
Real-Time Summarization
of Big Data Streams
Echtzeit Zusammenfassung von Big Data Streams
Master-Thesis von Andreas Rücklé aus Darmstadt
Dezember 2015

Fachbereich Informatik
Ubiquitous Knowledge Processing
& Distributed Systems Programming

Real-Time Summarization of Big Data Streams
Echtzeit Zusammenfassung von Big Data Streams

Vorgelegte Master-Thesis von Andreas Rücklé aus Darmstadt

1. Gutachten: Prof. Dr. Iryna Gurevych
2. Gutachten: Prof. Dr. Patrick Eugster

Tag der Einreichung:

Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit den angege-
benen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen entnommen
wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form
noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 14. Dezember 2015

(A. Rücklé)

Abstract

Events like natural disasters, riots or protests trigger an increased information need for many people,
because of regional closeness, social relations or general interest. Due to a high amount of news-articles
that are created by different publishers during such events, it is nearly impossible for individual per-
sons to process all information with the goal of staying up-to-date. Real-time summarization systems
can help in such cases by providing persons with updates on the event while the situation still is devel-
oping, without requiring the individual person to manually analyze a large amount of news-articles. In
this master thesis, a framework for real-time summarization is presented and multiple summarization
systems based on this framework are introduced. Besides achieving a good summarization quality,
another focus of this work was to retain real-time properties in terms of summarization and in terms of
computational performance. Based on a simple approach defined as Baseline, different improvements
were made with the goal to create an advanced system which achieves a performance similar to other
state-of-the-art temporal summarization systems. The best resulting system of this work is an adaptive
approach which is able to change configurations and algorithms during run-time to automatically se-
lect the best method to summarize each target-event. The adaptive selection is performed by detecting
the importance of an event, based on its news-coverage. The system also makes use of an approach
that requires all information to be reported by multiple sources before it can be included in an update.
The adaptive summarization system showed superior results in terms of summarization quality com-
pared to the Baseline system. Furthermore, a comparison to a state-of-the-art temporal summarization
system also showed better results of the adaptive approach. At the same time, all real-time goals were
achieved.

2

Zusammenfassung

Verschiedene Events wie etwa Naturkatastrophen oder Protestbewegungen rufen ein erhöhtes Infor-
mationsbedürfnis bei unterschiedlichen Personengruppen hervor. Diese sind entweder direkt betrof-
fen, kennen betroffene Personen oder haben ein spezielles Interesse an dem Thema. Während eines
solchen Events veröffentlichen zahlreiche Zeitungen und Online-Redaktionen eine große Menge an
Nachrichten die sich auf das Event beziehen. Das macht es nahezu unmöglich für einzelne Perso-
nen alle Informationen zu verarbeiten um vollumfänglich informiert zu bleiben. Systeme für Echtzeit
Zusammenfassung (”Real-Time Summarization”) können in solchen Fällen helfen indem sie interes-
sierten Personen Zusammenfassungen und Updates zu Events anbieten während die Vorgänge noch
laufen, ohne dass die Personen selbst eine große Menge an Nachrichtentexten verarbeiten müssen. In
dieser Master Thesis wird ein Framework für Real-Time Summarization vorgestellt und verschiedene
konkrete Umsetzungen von Systemen auf Basis dieses Frameworks gezeigt. Neben dem Erreichen einer
guten Qualität für die Zusammenfassungen wurde eine weiterer Schwerpunkt auf das Erreichen bes-
timmter Echtzeit-Anforderungen gesetzt, einerseits im Zusammenhang mit dem Erstellen von Zusam-
menfassungen und andererseits im Zusammenhang mit dem Rechenaufwand. Basierend auf einem
einfachen Ansatz, der als Baseline definiert wurde, sind verschiedene Verbesserungen und Optimie-
rungen entwickelt worden mit dem Ziel eine Qualität für die Zusammenfassungen zu erreichen, die
vergleichbar mit anderen state-of-the-art Systemen ist. Das beste System dieser Arbeit ist ein adaptiver
Ansatz, der Konfigurationsparameter und Algorithmen während der Laufzeit wechseln kann um die
beste Methode zur Zusammenfassung zu wählen. Dies wird erreicht indem die Wichtigkeit des Events
erfasst wird, basierend auf dem Umfang der Berichterstattung. Das adaptive System nutzt außerdem
einen Ansatz der sicherstellt, dass eine Information von mehreren Quellen berichtet wurde bevor sie
ausgegeben wird. Für dieses adaptive System konnte eine bessere Qualität der Zusammenfassungen
erzielt werden als für das Baseline-System. Auch im Vergleich zu einem state-of-the-art System konnte
eine bessere Performance des adaptiven Systems festgestellt werden. Ebenso wurden alle gestellten
Echtzeit-Anforderungen von diesem System erfüllt.

3

Contents

1 Introduction 7

2 Related Work 9
2.1 Single- and Multi-Document Summarization . 9

2.1.1 Extractive Approaches . 9
2.1.2 Generative Approaches . 10

2.2 Update Summarization . 11
2.3 Temporal Summarization . 11
2.4 Real-Time Summarization . 12

3 Framework and Technical Foundation 13
3.1 Framework Requirements . 13
3.2 Framework Design . 14
3.3 Framework Implementation . 16
3.4 Document Corpus . 18

4 Summarizer Implementations 20
4.1 Baseline . 20

4.1.1 Filter . 20
4.1.2 Document Summarizer . 22
4.1.3 Updater . 23
4.1.4 Confidence Scores . 24

4.2 Multiple Sources Updater . 24
4.2.1 Confidence Scores . 26

4.3 Adaptive Algorithm . 28
4.3.1 Configuration and Algorithm Choice . 30
4.3.2 Implementation Details . 33

4.4 Semantic Similarity in Components . 35
4.5 Resulting Summarization Systems . 36

5 Evaluation 38
5.1 Summary Quality . 38

5.1.1 Evaluation Procedure . 40
5.1.2 Results . 41

5.2 Computational Performance . 47
5.3 Summary . 50

6 Conclusion and Future Work 51

References 53

Appendices 56

A Summarization Frontend 56

4

B Architectural Changes to Support an Unlimited Number of Queries 58

C Configuration Switches of the Adaptive Approach 59

D Nugget-Matching Interface 61

5

List of Figures
1 A visualization of the general idea and motivation of the summarization setting 13
2 The overall framework-design with all components . 15
3 A visualization of different summarizer implementations using Core 17
4 An overview of the individual steps implemented in the Multiple Sources Updater 27
5 A comparison of the relevant documents of the event Costa Concordia 31
6 Configuration switches of the adaptive approach with the event Costa Concordia 33
7 Configuration switches of the adaptive approach with the event Boston Marathon Bombing 34
8 Implementation of the adaptive configuration switching using a database-script 35
9 A change of the framework architecture to meet the TREC-TS 2014 evaluation restrictions 40
10 Performance of the individual components over time. 49

List of Tables
1 A comparison of the results for the Multiple Sources Updater with different group sizes . 29
2 A comparison of the less restrictive approach and the standard approach of the Multiple

Sources Updater . 30
3 The different configurations which are used in the adaptive approach 30
4 Rules for the adaptive approach to switch configurations . 32
5 A comparison of the results of this evaluation against the TREC-TS 2014 evaluation for

the CUNLP system . 42
6 Inter-annotator agreement of the nugget-matchings from this evaluation and the TREC-

TS 2014 evaluation . 42
7 Result scores of the primary systems for all target metrics . 43
8 Individual values for the target-metric H for all primary systems and events 44
9 Average of the inter-annotator agreements between all nugget-matchings of the same

event/system combination . 44
10 Results of the secondary evaluation . 47
11 Results of the performance measurements . 48
12 Results of the performance measurements for Adaptive WMD 49
13 Comparison of a parallelized version and a non-parallelized version of Adaptive 50

6

1 Introduction

Important and ongoing events such as natural disasters, plane crashes, protests and riots require af-
fected persons to stay informed at any point in time to reduce the chance of being caught in a danger-
ous situation. Third parties may also be interested in most recent information and event-updates when
friends or relatives are involved in the ongoing situation or because of geographical attachment [33]
and general interest in the related topics. News media during such events usually publish a large
amount of news-stories, which are highly redundant and may also contain mistakes and wrong in-
formation. For individuals it is often not possible to review all the stories in detail, because of the
broad news-coverage and the high number of information sources. Traditional approaches for news-
consumption and aggregation fail in this scenario. Google News for example is a capable tool of
showing important headlines and news-articles, even for ongoing events. But it is not capable of sum-
marizing the overall content of the underlying news-articles. As another example, Twitter currently
also lacks the ability to create summaries for events, even though it is likely to contain the desired
information on its platform. Through a hash-tag search on this platform, information on events can be
found in real-time. However, this information is not properly filtered which overloads the user with
content and does not provide a good solution for the problem described earlier. One approach that
can help are live news-tickers that traditional publishers and news-websites often provide for specific
high-impact events such as natural disasters. These tickers are updated whenever a new sub-event is
detected and therefore, the approach is similar to a real-time event summary. The major downside of
such a ticker-based approach is the involvement of human editors which perform sub-event detection
and do the writing of the updates. Updates are therefore expected to rely only on few data sources
that are real-time, such as the sources which major news agencies provide, to not overload the editors
themselves with information. Since editors may have different opinions on events, the resulting ticker
entries may potentially be biased towards certain opinions. Another downside that comes with human
editors is a distortion of the real-time aspect, because the editors may not be available during all times
of the day and the creation of new update texts for humans is time consuming.

An approach using automatic summarization to create summaries and providing updates on events in
real-time as they happen has a significant potential to improve the current situation. By using a high
number of information sources, such as all major and all local news stations in an area, a differen-
tiated and more neutral summary of the event could be created. Such an approach would therefore
rely on Big Data streams of news-articles. In comparison to current news-tickers, the automated ap-
proach would not bind any human resources, allowing to summarize a large number of events and
even non-high-impact events. Many other improvements could be made possible with such an auto-
mated system. For example, the time until a new update is detected could be reduced to a minimum,
because news-articles would be analyzed in near real-time. Any delays imposed by the effect of re-
lying on human editors would not be present for such an approach. Furthermore, such a system can
base its decisions on many more news sources than an editor-based approach, which can increase the
probability of detecting false and wrong information that should not be included in a summary update.
Different approaches for similar systems exist [1, 23, 24, 35], however most of them are not capable
of processing news-articles in real-time, as they are published. Furthermore state-of-the-art systems
leave significant room for improvement, especially for systems that emphasize on a real-life scenario
where the summary size has to be sufficiently small to be suitable for the usage during an actual event
without overloading the user with too much information.

7

In this work, an automated summarization framework is created, which is capable of summarizing
multiple events with a special focus on real-time aspects, streaming data and concurrency. The frame-
work implementation abstracts from all the technical details that are required to run such a real-time
summarization system, which includes database access, component structures and parallelism fea-
tures. Based on this framework, different summarization systems are introduced. First, a baseline
approach is shown, which is based on simple algorithms that were optimized for real-time summariza-
tion. Different improvements based on this baseline approach are presented, such as a component that
requires multiple sources to report an information before it allows the information to be included in
an update. The primary achievement of this work is an adaptive approach that is capable of automati-
cally changing system configurations for target-events with the goal to choose the best summarization
approach for each event, based on its current importance which is measured by the overall related
news-coverage. Important attributes and goals for all summarization systems of this work were the
quality of the resulting summaries, but also the real-time aspects. Real-time in the broader summa-
rization context means that the system constantly analyzes the input stream and updates the summary
whenever a new sub-event is detected. An approach that partitions the input data into several segments
which are analyzed separately would not be considered as real-time, since it introduces a major delay.
Real-time in terms of a computational aspect on the other side means that there is an upper bound
for the time that the summarization system requires to fully process an item of the input stream. Both
aspects are covered in this work.

This work is structured as follows: In section 2, related work and related approaches are presented. In
section 3, the overall technical foundation of the summarization systems is described and the underly-
ing framework implementation is motivated. In the main section 4, different summarization systems
are introduced, based on the framework created earlier. This includes a baseline system and differ-
ent improvements on baseline. The creation of the individual summarization systems is followed by
an evaluation and a comparison of these systems in section 5, where the summary as well as the
computational details of the systems are analyzed. The last section 6 provides an overview over the
achievements of this work and motivates future work.

8

2 Related Work

2.1 Single- and Multi-Document Summarization

Automatic summarization is a research area studied since the middle of the 20th century, which was
first publicly discussed by Luhn [21]. Many different approaches were created until today. One major
differentiation between the different summarization approaches is the input, which can either be a
single document or multiple documents. Single-document summarization is the process of generating
an abstract or a short summary which describes the content of a single document. In contrast, multi-
document summarization relies on multiple input documents on the same topic to create one summary
for all of them. Documents for summarization can be different kinds of texts, for example news-articles,
scientific papers, e-mail messages or even conversations. One other key differentiation of approaches
is how the the summary is created. This can either be a concatenation of extracted sentences or an
artificially generated text, based on the sentences and information included in the input documents.

2.1.1 Extractive Approaches

The goal of extractive summarization approaches is to build a summary by extracting sentences from
a single or multiple text sources. The extracted sentences are then concatenated to form the output
summary. The primary challenge for such approaches is the identification of relevant sentences which
describe the topic and the content of the input sufficiently well.

Basic approaches are based on algorithms that only use term frequencies and term probabilities. The
term probability is computed by p(w) = n

N
where n is the term frequency (number of occurrences of w

in the input) and N is the number of word tokens in the input document. The SumBasic summarization
approach [30] for example relies on the assumption, that on-topic sentences are expected to have a
higher average term probability value compared to sentences that are off-topic or less relevant within
the topic. Sentences with the highest average probability are extracted in a greedy fashion to form the
summary (probabilities are altered after each step). Improvements can be made by including additional
information from a background corpus in the summarization process. Such a corpus provides data
about common distributions of terms within documents of the same type. With this information, the
frequency of each term (or a normalized value) in the input can be compared against the data of
the background corpus. For example, TF*IDF1 weights [27] can be computed for all terms in the
input. Since topic-related terms are expected to occur more often in the input and less often in the
background corpus, a high TF*IDF weight represents important and descriptive terms. TF*IDF weights
are easy and fast to compute, therefore many systems and algorithms in extractive single- and multi-
document summarization are using them to some extend [9,16,24]. To extract sentences using TF*IDF
weights, greedy approaches rank sentences according to the average TF*IDF scores of all terms and
choose the highest ranked sentences. An alternative to this is the detection of topic-signatures [20],
which is based on the Log Likelihood Ratio. Topic-signatures are terms that are expected to be highly
descriptive or highly relevant for the topic of the input. Because terms can either be topic-signatures
or not, this is a binary measure. The basic idea behind identifying terms as topic-signatures is to check
if a term occurs significantly more often in the input than it would occur by chance, measured by
statistics on the background corpus. In the context of summarization, a sentence is important if it

1 Term Frequency * Inverse Document Frequency

9

contains many topic signatures. For extractive summarization, an algorithm can for example calculate
the (normalized) number of topic signatures for each sentence in the input and extract sentences
with the highest values. Approaches using topic-signatures often produce better results than standard
frequency-based methods [12].

More sophisticated ways to create single- or multi-document summaries include supervised machine
learning methods as well as clustering- and graph-based approaches. To identify sentences that should
be included in the summary, supervised machine learning approaches can be used to classify sentences
as important (included in the summary) or not important (not included in the summary). Many dif-
ferent features are possible, for example the existence of specific vocabulary, the sentence position in
the document, sentence length, existence of named entities or the number of topic-signatures in the
sentence. For extractive summarization, different classifiers can be used, for example Support Vector
Machines (SVM) [11], Naive Bayes or Hidden Markov Models (HMM) [6]. An advantage of using a
HMM-based approach is that it only has few assumptions of independence. This is an advantage in
summarization, because the HMM does not assume that a sentence probability is independent from
the previously selected sentences which can be used to reduce redundancies. Clustering approaches
are especially used for multi-document summarization [13] where more input data is available than in
single-document summarization. Clusters in such approaches contain sentences with similar content,
therefore the concatenation of representative sentences from each cluster can form an extractive sum-
mary. Graph-based approaches are based on a similar idea, with the advantage that a sentence is not
required to be part of only one cluster. One popular graph-based summarization method is LexRank [9]
which is based on the popular PageRank algorithm.

