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Zusammenfassung

Textsegmentierung ist ein wichtiges Hilfsmittel im Natural Language Processing (NLP). Anwendungen
finden sich in der Textzusammenfassung, im Information Retrieval und beim Auflösen von Anaphern.
Frühere Arbeiten zum Thema der Textsegmentierung konzentrierten sich vor allem auf lexikalische Ko-
häsion, um Texte in Segmente einzuteilen. Diese Arbeit präsentiert zwei Algorithmen, die zu diesem
Zweck semantische Graphen analysieren. Das Ziel dabei ist, die Qualität der Textsegmentierung mit
mehr semantischen Informationen zu steigern als es in bisherigen Arbeiten der Fall war.

Diese Arbeit verfolgt drei Hauptziele: Zunächst werden frühere Arbeiten zum Thema Textsegmentie-
rung präsentiert, analysiert und in Kategorien eingeordnet, die die Methoden anzeigen, die zum Be-
stimmen von Segmentgrenzen angewendet werden. Im zweiten Schritt werden zwei neue Algorithmen
vorgestellt, die auf semantischen Graphen basieren. Cluster Blocks versucht, eine Segmentierung anhand
von thematischen Clustern des semantischen Graphen vorzunehmen. Compact Segments ermittelt eine
optimale Segmentierung im Hinblick auf die zwei Kriterien Kompaktheit und Grenzstärke, die für jedes
mögliche Segment eines Textes analysiert werden: Kompaktheit bezieht sich auf die Stärke der seman-
tischen Beziehungen innerhalb des Segmentkandidaten, und die Grenzstärke zeigt an, wie schwach die
semantischen Beziehungen zwischen Termen innerhalb und außerhalb des Kandidaten sind. Die abschlie-
ßend durchgeführte Evaluation zeigt die Qualität der neuen Ansätze im Vergleich zu bestehenden Ver-
fahren unter Verwendung der Evaluationgsmetriken Pk und WindowDiff. Compact Segments kann dabei
auf kleineren Dokumenten mit State-of-the-Art-Algorithmen konkurrieren. Vier verschiedene Evaluati-
onscorpora wurden genutzt, von denen einer, ein Wikipedia-basierter Corpus, für diese Arbeit entworfen
und generiert wurde.



Abstract

Text segmentation is an important aid in Natural Language Processing (NLP). Applications can be found
in text summarization, information retrieval, and anaphora resolution. Previous works on text segmenta-
tion mainly focused on lexical cohesion to divide texts into segments. This thesis suggests two algorithms
which analyze semantic graphs for that purpose. The goal of this idea is to enhance text segmentation
with more semantic information than it has been done in other works.

Three main goals are pursued in this thesis: First, related work on the topic of text segmentation is
presented, analyzed, and classified into categories which indicate the methods that are used to deter-
mine segment boundaries. Second, two new segmentation algorithms are presented which are based
on semantic graphs. Cluster Blocks tries to find segments in the text according to topical clusters of the
semantic graph. Compact Segments identifies an optimum segmentation with respect to the two criteria
Compactness and Boundary Strength which are analyzed for every possible segment of a text: Compact-
ness pertains to the strength of semantic relatedness values within the segment candidate, and Boundary
Strength indicates the weakness of semantic relatedness values between terms within and outside the
candidate. Finally, an evaluation reveals the quality of the new approaches compared to existing ones by
use of the evaluation metrics Pk and WindowDiff. Compact Segments proves to be able to keep up with
state-of-the-art algorithms for smaller documents. Four different evaluation corpora have been used one
of which, a Wikipedia-based corpus, has been designed and generated for this thesis.
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1 Introduction

This chapter motivates the interest in text segmentation and introduces the goals of this thesis. Finally,
it provides an overview of the content of the thesis.

1.1 Motivation

Text segmentation is an increasingly important topic of Natural Language Processing (NLP). It has there-
fore gained in attendance in the past twenty years of research. Its importance is becoming obvious when
thinking of situations like these:

• Information Retrieval. You are searching the internet for a very specific information and type a
query to your preferred search engine. As a result, you get a list of about 50 documents. Most of
them are not obviously irrelevant, though not presenting the information you are interested in at
first sight. Therefore, you have to call each page and search it manually – a time-consuming task
since some of the pages consist of long texts, maybe online versions of book chapters. Wouldn’t it
be helpful to have the search engine doing this work for you, presenting you exactly the paragraph
which is relevant for your query, and thus, helping you in evaluating each result quickly? Sure,
the engine lists some sentences containing one or two of your query terms, however, this is in
most cases the wrong snippet of the result page or the snippet is too short in order to actually
understand what it is about. And this is what text segmentation can do for you here: After the
search engine has found some relevant pages for your query, it will not present some of its content
quite indiscriminately. Instead, it will segment the result page into topically coherent passages and
present you exactly this very passage which best matches your query, thereby relieving you from
the necessity of opening and searching the page manually.

