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Overview

Typical  Web  2.0  tools  such  as  wikis,  blogs,  and  podcasts  have  recently  entered  the 
classroom and foster interactions between learners and tutors, within the new eLearning 
2.0  paradigm. As a  result,  eLearning 2.0 makes  large  amounts  of  eLearning discourse 
available for Natural Language Processing (NLP) within the field of research that we call 
"Educational Natural Language Processing" (e-NLP). Research on e-NLP has existed for a 
long time and has focused on e.g.  intelligent tutoring systems (Litman & Forbes-Riley, 
2006), or essay scoring (Attali & Burstein, 2006). This field of research brings together two 
communities:  language  technology  on  the  one  side  and  educational  computing  on  the 
other  side.  Several  workshops  on  "Building  Educational  Applications  Using  NLP"  and 
related topics have already taken place at major  conferences, such as HLT-NAACL 2003, 
COLING 2004, ACL 2005, ACL 2008 and NAACL-HLT 2009.

NLP techniques are used in many educational applications working with textual data such 
as  intelligent  tutoring systems or  computer-assisted language learning.  However,  these 
applications are particularly challenging for NLP since they require an adaptation of NLP 
techniques to various types of discourse, e.g. tutoring dialogues, which are different from 
typical task-oriented spoken dialogue systems. Moreover, educational applications place 
strong requirements on NLP systems, which have to be robust yet accurate. Therefore, this 
is  an  important  application  domain  and  a  source  of  innovation  for  both  NLP  and 
educational computing, as shown by Feng et al. (2006), Kim et al. (2006), Malioutov & 
Barzilay (2006) and Csomai & Mihalcea (2007), to name just a few. 

In this tutorial, we will review a variety of uses of NLP in the educational domain and point 
to emerging trends which call for new types of applications. 
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Field of research exploring the use of 
NLP techniques in educational contexts

Definition
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Web 2.0 & eLearning 2.0
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 Large text repositories with user generated 
discourse and user generated metadata are created

 These repositories need advanced information 
management and NLP to be efficiently accessed

 Using these repositories to create structured 
knowledge bases can improve NLP

Some Observations
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Computer-based Testing

 Definition: All forms of assessment delivered with the help 
of computers

 Also called: 
 Computer Assisted/Aided Assessment (CAA)

 Adequate question types for CAA (McKenna & Bull, 1999):
 Multiple choice questions (MCQs)
 True/False questions
 Matching questions
 Ranking questions
 Sequencing questions
 etc.
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Question Types

 Objective test items
 constrained answer, to be 

selected among a set of 
alternatives

 short answer (word or 
phrase) in response to a 
question 

 objective and impartial 
scoring

 Examples:
 Fill-in-the-blanks questions
 Multiple-choice questions
 Matching questions

 Subjective test items
 original answer

 variable length

 biased scoring

 Examples:
 Short-answer essays
 Extended-response essays



 07/2009  |  Computer Science Department | Ubiquitous Knowledge Processing Lab  | 17

Roles of Test Items in Learning

 Summative assessment
 "Assessment of learning"
 Measuring student achievement

 Formative assessment
 "Assessment for learning"
 Active learning: encourage learners to practice and apply 

newly acquired knowledge by answering test items
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NLP for CAA

 Generation of questions and exercises
 Writing test questions, especially objective test items, is an 

extremely difficult and time consuming task for teachers
 Use of NLP to automatically generate objective test items, 

esp. for language learning

 Assessment and evaluation of answers to subjective 
test items
 Use of NLP to automatically:
 Diagnose errors in short-answer essays
 Grade essays
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Automatic Generation of Test Items

 Source data
 Corpora: texts should be chosen according to
 the learner model (level, mastered vocabulary)
 the instructor model (target language, word category)
 Lexical semantic resources, e.g. WordNet

 Tools
 Tokeniser and sentence splitter
 Lemmatiser
 Conjugation and declension tools
 POS tagger
 Parser and chunker
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Multiple-Choice Questions (MCQ)

 Choose the correct answer among a set of possible 
answers

 Example (Mitkov et al., 2006)
Who was voted the best international footballer for 2004?
(a) Henry
(b) Beckham
(c) Ronaldinho
(d) Ronaldo

 Usually 3 to 5 alternative answers

Question / Stem

Key

Distractors /
Distracters
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Distractors

 Distractors (also distracters) are the incorrect answers 
presented as a choice in a multiple-choice test

 Generation of "good" distractors (McKenna & Bull, 1999; 
Duvall)
 Ensure that there is only one correct response for single 

response MCQ
 The key should not always occur at the same position in the 

list of answers
 Distractors should be grammatically parallel with each other 

and approximately equal in length
 Distractors should be plausible and attractive
 However, distractors should not be too close to the correct 

answer and risk confusing students
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Automatic Generation of MCQs

1. Selection of the key   
 Unknown words that appear in a reading (Heilman & 

Eskenazi, 2007)
 Domain-specific terms:
 Automatically extracted (Mitkov et al., 2006)
 Present in a thesaurus, e.g. UMLS (Karamanis et al., 2006)

2. Generation of the stem   
 Constrained patterns (Heilman & Eskenazi, 2007):

Which set of words are most related in meaning to "reject"?
 Transformation of source clauses to stems, using 

transformation and agreement rules (Mitkov et al., 2006):
Transitive verbs require objects → Which kind of verbs require objects?
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Automatic Generation of MCQs

3. Generation of the distractors   
 WordNet concepts which are semantically close to the key, 

e.g. hypernyms and co-hyponyms (Mitkov et al., 2006; 
Karamanis et al., 2006)
Stem: "Which part of speech serves as the most central 
element in a clause?"
Key: "verb", Distractors: "noun", "adjective", "preposition"

 Thesaurus-based and distributional similarity measures 
(Mitkov et al., 2006)

 Other NPs with the same head as the key, retrieved from a 
corpus (Mitkov et al., 2006)
Key: "transitive verbs", Distractors: "modal verbs", "phrasal 
verbs", "active verbs"
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Fill-in-the-Blank Questions (FIB)

 Also called cloze test
 Technique which dates from 1953 (Wilson Taylor)
 Consists of a portion of text with certain words removed 
 The student is asked to "fill in the blanks"
 Objective cloze items = multiple-choice cloze items, i.e. 

students are given a list of words to use in a cloze
 Subjective cloze items = students can choose the words
 Challenges:
 Phrase the question so that only one correct answer is 

possible
 Spelling errors in subjective cloze items
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Fill-in-the-Blank Examples

 Blank = preposition (Source: http://www.purl.org/net/WERTI)

 Blank = verb to be conjugated (Source: 
http://www.nonstopenglish.com/exercise.asp?exid=915)
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Fill-in-the-Blank Question Generation

1. Selection of an input corpus

2. POS tagging 

3. Selection of the blanks in the input corpus

4. Where needed, provide some information about the word 
in the blank, e.g. verb lemma when the test targets verb 
conjugation (Aldabe et al., 2006)
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Selection of the Blanks

 Every "n-th" (e.g. fifth or eighth) word in the text (Coniam, 
1997)

 Words in specified frequency ranges, e.g. only high 
frequency or low frequency words (Coniam,1997)

 Words belonging to a given grammatical category 
(Coniam, 1997; Aldabe et al., 2006)

 Open-class words, given their POS, and possibly targeted 
word sense (Liu et al., 2005; Brown et al., 2005)

 Machine learning, based on a pool of input questions used 
as training data (Hoshino & Nakawaga, 2005)
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Objective Multiple-Choice Cloze Items

http://www.wordlearner.com

Combination of a cloze item with multiple-choice answers
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Generation of the Distractors

 Randomly chosen in the text from which the question was 
generated (Hoshino & Nakagawa, 2005)

 Same POS (Coniam, 1997)
 Similar frequency range (Coniam, 1997)
 For grammar questions, use a declension or a conjugation tool to 

generate different forms of the key, e.g. change case, number, 
person, mode, tense, etc. (Aldabe et al., 2006, Chen et al., 2006)

 Common student errors in the given context (Lee & Seneff, 
2007)

 Collocations: frequent co-occurrence with either the left or the 
right context (Lee & Seneff, 2007)