Besides taking one or more documents as an input, there are approaches that also make use of a target-
query for the summarization process. Such query-focussed summarization approaches are relevant
for different real-life scenarios, for example to summarize events based on a large amount of news-
articles. Different systems that are motivated by such real-life scenarios incorporate query-data to
some extend [2, 16, 23, 24]. One simple and popular query-focussed algorithm that is capable of
creating a summary for single or multiple documents is MMR [4]. It produces a summary by greedily
selecting sentences that have a maximum similarity to the target-query and at the same time have
a minimum similarity to any previously selected sentence. Therefore, this approach also performs
redundancy-removal.

2.1.2 Generative Approaches

In comparison to extractive approaches for summarization, where the summary is created from sen-
tences that are extracted from the input documents, generative summarization includes sentences that
are artificially created. These can be modified versions of sentences from the input documents or new
sentences created based on extracted information. Generative summarization is motivated by the ob-
servation that a simple concatenation of different sentences from the original texts, even if they are
highly descriptive for the original document, sometimes form summaries that are not fluent to read.
Furthermore, extracted sentences may consist of multiple parts with only one part being relevant for
the summary.

Different approaches for generative summarization exist, for example sentence compression, where
parts of sentences are tried to be removed to create a compressed sentence that is more concise and

10

compact [15, 29, 32]. Sentence compression can be used to improve summaries or to meet certain
restrictions on sentence length, for example in headline-generation tasks. Another approach in gener-
ative summarization is sentence fusion, which tries to merge different sentences into a new sentence
that contains all major information from the original input sentences [3]. Sentence fusion can for
example be used to create compact sentences that contain different relevant information pieces. Gen-
erative approaches in comparison to extractive approaches add an additional amount of complexity to
the overall process, because the performance of a sentence generation is much more complex to assess
than in simple sentence extraction.

2.2 Update Summarization

Multi-document summarization receives documents of the same topic as an input and creates a single
summary for them. This is a retrospective approach, because in multi-document summarization the
summary is only generated once, without being capable of summarizing events over time or updat-
ing the summary when new information emerges. Update summarization tries to solve this issue by
providing updates to previous summaries, which only contain new or changed information. Update
summarization as defined in TAC 2008 [8] is the task of creating an update summary based on an-
other, previous summary that was created beforehand, and a set of new documents that contain new
information. The goal of update summarization is to present the user, who is expected to know all
details of the previous summary, with new and relevant updates only. Redundancies with the previous
summary should be avoided. The intention behind the classical update summarization approach was
to summarize only a small amount of data. This is reflected in the update summarization tasks of TAC
2008 and TAC 2009, which were based on a small data set that only contained 20 documents per topic.

Systems in the area of update summarization often choose a two-step approach. The first step is the
generation of a multi-document summary, based on the set of new documents. The second step is a
redundancy-removal step to remove any sentences which contain information that is redundant with
information of the previous summary [7,10].

2.3 Temporal Summarization

When using update summarization over several subsequent time windows of an event stream, a tempo-
ral summary can be created that is updated in regular time intervals. Incremental update summariza-
tion (IUS) is an approach based on this consideration, trying to automatically summarize long-running
events over time [24]. The first layer of the IUS approach is an update summarization system which
creates update summaries over time. These summaries are then used as an input for the second layer
that performs the incremental update summarization. This layer decides whether to include individ-
ual sentences of the update summary in the resulting temporal summary or not. The improvement
against a basic update summarization system is a more dynamic nature of the IUS system, because it
is able to decide how much update sentences should be added to the temporal summary. This deci-
sion can be based on different measures such as the overall novelty of the information or the quality
of each individual sentence. The overall intention is similar to the TREC Temporal Summarization
(TREC-TS) challenge [2]. The motivation of this challenge is to simulate a system that takes a stream

11

of documents as an input and generates temporal summaries, based on these documents and a list of
target-queries, which describe events that should be summarized. Whenever a new sub-event related
to the event of a target-query is detected, an update for the summary of this event should be emitted
by the system. Several participating teams developed systems for this challenge which relied on dif-
ferent approaches incorporating techniques ranging from query expansion and text clustering [35] to
pipelined architectures with classifier-based sentence extraction [23].

Even though this is a highly active research area, temporal summarization is not new. In 2001 Allan et
al. already defined a temporal summarization approach and developed a system which was capable of
creating a temporal summary by detecting event-updates in hourly time-windows [1].

2.4 Real-Time Summarization

Many systems in the area of temporal summarization use incremental approaches which process docu-
ments over fixed time windows. The resulting systems therefore can not react to new data in real-time,
since they have to wait until the current time window is closed. One example of the few real-time
capable systems for news-articles is the system developed by McCreadie et al. for TREC-TS 2014 [23].
They developed an architecture that can make decisions to emit a new update for the temporal sum-
mary at any time, for each incoming document. Most other systems of the same challenge relied on
approaches using fixed time windows.

An area where the real-time aspect is much more present is the summarization of social media message
streams, especially for Twitter. Real-time capable systems in this area are highly attractive, because
they can be used in real-life scenarios by using the Twitter streaming APIs. Different systems were
developed to summarize events in real-time by detecting important sub-events on Twitter message
streams [34, 36]. Other similar areas where a real-time analysis based on Twitter was created is the
area of real-time sentiment analysis [31] and real-time event detection [26]. Summaries in the area
of Twitter usually are shrinked versions of the underlying hashtag-filtered message stream. Compared
to temporal summarization, events on Twitter are often short-term. A popular event-type for summa-
rization on Twitter is sports-games. For such short-term topics, sub-events are usually simple actions
like goals (soccer) or touchdowns (football). Even though real-time in this context means that the
summarization system is able to extend or update the summary at any point in time, computational
real-time properties are usually not part of related work.

12

3 Framework and Technical Foundation

On the internet, there are many different news-sources which publish news-articles on recent events
every day. During high-impact events, different users may want to stay up-to-date as the event devel-
ops, because they or their relatives and friends could be affected by it. In such a situation it is almost
impossible for a single person to scan all news-articles and evaluate the individual information-nuggets
for themselves. An automated system with real-time access to a large number of news-sources can help
by providing a summary on the event, which is updated whenever a significant sub-event is detected.
Updates on the event would help an interested person to stay informed during the ongoing situation.
In this work, different approaches for real-time summarization systems are introduced. To build such
systems in the most developer efficient way possible, a unified framework and an abstraction from all
technical details is required. In this section, the framework that was used throughout the work for all
summarization systems is introduced and the implementation of the framework is outlined.

The overall summarization process in this work starts with an input stream of news articles which are
extracted from the web. These articles are processed by a specific summarization system, which has
access to a list of target-queries that describe interesting events in a few words (e.g. ”Costa Concordia”
or ”Queensland Floods”). The output of such a system is a stream of updates for each target-query. This
overall setting is visualized in figure 1. The framework introduced in this section serves the purpose
as a foundation for the different summarization systems, abstracting from technical details and at the
same time providing consistent interfaces for specific parts of the summarization system. This leads to
good interchangeability properties.

In the following subsections, requirements and the design and implementation of the framework is
described in detail. Additionally, the datasource and data preprocessing steps are shown, forming the
input corpus for all summarization systems that were created as part of this work.

Summarization
System

News-Articles

Queries

News
Sources

Summary
Query #1

Summary
Query #2

Updates

Figure 1: A visualization of the general idea and motivation of the summarization setting. On the internet there
are a large number of news-sources that publish news-articles throughout the day. The stream of news-
articles is used by the summarization system to create update-streams for individual summaries.

3.1 Framework Requirements

For the overall framework, several different requirements were identified. Besides some essential
requirements that correspond to the capability of summarizing news-articles over time, the following
important and high-level technical requirements especially stand out:

13

• Stream processing: All data should be processed as streaming data. The input of the framework
is a stream of news articles which arrive as soon as they are published (or a simulation of such).
The output of the framework is a stream of query/update pairs. The framework furthermore
has access to a list of queries that define which events should be included in the summarization
process.

• Interchangeability: The framework should provide the general structure of the summarization
system by defining interfaces for all critical parts of the system. This allows a quick replacement
of any part of the system. The requirement is also intended to enable quick prototyping of
different approaches to implement a summarization system.

• Parallelism: The framework should provide support to parallelize the data processing and sum-
marization process. This yields faster results on simulated input streams or, in practice, could
enable the handling of sudden high amounts of incoming data (spikes).

• Technical Abstractions: An actual summarization system that is based on the framework imple-
mentation should not contain any code related to technical requirements.

• Multiple Query Support: The framework should be able to support multiple queries at once
without sacrificing any of the other requirements (e.g. parallelism).

The framework design which is introduced in the following section 3.2 is based upon these require-
ments. The implementation of this design as presented in section 3.3 enforces these requirements for
all summarization system implementations that are based on this framework.

3.2 Framework Design

The overall framework is designed to support stream processing throughout the whole architecture
and to allow parallel computation at different stages. Its basic design is similar to the framework used
by McCreadie et al. for their TREC-TS 2014 submission [23]. However, there are several important
differences which affect the design point of view as well as the technical side. The framework of this
work for example is more generalized, allowing more sophisticated implementations at any component
inside the framework. This later on is especially useful in the last step of the framework to enable a
more advanced approach which relies on the idea of aggregated past observations.

The requirements which were defined in the previous section 3.1 were achieved by defining consistent,
fixed interfaces between the components as well as forcing the summarization system implementation
to be split into different well-defined component implementations. The basic architecture of the frame-
work and its components is shown in figure 2. By using this design, the framework is able to launch
multiple instances of each component at the same time, allowing for parallelism. The individual com-
ponent responsibilities are the following:

• Filter: The input for this component is an instance of HtmlDocumentRaw. This data structure,
besides some metadata about the document only contains the plain HTML-markup of a news-
article webpage. The main responsibility of the Filter is to check the input document against
multiple queries. Query/document pairs that are related to each other, which means that the
document is about the topic of the query, are emitted and handed over to the next component.
The input data structure of the next component, the Document Summarizer, has to be an Arti-

14

cleDocumentRich. Other than the HTMLDocumentRaw, the ArticleDocumentRich contains only
the article text, which is split into sentences containing tokens (words). Therefore, document
conversion has to be performed in the Filter as well, which is the secondary goal of the Filter. It
is expected that the conversion is required by the filtering process itself, therefore no additional
computational effort is required.

• Document Summarizer: This component receives a Query/ArticleDocumentRich pair, where
the document is preprocessed and considered as relevant for the related query-text. The pur-
pose and responsibility of this component is to extract sentences (DocumentSentence) from the
input document which contains important information and summarize the content of the input
document. Document Summarizer therefore performs single document summarization with an
arbitrary number of output sentences. Each Query/DocumentSentence pair is then passed to the
next component. The Document Summarizer is not required to pass any sentences if it detects
that there are no sentences that describe the overall topic of the document sufficiently well.

• Updater: Receives a Query/DocumentSentence pair as an input, where the sentence is extracted
from a document which is considered as relevant to the target-query. The sentence itself therefore
contains relevant information that is on-topic. The responsibility of the Updater is to decide
whether to output a new update for the summary of the event which is related to the query.
This update can either be the input sentence or any other previous sentence that the updater did
not emit yet. The most basic case would be to check whether the input sentence contains any
new information in comparison to the previous updates of the same query. If so, the sentence is
emitted as a new update, otherwise it is discarded. It is important to note that it is intentional
to allow the Updater to emit previously seen sentences, because this behavior enables a much
broader range of Updater implementations.

UpdaterUpdater
Document

Summarizer
Document

Summarizer
FilterFilter Document

Summarizer

Query,
ArticleDocumentRich

Filter

HTMLDocumentRaw

Query List

Query,
DocumentSentence

DB

Add Update
 for Query

Updater

Figure 2: The overall framework-design with all components. Input and output interfaces of each step are well-
defined. Multiple instances of each component can be launched which allows for parallel data process-
ing. The database to store updates is not formally part of the framework design to not limit the scope
of the summarizer implementations.

As seen before, the framework is designed to be suitable for a wide variety of summarizer imple-
mentations. Only interfaces between the individual components are fixed, the implementation itself

15

and the algorithm choice for filtering, summarizing and updating is completely independent from any
framework restrictions.

It is important to note that this framework design has one potential bottleneck, which is the number
of queries. In the design showed earlier, each filter action checks a document against all queries.
Therefore, the performance is decreasing with an increasing number of queries. A solution for this
issue exists and is outlined in appendix B. The architecture described there was not implemented due
to an increased complexity, which would not bring any additional benefit for this work other than
resolving this bottleneck. The number of queries throughout this work stays on a low level, therefore
there are no direct effects that result from this bottleneck.

3.3 Framework Implementation

The framework as described in section 3.2 was implemented in a separate project called ”Summa-
rizer Core” (or ”Core”). Core fully implements the pipeline as shown in figure 2. It transparently
provides methods to start multiple instances of each component which can be used to parallelize the
overall summarization system. Core furthermore transparently enables stream processing throughout
the application without requiring the specific summarizers to implement additional logic for it. This is
achieved by using Apache Storm [28] as a basis for Core and abstracting from it, so that the summa-
rization systems based on Core can be implemented without any direct relation to Storm itself. Since
Storm is a Java-based project, Core had to be implemented in a JVM-compatible language as well to
make full use of it. For this reason, Core was implemented in Scala, which further has the benefit
of allowing to write cleaner and less error prone programs compared to Java. Through the usage of
Storm, summarization systems based on Core are also resilient and easy to distribute across multiple
machines.

The framework implementation provides fixed interfaces for all components of the architecture which
have to be used by the individual component implementations of the summarization systems that
are based on Core. Through the fixed input and output interfaces, systems automatically have the
advantage that individual component implementations can be easily replaced and components of
multiple summarization systems are compatible by default. At the same time, the freedom of the
component implementations is not restricted by the data structures, because each component can add
arbitrary metadata to all output instances which can be accessed in all subsequent components for
further analysis. This, together with the abstraction from Storm, also enables to quickly build multi-
ple summarization strategies in different projects that are based on the same structural architecture.
Therefore the framework implementation fulfills all requirements listed in section 3.1. Besides the
properties mentioned before, it contains the following additional important fragments:

• Performance Measurement: When a component processes an item, the execution time is au-
tomatically measured within Core. Also, when a new item is emitted from the component, the
measurement result is automatically added to the metadata of the output item, which allows
to analyze performance data of individual items later on. Measurements are also added to the
system datastore which enables the analysis of the overall long-term component performance.

16

Summarizer Core

Apache Storm

Models and Interfaces

DB and Pub/Sub

Component Abstraction

Summarizer A

Component Logic

Summarizer B

Component Logic

Performance Measurement

Figure 3: A visualization of different summarizer implementations that are using Core. Core abstracts from the
underlying technological details, therefore individual summarizer implementations include implementa-
tions for the component logic only.

• Data Storage and Pub/Sub: Interfaces for data storage components were defined to enable easy
replacement of the database as well as a pub/sub system. Core also brings implementations of
all these interfaces for the redis database and message broker 2.

• Caching Utilities: In-memory caching is an effective method of reducing IO-operations when
frequent access to certain data items is required. Core provides several caching utilities to tune
performance and prevent component instances from blocking due to slow IO-operations.

As an extension to the overall framework implementation, a summarization frontend was created, al-
lowing users and developers to inspect outputs of the summarization system based on Core in real-time
while the summarization process is still running. The frontend shows the current system status, recent
performance measures and a list of all target queries with the related summary updates. Screenshots
of the user interface are included in appendix A. The frontend also includes metadata inspection
which allows to view all metadata entries that were added to an update throughout the summariza-
tion process. This feature is especially useful for debugging since every component can add arbitrary
metadata to each item. The summarization frontend therefore provides an efficient and time-saving
way to quickly assess system outputs. It is implemented in a separate project which is compatible to
all summarization systems based on Core. A more detailed description of the summarization frontend
can be found in appendix A.

As a conclusion, the framework implementation provides a solid base for potential summarization
systems and contains powerful abstractions from technical details that enable valuable properties such
as stream processing and parallelism. In figure 3, two summarization systems based on core are
visualized. The required implementation logic for the summarization systems is minimized through

2 In-memory key-value store; http://redis.io/

17

the usage of Core. They do not contain any unnecessary boilerplate code which results in improved
productivity and faster prototyping.