• Text Summarization. You are searching the internet for documents pertaining to a certain topic
and being of a certain degree of variety, i.e., you don’t want to have them to be too specific and are
rather searching for “overview” documents. Many of the results the search engine returned for your
query seem to be very specific, however, you have to scroll through the whole result documents
in order to verify that they really do not fit your needs. This is somewhat laborious; thus, you
decide to examine only the text summaries offered by the search engine for the results, but you
often find them not very helpful, especially because some contain many details pertaining to the
same topic which should, in your opinion, be summarized in a single sentence. This is another task
text segmentation can help you with: When the search engine creates the summary, it may first
segment the text into its topically different sections and afterwards build the summary in a way
which only uses one sentence per topic – which you would be very thankful for, wishing to have a
good overview of the document topics.

There are even more tasks where text segmentation can be applied. Concrete applications of text seg-
mentation can be found in Section 2.4.

1.2 Goals

The goals of the thesis are:

1. to give an overview of state-of-the-art approaches of text segmentation,
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2. to elaborate some new graph-based approaches,

3. to build a new evaluation corpora based on Wikipedia, and

4. to evaluate the new approaches based on the most frequently used evaluation metrics Pk and
WindowDiff.

The main goal is the exploration of some new graph-based approaches of text segmentation. This in-
cludes the theoretical justification of these methods as well as their implementation based on the UIMA
framework1 and evaluation on several text corpora which contain gold standard text segments.

The newly implemented methods should exploit the semantical graphs of texts which indicate the
strength of relationships between words. They are to be explained in detail, including preprocessing
steps, applied graph algorithms, possible parameter configurations, and final gaining text segments.

For evaluation purposes, a new corpora is to be built, using the English Wikipedia2 as source.

Furthermore, as there are currently no UIMA evaluation components available for text segmentation,
these are to be implemented as well. They should use two measures of text segmentation evaluation,
namely Pk and WindowDiff which have become kind of standard for evaluating segmentation algorithms,
in order to quantify the performance of the implemented segmentation algorithms and make it compa-
rable to state-of-the-art approaches. These measures will also be presented in detail to allow for a deep
understanding of the measure values.

1.3 Structure

The thesis is mainly divided in an introductory part – the Introduction and Background Chapters – and
the chapters after it, presenting the main work of this project. Thus, the work is structured as follows:

Chapter 1 Motivates the interest in text segmentation and introduces the goals of this work
and its structure.

Chapter 2 Gives some definitions pertaining to text segmentation and provides a basic under-
standing of some important topics in Natural Language Processing. Introduces the
most important recent text segmentation approaches. Presents some applications of
text segmentation.

Chapter 3 Presents two new algorithms for text segmentation which are based on semantic
graphs.

Chapter 4 Introduces the two most frequently applied metrics for evaluation of text segmen-
tation algorithms. Presents corpora which have been used for evaluation. Clarifies
the way in which the new algorithms have been tuned and the best configurations
have been chosen. Finally, presents and analyzes results of evaluation.

Chapter 5 Dwells on implementation issues. Particularly, explains the pipelines and software
components that have been used in the course of the thesis.

Chapter 6 Sums up the contents of the thesis. Draws some conclusions and gives an outlook
to future work.

Lists of figures, tables, and references are located in the appendix.

1 http://uima.apache.org/
2 http://en.wikipedia.org/
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2 Background

This chapter provides an overview of general concepts of Natural Language Processing which are relevant
to the topic of text segmentation. Furthermore, it presents recent text segmentation approaches and lists
applications of text segmentation.

2.1 General Concepts of Natural Language Processing

This section is meant to give a general introduction to the main concepts of Natural Language Processing
(NLP) which are somehow related to the task of text segmentation. The explanations and definitions
given in this section will be referred to in later sections and chapters. Therefore, we suggest reading this
section before other parts of the thesis if the reader is not that familiar with NLP concepts in general or
text segmentation concepts in particular.

This section is not meant to provide a coherent presentation of text segmentation methods. For a
description of complete text segmentation methods, refer to Section 2.3.

2.1.1 Preprocessing

In any task of Natural Language Processing, generating features from one or more original texts is a
crucial task since the way in which tokens and sentences are represented significantly influences the
results of algorithm applications. This process of feature generation is therefore part of preprocessing of
any NLP method.

Tokenization

Tokenization is the process of splitting a natural-language text into tokens, i.e., words that are to be con-
sidered separately. This process can be implemented differently in the following points (not complete):

• Tokens may or may not be split at apostrophes. E.g., the word “that’s” may be split into “that” and
“s” (or “is” for a kind of intelligent splitting, respectively).

• Tokens may or may not be clustered to phrases where possible. E.g., the words “New York” may be
considered as only one token in order to conform to its actual meaning.

• Tokens may or may not be converted to all-lower-case (or all-upper-case). Most algorithms profit
from this conversion.

• Often, tokens are also merged into groups though not belonging to a phrase. These groups, called
n-grams if consisting of exactly n tokens, help in reducing the number of features and in avoiding
ambiguities since co-occurrents of a word often contribute to its contextual meaning.

Stemming

Stemming is a method which reduces words to their stems, aiming at reducing the number of different
tokens in a text. E.g., it may transform the words “library” and “libraries” to the same stem “librari”,
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ameliorating the discovery of semantical equality of words. Stems are generated without usage of a
dictionary; instead, this is tried to be performed with simple transformation rules, based on the language
of the stemmer. The most popular stemmer implementation has been developed by Porter [Por97].