 Open class words: semantic similarity based on distributional 
similarity (Smith et al., 2008) or a thesaurus (Sumita et al., 2005)
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The Frequency Heuristic

(Coniam, 1997)
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Verification of the Distractors

 Basic verifications:
 there must be enough distractors
 there must be no duplicated distractors (Aldabe et al., 2006)

 Collocations: choose distractors that do not collocate with 
important words in the target sentence (Liu et al., 2005; Smith 
et al., 2008)

 Use of the Web: if the sentence/phrase containing the 
distractor is frequent on the web, then the distractor should be 
rejected (Sumita et al., 2005)

The child's misery would move even the most  ____ heart.
(a) torpid hits("the most torpid heart") = 4
(b) invidious hits("the most invidious heart") = 0
(c) stolid hits("the most stolid heart") = 6
(d) obdurate hits("the most obdurate heart") = 1 240

Good distractors
because infrequent
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Student Project in the e-NLP Course 
at the TU Darmstadt

 Based on "Automatic generation of cloze items for 
prepositions" (Lee & Seneff, 2007)

 Example:
If you don't have anything planned for this evening, let's go __ a 
movie.
(a) to  (b) of   (c) on   (d) null

 Tasks:
 INPUT: sentence + key, OUTPUT: list of three distractors
 The three distractors must each be generated taking a different 

approach
 baseline: word frequencies
 collocations
 "creative" method, devised by the students

 Conclusion: a motivating and interesting project for students
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Matching Test Items

 Task: match items in one list with response items in 
another list

 Kinds of elements matched:
 Word – synonym
 Definition – term
 Word – antonym
 Hypernym – hyponym
 Historical event – date
 etc.

 Matching test items assess a learner's understanding of 
relationships
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Matching Test Items

http://www.thefreedictionary.com
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Matching Test Items for Vocabulary 
Assessment (Brown et al., 2005)

Glosses for 
specific word senses 
in WordNet
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Error Detection Questions

 Aim: detect and possibly correct errors, which can be 
marked or not

 Example (Chen et al., 2006)
Although maple trees are among the most colorful varieties

        (A)
in the fall, they lose its leaves sooner than oak trees.
     (B)      (C) (D)

 Wrong statements are produced by the distractor 
generator
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Evaluation of Generated Questions

 Student evaluation 
 Difficulty and response time
 Comparison with results obtained for manually generated tests 

(Heilman & Eskenazi, 2007)

 Instructor evaluation
 Usability: "all distractors result in an inappropriate sentence" 

(Liu et al., 2005; Lee & Seneff, 2007)
 Post-editing: count how many test items are accepted, rejected 

or revised by instructors during post-editing (Aldabe et al., 
2006; Mitkov et al., 2006)
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Pre-requisites for Student Evaluation

 External assessment
 Evaluate the linguistic and / or factual knowledge of the 

students before they take the test , e.g. the Nelson-Denny 
Reading Test, the Raven's Matrices Test, the Lexical 
Knowledge Battery (Brown et al., 2005)

 Self-assessment
 Have the students assess whether they know the target word 

or not (Brown et al., 2005; Heilman & Eskenazi, 2007)
"Do you know the word 'w'?"
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Item Analysis

 Investigate the quality of the test items (Zurawski, 1998)
 Quantitative item analysis:
 Facility / Difficulty index (p): number of test takers who 

answered the item correctly divided by the total number of 
students who answered the item

 Discrimination index (D): "does the test item differentiate 
those who did well on the exam overall from those who did 
not?" 
 Divide the students in two groups: high-scoring and low-scoring 

(above and below the median)

 Compute the item difficulty index separately for both groups: p
upper

 

and p
lower

 Discrimination index D = p
upper

 - p
lower
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Item Analysis

 Example
The child's misery would move even the most  ____ heart.
(a) torpid chosen by 7  students
(b) invidious chosen by 1  students
(c) stolid chosen by 3  students
(d) obdurate chosen by 15  students
#Students: 26

 Difficulty index: 15 / 26 = 0.58 → neither too difficult nor 
too simple (recommended score: 0.5)

 Discrimination index
 9 out of 12 students in the high group found the correct answer
 6 out of 14 students in the low group found the correct answer
 D = 9/12 – 6/14 = 0.75 – 0.43 = 0.32 
 The test item is a quite good discriminator
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Item Analysis

 Item distractor analysis: examine the percentage of 
students who select each incorrect alternative, to 
determine if the distractors are functioning well

Well-
designed 

item

Possibly 
miskeyed

Candidate 
for removal

Candidate 
for revision

Source: (Zurawski, 1998)
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Efficiency of the Automatic Generation 
of Test Items

 Even though automatically generated test items have to be 
post-edited, this is still a lot faster than writing new test 
items from scratch

 Mitkov et al. (2006) report the following figures:
 an average of 1 minute and 40 seconds was needed to post-

edit a test item in order to produce a worthy item
 an average of 6 minutes was needed to manually produce a 

test item

 07/2009  |  Computer Science Department | Ubiquitous Knowledge Processing Lab  | 43

Summary

 The generation of questions and exercises is actually 
semi-automatic: the system's output has to be verified 
and modified by an instructor

 However, NLP-based systems considerably reduce the 
time spent by instructors to write test items, even if they 
have to manually correct the generated test items

 A great variety of NLP technologies and resources have 
been successfully used so far:
 POS tagging and parsing
 Word sense disambiguation
 Term extraction
 ...
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Assessment of Learner Generated 
Discourse  

 Discourse ≈ Utterance longer than a sentence

 Language form: written or spoken

 Types of learner generated discourse:
 Emerging in institutional settings, e.g. solutions to 
exercises

 Emerging in informal settings, e.g. discussions in forums 
(next section)
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Importance of Institutional 
eAssessment

 Feedback to the student about her level of knowledge

 Feedback to the instructor about the progress of 
students’ learning

 Incentive to study certain things, to study them in certain 
ways, to master certain skills

 Formal means for grading and/or making a pass/fail 
decisions
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Importance of Free-Text Assessments

 Advantages over traditional multiple-choice assessments 
(Bennett & Ward, 1993)

 Major obstacle is the large cost and effort required for 
scoring

 Automatic systems:
 Reduce these costs
 Facilitate extended feedback to students
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Learning Exercise Spectrum Model 
(Bailey & Meurers 2008)

 Proposed in the context of language learning (ICALL), 
but applicable to different topics
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Tasks Discussed in this Tutorial

MC-Tests
FIB

Assessing short textual 
answers

Essay grading

Detecting plagiarism
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Relating Properties of the Tasks with 
NLP Techniques

Gold-standard answers can 
be provided

Specific information must 
be complete and correct

Word meaning (predicate-
argument-structure) 
matters

Ressource-based apprs.

Assessing short textual answers

Unpredictable (no correct 
answer)

Holistic (overall organiza-
tion, style, etc.)

Rhetorical structure 
matters

Corpus-based approaches
Supervised approaches

Essay grading

(Detecting plagiarism)
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Automatic Assessment

 Diagnosis, i.e., content assessment (CAM) on learner 
data
 Language learning (Bailey and Meurers, 2008)
 Error detection in C-rater (Leacock, 2004)

 Scoring of learner data (later) 
 Essays
 Plagiarism
 Speech
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Detecting Meaning Errors  (Bailey and 
Meuerers, 2008)

 Analysis of responses to short-
answer comprehension tests
 1-3 sentences in length

 Error codes:
 Necessary concepts left out of learner 

response
 Response with extraneous, incorrect 

concepts
 An incorrect blend/substitution 

(correct concept missing, incorrect 
one present)

 Multiple incorrect concepts
 Human disagreement in 12%, 

eliminated from the evaluation data
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Technology of CAM

 Input:
 Learner's response, one + target responses, question, 

source reading passage
 Linguistic analysis: annotation, alignment, diagnosis

Source: 
(Bailey & Meurers, 2008)
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Spell Checking Example 
(from Leacock & Chodorow, 2003)

 67 different variants of Reagan in about 9,000 responses. Below are all 
the spelling variants of Reagan that occurred more than once:

Regan, Reagon, Reagen, Raegan, Regans, Regean, Reagons, Ragan, 
Ragen,Reagin, Raegon, Regon, Reagn, Reagean, Reegan, Ragon, 
Ragean, Reagens,Raegen, Raegans, Reggan, Raygon, Rgan, Regens, 
Regen, Regeans, Reagion,Ragons, Raegin

 Spell checking not as easy a task as one would think 
 Reagons is close (in terms of edit distance) to the existing word reasons
 Yet, in the domain of US presidents, Reagan is more probably the intended word

07/2009  |  Computer Science Department | Ubiquitous Knowledge Processing Lab  | 56

Technology of CAM 

 Alignment maps new concepts from  learner's response to 
those in target
 Token level (abstraction from string to lemma, semantic type (e.g. 

date, location)
 Houses => house => LOC
 Chunk level, e.g., home ≈ his house
 Relation level (dependency, lexical)

 Pronoun resolution

 Diagnosis analyzes if the learner's response contains content 
errors
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Technology of CAM 

 Given the alignment analysis, when is a learner input correct / 
faulty / wrong?