3.4 Document Corpus

The overall goal of the framework architecture and summarization systems is the process of summariz-
ing a large amount of news-articles in real-time. Unfortunately there is no large real-time data source
containing news-articles freely available on the web. Therefore, such a source is simulated through-
out this work by traversing a big corpus of news-articles in temporal order. Two different alternative
corpora were considered and investigated:

• Common Crawl 3: This corpus by the Common Crawl Foundation contains an extremely large
amount of web page crawls (volume: petabytes). It is a general-purpose corpus which contains
content of different languages and different types (html, pdf, xml, ...). Crawls are not sorted
by timestamp in a fine-grained way and the analysis of some historic random samples of news-
articles in the web revealed that timestamps are often different from the article publish date.
Another downside is that these crawls are not categorized by web-page type (social, blog, news,
...).

• TREC-TS 2014 corpus: The TREC-TS 2014 challenge [2] provided a corpus for its participants
containing a large amount of documents (~50 million; 550 GB). Documents were crawled from
multiple sources (news, social, blog) with nearly all documents being in English. All documents
which were published in the same hourly time-window are grouped together, therefore a par-
tial sort order is available. Document categorization by source type is available. The corpus
furthermore contains rich NLP tagging information for all documents.

Different advantages of the TREC-TS 2014 corpus were the reason to choose this corpus as data source
for all simulations and tests in this work. The crucial benefit was the categorization and temporal
sort order of this corpus which does not exist in the same extend on Common Crawl. This choice has
further advantages, because the TREC-TS 2014 challenge focusses on similar goals compared to this
work. By using the TREC-TS 2014 corpus all the additional resources from the challenge could be
used, for example test-events and evaluation metrics. To allow the simulation of a stream of incoming
news-articles based on the chosen corpus, different preprocessing steps were required. The result is a
new corpus that can be processed from start to end without requiring any further filtering or sorting.
The following actions were performed to create the new simulation corpus:

• Removal of non-news-article documents: Through this removal-step, all documents which
were not crawled from news-websites were removed. The resulting corpus therefore does not
contain any documents from either social media or forums, which are usually radically different
from news-articles.

• Removal of non-required information. Documents in the TREC-TS 2014 corpus were pre-
processed by the corpus creators, which means that besides the HTML-markup, the extracted
webpage text is available with sentence splitting and tokenization already performed. Further-
more, named entity recognition and part of speech tagging information also are available in
the TREC-TS 2014 corpus. Since the summarization systems based on the framework presented

3 http://commoncrawl.org/

18

in section 3.2 only use the HTML-markup as input, all other information was removed4. For
evaluation purposes, the original sentences splitting positions and token positions were kept.

• Establishment of a complete sort order. All documents inside an hour grouping were sorted by
timestamp. The resulting corpus therefore contains a complete sort order. This allows to process
all documents of the corpus in the order in which they were published.

The resulting corpus contains 6,488,989 documents between 12/2011 and 04/2013. There are 15
test-events which partially overlap in their timeframe. For dates without an active event, the TREC-TS
2014 corpus does not contain any documents, therefore the resulting corpus for this work only contains
documents at dates where one of the 15 events was still active. With this corpus, it makes sense to
only use the events of TREC-TS 2014.

4 Using the preprocessed information about sentence splittings, named entity recognition etc. would result in non-realistic perfor-
mance measures, because in a real-world environment data would also be raw.

19

4 Summarizer Implementations

In this section, the implementation of different summarization systems is described, which is the main
part of this work. With the architecture design and Core implementation as described before in section
3, the technical foundation is the same for all summarization systems of this work. Technical details in
this section are therefore limited to the specific behavior of the particular component implementation.
The first system which was developed as part of this work is a simple approach which relies on basic
algorithms only. This implementation was chosen to be the baseline throughout this work. The goal
for subsequent implementations and system changes was to improve upon this approach.

During development, four different events from the set of the 15 test-events of TREC-TS 2014 were
used for validation and optimization purposes. The events were: Boston Marathon Bombing, 2012
Afghanistan Quran burning protests, 2013 Eastern Australia floods (or ”Queensland Floods”) and Costa
Concordia disaster and recovery. Because of the usage during development, evaluation results for these
events are listed separately in the evaluation section and do not contribute to the final scores.

This section is structured as follows: First, the baseline implementation is described and all component
implementations and algorithms are presented. In the subsequent (sub)sections, improved systems
and changes are shown. The last (sub)section contains an overview of all developed systems which are
then tested in the evaluation.

4.1 Baseline

The first summarization system that was created in this work only relies on simple techniques which
do not require much time to compute and are fully parallelizable. This approach was then declared as
the baseline-system (”Baseline”) for this work on which improvements were made upon. Even though
Baseline is a basic and efficient system, it also contains some advanced concepts. In this section, the
specific implementations of the individual components of Baseline are described and chosen algorithms
and configurations are shown.

4.1.1 Filter

The Filter is the first component in the framework architecture. Its inputs are streaming HtmlDocumen-
tRaw instances, which contain the HTML-markup of a news-article webpage. Its outputs are streaming
Query/ArticleDocumentRich instances, which contain the article text in a tokenized and sentence-
split form. The purpose of this component is to discard articles which are irrelevant for all target
queries and to pass Query/ArticleDocumentRich pairs to the next component for all documents that
are relevant for a target query. The secondary goal is to create the processed document representation
ArticleDocumentRich from the HTML-markup of the HtmlDocumentRaw instance.

To successfully check that some document is relevant for a query, the article text has to be extracted
from the document first. In this case, the input document consists of HTML-markup only. To extract
the article text from the HTML-markup, the naive way would be to simply strip away any HTML-tags
and to use the resulting text as the article text. However, this approach has different obvious flaws.

20

Usually there is a lot of boilerplate content on news-websites, for example a comments section, the
navigation bar and often boxes linking to related articles. Using the naive approach, the extracted ar-
ticle text would also contain text snippets from these parts, which may be completely unrelated to the
article topic and may be of poor quality (comments section). As a consequence, the first sentences of
the so extracted article text would not necessarily be topic-related. For this reason, another approach
was used for the component implementation which only extracts the actual article text and discards
any boilerplate content. This has the advantage that from beginning to the end of the extracted article
text, no low-quality boilerplate sentences are included and the start of the extracted article corre-
sponds to the start of the actual article content. To extract the article text from the HTML-markup the
Filter implementation relies on the boilerpipe library, which is based on shallow text features to detect
boilerplate content [18]. This library performed reasonably fast in some preliminary tests.

After boilerplate removal and article-text extraction, the next step is to tokenize the article-text and
to perform sentence splitting. Filter for these tasks relies on the 3rd party library Stanford CoreNLP
Toolkit [22]. After sentence splitting, additional information is added to the sentence, such as a sen-
tence ID, information about the source document (timestamp, source ID), the original sentence text,
and a list of tokens with stop-words removed. Each token contains the original text string and a token
value, which is a lowercase stemmed (Porter) version of the token-text. By using the list of sentences,
the final ArticleDocumentRich is constructed.

With the ArticleDocumentRich instance, the actual filtering can be performed. The simplest way would
be to check if all query tokens are included in the article (stemmed). This approach quickly was dis-
carded after initial testing, because too much topic-unrelated documents were considered as relevant
for the query. The observation was that a lot of articles contain cross-references to other articles in the
middle or at the end of the document. Therefore a much more restrictive filtering approach was nec-
essary. An article is discarded without further analysis if it contains less than 10 sentences, indicating
that this is not a complete news article but rather an extract. If it contains enough sentences, the article
is considered as relevant to a query if it contains all query terms (stemmed) in the first 5 sentences and
at least twice in the whole document. The motivation behind this approach is the assumption that the
most important facts are often described at the beginning of an article (headline, subline, abstract),
and also are mentioned in the rest of the article (the actual content). Through this double-checking,
articles which are off-topic but contain a reference to an on-topic article are not considered as relevant
to the target-query. Compared to the simple approach, the number of relevant articles for the event
Boston Marathon Bombing significantly decreased from 30,307 to 8,423. Through this reduction, the
other component implementations could be implemented without any removal techniques to filter
irrelevant content.

A note on computational performance: No computational complex algorithms or IO operations are used
in the Filter. Article extraction using boilerpipe requires less than 10ms on an average computer and
an average HTML document. The same applies to sentence splitting and tokenization using Stanford
CoreNLP Toolkit, which is also faster than 10ms on an average computer and an average document.
To provide an upper-bound for computational performance, only the first 3 million characters of the
HTML-markup are considered for further processing. The upper-bound only affects individual outliers,
because it is unlikely for HTML-markup of mainstream news-articles to contain more than 3 million
characters.

21

4.1.2 Document Summarizer

As the second component of the architecture, the Document Summarizer receives the output of the
Filter as an input. This is a Query / ArticleDocumentRich pair. The task of this component is to
perform single document summarization on the article in regard to the target query. Since this is not
the traditional single document summarization but rather a part of a bigger summarization system,
other objectives apply. It is not required to create a comprehensive and complete summary, however
relevant and topic-descriptive sentences should be emitted. For the implementation of Baseline a
twofold process was chosen. First, a basic heuristic is applied which removes sentences that do not
fulfill the following requirements:

• Length restrictions: Number of tokens without stop words must be between 7 and 30. This
ensures that sentences which are likely to be meaningless out of context (less than 7 tokens)
or sentences that contain too much information (more than 30 token) are not included in the
summary.

• Named entity heuristic: The sentence must contain at least one token that starts with a capital
letter with the first token and all query tokens being excluded. This is a basic heuristic for a
named-entity in the English language, since they usually start with a capital letter.

Similar heuristics were also used in [23].

The actual single document summarization is then performed using the remaining sentences as an
input. A greedy sentence selection method was chosen for summarization. Maximal marginal relevance
(MMR) [4] selects a sentence with the goal to maximize the similarity to the query and to minimize
the similarity to all previously chosen sentences of the same document:

M MR= ar gmaxSi∈Sall\Schosen

�

λ sim(Si , q) − (1−λ)maxS j∈Schosen
sim(Si , S j)

�

(1)

In the implementation of Baseline, MMR chooses only two sentences with a λ value of 0.5, which
does not privilege one of the two factors. Similarity is computed using a vector space model and cosine
similarity with the sentence being represented as a bag-of-words. The weight for all words is computed
using a score similar to TF*IDF. Since all input is streaming data, it would be expensive to compute
inverse document frequencies for all words whenever a new document arrives. Therefore a static
background corpus, the unigram version of web1t, was chosen instead. Web1t was created by Google
in 2006 and contains term counts from a huge amount of crawled web pages. Klein et al. showed, that
there is a strong correlation between document frequencies and term counts [17]. This means that
the usage of term counts from a source like web1t is similar to using the actual document frequencies.
The weight for a word therefore is computed with TF*ITC with ITC being the inverse term count
which approximates the inverse document frequency, based on the static background corpus web1t.
The actual similarity measure operates on lowercase stemmed values with stop words excluded. Since
term counts from web1t do not represent lowercase stemmed values, the term count TC of a stemmed
value has to be inferred from its original text. In the target sentences, different original texts for the
same stemmed words may be included. To resolve this issue, the term count for a stemmed lowercase
word is retrieved by averaging all term counts of the original texts for words that have the same stem
in the target sentences. The term count of a lowercase stemmed value s is computed as follows:

T C(s) =
1

|Ts|

∑

t∈Ts

T Cweb1t(t) (2)

22

With Ts being a set of words (original texts) that occur in the target sentence which are stemmed to
s. Other possibilities of retrieving term counts for lowercase stemmed values are possible, for example
the minimum or maximum value of the term counts from the original values.

After MMR extracted the target sentences that represent the single-document summary (two sen-
tences), the Document Summarizer removes sentences with a MMR score less or equal to zero. Such
sentences either have no query similarity or the similarity to the other selected sentence is higher than
the query similarity. The number of output sentences therefore is not fixed, it possible for Document
Summarizer to output no sentences. All sentences that remain after this filtering step are passed to the
next component for summary updating.

A note on computational performance: Usually MMR is considered as computationally expensive, since
it requires one similarity comparison for each sentence to the query as well as a similarity compar-
ison to all chosen sentences. The more sentences there are and the more sentences to choose, the
more similarity comparisons are required. In this implementation, the number of input sentences was
capped after 50 sentences and the number of sentences to select is low as well (two sentences). The
maximum number of similarity calculations therefore is limited. On the other hand, the similarity com-
putation using the cosine similarity is computationally cheap. The top 20,000 words from web1t were
pre-loaded and cached. Throughout the lifetime of the component instance, the cache automatically
detects the 20,000 most recently used words and holds them in memory. Therefore, IO-operations are
minimized which leads to a fast processing time for all items.

4.1.3 Updater

The last component of the framework is the Updater. It receives DocumentSentence/Query pairs as
an input, where the sentence is a part of the single document summary of a document related to the
target-query. The responsibility of the Updater is to decide whether a new update for the summary
of the query should be emitted, based on the current input. For Baseline, the most simple approach
was chosen. Every input sentence is emitted as an update of the summary related to the target-query
if the sentence does not duplicate content of recent summary updates. Duplicate detection is done by
calculating the similarity between the input sentence to the most recent summary updates, using the
same similarity measure as in Document Summarizer. If a similarity value exceeds a certain threshold
value, no update is emitted. If all similarity values are below the threshold, the input sentence is
added as a new update for the summary of the input query. During development, the threshold was
determined experimentally based on outputs from the events used during development.

This approach is effective and does not create summaries which are too long, because the implementa-
tion of the Filter component of Baseline is very restrictive and does not pass a lot of documents. With
other, less restrictive filtering methods, more sophisticated Updater implementations may be necessary.

A note on computational performance: Even though the similarity measure is computationally cheap
and, as in the Document Summarizer, uses the same caching mechanism for ITC scores, the number
of similarity comparisons had to be limited to avoid a decreasing performance over time when more
updates are included in the summary. For this reason, the similarity is only computed on the 500
most recent updates of the target-query summary. To prevent unnecessary database operations, each
Updater instance caches these updates. Whenever a new update is emitted, a message is published to
the pub/sub system, telling other instances of the updater to add the new update to its cache. In the

23

current implementation, each updater stores updates for all queries. This means that the total number
of queries is a potential bottleneck. However, a simple solution would be to route DocumentSen-
tence/Query pairs of the same target-query to the same Updater instance. Therefore, each Updater
instance only has to cache the updates for the events or queries it is responsible for.

4.1.4 Confidence Scores

Confidence scores for updates describe the confidence of the summarization system that an update is
beneficial for its summary. Such values could be used in real-life systems to visually highlight important
updates and to display less important updates in an unobtrusive way. For evaluation purposes, these
can be important values as well, especially for an evaluation that relies on manual annotations. Since it
would be infeasible to manually annotate a large summary consisting of multiple hundrets of updates,
confidence scores can help to efficiently reduce the summary size by selecting only the top-updates for
the evaluation. In the TREC-TS 2014 evaluation for example, confidence scores were used to extract
the top-60 updates of each summary which were then processed by human annotators. Because in this
work the evaluation metrics of TREC-TS 2014 are used for evaluation, a confidence score had to be
calculated in all summarization systems.

For Baseline, several potential values were investigated to be used as a basis for confidence scores, for
example the similarity against the most recent updates or the score calculated during single document
summarization. However, none of these scores could successfully establish an order of updates with
the most beneficial updates having the highest confidence scores. Therefore, a simple but intuitive
method was used to calculate confidence scores for updates. It is based on the assumption that news-
articles which are published at the beginning of an event contain more relevant information than
news-articles that were created after the event started, because opinion-related content is expected
to grow over time. The function to calculate confidence values therefore is monotonically decreasing
with the number of updates that were already emitted:

con f idence(u) :=
1

n
(3)

With u being the update that should be emitted and n being the size of the summary (number of
updates).

4.2 Multiple Sources Updater

By running the implemented Baseline summarizer against the development events, interesting results
were obtained. For high-impact events with a broad news-coverage such as Boston Marathon Bombing
and Costa Concordia, Baseline emits too much updates. The overall number of updates for these events
is very high (Boston Marathon Bombing: 854) and may exceed the amount of updates which a real-life
user may want to read. It is assumed that these events can fully be summarized in 100 sentences or
less with all major information being included, because the related Wikipedia articles are of a similar
size. The high number of updates for Baseline is not a result of a wrong threshold in the updater
which prevents it from discarding similar sentences. The reason is that after a short period of time for
such high-impact events, the number of opinion- and gossip-related news-articles as well as portraits
increases significantly with each telling a different story and containing different information. Updates

24

based on such individual opinionated stories are not expected to benefit the overall summary. An
improvement over Baseline therefore could be to prevent the summarizer from emitting such updates
and thereby improve the overall summary quality. This is the goal of the Multiple Sources Updater.