Lemmatization

Lemmatization finds the basic form of a word and, similarly to stemming, aims at reducing the number
of different tokens in a text. However, lemmatization is even stronger than stemming since it usually also
finds basic forms which cannot be obtained heuristically. E.g., the words “goes” and “went” might both
be reduced to “go” whereas a stemmer would not reveal a common root of the words. Moreover, lemmas
are natural basic forms whereas stems tend to be artificial (see the “librari” example in the previous
section).

POS Tagging

Part-of-speech (POS) tagging is a method of generating features pertaining to the part of speech of words.
This can help in resolving ambiguities where, for instance, a substantive may, morphologically, also be a
verb. Many NLP algorithms also remove words from the set of features if they do not belong to the kinds
of words which are assumed to be helpful for the particular task (often nouns, verbs, adjectives).

Stop words

Stop words are words which appear very frequently across all kinds of texts and thus have low semantic
expressiveness. Such words (e.g., “yes”, “no”, “is”, “can”) are often removed from the set of tokens as
they do not help in semantic analyzation of texts.

2.1.2 Similarity and Cohesion

Many NLP tasks considered with some kind of semantic analysis of texts rely on methods of measuring
similarities of tokens, sentences, or even greater blocks of text. In many cases, also measures for the
cohesion of a single block are applied which are designed to produce greater values if a block is more
“semantically coherent”. However, a unique definition of semantic cohesion is not existing.

This subsection lists some frequently applied concepts of similarity and cohesion.

Token Similarity

Different concepts exist for exploiting token similarities:

• Morphological equality is the most trivial concept and relies on the character sequence of tokens1

only. However, as analyzed by Morris and Hirst [MH91], simple word reiterations may be an
important hint to semantical relationships within a text.

• Word co-occurrences may be significant for discovering semantic relationships. If the contexts of
two words have many words in common, this might be an indicator for the semantic relationship
of those words. This idea is applied for text segmentation by Ferret [Fer07].

1 Note that tokens are usually stemmed; thus, words such as “library” and “libraries” are considered to be morphologically
equal.
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• A thesaurus is a very powerful tool for finding semantic relationships. Most thesauri define rela-
tionships such as categories, synonyms, hypernyms, hyponyms etc. which allow for establishing
links between different words that do not refer to each other by a similar context. Fellbaum, for
instance, suggests WordNet for calculating relations between words [Fel98].

Sentence/Block Similarity

Particularly for text segmentation purposes, determining the similarity of whole sentences or blocks of
texts is of high importance. Popular concepts of block similarity are the following:

• Number of common features, often relative to the number of all features

• The Euclidean distance considers the blocks to be compared as vectors which usually contain for
each token of the text the number of its appearances in the respective blocks. The distance of the

vectors u, v is then calculated as d = ‖u− v‖=
Æ

∑

i

�

ui − vi
�2.

• The cosine similarity also works on the block vectors. Instead of measuring the vector distances, it
calculates the cosine of the angle between the vectors: d = u·v

‖u‖‖v‖ . In contrast to distance measures,
this measure yields higher values (up to 1) for similar blocks.

Lexical Chains

Many algorithms based on lexical cohesion use lexical chains for structuring texts according to lexical
similarities [MH91]: A lexical chain is a range of text which excels in a high lexical cohesion which
means that many of the tokens contained in the chain are lexically related to each other (see the possible
definitions of token similarities). E.g., if five consecutive sentences of a text contain names of states of
the USA (which are obviously related), they will likely be combined in one lexical chain. One lexical
chain usually pertains to exactly one semantic concept. Consequently, a text passage may be part of
multiple lexical chains if it contains multiple semantic concepts.

Lexical chains have first been mentioned by Halliday and Hasan [HH76] who introduced the concept
but did not provide a concrete algorithm for building the chains. For an example of such an algorithm,
refer to Section 2.3.1.

2.1.3 Lexical-Semantic Graphs

In various NLP tasks, including text summarization, keyphrase extraction, and query answering, it can
be useful to consider the lexical-semantic relatedness of arbitrary word pairs of a text. This, in fact,
raises the need for building a complete graph consisting of all relatedness values of the contained words,
the so-called Lexical-Semantic Graph: It consists of one vertex for each term and edges between all of
them, weighted with a lexical-semantic relatedness value indicating the strength of similarity between
the connected terms. These similarity values usually base on one or more of the categories presented in
Section 2.1.2 and provide a numeric value of concept similarity.

A lexical-semantic graph may actually be based on different kinds of features. Lemmas and noun
phrases have, in many applications, turned out to represent the semantic structure of a text most ac-
curately. For example, the text presented in Figure 3.1 might look like Figure 3.3 in a sematic graph
representation if lemmas are considered as features.
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Zesch [Zes09] gives an extensive overview of existing and adapted relatedness measures and of pos-
sible resources to exploit for extracting semantic relations. In description of applications, he focuses on
keyphrase extraction and presents a new method based on semantic graphs for discovering important
terms of documents. Another keyphrase extraction algorithm based on semantic graphs has recently
been proposed by Tsatsaronis et al. [TVN10].