 Evaluation
 Hand-written rules 81% on the development data, 63% on the 

test data

 Machine learning (TiMBL), 88% accuracy on the test data for 
binary semantic error detection task

 Viable results
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C-Rater (Leacock & Chodorow, 2002)

 Measures student understanding with little regard to 
writing skills

 Example question (4th grade math question used in the 
National Assessment for Educational Progress (NAEP)):
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Technology of c-Rater

 Content expert develops a scoring guide
 Gold standard responses

 Recognizing the equivalence of the response to the correct answers
 Essentially paraphrase recognition

 Analysis in terms of: 
 regularizing over morphological variation
 matching on synonyms or similar words
 resolving the spelling of unrecognized words
 resolving the referent of any pronouns in the response 
 predicate argument structure

 Mapping canonical representations to those of the gold standard 
responses
 Rule-based

07/2009  |  Computer Science Department | Ubiquitous Knowledge Processing Lab  | 60

Predicate Argument Structure 
in c-rater

 Transform text to tuples (verbs and their arg.s): „atomic meaning units“

(Leacock and Chodorow 2003)
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Problems with this Simple Approach to 
Predicate Argument Structure (Excursion)

Variation in language is much more pervasive

Simple example: passive voice
 Mary ate the cake. (subject: Mary) 
 The cake has been eaten by Mary. (subject: the cake)

Simple solution: check for passive (syntactic parser) and switch 
arguments 

Harder example:
 John is afraid of Ghosts.
 Ghosts scare John.

Solution: Use a semantic ressource like FrameNet.
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Frame Semantics and FrameNet 
(Fillmore 1976, Baker et. al. 1998)

Lexical semantic classification of predicates and their 
argument structure

A frame represents a prototypical situation (e.g. 
Commercial_transaction, Theft, Awareness)

A set of roles identifies the participants or propositions 
involved

Frames are organized in a hierarchy
Berkeley FrameNet Project db: 600 frames, 9.000 lexical 

units, 135.000 annotated sentences

07/2009  |  Computer Science Department | Ubiquitous Knowledge Processing Lab  | 63

Linguistic Normalization 
(Frame: Commerce_buy)

Role Example Sentence

Seller BMW bought Rover from British Aerospace.

Buyer
Rover was bought by BMW, which financed 
[...] the new Range Rover.

Goods
BMW, which acquired Rover in 1994, is now 
dismantling the company.

Money
BMW‘s purchase of Rover for $1.2 billion was 
a good move.

Voice: 
active /
 passive

POS: verb / 
noun

Lexicalization
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Wrapping up Content Analysis

Applicable for short, predictable answers

Usually ressource-based
 Spell-checkers, Grammars
 Semantic ressources
 Special rule-based systems
 …

A Result of a c-rater experiment (Leacock and Chodorow 2003)
 About 84% agreement with human judgment 
 47% baseline for majority class (full / partial / no credit)
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Tasks Discussed in this Tutorial

MC-Tests
FIB

Assessing short textual 
answers

Essay grading

Detecting plagiarism
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What is an Essay?

 A major part of formal education (at least in the USA)

 Secondary students are taught structured essay formats 
to improve their writing skills

 Often used by universities in selecting applicants
 Students are asked to explain, comment on, or assess 

a topic of study
 These admission essays are used to judge the 

mastery and comprehension of the material
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Essay Prompts

 Descriptive prompt: 
 “Imagine that you have a pen pal from another country. 

Write a descriptive essay explaining how your school looks 
and sounds, and how your school makes you feel.” 

 Persuasive prompt: 
 “Some people think the school year should be lengthened at 

the expense of vacations. What is your opinion? Give 
specific reasons to support your opinion.”

Source: Y. Attali and J. Burstein. Automated essay scoring with e-rater 
v.2. The Journal of Technology, Learning, and Assessment, 4(3), 
February 2006.
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Research Development in Writing 
Evaluation

Source: Marti A. Hearst, The Debate on Automated Essay 
Grading, IEEE Intelligent Systems, IEEE Educational 
Activities Department, 2000, 15, 22-37.
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Most Prominent Systems

 Intelligent Essay Assessor (Landauer, Foltz & Laham, 
1998)
 Based on a statistical technique for summarizing the 

relations between words in a document, i.e. every word is a 
„mini-feature“

 Intellimetric (Elliot, 2001)
 Based on hundreds of undisclosed features

 Project Essay Grade – PEG (Page, 1994)
 Based on dozens of mostly undisclosed features

 E-Rater (Burstein et al., 1998)
 The 1st version used more than 60 features
 E-rater 2.0 uses a small set of features

07/2009  |  Computer Science Department | Ubiquitous Knowledge Processing Lab  | 70

How Do Humans and Machines Rate  
Essays?

 Humans evaluate various intrinsic variables of interest 
→ essay score:
 Content adequacy
 Structure
 Argumentation
 Diction
 Fluency
 Correct language use

 Machines use approximations or possible correlates 
of intrinsic variables → scoring model
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How is a Scoring Model Created?

 Analyze a few hundred essays: 
 Written on a specific prompt
 Pre-scored by as many human raters as possible

 Identify most useful approximations (classification 
features) out of those available to the system

 Employ a statistical modeling procedure to combine the 
features and produce a machine-generated score
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Validating the Meaning of Scores 
(Yang et al. 2002)
 Relationship between human and machine scores of the same 

prompt:
 Compare the machine-human and human-human agreement 

(Burstein et al., 1998; Elliot, 2001; Landauer et al., 2001)
 Estimate a true score as the one assigned by multiple raters 

(Page, 1966)
 Relationship between test scores and other similar measures:
 Compare automatic scores with multiple-choice test results and 

teacher judgments (Powers et al., 2002)
 Understanding the scoring process, i.e. relative importance of 

different writing dimensions:
 Most commonly used features in scoring models (Burstein et al., 

1998)
 The most important component is content (Landauer et al., 2001)
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Skepticism and Criticism 
(Page and Petersen, 1995)

 Three general directions of criticism:
 Humanistic – never understand or appreciate an essay as 

a human
   Use automatic scoring as a second rater

 Defensive – playful or hostile students produce "bad faith" 
essays

 a study by Powers et al. (2001), a lot of data needed

 Constructive – computer-measured variables is not what is 
really important for an essay

   an improved ability to additionally provide diagnostic feedback
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Features Used by e-Rater 2.0
(Burstein et al., 1998)

 Measures of:
 Grammar, usage, typos
 Style
 Organization & development
 Lexical complexity
 Prompt-specific vocabulary usage

 Implemented in different writing analysis tools

 Based on an NLP foundation that provides instructional 
feedback to students in the web-based Criterion system
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Writing Analysis Tools: Correctness

 Identify five main types of grammar, usage and 
mechanics errors:
 Agreement and verb formation errors, wrong word use, 

missing punctuation, typographical errors

 Corpus-based approach:
 Train the system on a large corpus of edited text
 Extract and count bigrams of words and POS
 Search for bigrams in essay that occur much less often 

(Chodorow & Leacock, 2000)
 girl walk occurs less frequently than girl walks
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Writing Analysis Tools: 
Aspects of Style

 The writer may wish to revise:

 The use of passive sentences

 Very long or very short sentences

 Overly repetitious words (Burstein & Wolska, 2003)
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Writing Analysis Tools: 
Organization & Development

 Discourse elements present or absent in the essay 
(Burstein, Marcu and Knight, 2003)

 A linear representation of text as a sequence of:
 Introductory material
 A thesis statement 
 Main ideas
 Supporting ideas
 A conclusion

 How can we find these parts automatically ?
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Supervised Learning

 Train a system on a large corpus of human annotated 
essays to identify "good" sequences

 The computer extracts regularities such as
 Mandatory parts, 
 Number restriction, e.g., > 3 main ideas, 
 …
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Essay Annotated with Discourse 
Elements

Source: Y. Attali and J. 
Burstein. Automated essay 
scoring with e-rater v.2. The 
Journal of Technology, 
Learning, and Assessment, 
4(3), February 2006.