The main assumption behind the Multiple Sources Updater is that important and urgent information is
likely to be reported by multiple sources or mentioned in multiple articles with a low temporal distance.
On the other hand, irrelevant and wrong information or opinion-related contents are expected to be
reported only by a single source. Furthermore it is expected that the reverse assumption is true as
well, meaning that some information that is reported by multiple sources is likely to be relevant. An
approach implicitly utilizing this would be a graph-based algorithm applied on a large amount of
news articles over a certain time-window, with the goal to find centroid sentences based on sentence-
similarity. However such an approach is not real-time in respect to the requirements of this work, since
it only decides once in its time window (e.g. one hour) on which sentences to emit. The Multiple
Sources Updater therefore uses another, different approach that satisfies the requirements imposed on
the overall framework introduced in section 3.1.

The most important concept of the Multiple Sources Updater is the candidates list. It contains all
recent sentences that were not emitted as an update, because they contained information that was
not reported by multiple sources. Sentences of this list are used to determine if there are recent sen-
tences with similar content, which means that multiple sources report that information. When a new
DocumentSentence/Query pair arrives at the Updater component, the following steps are executed.

1. Classifier: Discard all irrelevant sentences. Although the Filter component in the Baseline imple-
mentation tries to extract the article text without boilerplate content, some sentences arriving at
the Updater component are clearly irrelevant. Such sentences can be lists of the news-article au-
thors alongside the article date, sentences containing boilerplate content that was not removed
(comments section) or broken sentences which were split at a wrong position. A naive bayes
classifier was trained to classify sentences as clearly irrelevant/not irrelevant based on multiple
features like the frequency of uppercase letters of the sentence, the frequency of non alphabetic
characters or the absence of crisis vocabulary. The classifier was tuned to minimize false positives
with the goal reduce the amount of wrongly discarded sentences. Training data was obtained
through manual labeling of sentence outputs from summarization systems that participated in
the older TREC-TS 2013 challenge.

2. Similarity: Check that the target sentence contains new information. This is equal to the ap-
proach of the Updater in Baseline where any input sentences are checked against the most recent
updates of the related summary. If any similarity value between the target sentence and an up-
date exceeds a certain threshold, the target sentence is discarded. Similarity is computed as in
Baseline.

3. Multiple Sources: Check if the target sentence contains information that was reported multiple
times (~by multiple sources). If there are N sentences in the candidates list which are similar
to the target sentence, one of those sentences is emitted as an update and the sentences are
removed from the candidates list. If there are less than N similar sentences in the candidates
list, the target sentence is added to the candidates list. Initial test showed that only values N=2
and N=3 produce good results, even for the development events with a broad news-coverage,
such as Boston Marathon Bombing or Costa Concordia. The similarity measure used in this step

25

is equal to the similarity measure used in the previous step. Thresholds for determining if two
updates are similar were found experimentally.

The overall structure of the approach is visualized in figure 4.

After a target sentence passed all stages of the Updater described before, one of the N similar candidates
is chosen to be emitted as an update. The basic idea is to include any information in the update which
is reported in the majority of the candidates. This is the basic motivation of sentence fusion [3],
which is an approach from generative summarization. Due to comparison reasons, this work can
only rely on extractive approaches. Therefore one of the candidate sentences has to be selected as
having the biggest information overlap to all other candidates. This candidate is then emitted as an
update for the summary. In this implementation, the overlap is measured by sentence similarity. The
similarity measure is the same cosine similarity used in the Document Summarizer. The candidate
which has the highest average similarity sav g to all other candidates is chosen to be the update. For
N ≤ 2 all candidates have the same value for sav g , therefore in this case a simple heuristic is applied
which chooses the sentence that contains the most digits. The motivation behin this approach is the
assumption that for similar sentences, the sentence that contains most digits is also more precise 5.

When the Updater of the Baseline system is replaced with the Multiple Sources Updater, the number
of output sentences of the MMR-based Document Summarizer can be increased, because the Multiple
Sources Updater is more restrictive in emitting updates. The multiple sources approach can also ben-
efit from receiving more input sentences, because the candidates list in this case is filled with more
sentences more quickly. First tests with the Multiple Sources Updater showed that the best effect is
achieved with four to five output sentences for the Document Summarizer. Tests also showed that the
amount of updates with the Multiple Sources Updater and the overall summarization quality is heavily
influenced by the choice of N and the overall news-coverage of the target-event. This observation also
was validated in the overall (secondary) evaluation which is presented in section 5. The need to op-
timize the configuration of the Multiple Sources Updater for the target-events was the motivation for
the adaptive approach.

4.2.1 Confidence Scores

With the Multiple Sources Updater and its candidate selection there are multiple values that can be
used as a base for a confidence value. Other than for the Baseline approach, several values were
identified which are likely to correlate with the importance of an update. These are:

• Candidate similarity. A high similarity means that the information was reported multiple times
with no significant deviation, whereas a low similarity means that the information was reported
multiple times with lower information overlap. A higher similarity therefore should lead to a
higher confidence score.

• Temporal closeness. A small difference in the timestamps of the similar candidates means
that the information was reported by multiple sources at nearly the same time. This may indi-
cate breaking-news or new important information. Bigger differences in the timestamps on the
other hand indicate less urgent information. A smaller difference in timestamps between similar
candidates therefore should lead to a higher confidence score.

5 There are often similar sentences like ”Many people were on still on board.” and ”23 people were still on board.”. The last sentence
is preferred for the summary, because it is more precise since it contains the exact number of people.

26

Classifier

potential update

irrelevant

discard

not irrelevant

Similarity

high similarity to
previous update

discard

~new content

Multiple
Sources

enough similar
candidates

emit a sentence
from the group

add as candidate

not enough similar
candidates

Figure 4: An overview of the individual steps implemented in the Multiple Sources Updater. A classifier discards
all input sentences that are clearly irrelevant. The similarity check against the most recent updates of
the same summary discards all sentences which do not contain novel information. If an input sentence
passes these components, the actual multiple sources check is performed.

• Number of candidates. A higher number of required candidates means that an information
was reported by more sources, whereas a lower number of required candidates means that an
information was reported by less sources. A higher number of required candidates therefore
should lead to a higher confidence score.

The final confidence score therefore consists of three components:

con f idence := similari t yComponent ∗ t imelinessComponent ∗ requiredCandidatesComponent (4)

Where the similarity component is computed by averaging the similarity values from the selected
candidate u to all other candidates of C:

similari t yComponent :=
1

|C\u|

∑

c∈C\u

Similari t y(i, c) (5)

The timeliness component describes how close the timestamps T of the candidates C lie together in
respect to some reference interval MaxRange (~24 hours). If the range of the timestamps exceeds
MaxRange, the score will be zero and therefore the overall confidence score will be zero as well.

27

Since confidence scores of zero indicate that that there is no certainty that the corresponding update
is beneficial for the summary, these updates are discarded.

t imelinessComponent :=
max

�

0, MaxRange−max(T) +min(T)
�

MaxRange
(6)

The required candidates component finally adds an additional bonus for every required candidate:

requiredCandidatesComponent := 1+
N

5
(7)

With this relatively sophisticated approach of calculating confidence scores, it is possible to incorpo-
rate different aspects that are unique to the Multiple Sources Updater. Compared to the approach of
Baseline, which uses a monotonically decreasing function to assign lower confidence values to updates
when the summary increases, the approach of the Multiple Sources Updater is more intuitive. It further
has the advantage that updates which are included in the summary long after the event started can be
scored with a high confidence value. This may be required for events which end with an important
sub-event, such as the capturing of the primary suspect in a criminal investigation.

4.3 Adaptive Algorithm

During the development phase, the Multiple Sources Updater was tested against the development
events and results were analyzed to find possible weaknesses and to identify potential further im-
provements. Output summaries were tested against the same evaluation metrics that were used in the
overall evaluation which is presented in section 5. Results of these development tests are presented in
textual form only, to show the motivation behind certain changes. Observations and results during the
development phase especially showed that it is critical to choose the right group size for the Multiple
Sources Updater for each event to achieve a good result. Since events with a broad news-coverage
have many news-sources reporting about it, a larger group size leads to better results. For events with
a thinner news-coverage, a large group size may prevent the summarization system from emitting a
reasonably high amount of updates. In such cases a smaller group size produces better overall results.
An overview of results from multiple group sizes are listed in table 1. It shows that for the event Boston
Marathon Bombing a group size of three candidates produces best results, whereas for an event with a
less broad news coverage in the English-speaking area, the smaller group size of two candidates is the
better choice.

Even if the summary for the event Afghanistan Quran Burnings with the smaller group size was better
than with the bigger group size, it was clear that other improvements were required to produce a
great summary. At the same time, the expectation was that many unseen events could be similar in
news-coverage to the Afghanistan Quran Burnings, because any large large geographical distance from
the USA potentially leads to a thinner news-coverage in U.S.-media [5]. This especially motivated
the further changes. The biggest problem with the Afghanistan Quran Burnings results were the low
amount of updates and the low coverage of the event topic, which was acceptable but not good. Since
there was no increase of non-important updates with the smaller group size, it was expected that
further changes that lead to a lager amount of updates could be made without a major drawback.
Besides the Updater itself, one other key component which is responsible for the amount of updates

28

Table 1: A comparison of the results for the Multiple Sources Updater with different group sizes. Cells with a green
background color indicate the better choice of the group size for the target-event.

Event Group Size N=3 Group Size N=2

Boston Marathon
Bombing

• Reasonable amount of updates (72)
• Good coverage of event topic
• Few non-important updates

• A lot of updates (237)
• Good coverage of event topic
• Many non-important updates

Afghanistan Quran
Burnings

• Extremely few updates (6)
• Bad coverage of event topic
• No non-important updates

• Few amount of updates (13)
• Acceptable coverage of event topic
• No non-important updates

is the Filter, which was implemented to filter documents in a restrictive fashion (compare section
4.1.1). For the Afghanistan Quran Burnings event, it considers 279 documents from a total of 481,278
documents, that are in the corpus between the event-start and the event-end, as relevant for the
query. This underlines that a change in the Filter component is required for events with a thin news-
coverage. In comparison, the restrictive Filter considers 8,423 of 330,204 documents as relevant for
the target-query of Boston Marathon Bombing.

To increase the number of documents which are passed to the next component for events with a thin
news-coverage, a less restrictive Filter implementation was created. It is based on the Baseline Filter,
with the following changes:

• Discard the article if it contains less than 5 sentences (instead of 10).

• The article is relevant for a query if it contains all query terms in the first 20 sentences (instead
of 5) and the document contains at least one query token twice (instead of all tokens).

To further support the Multiple Sources Updater and to emit more updates for the less restrictive
approach, the Document Summarizer outputs five (instead of four) sentences and the thresholds on
the Multiple Sources Updater are slightly lowered. These changes were validated experimentally and
showed the desired results. A comparison of the less restrictive approach against the standard ap-
proach is shown in table 2. Results show that for both events, the Boston Marathon Bombing and the
Afghanistan Quran Burnings, the amount of updates emitted is increased significantly with the less
restrictive approach. Whereas this has negative effects for the results of Boston Marathon Bombing,
the summary of Afghanistan Quran Burnings benefits from the higher amount of updates. For the
other development events, Costa Concordia and Queensland Floods, results showed that there was no
significant benefit for both when using the less restrictive approach, because the number of updates
using the standard approach already were acceptable. At the start of Queensland Floods however, since
there was only small news coverage at the beginning of the event, results could potentially benefit from
using the less restrictive approach at the beginning and the normal approach at the end.

The next logical step was to combine the different individual configurations into a combined system
that is able to utilize the advantages from all configurations. The idea was to automatically select the
configuration which is best suited for an event to create the best possible summary. One approach
would be to choose the configuration for an event upfront on event-start based on the query string.
This would be easy to implement, but the query string is not expected to reveal lot of information about
the news-coverage or the importance of the event. Therefore a dynamic approach was chosen in this

29

Table 2: A comparison of the less restrictive approach and the standard approach of the Multiple Sources Updater
with the same group size of N=2. Cells with a green background color indicate a good choice for the
target-event.

Event Group Size N=2 Less Restrictive Approach, Group Size
N=2

Boston Marathon
Bombing

• A lot of updates (237)
• Good coverage of event topic
• Many non-important updates

• Too much updates (1735)
• Good coverage of event topic
• Most updates not important

Afghanistan Quran
Burnings

• Few amount of updates (13)
• Acceptable coverage of event topic
• No non-important updates

• Reasonable amount of updates (66)
• Good coverage of event topic
• Few non-important updates

work which allows to select and change configurations on runtime, based on the current importance
of the event. Importance is measured by the news-coverage which is indicated by the amount of
relevant documents that pass the Filter for the event-related query. This approach requires more
implementation effort, because the streaming data has to be analyzed and the changes have to fit
into the framework with its concurrency requirements. However, the advantages were expected to be
significant, because this also allows to change configurations during the event itself when important
changes are detected.

4.3.1 Configuration and Algorithm Choice

In this section, the adaptive approach is described in detail together with the overall configuration
selection method and different event measurements over time, which show the challenges of how to
process the event news-coverage. The first important step towards the adaptive approach is to define
all possible configurations. These are listed in the following table 3.

Table 3: The different configurations which are used in the adaptive approach.

Name Filter Document Summarizer Updater

B Baseline Filter MMR-based summarizer
which outputs max. 4
sentences

Multiple Sources Updater
with N=3

A Baseline Filter MMR-based summarizer
which outputs max. 4
sentences

Multiple Sources Updater
with N=2

A+ Less restrictive Filter MMR-based summarizer
which outputs max. 5
sentences

Multiple Sources Updater
with N=2 and lower
thresholds

To select the best configuration choice, the current popularity of an event is analyzed based on the
detected news coverage of that event. The detected news-coverage is measured in documents per hour.
This is the amount of documents the Filter component judges as relevant for the event-query. Since in
the simulation of the news-stream one hour of the simulation corpus is processed in a couple of seconds

30

by the summarization system, documents per hour refers to one hour in the simulation corpus. To be
consistent, the Filter used to detect the news-coverage always is the default Filter from the Baseline
implementation. This prevents oscillating configuration switches, because the configuration choice
itself can not influence the news-coverage detection process.

Since the news-coverage in hourly blocks is changing a lot, moving averages over several past hours
were used for any further analysis. This smoothens the overall curve which is required for the analysis
of the news-coverage in order prevent frequent configuration switches. In news-coverage detection,
two moving averages are used, a short-term moving average (MA6) and a longer-term moving average
(MA24) over 6 and 24 hours. A comparison of the raw (hourly) relevant document counts and the
MA6 and MA24 is visualized in figure 5.

0 50 100 150 200 250 300 350 400 450
Hours since event start

0

5

10

15

20

25

#
R

e
le

v
a
n
t

d
o
cu

m
e
n
ts

p
e
r

h
o
u
r

Raw

0 50 100 150 200 250 300 350 400 450
Hours since event start

0
2
4
6
8

10
12
14
16
18

#
R

e
le

v
a
n
t

d
o
cu

m
e
n
ts

p
e
r

h
o
u
r

MA24

MA6

Figure 5: A comparison of the relevant documents of the event Costa Concordia in raw/hourly form and the
moving averages MA6 and MA24.

The graph clearly shows that there are many situations where the number of relevant documents in
two subsequent hourly frames differ a lot. Such rapidly changing data can not be reliably used for
a direct analysis. This is one of the reasons why the two different moving averages are used in the
analysis. The general requirements for the adaptive approach were defined as the following:

• Up-spikes in news-coverage should be detected as fast as possible. Otherwise the less restrictive
approach would be active during times where a broad news-coverage is present which would lead
to a large amount of updates that are potentially non-relevant or originate from opinion-related
content.

• Sudden and temporary drops in news-coverage should be ignored if the previous level is recov-
ered soon. At night for example, even during times with broad news-coverage, the amount of
published news-articles decreases significantly. The amount of relevant content also decreases at
such times, therefore no action has to be taken to increase the amount of updates or to choose a
less restrictive summarization approach.

• Frequent configuration switching should be avoided. The number of configuration switches over
the whole event should be small to enable a meaningful analysis of the results.

