

6 Conclusions

We explored the applicability of information con-
tent based metrics to compute semantic related-
ness of German words. We revised the calcula-
tion of information content for German concepts
based on frequency counts for stems rather than
words. The implementation of the jcn metric was
revised and a new normalization function intro-
duced. Our reported results compare favorably
with a Lesk and a Google based baselines and
are consistent with the findings for English. A
somewhat lower performance of the metrics can
be explained by a broader definition of the task
as relatedness and discrepancies in the underlying
knowledge bases. While some extensions may
still become necessary, the hypothesis of the ap-
plicability of the methods to strongly inflected
languages has been generally confirmed.

We found out that stemming is not optimal
to handle complex compositional morphological
structure of German. To achieve accurate map-
pings from word frequency counts to word senses,
a component for morphological analysis should
be employed. A sort of contextual analysis (word

sense disambiguation) should be done to asso-
ciate different “senses” of a word with their indi-
vidual counts in frequency lists. Our current work
is aimed at a considerably larger dataset with 350
word pairs of different parts-of-speech. The per-
formance of semantic relatedness metrics based
on the new dataset has to be studied for a number
of parameters, such as parts-of-speech and differ-
ent types of relatedness. We have to investigate
to what extent the measures are applicable across
parts-of-speech, e.g. for a verb and a noun.
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