A method for obtaining semantic representations of texts that has proved to yield good results for
semantic relatedness measurement and that we will come back to later in the thesis is Explicit Semantic
Analysis (ESA) which has been proposed by Gabrilovich and Markovitch [GM07]: They represent input
texts (for which to calculate semantic relatedness to other texts) as concept vectors. A so-called semantic
interpreter takes the text T as input (which may be only one word or even a whole paragraph) and iter-
ates over the words. The word concept vectors are then weighted and added to obtain the text concept
vector.

Word concept vectors are constructed from a big human knowledge repository such as Wikipedia:
For every concept of the repository (e.g., for each article of Wikipedia), the vector contains one entry
indicating the relevance of the concept for the word. This value is calculated using the TF-IDF2 measure
[SM86], i.e., if v is the concept vector of word w and v j is the entry for concept no. j, it holds:

v j =
freq

�

w, T j

�

docfreq (w)

where T j denotes the text belonging to concept j, freq gives the frequency of a word in a text, and docfreq
gives the number of concept documents in which a word appears. (The TF-IDF value is often also nor-
malized or adapted by taking the logarithm of the inverse document frequency.)

By merging all concept vectors of the words in a text, the ESA method generates a concept vector for
the whole input text. Two such texts can then be compared using a vector comparison method applied
to the concept vectors of the text, e.g., the cosine measure. This finally yields a value indicating the
semantic relatedness of the input texts.

2.2 Text Segmentation

This section introduces the task of text segmentation. It presents possible categorizations of segmentation
approaches and clarifies on which of the categories the focus of this thesis lies on. It furthermore lists
cues of documents which may be exploited for text segmentation.

2.2.1 Definition

Text segmentation is a special case of topic segmentation only considering documents in written form.
Topic segmentation is, according to Purver et al. [PGKT06], the division of a text or discourse into topically
coherent segments.

2.2.2 Categorization

Segmentation algorithms can be categorized by means of different criteria:

2 term frequency – inverse document frequency
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• Feature exploitation according to [Yaa97]: Algorithms based on lexical cohesion exploit the fact
that semantically related sentences consist of lexically similar tokens [HH76]. Algorithms based on
multiple sources also try to discover other relationships of sentences and tokens beyond their lexical
similarity. This may include syntactical or even prosodic cues if speech recording is available.

• Linear/hierarchical: Segmentation approaches may either produce a pure linear segmentation of
a text, thus, simply placing boundaries between appropriate sentences of the text, or yield a hier-
archical division of a text, thus, providing coarse-grained segments which are themselves divided
into more fine-grained segments.

• Learning strategy: Supervised algorithms are trained on example texts before measuring their per-
formance on other texts whereas unsupervised algorithms are not. The latter ones are usually
mainly based on lexical cohesion and not on other features such as cue phrases (see below).

This work concentrates on approaches which

• exploit lexical cohesion only,

• are linear,

• and unsupervised.

2.2.3 Segment Cues

Diverse cues are appropriate for being exploited for text segmentation. Frequently used are the follow-
ing:

• The most important cue is lexical cohesion which is also the most general one: Lexical cohesion may
pertain to word reiterations, word categorizations, and co-occurrences among others as we have
seen in Section 2.1.2. Lexical cohesion cures are always applicable in some way since, at least for
simple cues such as word reiterations, no information is needed beyond the text. Lexical cohesion
in general is often considered to be the most useful signal for finding text segments since coherent
segments usually consist of lexically related words.
According to Reynar [Rey98], lexical cohesion cues useful for text segmentation are:

– First uses: If a word appears the first time, it may indicate a lexical break in the text.

– Word repetitions indicate lexical cohesion.

– Word n-gram repetitions indicate lexical cohesion with an even greater probability since n-
grams are less likely to be repeated than single words.

– Frequency of a word suggests high lexical cohesion of two blocks if the frequency is high in both
blocks, relative to a priori knowledge of average word frequencies. (E.g., frequent occurrence
of the word “are” in two neighbored blocks is not a strong indicator of cohesion since “are” is
very frequent across all texts.)

– Synonymy of words indicates lexical cohesion.

• Cue phrases are frequently an indicator of segment changes, too. Phrases like “Now, ...”, “... is a/an
...”, “In contrast ...” might suggest a topic change while “Furthermore, ...” or “On the other hand,
...” might signal a continuation of a train of thought within a segment. However, exploitation of
cue phrases is usually difficult in an unsupervised approach since they substantially differ between
different kinds of texts.

• Intonational, prosodic, and acoustic cues can be helpful if a speech recording is available because
segment boundaries will likely tend to take place at positions of longer breaks or speaker changes,
for instance [GMFLJ03].
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2.3 Related Work

This section introduces the most important approaches and ideas of recent works exploiting lexical cohe-
sion for text segmentation. Figure 2.1 provides an overview where approaches are arranged according
to their time of publication and to the main concepts they are based on:

• Lexical Scores: This category contains all approaches which explicitly calculate scores for the
cohesion of blocks (sequences of sentences) and/or the similarity of blocks for deriving segment
boundaries from the results.

• Lexical Chains: This category holds works which build lexical chains for deriving segment bound-
aries from the chain positions in the text.