07/2009  |  Computer Science Department | Ubiquitous Knowledge Processing Lab  | 80

Writing Analysis Tools: 
Lexical Complexity

 Related to word-specific characteristics such as:

 A measure of vocabulary-level, based on Breland, Jones 
and Jenkins (1994), Standardized Frequency Index across 
the words in an essay

 The  average word length in characters in an essay
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Writing Analysis Tools: 
Prompt-Specific Vocabulary Usage

 Intuition: good essays resemble each other in their word 
choice, as will poor essays (within the same prompt)

 Idea: compare an essay to a sample of essays from each 
score category (usually 1-6)
 Each essay and a set of training essays from each score 

category is converted to a vector
 Some function words are removed
 Each vector element is a weight based on a word frequency 

function
 Six cosine correlations are computed between the essay and 

each score category to determine the similarity
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Scoring in e-Rater 2.0

 Input: all features of all writing analysis tools
 Grammar, usage, mechanics, style (4 features)
 Organization & development (2 features)
 Lexical complexity (2 features)
 Prompt-specific vocabulary usage (2 features)

 Straightforward combination method:
 Apply a linear transformation on feature values to achieve a 

desired scale
 A weighted average of the standardized feature values
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Future Directions

 Better standardization of scoring - a single scoring model 
for all prompts of a program or assessment

 Better understanding and control over the automated 
scores

 Cover more aspects of writing quality, devise new 
features
 Prefer features providing useful instructional feedback

 Detection of anomalous and bad-faith essays
 Characterize different types of anomalies
 Detect off-topic essays (Higgins, Burstein and Attali, 2006)
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Tasks Discussed in this Tutorial

MC-Tests
FIB

Assessing short textual 
answers

Essay grading

Detecting plagiarism
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Plagiarism

“Plagiarize: […] to take and use as one's own 
the thoughts, writings, or inventions of another. […]”

Oxford English Dictionary Online

• Main Feature: Missing indication of source 
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Affected Types of Media

Music
Text
Graphics
 Images
…

 In this context: written text
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Plagiarism at Universities

Two common kinds of plagiarism among students

 Intra-corpal plagiarism
 Copying from fellow students
 Kollusion (here: unwanted group work)

Web-based plagiarism 
 Copying from an online source (book, web page, etc.)

(Culwin and Lancaster 2001)

 „Web 2.0-mentality“: Find-Remix-Share
(Sattler 2007)
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Plagiarism at Universities 
(Lecturers/Researchers)

 In teaching material: slides / course reader / etc.

Self-plagiarism 
Silent inclusion of results in one‘s own work (from PhD candidates, 

students, etc.)
(http://www.spiegel.de/unispiegel/jobundberuf/0,1518,207062,00.html)

Peer-Reviews (project proposals, conference papers)
(http://de.wikipedia.org/wiki/Plagiat#Plagiate_in_Hochschule_und_Schule)

Honorary authorship
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Types of Plagiarism

(1) Plagiarism of authorship: the direct case of putting your own 
name to someone else’s work 

(2) Word-for-word plagiarism: copying of phrases or passages from 
a published text without quotation or acknowledgement.

(3) Paraphrasing plagiarism: words or syntax are changed 
(rewritten), but the source text can still be recognized.

(4) Plagiarism of the form of a source: the structure of an argument 
in a source is copied (verbatim or rewritten)

(5) Plagiarism of ideas: the reuse of an original thought from a 
source text without dependence on the words or form of the source

(6) Plagiarism of secondary sources: original sources are 
referenced or quoted, but obtained from a secondary source text 
without looking up the original.

Based on Martin (1994) and Clough (2003)
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Typical Plagiarism Indicators

 Use of advanced or technical vocabulary beyond that expected of 
the writer

 A large improvement in writing style compared to previous 
submitted work

 Inconsistencies within the written text itself, e.g. changes in 
vocabulary, style (e.g. references) or quality

 Incoherent text where the flow is not consistent or smooth
 Dangling references: a reference appears in the text, but not in the 

bibliography and vice versa

 A large degree of similarity between the content, mistakes, etc. of 
two or more submitted texts.

Based on Clough (2003)
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Techniques Used  to Conceal Copying

 Replacing odd or unusual words 
 Changing formatting 
 Adding filler words or phrases 
 Changing headings 
 Rephrasing sentences 
 Removing or re-ordering sections 
 Changing spelling (usually from American English to British English, 

if the document is plagiari[s|z]ed from the Web) 
 Producing consistency by find-and-replace (as an example, if some 

papers refer to the World Wide Web, some to the WWW, some to 
the Web, a student may perform a global find-and-replace to ensure 
consistency within the plagiarised document) 

 In programming, changing variable names and comments 

The use of electronic tools to support plagiarism detection: 
http://www.comp.leeds.ac.uk/hannah/CandIT/plagiarism.html
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String Matching Algorithms

 Most popular plagiarism detection scheme:

 Comparing word windows of length ≥ n 
 Computing the overlap of matching subsequences and substrings 

(consecutive tokens)

 n is derived empirically
 The longer n becomes, the more unlikely it is that the same 

sequence will appear in independently written texts

 Problem: larger n-grams types are rare, difficult to define 
thresholds
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Uniqueness of N-grams  
(from Clough 2003)

 Figures taken from 769 texts in the METER corpus:
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Longest Common Substrings 
Computed between Two Sentences

 Greedy String Tiling (or GST: see, e.g. 
(Wise,1993)), an algorithm which 
computes a maximal mapping of text 
pairs with non-overlapping substrings 
(called tiles). 

 Advantage: n-gram size needs not be set 
a priori
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Longest Common Substrings 
Computed between Two Sentences

 The output of the GST algorithm is a list like: [for two years], [driver 
who], [into the], [a], [queen], [was] and [banned]. 

 Different quantitative measures can then be applied, e.g.:
 the minimum and maximum tile length
 the average tile length
 the dispersion of tile lengths

 Goal: derive a similarity measure for plagiarism 

 Challenge: distinguish derived and non-derived text(s)
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Example of Tiling for Derived and 
Non-Derived Text (from Clough 2003)

 It has been empirically found 
that: 

 derived texts (top) share longer 
matching substrings

 the tiling for a derived and non-
derived text pair are in most cases 
apparently different
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Machine Learning in Plagiarism 
Detection

 Input: Documents and their features (Document length, match size, etc.)

 Goal: A computational model that distinguishes original and 
plagiarism

 Supervised (machine) learning: train a classifier on manually 
annotated training data (texts classified as plagiarized or not)

 Disadvantage: Many documents needed (thousands)

 Unsupervised learning: have the machine find certain “clusters”
 Concrete instruction: Divide these texts in two parts (given these 

features)
 Hope: one part will contain originals and one part derived texts

 Evaluation: check random samples

07/2009  |  Computer Science Department | Ubiquitous Knowledge Processing Lab  | 98

Relaxing the Approach

Preserving longer matching n-grams and tile lengths to 
make the approach resistant to simple edits

● Allow small gaps to represent token deletion 

● Allow simple word substitution (using WordNet) 

● Allow insertion of certain words such as domain-specific 
terminology and function words (e.g. conjunctions)

● Allow simple reordering of tokens (e.g. transposition)
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NLP in Plagiarism Detection

 Existing work involves minimal natural language processing (NLP)

 Areas of NLP that could aid plagiarism detection, particularly in 
identifying texts which exhibit similarity in semantics, structure or 
discourse, but differ in lexical overlap and syntax

 NLP methods include: 
 morphological analysis, part-of-speech tagging, anaphora resolution, parsing 

(syntactic and semantic), co-reference resolution, word sense disambiguation, 
and discourse processing

 Future work:
 several similarity scores based on lexical overlap, syntax, semantics, discourse 

and other structural features
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How to Avoid Plagiarism?