The requirements imply that it should be more easy to switch from a less restrictive approach to a
more restrictive approach where the opposite should be harder. This can easily be done using MA6
and MA24 with MA6 being used to detect up-spikes in news-coverage and MA6 together with MA24

31

being used to detect a lowering of the news-coverage. The overall system is threshold-based, meaning
a switch is performed when certain values exceed or fall below fixed thresholds. Thresholds were
defined experimentally, based on the following specific requirements that were obtained through the
observations of the individual configurations for the development events:

• For Boston Marathon Bombing the adaptive approach should select the configuration B as fast as
possible and perform no additional change afterwards. This is motivated by earlier observations
where the Multiple Sources Updater with N=3 achieved by far the best results for this event.

• For Afghanistan Quran Burnings the adaptive approach should stay with configuration A+ as
long as possible. As before, this is motivated by the observations that showed the superiority of
the less restrictive approach for this event.

• For Costa Concordia the adaptive approach should choose configuration B for the beginning of
the event and configurations A or B for the rest. This is motivated by the observation that the
beginning and end of the event differ in the news-coverage (compare figure 6).

Table 4: Rules for the adaptive approach to switch con-
figurations based on the values of the moving
averages MA6 and MA24.

Old
Conf.

Condition New
Conf.

A+ MA6> 6 A
A MA6> 14 B
B MA24< 6 and MA6< 6 A
A MA24< 1 and MA6< 1 A+

These requirements are fully satisfied by the im-
plementation of the adaptive approach with its
specific ruleset. The first important rule is the
configuration that an event starts with. The
best configuration to start with, considering the
requirements mentioned earlier is A+, because
this is the least restrictive configuration which
means that a change to all other configurations
can be done in the least amount of time. Further-
more at the beginning of an event it is expected
that most information is relevant (compare sec-
tion 4.1.4), the choice to start with the least re-
strictive configuration therefore should have minimal negative effects. The configuration switches are
then performed by applying the rules that are listed in table 4. It is important to mention that the
rules for the direction from A+ to B are very different to the rules for the direction from B to A+. This
prevents the system from frequent configuration switching.

In figures 6 and 7, the configuration switches of the most interesting development events in terms of the
adaptive configuration selection are shown, which are Costa Concordia and Boston Marathon Bombing.
In the event Costa Concordia the adaptive approach switches configurations most often which is in
line with the requirements, since at the beginning B is chosen and for the rest A or B is chosen and no
extreme amount of switching takes place. For Boston Marathon Bombing the adaptive approach quickly
switches to B with no further changes throughout the event. Visualizations of algorithm switches
for the other development events, Quran Burning Protests and Queensland Floods, are included in
appendix C. In the Quran Burning Protests no configuration switches are performed, which means
that the adaptive approach uses A+ throughout the whole event. For the event Queensland Floods the
situation is similar, with the difference that at the end there is a large increase of news-articles and the
adaptive approach switches from A+ to A and then to B.

Since all the requirements listed before are satisfied with the implemented rule set, the adaptive ap-
proach should be able to combine the advantages of the individual configurations into a single system.
Initial testing showed that the adaptive approach can in fact achieve even better result scores than

32

individual configurations. This is done by choosing different configurations for different parts of the
event to achieve the optimal overall summarization result. Actual result scores of the final evaluation
are listed in section 5.

Figure 6: Configuration switches of the adaptive approach with the event Costa Concordia. After the event-start,
the configuration is quickly switched to B because an increased popularity of the event is detected (cap-
size of the ship). After a couple of days, the popularity drops slowly and the adaptive approach switches
back to configuration A. About five days later, a temporary up-spike in news-articles is detected resulting
in a configuration switch to B (new information about the Costa Concordia and its captain emerged).
The number of relevant articles then quickly drops and configuration A is chosen for the rest of the
event.

4.3.2 Implementation Details

The actual implementation of the adaptive configuration switching process is non-trivial since there is
potential concurrency in the components. Furthermore, each component instance has to be notified
of any configuration switch. In this section, the implementation of the adaptive approach inside the
framework is described.

Because the Filter component already receives all documents as an input and checks whether a docu-
ment is relevant for a query, this component was chosen to drive the configuration switching process.
A disadvantage of the Filter is the expected concurrency. The Filter processes the largest number of
instances, because it receives the most input data6. The major challenge therefore was to ensure that
algorithm switches are only broadcasted once and that there is no major communication overhead
between all the individual component instances, which could potentially be hosted on different ma-
chines. To deal with any concurrency issues, the implementation of the adaptive approach offloads the
majority of the computational work to the database. This is done through a script that is loaded once

6 Most news-articles are not relevant for any target-query and therefore are discarded by the Filter. These do not go through the
Document Summarizer or the Updater.

33

Figure 7: Configuration switches of the adaptive approach with the event Boston Marathon Bombing. Through-
out the duration of the event, there is a borad news-coverage and high interest in the event. Therefore,
the configuration is switched from A+ to A and from A to B as fast as possible. The adaptive approach
then keeps the configuration B for the rest of the event.

to the database and can be executed from all component instances. Whenever a Filter instance detects
that an input document is relevant for a query (using the restrictive approach), the Filter instance
starts the script on the database with the query and the timestamp of the document as an input. The
script then adds the timestamp to a list of recent timestamps for the query and calculates the moving
averages MA6 and MA24. For the query, the script retrieves the current configuration and checks if the
configuration should be changed, based on the rules of table 4. If the configuration has to be changed,
the new configuration value is written to the database and a message is posted on the pub/sub system
to inform all interested parties. With the adaptive summarization system, instances of all components
subscribe to this event and change their behavior for the target-query whenever a configuration change
event for that query is received. A visualization of this process is shown in figure 8.

This has the major advantage that the database takes care about the parallelization issues. No
synchronization-related code had to be implemented inside the components of the summarization
system and the amount of messages that is transmitted between the component instances and the
database is reduced to a minimum. At the same time, a good performance is achieved, because various
database queries are directly executed within the script that runs on the database. This implementa-
tion does not introduce additional restrictions in terms of concurrency and a distributed execution of
the summarization system. Observations on development-events showed that this approach does not
affect the computational performance in a significant way.

34

Filter
#1

Filter
#2

Filter
#3

DB
+

Pub/Sub

execute <script>
 timestamp, query for query:

save timestamp
calculate moving averages
compare against rules
→ change configuration

notify subscribers:
config-change(query, A+|A|B)

document

document is relevant
for query (restrictive filter alg.)

Figure 8: Implementation of the adaptive configuration switching using a database-script. For simplicity reasons,
the other component instances such as Document Summarizer and Updater instances are not included
in the image. The Filter instance #1 receives a document as an input. If it detects that the document
is relevant for a query, the database-script is executed. It calculates new values for MA6 and MA24
and decides if a configuration switch has to be performed for target-query. If a there is a change, all
subscribers are notified through the pub/sub system.

4.4 Semantic Similarity in Components

In all previous component implementations a very simple similarity measure was used, which is co-
sine similarity together with a vector space model using TF*ITC scores on the bag-of-words (compare
section 4.1.2). Similarity between two sentences using this method is easy to compute and computa-
tionally inexpensive. However, this approach has a major downside. Even though words are stemmed
before comparison, in most cases words that are similar but have another stem, like ”talk” and ”speak”,
are not considered as similar by this approach. A similarity measure that incorporates similarities that
are independent of the syntactic representation of the words has to incorporate semantic information
or relatedness. Such an approach could be able to better find sentences in documents that are similar
to the target-query. Furthermore it could better tell if sentences contain similar information, even if
they do not share common words.

To further improve the adaptive summarization system, a semantic similarity measure relying on word
embeddings based on word2vec [25] was used. The corpus used to train the vector space model of
the word embeddings was a relatively old wikipedia dump from 2007. Current data could not be used
due to restrictions that are introduced by the evaluation in section 5. Significant negative effects on
the similarity measure are however not expected. The word embeddings from the trained model can
be used to determine individual word similarity, because similar words are represented by vectors that
lie close in the vector space, whereas vector representations of different words do not. As a similarity
measure for sentence similarity, the Word Mover’s Distance [19] was used. It is based on the idea
to measure similarity between sentences by finding the minimum amount of work that is required
to transform one sentence into another one. The work that is required to transform one word into
another is based on the distances of the respective vector representations of the words within the word
embedding. In their work, Kusner et al. showed that the WMD similarity is superior to TF*IDF in
a k-nearest neighbor problem-setting [19]. However this is strongly dependent on the chosen word
embedding.

35

In the improved summarization system, WMD replaces the similarity measure of the Document Sum-
marizer component. No further adaptions were required in this component since the MMR algorithm
used for single document summarization in the Document Summarizer does not rely on any thresholds.
In the Updater, the TF*ITC-based approach was not replaced, because this component implementation
relies on several thresholds which in the case of a new similarity measure need to be re-calibrated.
Changing the similarity measure would therefore make comparisons of the systems harder, because
any potential difference could also be due to the changed threshold values.

Results of the summarization system using WMD were not fully validated during development time,
however a slight increase of the number of emitted updates was observed. The overall hypotheses was
that the WMD similarity measure would improve the Document Summarizer component in a way that
it creates better single document summaries with more relevant content, because it can better identify
sentences that are relevant to the target-query even if all words differ. Through an improved single
document summarization process an overall improvement of the adaptive summarization system was
expected.

A note on computational performance: The WMD semantic similarity is a more computationally expen-
sive calculation compared to cosine similarity. WMD is based on the Earth Mover’s Distance (EMD)
where the computational cost of the naive solution is super-cubic. Since the sentence length in this
case is limited (compare 4.1.2), the required time to compute the EMD stays at an acceptable level.

4.5 Resulting Summarization Systems

In the sections before, different summarization systems were developed and improvements and
changes upon this systems were introduced. The Baseline implementation started with simple al-
gorithms and certain drawbacks, such as the calculation of confidence scores. This approach also
contains many advanced concepts, such as a strong filter and a solid MMR query-based single docu-
ment summarization approach relying on TF*ITC values. In the subsequent sections, improvements
based on the Baseline summarization system were created. The Updater was identified as the most
interesting component of the summarization architecture, and with the Multiple Sources Updater a ma-
jor change to this component was introduced. In initial tests, the multiple sources approach showed
good results when the proper configuration was chosen. Unfortunately the quality of the summary
was largely dependent on this configuration choice. Therefore, the adaptive approach was created
which can automatically choose the configuration that is best suited for the current news-coverage of
an event. Through the adaptive configuration selection, initial test showed that the adaptive approach
is able to combine the advantages of all different system configurations into a single system. As a last
change, the simple similarity measure of the Document Summarizer component was replaced with a
more sophisticated semantic similarity measure.

The following summarization systems are fully capable of summarizing events over time with an un-
limited amount of (streaming) input data. These are the major systems of this work, which are further
tested in the evaluation that is presented in the next section.

• Baseline: This is the most basic system of this work. It was used as a solid starting point for
further improvements. Besides simple algorithms, this approach also contains some advanced
concepts which are computationally inexpensive.

36

• Adaptive: This is the Baseline system extended with the Multiple Sources Updater and the adap-
tive approach. This system is expected to consistently produce better summaries than Baseline.
At the same time, this system is expected to perform nearly as good as the Baseline system in
terms of computational performance.

• Adaptive WMD: The adaptive system with the addition of the WMD semantic similarity measure
for the Document Summarizer. The hypotheses was that the semantic similarity measure pro-
duces better single document summaries and therefore leads to a better overall event summary.
Computational performance is expected to be significantly lower than for Adaptive.

37

5 Evaluation

In the previous sections, different approaches of summarization systems were introduced in detail.
Often, improvements and changes were motivated by certain hypotheses or observations made during
development. In this section, a formal evaluation of the individual systems is presented. Changes and
differences in terms of summarization quality are shown and assumptions from the development phase
are verified. Since the aspect of the computational performance plays an important role in this work,
the changes in computational performance are shown as well and real-time properties are validated.

5.1 Summary Quality

The evaluation of systems in the area of this work is non-trivial. Since the input corpus contains a huge
amount of news-articles, it can not be manually annotated for evaluation purposes. The evaluation
had to be able to assess the summaries that were generated by the individual summarization systems,
based on a gold-standard that was derived from another source. This is what the TREC-TS 2014
evaluation [2] did, which was also used in this work. As described in section 3.4, the corpus used
throughout the work already was a subset of the TREC-TS 2014 corpus with the goal of being able
to compare against TREC-TS 2014 result scores. The TREC-TS 2014 evaluation can be described as
follows:

1. Events: The evaluation consist of 15 test-events which range from 2011 to 2013. The challenge
is to summarize these events over time.

2. Gold-Standard: For each event, so-called ”nuggets” were extracted from the edit-log of the
related Wikipedia page. Nugget extraction was performed by human annotators. Nuggets rep-
resent important sub-events in the form of a full sentence or several words that were added at
a certain point of time to the Wikipedia page. The timestamp of an individual edit-log entry is
defined as the time when the information of the entry became ”public knowledge”. The goal
for summarization systems is to produce a summary which contains information from as much
nuggets as possible, while at the same time including the least amount of information not in-
cluded in any nugget. Information should be included in the summary close to or before the
time when it became public knowledge. Examples for nuggets from the event Costa Concordia
are:

• ”Comparisons to RMS Titanic”

• ”3,206 passengers and 1,023 crew members were on board”

• ”preliminary indications are that there may have been significant human error on the part of
the ship’s Master, Captain Francesco Schettino,”

3. Nugget-Matching: To assess the quality of the summary, nuggets are matched to the updates
(sentences) of the summary. A nugget matches an update if the update contains the information
of the nugget. This is an n:m assignment, meaning that updates may match multiple nuggets and
nuggets may match multiple updates. The nugget-matching data provides crucial information
that is required to calculate the result-scores. Matchings are created by human annotators, which
is still the best and easiest way. The matching-process requires a certain interpretation of the

38

meanings, because the information of the nugget may be included in an update even if they do
not share common words or certain numbers differ slightly. To limit the work that has to be done
by the annotators, the TREC-TS 2014 evaluation only considers the top-60 updates (determined
by confidence score) of each summary and system for the process of manual nugget-matching.
The remaining updates are included if they are exact duplicates of any top-60 update from any
other participating system. All other updates are considered as non-matching.

The evaluation of this work was performed for the summarization systems developed as part of this
thesis. Since the nugget-matching interface of TREC-TS 2014 was not publicly available, a separate
nugget-matching web interface was built in this work with a strong focus on user experience to ensure
a smooth nugget-matching process. Besides nugget-matching capabilities, the interface also allows to
mark updates as irrelevant to the overall topic. This adds another interesting possibility to analyze
the summary. A more detailed description as well as screenshots of the nugget-matching interface are
available in appendix D. For the automatic matching part of the non-top-60 updates, the matches from
TREC-TS 2014 were used.

Evaluation metrics were primarily taken from TREC-TS 2014. The exact mathematical definition can
be found in [2].

• Normalized expected gain (nEG): Precision of the summary which is measured by the ratio of
updates that are on-topic (match nuggets). Values are between zero and one with a greater value
representing a better result.

• Comprehensiveness (C): Coverage of the summary which is measured by the ratio of event-
information that is included in the summary (~Recall). The possible event-information is repre-
sented by the set of nuggets. Values are between zero and one with greater values representing
better results.

• Expected latency (E[Latency]): Timeliness of the updates compared to the timestamps of the
nuggets. Values are between zero and two. A value greater one indicates that the information
was included in the summary before it became public knowledge (included in Wikipedia). A
value less than one indicates that the information of the summary usually was outdated to a
certain degree. A value near or greater than one is desired.

• Combined target-metric (H): The target-metric of TREC-TS 2014. This is the harmonic mean
of the normalized expected latency gain (nEG with a latency discount/bonus) and the latency
comprehensiveness (C with a latency discount/bonus). With the latency discount/bonus it could
theoretically be possible to achieve scores greater than one. H is used to determine if a system
performs better than another system. Greater values represent better results.

• Ratio of irrelevant updates (IU): A non-TREC-TS 2014 metric. This is the ratio of top-60
updates that were annotated as irrelevant. IU is between zero and one, where values close to
zero are desired.