• Clusters/Partitions: These works apply a clustering or partitioning algorithm to obtain the seg-
ments.

• Probabilistic: These algorithms introduce probabilistic models according to which the optimum
segmentation is calculated.

2.3.1 Construction of Lexical Chains

As many works are based on lexical chains, we will first look at their origins: The first algorithm to create
lexical chains was proposed by Morris and Hirst [MH91]. In constructing the chains, the authors use
a thesaurus for determining semantic relationships such as category or group equality between tokens.
Their algorithm iterates over all tokens of the text and assigns each token to a lexical chain, either a new
one – if no chain for the word category is existing –, or an existing one – if a chain for the word category
is existing and adding the word would not make the chain exhibit a gap of more than three sentences
without a word belonging to the chain. Most segmentation algorithms using lexical chains construct
them this way or at least similarly. The first linear-time algorithm for construction of lexical chains was
proposed by Silber and McKoy [SM02].

2.3.2 Lexical Chains

Okumura and Honda (1994)

One of the earliest algorithms for exploiting lexical chains for text segmentation was proposed by Oku-
mura and Honda [OH94]. The authors’ main idea is that lexical chains should conform to the structure
of a text, thus allowing for a segmentation by finding places in the text where the density of chain start
and end points is particularly high.

The algorithm first builds the chains putting words to the same chain if their categories in the used
thesaurus are equal. If no such chain exists for a word, a new chain is created. If a word has several
categories (i.e., if a word’s meaning is ambiguous), the word is added to the most salient chain of those
which pertain to one of the word’s categories. A chain is considered to be more salient than another one
if it is longer or if a word belonging to the chain has appeared more recently (in a lower distance from
the currently analyzed word) than a word belonging to the other one. This strategy is a kind of implicit
word sense disambiguation.

The next step is calculating the “boundary strength”, the number of beginning or ending lexical chains
at each sentence gap. These values are then sorted in descending order, and the more start and end
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points of lexical chains are present at a sentence boundary, the more likely this boundary will also be
chosen as a segment boundary. Okumura and Honda illustrate this idea as in Figure 2.2: Lexical chains
tend to begin and end at certain points (here: before sentence 14), indicating segment boundaries.

Galley et al.: LCseg (2003)

Galley et al. propose LCseg [GMFLJ03], another popular segmentation algorithm. Although the au-
thors claim having used lexical chains, in fact, the used chains only pertain to term repetitions and are
therefore a different concept than what had originally been defined as lexical chains by Morris and Hirst
[MH91]. (Nonetheless, we will call the chains “lexical” to conform to the authors.)

Each lexical chain pertains to a certain (stemmed) token, and if this token is found again during chain
construction, it will be added to its chain. Chains are split if they contain long ranges (exceeding a
certain length which is a parameter of the approach) without any appearance of its associated token.

The algorithm then assigns weights to lexical chains where chains receive higher scores than others if
they contain more term repetitions or if they are shorter. Similarly to TextTiling (Section 2.3.3), lexical
scores are assigned to sentence breaks indicating the strength of cohesion of neighboring blocks.

The score for a gap between two blocks A and B is calculated using the cosine measure applied to
vectors containing the weights of lexical chains overlapping block A and B, respectively. Vector entries
for lexical chains which do not overlap the particular block are zero. E.g., if weights for the lexical chains
1,2, 3 of a text are w1 = 10, w2 = 15, w3 = 17, and chains 1 and 2 overlap block A, 2 and 3 overlap block
B, the block vectors would be:

vA =
�

10 15 0
�

, vB =
�

0 15 17
�

The lexical score assigned to the gap between blocks A and B would in this case be:

sAB =
vAvB



vA







vB





≈ 0.55

Gaps with low scores that constitute sharp minima of the score function are chosen as segment bound-
aries. The procedure is the same as applied by TextTiling (see Section 2.3.3).

Marathe and Hirst (2010)

The work of Marathe and Hirst [MH10] stems from Okumura’s and Honda’s approach: Both first build
lexical chains and then count the number of beginning and ending chains at each sentence gap. These
values, the boundary strengths, are finally sorted in descending order to obtain boundaries which are
appropriate to become segment boundaries.

The difference of both approaches is the way in which lexical chains are built: While Okumura and
Honda use thesaurus categories to represent the concepts of lexical chains, Marathe and Hirst construct
lexical chains using token-based semantic similarity measures: The first used measure is Lin’s WordNet-
based measure [Lin98], the second one is Mohammad’s and Hirst’s framework of distributional measures
of concept distance [MH06].

For each token of the text, the chain with the highest similarity according to the similarity measure
is chosen to be extended by that token if the calculated similarity value exceeds a fixed threshold. If
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Figure 2.1: Overview of important text segmentation approaches

chains | text

| 1 2

start-end | 123456789012345678901234

( 1 - 24) | ************************

( 4 - 13) | **********

(14 - 16) | ***

( 8 - 9) | **

(14 - 18) | *****

Figure 2.2: Lexical chains illustrating the idea of boundary strengths (adopted from Okumura and Honda)
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neighboring blocks for 
a token-sequence gap

Figure 2.3: Tokenization in TextTiling

multiple chains are found to have a sufficiently high similarity, these chains are merged if their pairwise
similarity is high enough. If there is no appropriate chain for a token, a new chain is created for it.