 Clearly define plagiarism to the students and use explicit examples
 Educate the students about the honor code and the ramifications if 

it is violated
 Create assignments that make plagiarism difficult
 Make sure the students are familiar with online resources
 Have the students submit evidence of the research process as well 

as the paper
 Avoid repeating assignments and paper topics
 Inform the students you are Internet savvy and you know about the 

paper mills (visit the sites with the students to evaluate the quality 
of the work)

 Inform the students that you use plagiarism detection software
                   From “Plagiarism in the 21st century” Carrie Leslie. Lunch & Learn. 2004. Otto G. Richter Library
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Online Internet Plagiarism Services

 Plagiarism.org www.plagiarism.org
 The largest online plagiarism service available

 EVE2 www.canexus.com/eve/abouteve.shtml

 None of the services details their implementation details

 All of them are commercial, but plagiarism.org allows free 
trial

07/2009  |  Computer Science Department | Ubiquitous Knowledge Processing Lab  | 102

Summing up

Resource-based vs. corpus-based approaches
Resources: spell checker, grammar, thesaurus, semantic net, …
Corpus-based approaches
 Supervised: Manual annotation and generalization
 Unsupervised: Automatic induction of structure 

MC-Tests
FIB

Assessing short textual 
answers

Essay grading

Detecting plagiarism
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Outline

Introduction: eLearning and NLP

Automatic generation of exercises

Assessment of learner generated discourse  

Reading and writing assistance

Web 2.0 and computer supported collaborative learning

Example e-NLP application: electronic career guidance

Example e-NLP application: educational QA
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Wrap up and questions
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Readability

 "Readability is what makes some texts easier to read than 
others" (DuBay, 2004)

 Heavily dependent on the intended audience

 A text's readability can be estimated with readability 
formulas, which provide an objective prediction of text 
difficulty, usually expressed in terms of school grade level

 Aims: 
 match reading materials with the abilities of the readers
 support authors in writing clearly understandable texts 
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Traditional Readability Measures

Formula Date Features Example values

1948

Fog index 1952

SMOG grading 1969 - # words with more than 3 syllables

Flesch index - average # syllables / word
- average sentence length

- 30 = "very difficult"
- 70 = "easy"

- # words with more than 2 syllables
- average sentence length

- 6 = comic books
- 10 = newspapers                    

- 0 to 6 =  low-literate
- 19+ = post-graduate
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Readability Statistics

 Computed using the style command

Rotkäppchen
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Statistical Language Models for 
Reading Difficulty

 Use of statistical models representing norms, specific 
populations and individuals (Brown & Eskenazi, 2004)

 Different models can be created for each level of reading 
difficulty (Collins-Thompson & Callan, 2005)

 Method (Collins-Thompson & Callan, 2005; Heilman et al., 
2007, 2008):
 For a given text passage T, the semantic difficulty of T relative 

to a specific grade level G
i
 is predicted by calculating the 

likelihood that the words of T were generated from a 
representative language model of G

i

 Reading difficulty = grade level of the language model most 
likely to have generated the passage T
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Readability analysis as a classification 
task

 Aim: label texts with grade levels
 Method: train multiple classifiers on manually annotated 

text
 Linear regression (Feng et al., 2009)
 Support vector machines (Petersen & Ostendorf, 2009)

 Features:
 Lexical features: avg. number of words per sentence, avg. 

number of syllables per word
 Syntactic features: parse tree height, noun phrase count, verb 

phrase count, SBAR count
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Discourse features

 Discourse features (Pitler & Nenkova, 2008):
 Vocabulary and discourse relations are the strongest 

predictors or readability (Wall Street Journal texts)
 Discourse relations also robustly predict readability rankings 

(comparisons between two documents)

 Cognitively motivated features for a specific group of users 
(Feng et al., 2009)
 Target group: adults with intellectual disabilities
 Discourse level features: entity density, lexical chains
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Document Retrieval for Reading 
Practice
 Reading proficiency is a widespread problem
 29% of high school seniors in public schools across America 

were below basic achievement in reading in 2005 (Miltsakaki 
& Troutt, 2008)

 Low reading proficiency may have dramatic consequences 
(DuBay, 2004):
 The strongest risk factor for injury in a traffic accident is the 

improper use of child safety seats
 79 to 94% of car seats are used improperly
 Installation instructions are too difficult to read for 80% adult 

readers in the US

 Use readability measures to identify suitable and 
authentic documents, given a reader profile / reading 
grade
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Vygotsky's Zone of Proximal 
Development

 Materials for assisted reading should be harder than the 
reader's tested reading level, but within the zone of 
proximal development

 Materials for unassisted reading , e.g. medicine inserts, 
instructions, should be as easy as possible

http://www.education.vic.gov.au/
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Read-X (Miltsakaki & Troutt, 2008)

 http://net-read.blogspot.com/

Keywords

Texts

Reading
Level

Yahoo! Internet search

Text extraction

Readability analysis

Text classification
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REAP search (Heilman et al., 2008)
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Text Simplification

 The readability of a text can be improved by transforming it 
into a simpler text

 Characteristics of manually simplified texts (Petersen & 
Ostendorf, 2007) :
 shorter sentences
 fewer and shorter phrases
 fewer adjectives, adverbs and coordinating conjunctions
 nouns are less often replaced with pronouns

Original text: Congress gave Yosemite the money to repair 
damage from the 1997 flood.
Abridged text: Congress gave the money after the 1997 
flood
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Automatic Text Simplification

 Related techniques: summarisation and sentence 
compression

 Syntactic simplification:
 Removal or replacement of difficult syntactic structures, using 

hand-built transformational rules applied to dependency and 
parse trees (Carroll et al., 1999; Inui et al., 2003)

 Lexical simplification:
 Goal: replace difficult words with simpler ones (Carroll et al., 

1999; Lal & Rüger, 2002)
 Difficult words are identified using the number of syllables 

and/or frequency counts in a corpus
 Choose the simplest synonym for difficult words in WordNet
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Vocabulary Assistance for Reading

 Overall goal: support vocabulary acquisition during reading 
for:
 children, who learn to read (Aist, 2001)
 foreign language learners, who read texts in a foreign 

language

 Problem: a word's context may not provide enough 
information about its meaning

 Solution: augment documents with dynamically generated 
annotations about (problematic) words
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Selection of Target Words

 All words are annotated

 Annotate selected words
 Manually selected target words
 Automatically selected target words
 (Aist, 2001):

 Words with few senses in WordNet (to avoid WSD)
 Not a trivially easy word: three or more letters long, not in a stop list of 

function words, not a number
 Not a proper noun
 Socially acceptable, e.g. no secondary slang meanings

 (Mihalcea & Csomai, 2007): keyword extraction methods
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Resources for Vocabulary Assistance

 WordNet (Aist, 2001):
 Extraction of comparison words for a target word: antonym, 

hypernym, synonym
 Generation of factoids:
 eggshell can be a kind of natural covering
 Problems: 
 some of the automatically generated factoids are too obscure or 

do not match the sense of the word used in the original text
 some of the comparison words may be harder to understand than 

the target word
 hypernyms do not always capture the key elements of the 

meaning of a word
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Resources for vocabulary assistance

 Collaborative and 
online resources, e.g. 
Wikipedia, Wiktionary,
Beolingus, ...

http://lingro.com/
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Wikipedia and Wiktionary as 
Lexical-Semantic Resources

+

This image is licensed under the GFDL. It is based on 
Bild:Foerderturm-Kamen.jpg.