By using the evaluation of TREC-TS 2014, different restrictions apply. First, it is not allowed to use
any information from a point in time that is after the timestamp of a document that will be processed
by the summarization system. This restriction makes sure that the simulation is similar to a real-
world scenario. All summarization systems of this work meet this restriction, for example the word
embeddings of the adaptive approach with semantic similarity are created from an old wikipedia dump
of 2007 (compare section 4.4). As a second restriction, only sentences of the original sentence splitting

39

of the TREC-TS 2014 corpus are allowed to be included in the summary. These sentences, as described
in section 3.4, were created based on the HTML-markup of the news-article web-pages with all HTML-
tags stripped. Implementations of this work do not meet this restriction out-of-the-box, because of the
different approaches used in the Filter component. All systems of this work use the raw HTML-markup
as an input, remove any boilerplate content to extract only the news article text and then perform
the sentence splitting. Besides any potential improvements by removing boilerplate content, this also
ensures that the performance measurements represent a real-life scenario where content is usually not
preprocessed. To meet this TREC-TS 2014 restriction, a simple change to the framework architecture
was made to automatically replace own sentences with the equivalent sentence from the preprocessed
sentences of the corpus. The document source was changed to add the preprocessed sentences as
a metadata entry to each document. Since all metadata entries are passed with the documents and
sentences throughout the summarization system, preprocessed sentences are accessible at any point
in the framework architecture. To replace own sentences with the equivalent preprocessed sentence,
a Pre-Updater component was created, which replaces all sentence content and the sentence-id entry
with the most similar sentence from the preprocessed sentences of the same document. The replaced
sentence then is passed to the Updater component for any further processing. A visualization of the
change is provided in figure 9. With this change, all restrictions are met and the evaluation can be
performed with the summarization systems of this work.

UpdaterUpdater
Document

Summarizer
Document

Summarizer
FilterFilter Document

Summarizer

Query,
ArticleDocumentRich

Filter

HTMLDocumentRaw
Metadata(orig. sentences)

Query List

Query,
DocumentSentence

DB

Add Update
 for Query

Updater

UpdaterUpdaterPre-Updater

(Replacement)

Figure 9: A change of the framework architecture to meet the TREC-TS 2014 evaluation restrictions. The input
document contains the original sentences as a metadata entry. The new component ”Pre-Updater”
intercepts all Query/DocumentSentence pairs that would go to the Updater and automatically replaces
the sentence with its equivalent from the preprocessed sentences of the same document.

5.1.1 Evaluation Procedure

For the overall evaluation of the summarization quality, there were two goals. First, to compare sys-
tems developed in this work against each other and to compare them against the TREC-TS 2014 results.
Second, to verify observations and assumptions that were made during development time of the dif-
ferent component configurations and the adaptive approach. Therefore, the evaluation was split into
a primary and a secondary part. In the primary part, the final systems of section 4.5 were evaluated.
Furthermore the best system of TREC-TS 2014 (CUNLP) was re-evaluated as well, to measure devia-

40

tions from the official TREC-TS 2014 results. Systems of the primary evaluation therefore are Baseline,
Adaptive, Adaptive WMD and CUNLP. These systems were evaluated against all events of TREC-TS
2014. Systems of the secondary evaluation are:

• A+: The A+ configuration of the adaptive system. This basically is the adaptive system, starting
with A+ without reacting on configuration changes. The evaluation of this system and the other
configurations show how well the adaptive system can combine the individual advantages of
each individual configuration.

• A: The A configuration of the adaptive system.

• B: The B configuration of the adaptive system.

• Adaptive Boilerplate: The adaptive system without boilerplate removal. It uses the sentences
of the TREC-TS 2014 corpus as an input and does not extract the article text from the HTML-
markup. A comparison against Adaptive was expected to reveal advantages of the boilerplate
removal process.

These systems were evaluated against a selection of 6 events, where 5 were chosen from the test-
events and one event (Boston Marathon Bombing) was chosen from the events that were used during
development of the systems to validate observations made during development. The selection of the 5
events from the test-events was done before any results were obtained with the goal to include a good
selection of the different event-types.

To perform the nugget-matching as described earlier, the nugget-matching interface of this work was
used. Three annotators were recruited for manual nugget-matching which all performed the same
tasks. Individual tasks were to create the nugget-matchings for the top-60 updates of an individual
summary and to annotate irrelevant updates. Because each annotator performed the nugget-matching
for every summary, each system was assessed three times per event. To compensate for a potential
learning-effect of the annotators, the order in which annotators worked on tasks was different for
each person. Events were always treated as a block, which means that all tasks of the same event were
finished consecutively. The system order was shuffled for each event with the goal to prevent the estab-
lishment of an always-comes-before relationship for systems. The event-order was manually optimized
for each annotator so that events which one annotator worked on at the beginning were assigned to
the other annotators at the middle and at the end. At the beginning of the annotation process, each an-
notator was briefed with annotation guidelines describing the task and providing examples of how to
perform the nugget-matching. Examples were taken from the nugget-matching results of the TREC-TS
2013 challenge. Furthermore, annotators were briefed on the annotation of irrelevant updates. The
first task for each annotator was a dummy-task with a system/event combination that was not evalu-
ated and results from this initial task were discarded. This was meant to further reduce any potential
learning effect.

5.1.2 Results

In this section, results of the evaluation are presented, discussed and further interesting results are
shown, such as inter-annotator-agreement values. Result scores for TREC-TS-related metrics were
calculated using the nugget-matching of the annotators and the official TREC-TS 2014 evaluation
script.

41

The first result scores to be presented are the scores of the reference system, the best system of TREC-
TS 2014 (CUNLP), compared to the scores that the same system achieved in the official TREC-TS 2014
evaluation. Results in table 5 show that scores are similar and the differences are small.

Table 5: A comparison of the results of this evaluation against the TREC-TS 2014 evaluation for the CUNLP system.

H H (TREC-TS 2014) ∆ std. ∆max

CUNLP 0.13 0.12 0.0296 0.07

The standard deviation of the differences per event is on a medium-low level, showing that individual
events usually do not differ much. The maximum difference of ∆max indicates that there was no huge
outlier. This shows that the evaluation results of this evaluation compared to the official TREC-TS 2014
evaluation are sufficiently similar to compare the individual system-results with official results of 2014.
As a further check, the inter-annotator agreement scores between the nugget-matches of this evaluation
and the TREC-TS 2014 evaluation was calculated. Agreement is based on a set of annotations, where
each nugget-update match was labeled ”positive” and each non matched nugget-update combination
was labeled ”negative”. Because the non-matching combinations were not explicitly annotated in the
nugget-matching process, besides the usual agreement-metrics, the F1 score was calculated by only
using the positive samples. This method is an effective measure for cases where only one class of
labels is available, for example when there are only positive samples [14]. The agreement scores are
listed in the following table 6.

Table 6: Inter-annotator agreement of the nugget-matchings from this evaluation and the TREC-TS 2014 evalua-
tion for the CUNLP system outputs.

Simple Agreement Cohen’s Kappa Krippendorff’s Alpha F1
(Non-Chance-Corrected)

0.99 0.44 0.43 0.44

The high score for the simple agreement, which is not chance-corrected, shows that the distribution
of the labels ”positive” and ”negative” is highly biased. With 60 updates and 60 nuggets, there are
3600 annotations when considering each non-matching pair as a negative label. The usual number
of nugget-matches per task is around 30, therefore the ratio of ”negative” labels is very high. The
high number of possible combinations indicates that there is a high chance of annotators missing a
positive combination. Furthermore the subjectivity of the overall task is high, because the annotator
often has the choice between multiple similar nuggets during a task. For this reasons the observed
agreement values of 0.43-0.44 (”moderate agreement”) are on a satisfying level. Additionally, there
was no annotator with an average agreement value that differed more than 0.05 from the overall
average as reported in table 6. These results support the assumption that a (cautious) comparison
between the TREC-TS 2014 evaluation and this evaluation can be made.

After looking to the overall comparability with the reference evaluation, the result scores of the systems
developed in this work can be shown. The scores of all metrics averaged over the three annotators are
listed in table 7. This table contains the averaged scores over all test-events without development-
events. The exclusion of the development events does not provide a disadvantage to the compared
system CUNLP, because its scores for these events were relatively low (compare table 8).

42

Table 7: Result scores of the primary systems for all target metrics. Scores were averaged over all non-development
events. For the average TREC-TS 2014 E[Latency] as well as # Updates, it was not possible to calculate
the values influence from development events, because a fine grained list over all event-values was not
available for these metrics. Average values over all events are noted in parenthesis.

System H nEG C E[Latency] IU # Updates
Baseline 0.12 0.11 0.23 1.05 0.03 74
Adaptive 0.17 0.13 0.26 1.23 0.07 48
Adaptive WMD 0.15 0.11 0.24 1.27 0.04 49
CUNLP 0.12 0.07 0.32 1.22 0.32 242

AVG TREC-TS 2014 0.06 0.04 0.36 – / (1.29) – – / (8529)

This data shows several interesting results. First, the best system of the evaluation was Adaptive, being
followed by Adaptive WMD. The usage of the semantic similarity measure WMD in the Document Sum-
marizer component for single document summarization did not provide the expected improvements.
For both, nEG (precision) and C (recall), Adaptive WMD was slightly inferior to Adaptive, which is also
reflected in the target-metric H. The latency values and the percentage of irrelevant updates on the
other hand improved slightly. The addition of semantic similarity did however not change the results
in a drastic way, which leads to the assumption that non-major changes in the Document Summarizer
component do not have a big impact on the overall results within the adaptive system. Since there
is no dedicated comparison of the Document Summarizer components itself, this assumption needs
further verification. Another interesting result is the high score of the target-metric H for Baseline,
which is equal to the score of CUNLP. Baseline therefore performs extremely well. The reason for that
is the high nEG score (precision) which is, compared to the nEG scores of the average TREC-TS 2014
system or even CUNLP, significantly better. When looking at the number of updates (# Updates) of all
systems, the reason for these high precision values can be seen to be caused by the low amount of up-
dates that were emitted by the systems developed in this work. The low number of updates did lead to
a lower recall (C) value, however systems are more balanced in terms of precision and recall. In com-
parison, the average TREC-TS 2014 system outputs approximately 100 times more updates, and the
best system of the challenge outputs more than three times as much updates as any (primary) system
of this work. These high numbers of updates indicate that most TREC-TS 2014 systems are far from
usable in a real-life scenario, because it would not be feasible for a human user to read a summary this
large. Another benefit of the better balance and optimization for precision of the developed systems
is the low ratio of irrelevant top-60 updates (max. 7%). CUNLP on the other hand has a high ratio
of irrelevant top-60 updates of 32%. This is also an important factor for a real-life scenario, because
each irrelevant update weakens the trust of users in the related system. As described before, the only
drawback of the developed summarization systems is a low value for C (recall). When comparing to
the the average TREC-TS 2014 system, the balance between precision and recall however seems to be
better in the developed systems which is also acknowledged by the high scores of the target-metric H.

Individual scores of the target-metric H for all systems and events are listed in table 8. Data shows that
for test-events, Adaptive most often achieved the best score, followed by Adaptive WMD. Both systems
had no outliers of extremely low (zero) scores, which shows that the adaptive systems successfully
adapted to the various types of events with their different characteristics. In contrast, both Baseline
and CUNLP had outliers with a near-zero score.

43

Table 8: Individual values for the target-metric H for all primary systems and events.

Type Event Baseline Adaptive Adaptive WMD CUNLP
Used During Costa Concordia 0.29 0.16 0.23 0.11
Development Queensland Floods 0.12 0.17 0.13 0.07

Boston Marathon Bombing 0.05 0.25 0.21 0.02
Quran Burning Protests 0.21 0.23 0.21 0.23

AVG 0.17 0.20 0.20 0.11

Unseen During European Cold Wave 0.00 0.05 0.07 0.02
Development (Test) Egyptian Riots 0.08 0.14 0.18 0.09

In Amenas Hostage Crisis 0.09 0.11 0.09 0.06
Russian Protests 0.13 0.09 0.10 0.08
Romanian Protests 0.04 0.10 0.14 0.21
Egyptian Protests 0.13 0.18 0.18 0.10
Russia Meteor 0.22 0.29 0.24 0.01
Bulgarian Protests 0.26 0.26 0.23 0.30
Shahbag Protests 0.02 0.15 0.05 0.16
Nor’Easter 0.20 0.21 0.21 0.17
Southern California Shooting 0.14 0.25 0.21 0.09

AVG 0.12 0.17 0.15 0.12

As with the CUNLP system and the comparison of the evaluation of this work and the TREC-TS 2014
evaluation, the inter-annotator agreement values were measured for the agreement of all annotators
per event/system combination. Values are listed in table 9, showing similar results with a slightly lower
agreement. With an agreement score of 0.40 to 0.41 this still is an acceptable result. As before, no
average agreement of annotator pairs deviated more than 0.05 from the overall average.

Table 9: Average of the inter-annotator agreements between all nugget-matchings of the same event/system
combination.

Cohen’s Kappa Krippendorff’s Alpha F1
0.40 0.41 0.41

Significance of the differences in system scores

Result scores showed that the adaptive system performed better than any other system tested in this
evaluation. Even though the differences to Baseline, which Adaptive is based on, and CUNLP are big,
the significance of these improvements is important for a final judgment. The goal therefore was to
show that there is evidence that the improvements are not a result of chance. As a test, the Wilcoxon
signed-rank test was chosen, which can be used to show that there is a significant difference in the
median values of two distributions (which are not required to show a normal distribution).

The hypothesis are one-tailed:

H0 : x̃1 ≤ x̃2 H1 : x̃1 > x̃2 (8)

The Wilcoxon signed-rank test operates on the differences between the individual observations, in this
case on the differences between the H scores of the same event of the two systems that should be
compared. Significance levels which were tested are p ≤ 0.05 as well as p ≤ 0.1. The first test is a
comparison between Adaptive and Baseline, with the goal to validate that the better overall score of

44

Adaptive is statistically significant. Using the pairwise differences of the H scores of table 8 (test-events
only), a value of W = 3 from the positive ranks is obtained. Since both systems have the same scores
for the event Bulgarian Protests, the population size reduces to N = 10. With such low populations it
is common to compare W to the table of critical values for the Wilcoxon signed-rank test to check if
the null-hypothesis can be discarded. For N = 10, the critical value for the 0.05 significance level is 10.
Since W = 3 ≤ 10, the null-hypothesis can be discarded with p ≤ 0.05. This means that there is strong
evidence that Adaptive performs better than Baseline.

The comparison between CUNLP and Adaptive was performed the same way. With the pairwise differ-
ences, a value of W = 15.5 with a population size of N = 11 is calculated. The critical value for the
significance level 0.05 is 13, which means that with a greater W value of W = 15.5, the null-hypotheses
can not be discarded with an error p ≤ 0.05. For the significance level 0.1, the critical value is 18. In
this case, the null-hypotheses can be discarded with an error p ≤ 0.1. This means that there is evidence
that Adaptive performs better than CUNLP, however it is not as strong as the evidence of Adaptive
performing better than Baseline.

The same Wilcoxon signed-rank test was performed for the results of CUNLP of this evaluation and the
results of CUNLP of the TREC-TS 2014 evaluation. In this case the pairwise differences of the scores
of all events could be used. With a value W = 23 and N = 11 (there are 4 equal scores), the critical
value for the significance level of 0.1 is 18. Since 23 is greater than 18, the null-hypotheses can not
be discarded within an error level of p ≤ 0.1. This supports the assumption that the results of this
evaluation compared to the TREC-TS 2014 evaluation are rather similar.

Results of the significance test show that the observed higher scores of the Adaptive system are likely
to be based on improvements of the overall summarization system instead of being a result of chance.
The same results can be obtained by using the simple sign test.

Secondary evaluation

Next, results of the secondary evaluation with the different system configurations are shown. The main
motivation for the evaluation of the other systems on a subset of the events was to verify observations
and implications that were made during development of the systems. Fine-grained results are listed in
table 10.

When looking at the results of Adaptive Boilerplate (adaptive system without boilerplate removal),
the reduced number of updates is evident. The number of updates thereby is reduced significantly,
sometimes Adaptive Boilerplate only emits half the number of updates compared to Adaptive. The
reason is that without boilerplate removal the first sentences may contain non-article related text such
as menu structures, advertisements or headlines from other news. The beginning of the text therefore
is not always the beginning of the news-article. The position of a sentence in the news-article however
is an important feature which is used by all the Filter components of the summarization systems de-
veloped in this work to determine if the article is relevant for a target-query. Boilerplate content at the
beginning of the text therefore results in a lower number of updates and a lower comprehensiveness
(recall) score C, especially for events which already had a small number of updates for Adaptive. In-
terestingly, for events with a higher number of updates and therefore with a broader news-coverage,
Adaptive Boilerplate performs well with good result scores which are equal or better than the scores
of Adaptive. This is mainly due to an increased nEG score (precision). Boilerplate removal however
brings a significant advantage when looking at the ratio of irrelevant updates (IU), where the approach

45

without boilerplate removal has a highly increased ratio of irrelevant updates (min. increase: 0.05;
max increase: 0.27). For this reasons boilerplate removal is an important factor of the summarization
systems of this work.