For a small corpus of 20 documents and using Mohammad’s and Hirst’s measure of concept distance,
this approach achieves better results, using the WindowDiff metric (see Section 4.2.2), than TextTiling
(Section 2.3.3) and C99 (Section 2.3.4).

2.3.3 Lexical Scores

Hearst: TextTiling (1993)

Besides LCseg, there are even more famous algorithms which do not take into account the full range
of lexical cohesion, but only morphological equality of tokens. E.g., with TextTiling ([Hea93], [Hea94],
[Hea97]), Hearst presents an algorithm which abandons lexical chains as she states having found them
to be inappropriate for text segmentation purposes, particularly due to word ambiguities that would
make tokens to be assigned to the same chain although they have actually a different meaning in the
context of the text. Instead, the author does not rely on lexical similarity, but calculates token similarity
according to their morphological similarity only.

The text to be segmented is first divided into artificial token-sequences (n-grams) in order to avoid hav-
ing units of different size. Lexical scores are then calculated for every token-sequence gap, expressing
the similarity of the neighboring blocks (see Figure 2.3). Block similarity is, in the default configuration,
determined with the cosine measure applied to the word frequency vectors of the blocks.3

Based on this, so-called depth scores are finally calculated for each token-sequence gap in order to
determine the strength of change in subtopic cues in the neighboring blocks. For this purpose, the block
similarity values are first smoothed with a simple averaging method. Then, depth scores are obtained in
the following manner for each token-sequence gap: Starting at the current gap, the algorithm moves left
as long as similarity values are increasing. The difference of the last (thus, greatest) of these values and
the similarity value of the initial gap denotes the “left” depth. The same procedure is repeated for the
right site of the gap. The final depth score is calculated by adding “left” and “right” depth values.

The list of depth scores, sorted in descending order, is used to obtain segment boundaries. The number
of segments is determined by a cutoff value for depth scores to be included. This cutoff value S depends
on the average s̄ and the standard deviation σ of depth scores and is usually implemented as S = s̄− σ

2
.

3 An alternative configuration measures similarity by the extent of new vocabulary introduced in the blocks.
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Ferret: F06T (2007)

Ferret follows a similar idea for calculating depth scores. However, he extends the calculation of cohesion
values by taking into account topical relationships between textual units. Thereby, he abandons usage of
external knowledge [Fer07].

Thus, the first step of his algorithm F06T is identifying the topics covered by a text. For this purpose,
co-occurrences are examined for each word of the text, assuming that frequently appearing co-occurrents
of a word are topically related to it. As a result, a similarity matrix of words is constructed where similar-
ity values are calculated using the cosine measure applied to the co-occurrent frequency vectors of words.

The matrix is then converted to an initially complete graph of the words. The Shared Nearest Neighbor
algorithm [ESK01] is applied to obtain a clustering of this graph where the clusters constitute topically
related words. Clusters are referred to as “topics”.

Afterwards, each sentence gap is assigned a cohesion value with respect to the words within a fixed-
size window centered at the gap. Two properties effect this value:

1. The ratio between words appearing on both sides of the window and all words within the window.
(This is the pure morphological contribution, here used instead of the cosine similarity which is
applied, e.g., in the TextTiling approach.)

2. The ratio between words which are topically expressive for the window and all words within the
window. For this calculation, first, the topics associated with the window are determined by calcu-
lating the cosine similarity of each topic vector (consisting of 1-entries for each word in the topic
cluster according to the clustering gained from the previous step) and the word frequency vector
of the window. If similarity exceeds some fixed threshold, the topic is assumed to be relevant for
the window. Topically expressive words are then defined as those belonging to topics which have
been marked relevant for the window.

Both calculated ratio values are then added to obtain the global cohesion value, respecting both morpho-
logical and topical cohesion. Like with LCseg and TextTiling, sharp minima of the cohesion value function
are finally chosen as segment boundaries.

Kozima: Lexical Cohesion Profile (1993)

One of the earliest ideas for segmenting texts based on its lexical cohesion has been documented by
Kozima [Koz93]. Instead of building lexical chains, the author’s algorithm moves a fixed-sized window
over the text, stopping at each token, and for each position measures the lexical cohesion of the range
covered by the window.

The cohesion of a range is calculated according to a method exploiting semantic relationships of tokens
contained in that range (see [KF93]). Semantic token similarities are thereby derived from an English
dictionary.

The plot of the cohesion over all document positions constitutes the Lexical Cohesion Profile (LCP).
Kozima presents the example plot in Figure 2.4. Minima of the smoothed plot are suggested to be
chosen as text segments.
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Figure 2.4: Lexical Cohesion Profile (adopted from Kozima)

Ponte and Croft: Local Context Analysis (1997)

Ponte and Croft [PC97] outline a dynamic programming solution for obtaining the optimum segmenta-
tion with respect to scores their algorithm assigns to all possible segments, i.e., to every sequence of 1 to
N sentences within the document (where N is the maximum length of a segment).