• Structure Mining
• Content Mining
• Usage Mining

=
Lexical 
semantic 
resources
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Wikipedia Article Page
First paragraph

 First paragraph
 Definition / Gloss
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Wikipedia  – Redirect Pages

 Synonyms
 Pope Benedict XVI
 Joseph Ratzinger
 Joseph Cardinal Ratzinger

 Spelling variations
 Benedict the Sixteenth
 Benedict the 16th
 Benedict 16th
 Benedict 16
 Benedict XVI
 Benedict xvi

 Misspellings
 Josef Ratzinger (instead of Joseph)

 Abbreviations
 PB16
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Wikipedia – Categories

 Articles
 Hierarchy

Engines Energy conversion

Piston engines

Aircraft piston engine

Piston Engine Configurations

Automobile engines
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JWPL – Wikipedia API

 Freely available for research purposes
http://www.ukp.tu-darmstadt.de/software/

Category
Graph

Page

Category

Wikipedia

ParsedPage

Section

Paragraph

Link

Table

...MetaData
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Wiktionary as 
Lexical-Semantic Resource

 Language
 Etymology
 Pronunciation
 Part-of-speech
 Word senses
 Synonyms
 Derived terms
 Translations

 Abbreviations, Antonyms, 
Categories, Collocations, 
Examples, Glosses, 
Hypernyms, Hyponyms, 
Morphology, Quotations, 
Related terms, Troponyms
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JWKTL – Wiktionary API

Language

Wiktionary
Word

PoS

Wiktionary

Sense

Synonyms

Translations

Etymology

Pronunciation

...…

 Freely available for research purposes
http://www.ukp.tu-darmstadt.de/software/
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Wikify! (Mihalcea & Csomai, 2007)

 Aim: link keywords (important concepts) in a document to 
the corresponding Wikipedia page

 Keyword extraction
 Ranking: tf.idf, χ2 independence test, keyphraseness

 Word Sense Disambiguation to identify the target 
Wikipedia page:
 Lesk algorithm: measure of contextual overlap between the 

Wikipedia page of the ambiguous word / phrase and the 
context where the ambiguous word / phrase occurs

 Machine Learning classifier
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Spelling Error Detection and Correction

 Aim: identify and correct spelling errors

 Types of spelling errors:
 Non-word spelling errors

occured instead of occurred
ater instead of after, later, alter, water, ate

 Word conflation or splitting
 ofthe, understandhme
 sp ent, th ebook
 Malapropisms: real-word spelling errors in open-class words

diary – dairy
there – their – they're
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Research Problems (Kukich, 1992)

 Non-word error detection
 From the early 1970s to the early 1980s
 Focus on efficient pattern-matching and string comparison 

techniques

 Isolated-word error correction
 Started in the early 1960s

 Context-dependent word correction
 Started in the early 1980s
 Use of statistical language models

Textbook overviews: (Jurafsky & Martin, 2008; Manning, 
Raghavan and Schütze, 2008)
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Non-word Error Detection

 n-gram analysis: 
 n-gram = n-letter sub-sequences of words or strings
 examine each letter n-gram in an input string
 find the n-gram in a table of n-gram statistics compiled from a 

corpus of text
 highly infrequent n-grams indicate probable misspellings
 especially useful for optical character recognition devices

 Dictionary lookup:
 check if an input string appears in a dictionary of acceptable 

words
 techniques: hash tables, tries, finite-state automata, Aho-

Corasick algorithm, ternary search trees
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Isolated Word Error Correction

1) Detection of errors in single words, out of context
2) Generation of candidate corrections

● Distance/Proximity metric between the correct word and the 
erroneous word

● Minimum edit distance: minimum number of editing 
operations (i.e., insertions, deletions, and substitutions) 
needed to transform one string into another

"=" Match; "o" Substitution; "+" Insertion; "-" Deletion

3) Ranking of candidate corrections based on the 
distance/proximity metric or occurrence counts

Distance = 4

(c) www.levenshtein.net
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Isolated Word Error Correction

Problem: even humans do not achieve 100% accuracy 
levels, given isolated misspelled strings (Kukich, 1992):

● vver → over, ever, very?
● wekk → week, well, weak?
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Context-dependent Error Correction

 Also called context-sensitive spelling correction

 Aim: correct real-word spelling errors, which cannot be 
identified by dictionary lookup

 Between 25% and 40% of spelling errors are valid English 
words (Kukich, 1992)

 Use the context to help detect and correct spelling errors

 Based on language models
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Spelling Correction for Foreign 
Language Learners (Heift & Rimrott, 2007)

 80% of the misspellings produced by non-native writers of 
German are due to insufficient command of the foreign 
language:
Metz for Fleisch (from Metzger)
tanzed for tanzte (from danced)

 These errors are difficult to correct for generic spell 
checkers → need for rules that are geared towards 
common L2 errors

 Importance of feedback: learners are more likely to 
correct a mistake if the feedback contains explicit 
information on the error and correction suggestions
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Grammar Checking

 Tasks:
 Grammatical error detection: identify sentences which are 

grammatically ill-formed
 Grammatical error correction: correct grammatically ill-

formed sentences

 Methods:
 Rule-based checking: use of manually written rules
 Syntax-based checking: use the output of a parser
 Statistics-based: use statistical information about n-gram 

frequencies
 Many methods focus on a specific part-of-speech, e.g. 

prepositions
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Grammatical Error Types

 According to (Nicholls, 1999, quoted by Chodorow & 
Leacock, 2000):
 Insertion of an unnecessary word: *affect to their emotions
 Deletion of a word: *opportunity of job
 Word or phrase that needs replacing: *every jobs
 Word use in the wrong form: *knowledges

 Grammatical difficulties for ESL learners:
 Prepositions: *arrive to the town, *most of people, *He is fond 

this book (Chodorow et al., 2007)
 Verb forms: I can't *skiing well, I don't want *have a baby (Lee 

& Seneff, 2008)
 Articles
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Rule-based Grammar Checking

 Analyse errors in a corpus and write rules to identify and 
correct these errors, based on POS information

 Rule patterns should not occur in correct sentences
 Examples:
 Language Tool (Naber, 2003)
 Open Source language checker
 Rules are defined in XML configuration files and include feedback 

messages
 GRANSKA (Eeg-Olofsson & Knutsson, 2003)
 Rules expressed in a specific rule language 
 Recall = 25%, Precision = 100%
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Syntax-based Grammar Checking

 Template-matching on parse trees (Lee & Seneff, 2008)
 Automatic introduction of verb form errors in a corpus
 Parsing of the corpus
 Identification of templates in the "disturbed" parse trees
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Statistics-based Grammar Checking

 Detection of unfrequent sequences of words and/or POS 
tags:
 POS bigrams (Atwell, 1987)
 POS tags and function words n-grams (Chodorow & 

Leacock, 2000)

 Machine learning:
 Maximum entropy model trained with contextual features and 

combined with rule-based filters (Chodorow et al., 2007)
 Machine learning model based on automatically labelled 

sequential patterns (Sun et al., 2007)
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Classification based approach

 Method: train a classifier on grammatically correct text to 
predict which preposition / determiner is correct in a given 
context (Gamon et al., 2008; De Felice & Pulman, 2008)

 Example contextual features (De Felice & Pulman, 2008):
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The Tip of the Tongue Problem

Writers may want to look for 
words that express a given 
concept and are appropriate 
in a given context

Problem: in order to access 
words in a traditional 
dictionary, you have to know 
the word you are looking for
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Dictionary Lookup (Ferret & Zock, 2006)

 Tip of the tongue problem: 
 domesticated animal, producing milk suitable for making 

cheese
 NOT (cow, buffalo, sheep)
 → goat

 The mental lexicon is a huge network of interconnected 
words and concepts

 The network is entered through the first word that comes 
to mind and the target word is retrieved thanks to 
connecting links
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Internal Representation
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Wikipedia Graph
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Outline
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Web 2.0 and computer supported collaborative learning

Example e-NLP application: electronic career guidance

Example e-NLP application: educational QA
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Wrap up and questions
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Characteristics of Web 2.0

 Collective intelligence
 Huge amount of data
 Fast growing

 Noise
 Duplicates
 Content of different quality
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eLearning 2.0

 Main characteristics:
 Worldwide learning 

community
 Educational material 

produced both by students 
and teachers

 Tools:
 Wikis
 Blogs
 Podcasts
 Widgets
 ...
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New Learning Paradigms in
eLearning 2.0

 Study at any place, any time
 Several devices may be used for learning: computer, iPod, 

PDA, etc.