One main contribution of this work is the approach to automatically adapt the summarization system
to the news-coverage of a target-event. A comparison of the individual configurations A+, A and B as
well as the adaptive system itself is important to verify the advantages of the adaptive approach. These
values can also be used to check if the adaptive approach generalizes well to new and unseen events.
Looking at results of A+, A and B, the number of updates is highest with A+, second highest with A
and lowest with B. With the higher number of updates, a higher C (recall) score is often achieved which
means that the less restrictive nature of A+ leads to a better overall event coverage. The opposite effect
can be seen for nEG scores (precision), where the more restrictive configurations with less updates
lead to higher values. Problematic for all systems is that they perform very well for certain events but
really badly for others. This is the exact same observation that was made during development of the
summarization systems and the main motivation of the adaptive approach. For most events, the overall
H score of the adaptive approach is close to the score of the best performing single configuration. For
some events the adaptive approach is even better than every individual configuration (e.g. In Amenas
Hostage Crisis). This proves that Adaptive can generalize well to these unseen events and is likely to
select the correct configuration for an event. The scores which are better in Adaptive compared to the
individual configurations show that certain events consist of multiple parts which are best summarized
using different configurations. This further indicates that the adaptive switching of configurations
during runtime is an highly effective approach. Other than the individual configurations, Adaptive
always finds a good balance between nEG (precision) and C (recall) values. One exception of this is
the Russian Protests event, where Adaptive performed significantly worse than the A configuration,
showing that further improvements for the adaptive selection of configurations are still possible. The
overall scores of table 8 and the differences to Adaptive prove that Adaptive is a capable system which
performs consistently well without major drawbacks.

Critics on the evaluation

The measures of TREC-TS 2014 were used in this work primarily for being able to compare against the
TREC-TS 2014 results, especially against the best system that participated in the challenge. A second
reason was that the time restrictions of this thesis made it infeasible to create an own evaluation, which
is difficult and time-consuming for such summarization systems using a large input corpus. The TREC-
TS 2014 evaluation however has a disadvantage, which is the treatment of the non-top-60 updates
which are not considered for manual annotation. These updates are automatically matched against
the top-60 updates of other participant systems. If another participant included the same update in the
top-60 updates, the update will be considered for nugget-matching for the other system as well. This
approach automatically penalizes systems that are unique and output updates that no other system
found, because the chance of automatic matching would be reduced. A stronger limitation in size of
the summary would be desirable. Such a size restriction for example could be dynamic, based on the
duration of the event. It is important to mention that it is unlikely that this effect affected the systems
developed in this work in a negative way, because of their optimization for precision which led to a
smaller amount of updates.

46

Table 10: Results of the secondary evaluation. Differences against Adaptive are wrapped in parentheses.

Event Value A+ A B Adaptive
Boilerplate

Boston Marathon Bombing H 0.02 (-0.23) 0.09 (-0.16) 0.23 (-0.02) 0.24 (-0.01)
Info: Used during nEG 0.01 (-0.14) 0.07 (-0.08) 0.18 (+0.03) 0.17 (+0.02)
development C 0.30 (-0.07) 0.29 (-0.08) 0.35 (-0.02) 0.29 (-0.08)

IU 0.05 (+0.03) 0.04 (+0.02) 0.01 (-0.01) 0.18 (+0.16)
Updates 1735 (+1631) 237 (+133) 72 (-32) 52 (-52)

Egyptian Riots H 0.15 (+0.01) 0.12 (-0.02) 0.11 (-0.03) 0.22 (+0.08)
nEG 0.06 (± 0.0) 0.08 (+ 0.02) 0.11 (+0.05) 0.10 (+0.04)
C 0.40 (+0.01) 0.22 (-0.17) 0.08 (-0.31) 0.42 (+0.03)
IU 0.07 (-0.02) 0.11 (+0.02) 0.00 (-0.09) 0.14 (+0.05)
Updates 83 (±0.00) 15 (-68) 4 (-79) 44 (-39)

In Amenas Hostage Crisis H 0.07 (-0.04) 0.06 (-0.05) 0.06 (-0.05) 0.14 (+0.03)
nEG 0.07 (-0.02) 0.36 (+0.29) 0.56 (+0.47) 0.17 (+0.08)
C 0.47 (-0.02) 0.22 (-0.25) 0.10 (-0.39) 0.42 (-0.07)
IU 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.11 (+0.11)
Updates 82 (+30) 9 (-43) 4 (-48) 32 (-20)

Russian Protests H 0.07 (-0.02) 0.17 (+0.08) 0.14 (+0.05) 0.15 (+0.06)
nEG 0.03 (-0.03) 0.15 (+0.09) 0.23 (+0.17) 0.10 (+0.04)
C 0.20 (±0.0) 0.27 (+0.07) 0.15 (-0.05) 0.24 (+0.04)
IU 0.20 (+0.06) 0.06 (-0.08) 0.00 (-0.14) 0.31 (+0.17)
Updates 305 (+127) 53 (-125) 15 (-173) 128 (-50)

Russia Meteor H 0.24 (-0.05) 0.24 (-0.05) 0.21 (-0.08) 0.15 (-0.14)
nEG 0.13 (-0.03) 0.15 (-0.01) 0.20 (+0.04) 0.12 (-0.04)
C 0.36 (+0.02) 0.32 (-0.02) 0.20 (-0.14) 0.19 (-0.15)
IU 0.04 (+0.04) 0.01 (+0.01) 0.00 (±0.00) 0.27 (+0.27)
Updates 163 (+121) 40 (-1) 16 (-25) 25 (-16)

Southern California H 0.23 (-0.02) 0.23 (-0.02) 0.18 (-0.07) 0.20 (-0.05)
Shooting nEG 0.10 (-0.03) 0.21 (+0.08) 0.20 (+0.07) 0.17 (+0.04)

C 0.39 (+0.07) 0.13 (-0.19) 0.08 (-0.24) 0.17 (-0.15)
IU 0.05 (+0.02) 0.00 (-0.03) 0.00 (-0.03) 0.19 (+0.16)
Updates 50 (+17) 9 (-24) 6 (-27) 16 (-17)

5.2 Computational Performance

The second part of the evaluation was to measure the computational performance of the summarization
systems and to verify their real-time capabilities. In this work, there are two real-time aspects. Real-
time in temporal summarization means that a system is capable of emitting updates at any time when
it detects a new sub-event, not just at predefined fixed intervals. Computational real-time on the other
hand is the definition of an upper-bound for the time that the system is allowed to require until it
finishes the processing of an item. The goal of this part of the evaluation was to show that there is such
an upper-bound, as well as measuring the overall performance.

Measurements were taken on a separate dedicated machine, using the measurement data which is
automatically collected by the framework implementation as described in section 3.3. The machine
was a large compute server with 26 cores and a 512GB of RAM. For the first part of the test, the
summarization systems were launched with only one instance per component. This means that there
is no performance gain from the large amount of cores. No changes to the summarization systems
were made in terms of caching and IO-operations, therefore the large amount of RAM was not utilized

47

during this part. The exact same systems were tested on a standard MacBook Pro for comparison,
and the MacBook Pro actually performed slightly better due to a higher speed of the IO (SSD). The
database for all tests ran on the same machine (in-memory). For comparison, the results of Baseline
and Adaptive were analyzed. For each of the 15 events the systems were executed three times. From all
the collected data, the average time per component and standard deviation values were calculated. The
maximum required time for all processed items and the maximum overall time for items that triggered
updates was identified. Results are listed in table 11. As expected, all components of both approaches
are very fast in average. A high standard deviation throughout the components in relation to their
average required computing time indicates that the processed data is very heterogeneous in terms of
the overall sentence-count and sentence-sizes. A comparison of the average values for Baseline and
Adaptive shows that the Document Summarizer of Adaptive requires slightly more time per item. This
is due to the increased number of maximum sentences that this component can emit for Adaptive. The
Updater component also shows an increased computation time which is a result of the more complex
approach of the Multiple Sources Updater and its multi-step approach which results in more similarity
comparisons than the Updater of Baseline.

The performance over time is an important factor to scalability and to ensure that the system supports
long-running events with potentially unlimited timeframes. Filter and Document Summarizer are
independent from any previous data, therefore the performance does not change over time. Updater
components for both, Baseline and Adaptive use previous updates and, in the case of Adaptive, previous
candidates. These lists are limited in size, performance therefore will not decrease with a large amount
of processed data. A typical performance curve over an event is plotted in figure 10 which is taken from
an event with a broad news-coverage (Boston Marathon Bombing). The performance of the Updater
decreases only to a certain point and then is almost constant until the end of the event.

Table 11: Results of the performance measurements (milliseconds). The average processing time for an item usu-
ally is extremely low with a high standard deviation. The overall maximum computation time is close to
the maximum computation time for actual updates, except for the Filter component.

System Component Average Std. Max. Max. (Updates)

Baseline Filter 7.89 6.17 1383.50 102.52
Document Summarizer 1.91 2.03 68.00 67.83
Updater 5.15 1.64 65.72 65.61

Adaptive Filter 7.92 6.17 1401.67 101.63
Document Summarizer 3.05 2.37 85.78 67.79
Updater 7.86 11.04 275.16 272.10

To determine an upper-bound for the time which is required to fully process an item, the maximum
computation times are used. Values are much higher than the average time required to process an
item. One reason is that some sentences contain many rare words (for example documents in for-
eign languages) which are not found in the caches that were installed to reduce IO operations for ITC
scores or other values that are kept on disk. In such cases if many cache-misses occur, the unusual
high number of IO operations slows the overall summarization process. The exceptionally high maxi-
mum value for the filter components (which is present in all individual runs) however is expected to
originate from third-party libraries used in the application, because Filter itself does not require any
IO operations. These high maximum computation times may be caused by malformed HTML input or
unusual text-patterns which could increase the complexity in the 3rd party libraries. High Max. values
for Filter are consistent, but occur only individually in each run (which can also be seen from the Std.

48

Event Progress
0

5

10

15

20

25

A
v
e
ra

g
e
 T

im
e
 [

m
s]

Filter

Document Summarizer

Updater

Figure 10: Performance of the individual components over time (System: Adaptive, Event: Boston Marathon
Bombing).

values). When comparing Max. to Max. (Update) for the filter, the differences show that the high
Max. values are not related to the updates or any feature that relates to relevant content. Since there
is no obvious answer to the issue of the high maximum computing times for Filter, this aspect needs
further research. Despite these values, there is an acceptable upper-bound for the computational time
which the summarization system requires to fully process an item. The measurements taken during
the repeated runs over the large corpus of this work provide enough evidence to specify such an upper-
bound. With a sum of all maximum values (total potential worst-case performance) of 1417.69ms for
Baseline and 1745.80ms for Adaptive, the upper-bound can be set to two seconds. This upper-bound
was also verified with individual performance measurements performed on a standard MacBook Pro
using the same system implementations.

For the system Adaptive WMD, the evaluation of the summary quality showed that there is no clear
improvement compared to Adaptive. By replacing the simple cosine-similarity and TF*ITC scores with
the Word Mover’s Distance semantic similarity measure, there is a major increase in computational
complexity at the Document Summarizer. Performance measurements showed that the average time
to process an item in the document summarizer increased from 2.97ms to 131.33ms. The maximum
required processing time also increased significantly from 69.13 to 575.50. Results are listed in table
12.

Table 12: Results of the performance measurements for the Adaptive WMD Document Summarizer.

Component Average Std. Max. Max. (Updates)
Document Summarizer 131.33 69.61 575.50 514.49

Parallelism

To test if the parallelism capabilities of the summarization architecture are effective, the time required
to process a complete event for both alternatives, with parallelism enabled and with parallelism dis-
abled, were timed and compared. The system which was used for this test was Adaptive, the events
were Boston Marathon Bombing and the Chelyabinsk Meteor event, because they showed a broad
news-coverage with a relatively high amount of items processed by all components. To prevent any
(major) delay resulting from reading the corpus off the hard-drive disk, the related documents were
loaded into a ramdisk (about 100GB). The non-parallelized version launched one instance for each
component whereas the parallelized version launched 10 instances of the Filter and 2 instances of

49

the Document Summarizer and Updater components. Timestamps were taken before the start of the
systems and after the system finished processing all documents inside the timeframe of the event. The
expected result was a speedup from parallelization near a factor of 10.

Timing-results of table 13 show that there was a significant speedup from parallelization. Because
the startup and shutdown times of the systems are included in the timings and the overall processing
time of the Boston Marathon Bombing event is relatively short, the speedup for the Boston Marathon
Bombing is lower than 10. For the Chelyabinsk Meteor where startup and shutdown times are smaller
in relation to the overall processing time, the speedup reaches a value of 9.23 which is near the
optimal speedup of 10. This shows that the summarization framewok based on Apache Storm is
capable of effectively parallelizing the summarization process. This can either be used to speed up
simulations or to handle a large input stream in a real-life scenario.

Table 13: Comparison of a parallelized version and a non-parallelized version of Adaptive.

Event Non-Parallelized Parallelized Speedup
Boston Marathon Bombing 3151s 450s 7.00
Chelyabinsk Meteor 4892s 530s 9.23

5.3 Summary

The evaluation showed that the summarization quality of the systems developed in this work is very
good, while at the same time the systems are real-time capable in terms of summarization and com-
putational performance. The best system of this work (Adaptive) showed superior results compared
against the best system of TREC-TS 2014 with a significant improvement on a medium error-level.
Nonetheless comparison should not be treated as a final judgment since the systems were only tested
on a subset of all the events of the official TREC-TS 2014 challenge. Surprisingly, Baseline performed
very well although the component implementations of this approach only rely on simple algorithms.
Adaptive was able to significantly improve the performance (low error level) against Baseline by a big
margin. At the same time, Adaptive performed almost as fast as Baseline in terms of computational
performance. The approach relying on semantic similarity in the Document Summarizer component,
Adaptive WMD, showed unexpected results with no major differences compared to Adaptive. Changes
of the similarity measure did not result in the expected improvements.

With the secondary evaluation, initial assumptions and hypothesis from the implementation phase
could be verified. It showed that the process of boilerplate-removal has a positive effect on the overall
summarization quality, which primarily is reflected in a lower amount of irrelevant updates that are
included in the summary. Furthermore boilerplate-removal enables simple and but effective filtering
approaches that rely on features related to the beginning of an article-text. The secondary evaluation
also showed that the adaptive approach is effective in the configuration switching process for new and
unseen events.

As a conclusion, the evaluation of the summarization systems showed that the adaptive approach
combined with the Multiple Sources Updater is an effective real-time capable summarization system.

50

6 Conclusion and Future Work

In this work, multiple different approaches of real-time capable summarization systems were intro-
duced, which showed a good summarization quality as well as a computationally efficient and fast
summarization process. The first step towards the systems developed as part of this work was to create
and implement a framework for real-time summarization. This framework and its implementation was
developed to provide an abstraction of all technical details for the actual summarization system im-
plementations, while at the same time enabling stream-processing and parallelization throughout the
architecture. Actual summarization systems of this work were created on top of this framework imple-
mentation. The first system was a combination of multiple simple approaches, which was then defined
as the Baseline for this work. Based on different observations, the last step of the framework, the
Updater, was identified as the component which has the highest potential to achieve improvements for
the overall summarization process. As a consequence, the Multiple Sources Updater was created which
only allows information to be included in an update if this information is reported by multiple sources.
This concept reduced the amount of irrelevant updates which the system included in the summary and
increased the overall precision. Because different component configurations were required to achieve
consistently good results for the different events used during development, an adaptive approach was
created. Based on the detected importance of a target-event, which is measured by its news-coverage,
the adaptive approach automatically switches between multiple component configurations to ensure
that the best suitable configuration is chosen to summarize this event. Evaluation showed that this
is the best approach developed in this work. Results revealed a superior performance compared to
the Baseline approach, which was achieved without sacrificing any real-time properties or introduc-
ing limitations on potential parallelization. The comparison to a state-of-the-art system, which was
the best system of the TREC-TS 2014 challenge, also showed superior results of the adaptive system.
Since not all events contributed to this comparison, because some were used during development of
the summarization systems, a general superiority of the adaptive approach can not be implicated with
full certainty. Results are however very strong. An additional experiment with semantic similarity
was created, where the simple similarity measure of the single document summarization component
was replaced with a more advanced semantic similarity measure. Results of this experiment showed
no distinct improvements against the standard approach, which means that more drastic changes are
required to affect the overall summarization results of the adaptive system. Performance testing of the
major systems of this work led to an acceptable upper-bound for the required processing time. The av-
erage performance of all components for Baseline as well as for Adaptive was extremely low, therefore
a decision whether to issue a new update based on an incoming documents is usually made in short
time (a couple of milliseconds).