Scores are calculated according to the results of a Local Context Analysis (LCA), a query expansion
method introduced by Xu and Croft [XC96] which is applied in order to generate an expanded set of
features: Every sentence is used as a query for this method which then finds associated passages from a
thesaurus. Words and phrases are extracted from the top 2000 passages and ranked according to their
co-occurrence with the query terms. The top 100 features of this ranked list is then returned as result
for the query.

A sequence of sentences is receiving a greater score

1. if intra-similarity of the LCA features of these sentences (which is calculated as the sum of the
pairwise sentence similarities) is greater, or

2. if inter-similarity of the LCA features of all sentences in the sequence and the features of the neigh-
bor sentences of the sequence (which is calculated as the sum of the pairwise sentence similarities
of a fixed number of preceding – and following, respectively – sentences and the sentences of the
sequence) is lower.

Similarity of two LCA feature sets is determined based on the number of features appearing in both sets.
Using dynamic programming, the algorithm finally performs an optimal segment selection, maximizing
the sum of segment scores.

2.3.4 Clusters/Partitions

Choi: C99 (2000)

A frequently cited approach is Choi’s C99 [Cho00]. The algorithm first constructs a similarity matrix
consisting of scores for each sentence pair where the similarity for a sentence pair is calculated using the
cosine measure applied to the word stem frequency vectors of the sentences.

The resulting similarity matrix is then converted to a rank matrix where each entry is replaced by its
rank in its local region (usually, an 11× 11 sub matrix). Choi illustrates the creation of the rank matrix
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(a) Creation of the rank matrix (b) Divisive matrix clustering

Figure 2.5: Ranking and clustering (adopted from Choi)

with the example shown in Figure 2.5(a) where the size of the local comparison matrices is 3× 3.

Segmentation is performed by applying a divisive clustering method to the rank matrix: Beginning
with the segmentation which consists of only one cluster (the whole matrix, i.e. the whole document),
the segmentation is refined iteratively by adding a boundary which maximizes the inside density D of the
clustering which is defined as

D =

∑m
k=1 sk

∑m
k=1 ak

where sk is the sum of the matrix elements belonging to the k-th cluster, ak is the number of matrix
elements in the k-th cluster, and m is the number of clusters in the clustering.

All clusters are located along the diagonal of the matrix, thus, providing a simple mapping method
from matrix clusters to document clusters: A cluster reaching from matrix entry (i, i) to ( j, j) corresponds
to a segment including sentences number i to j. With Figure 2.5(b), Choi presents an example of the
working mechanism of clustering.

Malioutov and Barzilay: Minimum Cut Model (2006)

Malioutov and Barzilay present a graph-based approach [MB06]. The algorithm bases on the “max-intra-
min-inter similarity” idea which is clarified by the authors with a sentence similarity plot of an example
text (Figure 2.6): High density of blue dots indicates high pairwise sentence similarity (with respect to
the cosine measure), red lines indicate true segment boundaries. The basis concept is to find the opti-
mum “red lines”, maximizing intra-similarity of segments, i.e., the density of blue dots within squares
around the diagonal between the red lines (yellow), minimizing inter-similarity, i.e., the density of blue
dots outside those square regions.

The algorithm of Malioutov and Barzilay implements this idea by finding the minimum cut of a graph
consisting of one node for each sentence. Pairwise sentence cosine similarities are used as edge weights.

19



Figure 2.6: Sentence similarity plot for an example text (adopted from Malioutov and Barzilay and slightly
adapted)
Blue dots indicate high similarity values of sentences, red lines are located at true segment
boundaries. Yellow squares cover ranges which are in the same segment.

Thereby, the cosine measure is applied to smoothed word count vectors of the sentences. Each smoothed
sentence vector is obtained by adding the vectors of adjoining sentences to it, weighted according to
their distance.

After graph construction, the authors aim at finding the linear cut on that graph minimizing the nor-
malized cut criterion for each pair of partitions (A, B):

Ncut (A, B) =
cut (A, B)

vol (A)
+

cut (A, B)
vol (B)

cut (A, B) denotes the sum of weights of edges between A and B, vol (X ) is the sum of weights of edges
which have at least one node belonging to X . Thus, this criterion delivers lower values if the graph
partition consists of subsets with high intra-similarity and low inter-similarity (cut (A, B)) between one
subset and each other.4

A dynamic programming algorithm is applied for finding the optimal graph partition with respect to
the normalized cut criterion. The found partition corresponds to a segmentation where sentences are in
the same segment if they belong to the same subset of the partition.

2.3.5 Probabilistic Models

Utiyama and Isahara: U00 (2001)

Utiyama and Isahara suggest the probabilistic approach U00 [UI01]. The authors define a probabilistic
model and calculate the optimum segmentation according to this model. The concept bases on the

4 Note the similarity to the approach of Ponte and Croft. However, the minimum cut model is in fact a global model whereas
Ponte and Croft only consider inter-similarity between sentences and neighbor sentences, thus using a local model.
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v1 v2 v3 v4v0 v5 v6

Figure 2.7: Construction of the graph (U00)

probability expression which is wished to be optimized: P (S|W ), where S is a certain segmentation and
W is the text to be segmented. Application of Bayes’ theorem yields the formulation

P (S|W ) =
P (W |S) P (S)

P (W )

For optimization of the left part of the equation, it is sufficient to optimize the numerator of the right
part, since the denominator is constant for a given text W .