 Authority in educational systems is distributed: collective 
intelligence and wisdom of the crowds
 Learn not only from teachers and instructors, but also from 

peers

 New forms of knowledge organization: tags and 
folksonomies

(Bartolomé, 2008)
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"CALL 2.0"
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Widgets for CALL
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User contributed contents
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User contributed contents
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Use of Web 2.0 Resources
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Wikis

 Goal: build and share knowledge

 Wikis allow users to change contents:
 collaborative authoring
 simple wiki markup language
 stored edit history

 Uses in education:
 Distribute educational material to students
 Support student group work
 Support teacher collaboration
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Wiki examples
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Educational wiki
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Problems with Wikis

• Small
• Well structured
• Easy to find and 
  add content

In the beginning ...

People like it and 
add lots of 
content

I can‘t find 
anything!

Where do I 
put this?

?

Disorientation and cognitive overload
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Wiki User Survey at UKP

 15 participants

 The two biggest problems
 Wiki capabilities to re-organize content
 Finding information

 Confirmed by other studies, e.g.
 M. Buffa. Intranet Wikis. Proceedings of the IntraWebs 

Workshop 2006 at the 15th International World Wide Web 
Conference WWW 2006.
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UKP's Approach: Wikulu

Use Natural Language Processing
to support the user by providing suggestions while: 
adding, organizing and finding content.

„Wikulu“ - Hawaiian for organize [‚kukulu‘] fast [‚wiki‘]
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Adding Content:
Detect Duplicate Content

!
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Adding Content:
Suggest Points of Insertion

 07/2009  |  Computer Science Department | Ubiquitous Knowledge Processing Lab  | 162

Adding Content:
NLP Algorithms

 Text similarity (Gabrilovich & Markovitch, 2007)
 Highly similar documents might be duplicates
 ... or possible places for adding the new content

 Text segmentation (Choi et al., 2001)
 Find specific position for inserting new text by segmenting pages 

into coherent topics
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Organizing Content:
Suggest Links
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Organizing Content:
Suggest Tags
CHICAGO, Oct 29 - Kraft Foods Inc and Kellogg Co posted better-than-expected third-quarter profits on 
Wednesday as price increases and new products helped lift sales in a weak economy. Kraft also stood 
by its forecasts for 2008 earnings before one-time items as well as for 2009 net income, while Kellogg 
said its profit this year should hit the high end of its previous targeted range. Both Kraft, the largest 
North American food maker, and Kellogg, the world's largest cereal company, have taken steps to cut 
costs and put more money into advertising. Both have also bolstered new product development to 
attract consumers even as rising commodity costs pushed them to raise prices. Commodities like wheat 
and energy have become less expensive in recent months, but food companies may not see a big 
benefit until next year, in part because they lock in their costs months ahead. Kraft, which makes Oreo 
cookies, Tang breakfast drink and Oscar Mayer hot dogs, reported a profit of 45 cents a share before 
one-time items, a penny above what analysts polled by Reuters Estimates had expected.
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Organizing Content:
Suggest Page Split/Merge
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Organizing Content:
NLP Algorithms

 Link detection (Green, 1998)
 Suggest similar content as link target

 Keyphrase extraction (Mihalcea & Tarau, 2004)
 Propose important keyphrases as possible tags

 Text segmentation
 Find coherent topics in a page to propose splits

 Text similarity
 Find scattered pages similar enough to merge
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Finding Content:
Recall-Oriented Search

Wiki
"issue"

"problem"
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Finding Content:
Show Related Pages While Browsing
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Finding Content:
NLP Algorithms

 Text similarity
 Improve search recall by taking into account term similarity to 

find additional relevant pages
 Show related pages while browsing
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What is actually the Quality of Web 2.0 
Resources?

 Wikipedia:
 Open edit policy, yet high quality articles (Giles, 2005)
 42 entries tested by experts
 average science entry in Wikipedia contained around four 

inaccuracies
 average science entry in Encyclopaedia Britannica contained 

around three inaccuracies

 Automatic assessment of the quality of these ressources:
 Social Q&A sites (Jeon et al., 2006; Agichtein et al., 2008)
 Wikipedia (Druck et al., 2008)
 Forums (Weimer et al., 2007; Weimer & Gurevych, 2007)

 07/2009  |  Computer Science Department | Ubiquitous Knowledge Processing Lab  | 171

 Web 2.0 leads to massive 
amounts of data

 Users need content of good 
quality

 Current approach
 Users label the data for 

quality
 Labels are used for filtering

 Problems:
 Happens rarely
 New item problem
 Premature negative 

consensus (Lampe and 
Resnick, 2004)

Quality Assessment of 
User Generated Discourse
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The SIR project:

Semantic Information Retrieval for 
Electronic Career Guidance

funded by the German Research Foundation
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Electronic Career Guidance

Information Retrieval

Descriptions of 
professions

Documents

1. ...

2. ..

3. … Ranked List of 
Professions 

Essay about 
professional 
interests

Query
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Problems of Standard Information 
Retrieval

 Standard search engines
1.Return many irrelevant documents 

(low precision)
2.Miss many relevant documents 

(low recall)

 Why is this the case?
 Pure keyword search is often out of context 

(e.g., apple, jaguar)
 Vocabulary gap: 
 Words are confused with their meaning 

(car = automobile)
 Related words are not considered
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Vocabulary Mismatch Problem

Profession 3

Profession 1

Profession 2

Profession ...

Essay

Profession ...

Profession ...

Profession ...

Semantic Relatedness

I like 
baking 
cakes...

...pastries...

...confectioner... 

...food processing 
industry
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Where Does the Information Come 
From?

Knowledge 
Sources

Concepts

Textual 
Representation

Article Titles

Article Text

Entry Titles

Entry
Information

GermaNet

Synsets

Pseudo 
Glosses

07/2009  |  Computer Science Department | Ubiquitous Knowledge Processing Lab  | 178

Lexical Semantic Knowledge

 GermaNet: German lexical-semantic wordnet 
 Nouns, verbs, adjectives
 27,824 noun synsets, 8,810 verb synsets, 5,141 adjective 

synsets
 60,646 words in synsets

 Wikipedia 
 Free online collaboratively constructed encyclopedia
 Articles, links, categories (Zesch, Gurevych & Mühlhäuser, 2007)

 Wiktionary
 Free online collaboratively constructed dictionary
 Words, categories, semantic relations

 http://www.ukp.tu-darmstadt.de/software/WikipediaAPI
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• Semantic relatedness (SR) as 
measure for document relevance 

• Semantic relatedness (SR) as measure for document 
relevance 

Lexical-
Semantic 

Knowledge

Semantic 
Relatedness 

Measure

Information Retrieval 
System
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Semantic Relatedness Measures

 Path length (PL)

 Pseudo glosses based (Gurevych, 2005)

 Information content based
 Resnik (1995)
 Jiang & Conrath (1997)
 Lin (1998)

 ESA - Explicit semantic analysis (Gabrilovich & 
Markovitch, 2007)
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ESA: Words are Represented as 
Concept Vectors

Yellow

In some countries, taxicabs are 
commonly yellow. This practice 
began in Chicago, where taxi 
entrepreneur  John Hertz painted 
his taxis yellow based on a 
University of Chicago study 
alleging that yellow is the color 
most easily seen at a distance.

taxicab

automobile

drive

fast

hire

New York

passenger

SUV

taxi

transport

yellow 0.8

0.9

0.8

0.6

0.8

0.7

0.9

0.1

1.0

0.9
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Computing Similarity

taxicab

automobile

drive

fast

hire

New York

passenger

SUV

taxi

transport

yellow

truck

automobile

drive

fast

hire

New York

passenger

SUV

taxi

transport

yellow

0.7

0.8

0.2

0.1

0.0

0.1

0.0

0.0

0.9

0.1

vtaxicab vtruck

0.8

0.9

0.8

0.6

0.8

0.7

0.9

0.1

1.0

0.9

Semantic
Relatedness
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Experiments in Information Retrieval 

A
“On the other hand, I prefer working with 
computers, I can program in C, Python and VB and 
I could therefore imagine working in the software 
industry.”