In conclusion, the introduced systems are able to summarize events in real-time with good quality
for different types of events with varying levels of news-coverage. The biggest contribution for the
high quality in summarization is the adaptive selection of the individual configurations, based on the
detected importance of the target-events. The framework which was created as part of this work played
a significant role as well, because it provided an efficient way to build summarization systems and to
experiment with new ideas. This framework could also benefit further research in the same area.

In future work, more extensions to the overall approach of the adaptive summarization system could
be investigated. For example, approaches such as query expansion or machine learning may improve
the overall summarization system by more accurately filtering documents or performing better single

51

document summarization. Query expansion in particular was an important part of the second best
system of TREC-TS 2014 [35]. More experiments on semantic similarity could be performed, for ex-
ample to test if semantic similarity has a higher impact in the Updater component than it had in the
Document Summarizer. Results of individual components, namely Filter and Document Summarizer
could be evaluated separately, measuring how good the filtering process is or how good the resulting
single document summaries are. This area explicitly was left out in this work, because the amount
of required effort would have exceeded the possibilities of this master thesis. The analysis and se-
lective improvements of individual components could potentially improve the overall summarization
system, especially for the adaptive approach where different specialized algorithms can be combined
to form a new single system. Similar to improvements on the summarization system, improvements
and automatic approaches for the evaluation would be an interesting area for future work. Through
an automatic classification and scoring process with the goal to automatically judge the results of a
summarization system, new approaches and optimization techniques will be possible. This could for
example include methods of automatic optimization and parameter tuning. Such a transition from a
manual to an automatic evaluation approach could have an even bigger impact on system performance
than individual optimizations in the current evaluation setting.

52

References

[1] James Allan, Rahul Gupta, and Vikas Khandelwal. Temporal summaries of new topics. In Pro-
ceedings of the 24th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 10–18. ACM, 2001.

[2] Javed A Aslam, Matthew Ekstrand-Abueg, Virgil Pavlu, Fernando Diaz, Richard McCreadie, and
Tetsuya Sakai. Trec 2014 temporal summarization track overview. In TREC, 2014.

[3] Regina Barzilay and Kathleen R McKeown. Sentence fusion for multidocument news summariza-
tion. Computational Linguistics, 31(3):297–328, 2005.

[4] Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval, pages 335–336. ACM, 1998.

[5] Tsan-Kuo Chang, Pamela J Shoemaker, and Nancy Brendlinger. Determinants of international
news coverage in the us media. Communication Research, 14(4):396–414, 1987.

[6] John M Conroy and Dianne P O’leary. Text summarization via hidden markov models. In Pro-
ceedings of the 24th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 406–407. ACM, 2001.

[7] Terry Copeck, Anna Kazantseva, Alistair Kennedy, Alex Kunadze, Diana Inkpen, and Stan Sz-
pakowicz. Update summary update. In Proceedings of the Text Analysis Conference (TAC), 2008.

[8] Hoa Trang Dang and Karolina Owczarzak. Overview of the tac 2008 update summarization task.
In Proceedings of text analysis conference, pages 1–16, 2008.

[9] Günes Erkan and Dragomir R Radev. Lexrank: Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence Research, pages 457–479, 2004.

[10] Seeger Fisher and Brian Roark. Query-focused supervised sentence ranking for update sum-
maries. In Proceedings of the first Text Analysis Conference, TAC-2008, 2008.

[11] Maria Fuentes, Enrique Alfonseca, and Horacio Rodríguez. Support vector machines for query-
focused summarization trained and evaluated on pyramid data. In Proceedings of the 45th Annual
Meeting of the ACL on Interactive Poster and Demonstration Sessions, pages 57–60. Association for
Computational Linguistics, 2007.

[12] Surabhi Gupta, Ani Nenkova, and Dan Jurafsky. Measuring importance and query relevance in
topic-focused multi-document summarization. In Proceedings of the 45th Annual Meeting of the
ACL on Interactive Poster and Demonstration Sessions, pages 193–196. Association for Computa-
tional Linguistics, 2007.

[13] Vasileios Hatzivassiloglou, Judith L Klavans, Melissa L Holcombe, Regina Barzilay, Min-Yen Kan,
and Kathleen McKeown. Simfinder: A flexible clustering tool for summarization. 2001.

[14] George Hripcsak and Adam S Rothschild. Agreement, the f-measure, and reliability in information
retrieval. Journal of the American Medical Informatics Association, 12(3):296–298, 2005.

53

[15] Hongyan Jing. Sentence reduction for automatic text summarization. In Proceedings of the sixth
conference on Applied natural language processing, pages 310–315. Association for Computational
Linguistics, 2000.

[16] Chris Kedzie, Kathleen McKeown, and Fernando Diaz. Summarizing disasters over time. 2014.

[17] Martin Klein and Michael L Nelson. Approximating document frequency with term count values.
arXiv preprint arXiv:0807.3755, 2008.

[18] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. Boilerplate detection using shallow
text features. In Proceedings of the Third ACM International Conference on Web Search and Data
Mining, WSDM ’10, pages 441–450, New York, NY, USA, 2010. ACM.

[19] Matt J Kusner, EDU Yu Sun, EDU Nicholas I Kolkin, and WUSTL EDU. From word embeddings to
document distances.

[20] Chin-Yew Lin and Eduard Hovy. The automated acquisition of topic signatures for text sum-
marization. In Proceedings of the 18th conference on Computational linguistics-Volume 1, pages
495–501. Association for Computational Linguistics, 2000.

[21] H. P. Luhn. The automatic creation of literature abstracts. IBM J. Res. Dev., 2(2):159–165, April
1958.

[22] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J Bethard, and David
McClosky. The stanford corenlp natural language processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages
55–60, 2014.

[23] Richard McCreadie, Romain Deveaud, M-Dyaa Albakour, Stuart Mackie, Nut Limsopatham, Craig
Macdonald, Iadh Ounis, Thibaut Thonet, and Bekir Taner Dinçer. University of glasgow at
trec 2014: Experiments with terrier in contextual suggestion, temporal summarisation and web
tracks. In Proceedings of TREC 2014, 2014.

[24] Richard McCreadie, Craig Macdonald, and Iadh Ounis. Incremental update summarization:
Adaptive sentence selection based on prevalence and novelty. In Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Management, pages 301–
310. ACM, 2014.

[25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[26] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes twitter users: Real-time
event detection by social sensors. In Proceedings of the 19th International Conference on World
Wide Web, WWW ’10, pages 851–860, New York, NY, USA, 2010. ACM.

[27] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513 – 523, 1988.

[28] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M Patel, Sanjeev
Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, et al. Storm@ twitter. In
Proceedings of the 2014 ACM SIGMOD international conference on Management of data, pages
147–156. ACM, 2014.

54

[29] Jenine Turner and Eugene Charniak. Supervised and unsupervised learning for sentence com-
pression. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,
ACL ’05, pages 290–297, Stroudsburg, PA, USA, 2005. Association for Computational Linguistics.

[30] Lucy Vanderwende, Hisami Suzuki, Chris Brockett, and Ani Nenkova. Beyond sumbasic: Task-
focused summarization with sentence simplification and lexical expansion. Information Processing
& Management, 43(6):1606–1618, 2007.

[31] Hao Wang, Dogan Can, Abe Kazemzadeh, François Bar, and Shrikanth Narayanan. A system
for real-time twitter sentiment analysis of 2012 u.s. presidential election cycle. In Proceedings
of the ACL 2012 System Demonstrations, ACL ’12, pages 115–120, Stroudsburg, PA, USA, 2012.
Association for Computational Linguistics.

[32] Lu Wang, Hema Raghavan, Vittorio Castelli, Radu Florian, and Claire Cardie. A sentence com-
pression based framework to query-focused multi-document summarization. In ACL (1), pages
1384–1394, 2013.

[33] Elad Yom-Tov and Fernando Diaz. Out of sight, not out of mind: On the effect of social and
physical detachment on information need. In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’11, pages 385–394, New
York, NY, USA, 2011. ACM.

[34] Siqi Zhao, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. Human as real-time sensors
of social and physical events: A case study of twitter and sports games. CoRR, abs/1106.4300,
2011.

[35] Yun Zhao, Fei Yao, Huayang Sun, and Zhen Yang. Bjut at trec 2014 temporal summarization
track. 2014.

[36] Arkaitz Zubiaga, Damiano Spina, Enrique Amigó, and Julio Gonzalo. Towards real-time summa-
rization of scheduled events from twitter streams. In Proceedings of the 23rd ACM conference on
Hypertext and social media, pages 319–320. ACM, 2012.

55

Appendices

A Summarization Frontend

As an addition to the framework implementation as described in section 3.3, a summarization fron-
tend was built with the intention to support the inspection of different summarization systems. This
frontend application is compatible to all summarization systems based on the Core framework imple-
mentation. The summarization frontend consists of two separate parts: A backend application and a
web-frontend. The backend application provides a REST-API which allows clients to retrieve current
data of the summarization system, such as active queries, updates of a summary (by query) and system
status data. Furthermore the backend application provides several web-sockets through which clients
can receive updates for queries or system-status changes in real-time. To enable such functionality,
the backend application connects to the same database and pub/sub system as the summarization sys-
tem. From a technology perspective, the backend application is based on the Play Framework7 and
the Scala programming language. The separate web-frontend application uses the APIs and sockets
from the backend application to provide a user-interface that allows the users to inspect the status and
the outputs of the summarization system in real-time. A screenshot of this interface is shown in figure
11. For any update of a query, all metadata can be inspected. Since all components of the summariza-
tion system can add arbitrary metadata to a processed item, this is a key advantage which enables an
effective and time-saving approach to debug a summarization system.

7 playframework.com

56

Figure 11: A screenshot of the summarization frontend. On the left hand-side a list of all queries and the system
status is shown. In the middle, the updates are displayed which can be selected for further inspection.
On the right hand side the inspection view shows all data and metadata of the selected update. All
data updates in real-time as the summarization system continues simulating the event.

57

B Architectural Changes to Support an Unlimited
Number of Queries

For the framework design described in section 3, there is one potential bottleneck. A large number
of queries at the same time can increase the overall computation time for an individual item. The
framework was explicitly designed for parallelization and stream processing to enable real-time sum-
marization with low latency. However, if there is a large number of queries, a bottleneck within the
Filter emerges. It receives a document as an input and has to decide whether the document is relevant
for one or more of the target queries. The number of comparisons therefore increases linear with the
number of target queries. If there are a lot of queries, the potential delay to emit an update for the last
query is much higher than for the first query. Real-time properties are not met in this case, since there
is no upper-bound for the delay with an unlimited number of queries.

The following architectural changes resolve this issue. As an additional component, the ”Pre-Filter” is
introduced, which is placed before the filter. It receives a stream of HtmlDocumentRaw instances as an
input and outputs a stream of HtmlDocumentRaw / Query pairs. Each Pre-Filter instance contains a
part of the whole query list. All of the Pre-Filter instances receive every HtmlDocumentRaw instance.
For each query in the query list they output the HtmlDocumentRaw / Query pair. Items from this
output stream are then randomly distributed to a Filter instance which in this case only checks that the
document is relevant for the single query, meaning that all checks for a single document can occur in
parallel. The rest of the architecture is untouched. A visualization of this solution is shown in figure
12.

FilterFilter

Query,
HTMLDocumentRaw

Pre-Filter

HTMLDocumentRaw

Parts of the
Query List

Query,
ArticleDocumentRich

FilterFilterFilter
Document

Summarizer
Document

Summarizer
Document

Summarizer

UpdaterUpdaterUpdater

DB

Add Update
 for Query

Figure 12: A visualization of a slightly modified framework architecture to resolve a potential bottleneck with an
unlimited number of queries.

58

C Configuration Switches of the Adaptive Approach

In the following two figures 13 and 14, the algorithm switches and the amount of relevant documents
over time are shown. Relevant documents are identified by the restrictive filter algorithm, therefore
the numbers are rather small. However, for both events, a large amount of news-articles is processed
by the summarization system (Quran Burning Protests: 483,992; Queensland Floods: 549,250).

0 20 40 60 80 100 120 140 160 180
Hours since event start

0
1
2
3
4
5
6

#
R

e
le

v
a
n
t

d
o
cu

m
e
n
ts

p
e
r

h
o
u
r

Quran Burning Protests

MA(24)

MA(6)

0 20 40 60 80 100 120 140 160 180
Hours since event start

C
o
n
fi
g
u
ra

ti
o
n
s

A+

0 20 40 60 80 100 120 140 160 180
Hours since event start

0
10
20
30
40
50
60
70

#
U

p
d
a
te

s

Figure 13: Configuration switches of the adaptive approach for the Afghanistan Quran Burnings event. The
amount of news-articles covering this event is consistently low, therefore no configuration switches
are performed.

59

0 50 100 150 200 250 300 350
Hours since event start

0

5

10

15

20

25

#
R

e
le

v
a
n
t

d
o
cu

m
e
n
ts

p
e
r

h
o
u
r

Queensland Floods

MA(24)

MA(6)

0 50 100 150 200 250 300 350
Hours since event start

C
o
n
fi
g
u
ra

ti
o
n
s

A+ A B

0 50 100 150 200 250 300 350
Hours since event start

0
10
20
30
40
50
60
70
80

#
U

p
d
a
te

s

Figure 14: Configuration switches of the adaptive approach for the Queensland Floods event. After the beginning
of the event, there is a relatively low interest in the event that lasts for several days. A sudden spike in
news-coverage before the end of the event leads to configuration switches up to the most-restrictive
configuration (B).

60

D Nugget-Matching Interface

Nugget-matching is the central part of the TREC-TS 2014 evaluation. Human annotators try to match
the top-60 updates of a summary that was created by a summarization system for a specific event
against nuggets of information (gold standard). The matching is then used to calculate the resulting
scores of the system, describing its precision, recall and timeliness. Since the nugget-matching interface
of TREC-TS 2014 was not available, an own version of this interface was developed as part of this work.
The new interface is optimized for annotator user experience, allowing the annotator to be as efficient
as possible and to always have a clear view on the current task. One annotation task consists of the
top-60 updates of the summarization system for an event and all the nuggets (between 35 and 226). A
good user experience therefore is required to ensure that the annotation study is feasible. In figure 15
a screenshot of the nugget-matching interface is shown. The annotator drags nuggets onto updates to
create nugget-matches and can also mark updates as irrelevant for the topic by clicking the ”X”-button
in the top-right corner of an update. In this specific example, the information of the first nugget is
included in the second update. After dragging the nugget onto this update, a text-selection window
opens. This is shown in figure 16. Within this text-selection window, the annotator selects the part of
the update-text which contains the nugget-information. After the annotator confirms the selection, the
nugget-matching is added. The text selection information is used in the evaluation to ensure that short
and precise updates which do not contain any other non-relevant information lead to a better score
than long updates with only a small portion of relevant information. After an annotator is finished
with all matchings, clicking the finish button in the top-right corner of the web-page locks the task for
any further editing.

61

Figure 15: The nugget-matching web interface. Annotators drag nuggets from the right side onto updates on the
left side. All matching nuggets of an update are listed below the update with the matching part of
the update-text being color-coded. Updates can be marked as irrelevant for the topic by clicking the
”X”-button in the top-right corner of an update.

62

Figure 16: Text selection for a new nugget-matching annotation. When the annotator drags a nugget onto an
update, the text-selection view opens. The annotator then selects the part of the update that contains
the information of the nugget. After the annotator confirms the selection, the nugget-matching is
created and the nugget is listed beneath the update as a match.

63