• Topics - 30 essays of human 
subjects about professional 
interests
• Queries:

- Nouns, Verbs, Adjectives
- Nouns
- Keywords (set of 41 
keywords)

Profession 3

Profession 1

Profession 2

Profession ...

Query

Profession ...

Profession ...

Profession ...

Profession 3

Profession 1

Profession 2

Profession ...

Query

Profession ...

Profession ...

Profession ...
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Document Collection

 Provided by the German Federal Labour Office
 Descriptions of 4,000 professions and 1,800 vocational 

trainings
 Prepared by professionals

 Evaluation on 529 descriptions of vocational trainings

 Using parts which describe profession itself, but not 
training or administrative details



07/2009  |  Computer Science Department | Ubiquitous Knowledge Processing Lab  | 185

"Gold Standard"

 41 keywords in 3 categories
 Ranked list of professions for each topic 
 Automatically extracted from knowledge base
 Used for creating relevance judgments 
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Relevance Judgments

41 Keywords
educate, use/program computer, 

office, outside, animals/plants, ...

Essay Profes-
sion 1

Profes-
sion 2

Profes-
sion 3

Human Annotation

Scoring

Profes-
sion 1

Profes-
sion 2

Profes-
sion 3

1. 2. 3.

irrelevantrelevant
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Results

Nouns,Verbs,Adjec
tives

Nouns Keywords
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mean Average Precision

Wikipedia
GermaNet Hyper
GermaNet Radial
Wiktionary

 Semantic methods lead to up to 40% improvement of search results

 Comparison of the contributions of different ressources
 Wikipedia scores best
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QA-EL
Question Answering for E-Learning

Motivation: Information overload in E-Learning
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QA-EL
Question Answering for E-Learning
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Question Answering (QA) vs.
Information Retrieval (IR)

 INPUT:
 Natural language questions and not keyword-based queries:
 QA: How long do polar bears live?
 IR: polar bears life span

 OUTPUT:
 Precise and concise answers, not whole documents
 QA: In the wild, polar bears live an average of 15 to 18 years, although 

biologists have tagged a few bears in their early 30s. In captivity, they 
may live until their mid- to late 30s. One zoo bear in London lived to be 
41.

 IR: 
www.gotpetsonline.com/polar-bear/bear-habitat-polar/polar-bear-life-span.html
www.starbus.com/polarbear/aboutpb.htm
www.polarbearsinternational.org/faq/
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Conventional QA systems
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Architecture of an Educational QA 
System (Gurevych et al., 2009)

Combination of answers from
heterogeneous documents

GUI

QA
document

index

Question type
identification

High-quality question
generation

Quality
assessment

Question analysis

Question

Retrieval based on
question paraphrases

QA as
information retrieval

Answer retrieval

Answers

Lexical-semantic
resources:
WordNet, 

Wikipedia, Wiktionary

Wikipedia
Social

Q&A sitesPPT Blogs FAQs

Assessment of the quality
of questions and answers
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Low Quality Questions

Factor Example
Misspelling
Internet slang
Ill-formed syntax
Keyword search
Ambiguity

Hou to cook pasta?
How r plants used 4 medicine?
What Alexander Pushkin famous for?
Drug classification, pharmacodynamics
What is the population of Washington?

 755 questions from Yahoo! Answers:
 18% misspelled, 8% Internet slang, 20% ill-formed

 Keyword queries are the natural way for most people to look for information
 Ambiguity / Underspecification is harder to identify and is highly context-

dependent

K. Ignatova, C. Toprak, D. Bernhard, I. Gurevych. Generating High Quality Questions from Low Quality Questions. 
Workshop on the Question Generation Shared Task and Evaluation Challenge, September 2008. 
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Question Answering as Reuse

Question paraphrases

User question

Question paraphrases

Information Retrieval

User question

Q&A pairs

Social
Q&A sites

FAQ
files
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Question and Answer Repositories

Social Q&A
sites

 Provide portals 
where users can 
ask their own 
questions and 
answer questions 
from other users

 Examples: Yahoo!
Answers,  
WikiAnswers

FAQs

 Questions and 
answers are 
compiled and 
subject to 
editorial control

 Examples:
www.faqs.org

Ask-an-expert
Services

• Provide expert 
anwers to user 
questions

• Example:
www.madsci.org
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Example question in Yahoo! Answers

"[YA is] the next generation of 
search… [it] is a kind of collective 
brain – a searchable database of 
everything everyone knows. It‘s a 
culture of generosity. The 
fundamental belief is that 
everyone knows something"
Eckart Walther (Yahoo research)
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WikiAnswers
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Properties of Social Q&A Sites

 Managed by the internet community, users can:
 Ask their own questions
 Answer questions from other systems

 

 Ratings as community mechanism:
 Points for answers, “Best Answer”, oder “thumbs up” 
 Minus points for asking a question

 

 The American version of Yahoo! Answers is the second-
most visited education/reference site on the Internet 
after Wikipedia (according to Comscore)
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Question Paraphrase Identification

(Bernhard & Gurevych, 2008)
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Question Paraphrase Identification

Input question

Target question

Social
Q&A sites

Question similarity 
measures

String similarity:
 matching coefficient
 overlap coefficient
 edit distance
 ngram overlap

Vector space:
 term vector similarity
 Lucene

Pre-processing:
 stemming
 lemmatisation
 spelling correction
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Results

 Vector-space based methods outperform string similarity
 Morphological pre-processing and spelling correction do 

not ameliorate the results
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Challenges in Question Paraphrase 
Identification in Social Q&A Sites

 Spelling errors:
 How do you become an anestesiologist?
 How many years of medical school do you need to be an 

anesthesiolgist?

 Vocabulary mismatch:
 What events occurred in 1919?
 What important events happened in 1919?

 Solutions:
 Named entity recognition to identify important tokens in 

questions
 Semantic relatedness metrics
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NLP has lots to offer

 Resources:
 Lexical semantic resources, e.g. WordNet
 Web 2.0 resources, e.g. Wikipedia, Wiktionary

 Tools:
 Tokeniser and sentence splitting
 Morphological analysis
 Part of speech tagging
 Parsing and chunking
 Word sense disambiguation
 Summarisation
 Keyword extraction
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Tasks and applications

 To assist instructors
 Automatic generation of questions and exercises
 Assessment of learner-generated discourse

 To assist learners
 Reading and writing assistance
 Electronic career guidance
 Educational question answering

 For all users in the Web 2.0
 NLP for wikis
 Quality assessment of user generated contents
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A lot more research is done on:
Computer-Assisted Language Learning
 Intelligent Tutoring Systems
 Information search for eLearning
Educational blogging
Annotations and social tagging
Analysing collaborative learning processes automatically
 Learners' corpora and resources
 eLearning standards, e.g. SCORM

What the tutorial has not covered…
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NLP meets educational computing

 Educational applications are challenging for NLP since 
they place strong quality and robustness requirements on 
applications

 Interdisciplinary approach:
 psychology
 educational computing
 NLP
 cognitive and learning sciences

 Emerging types of discourse and learning paradigms in 
Web 2.0
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 Establish an international community

 ACL and AIED associated meeting series

 Related tutorials

 Resources:
 Bibliography
 Research groups
 Projects
 Annotated corpora
 Tools

How to Promote e-NLP?
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Ubiquitous Knowledge Processing Lab 

Thank you!

http://www.ukp.tu-darmstadt.de
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Zesch, T., Gurevych, I., and Mühlhäuser, M. (2007). Analyzing and Accessing Wikipedia as a Lexical
Semantic Resource. In Rehm, G., Witt, A., and Lemnitzer, L., editors, Data Structures for Linguistic
Resources and Applications, pages 197–205. Gunter Narr, Tübingen.
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