The model defines a priori estimates for the probabilities P (W |S) and P (S) where segmentations are
assumed to be more likely if they contain less segments. For calculating probabilities, no knowledge is
necessary as they are only based on word repetitions and not on semantic relationships.

The problem is then transformed to a minimum-cost path problem of a graph with nodes v0, v1, ..., vn

(where n is the number of words in the text) and edges from each vertex to all vertices with a greater
index. The cost of an edge (vi, v j) is set in a manner that greater costs indicate a lower probability
of a segment consisting of words with indices i + 1, i + 2, ..., j. Therefore, the path from v0 to vn with
minimal cost implicitly gives the solution for the most likely segmentation, according to this probabil-
ity model. Figure 2.7 shows an example: If the selected (red and thick) edges make up the solution of
the minimum-cost path problem, this corresponds to two segments, consisting of words 1 to 4 and 5 to 6.

Another probabilistic approach which claims to generalize the U00 model has recently been published
by Eisenstein and Barzilay [EB08]. Therein, the authors impose a Bayesian model on the text segmenta-
tion problem and justify some of the methods used by Utiyama and Isahara, also generalizing them by
introducing additional parameters. As an extension, also cue phrases are considered when searching for
segment boundaries.

In a following work, Eisenstein extends this model for application on hierarchical text segmentation
[Eis09].

2.3.6 Summary Table

Table 2.1 summarizes the most salient properties of the presented methods. The following properties are
analyzed for each method:

• Year: The year of publication of the first paper the method has been presented in.

• Authors: The authors of this paper, or the first-named author if they are more than two.
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• Preprocessing: List of utilities used as preparation of the actual algorithm. If parts of speech are
listed in this column, these are the parts which are retained while others are rejected.

• Thesaurus: Contains “+” if the method relies on external knowledge pertaining to word meanings
or relationships.

• Token similarity: The way on which similarity of tokens is calculated. “Similarity” may be a
yes/no property (e.g., morphologically exact equality) or a numeric value indicating the degree of
similarity (e.g., cosine similarity according to some token features). “–” means that the method
does not compare tokens explicitly.

• Sentence/block similarity: The measure which is used for calculating similarity between se-
quences of tokens. “–” means that blocks are not compared explicitly.

• Block cohesion: The measure which is used for calculating the strength of cohesion of a sequence
of tokens. “–” means that cohesion of blocks is not calculated.

• Segment criterion: The criterion which finally decides about the places of segment boundaries.
Some algorithms use “depth scores” which are values assigned to each possible segment boundary
(usually, each sentence boundary) according to the similarity of the adjacent blocks.

• Algorithm: Characteristic algorithms which are applied by the method.

– Fixed-sized window denotes the approach of iterating over all token or sentence sequences of
a certain length and, usually, calculating a score at each position.

– Lexical chains: See Section 2.1.2.

– Dynamic programming is a way to solve an optimization problem. Some segmentation meth-
ods apply it to generate an optimal segmentation with respect to a certain measure of “seg-
ment quality” which is often calculated for each possible segment.

2.4 Applications

As we have seen in the introduction, text segmentation is usually applied in order to ameliorate results
of other algorithms which somehow rely on the topical structure of a text. In other words: text segmen-
tation is, in most cases, not practiced for the sake of readability since longer texts of a certain quality
are commonly segmented by their authors, e.g., using paragraphs or intermediate headlines. There are
exceptions where texts are in fact not divided as it would be desirable for readability. This may be the
case for the following types of texts:

• Transcripts of speech recordings

• Results of OCR5 algorithms

• Articles of non-professional authors (e.g., in internet forums or Wiki-based platforms)

More commonly, however, text segmentation is applied before or in combination with other algorithms.
The following list names some popular fields of application (+) and fields that one could think of to be
appropriate for applying text segmentation (–):

• Text summarization (+)

• Information retrieval (+)
5 Optical Character Recognition: Automatic transformation of images to text documents
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Index without 
segmentation

Index with 
segmentation

Segmentation

Figure 2.8: Text segmentation for enhancing information retrieval systems

• Language modeling (–)

• Hypertext linking (–)

• Anaphora resolution (–)

Each category is described below, enhanced with information on related work.

2.4.1 Text Summarization

Text summarization is the task of generating a rather short description of a text, providing a good
overview of its contents. Text segmentation gives additional cues for the topic structure of a text and
may therefore help in creating a summary covering all important topics of a text.

Barzilay and Elhadad [BE97] have included text segmentation into their summarization algorithm:
They mainly derive important topics and significant sentences from lexical chains. However, they also
apply a segmentation algorithm (namely, Hearst’s TextTiling) and, during building the chains, they use
the segments to separate the chains appropriately: A chain may only cross a segment boundary if it not
only contains lexically related words on both sites, but also equal words. This leads to lexical chains
which should better reflect the topical structure of the text, thus, optimizing the summary quality.

2.4.2 Information Retrieval

Information Retrieval denotes the task of finding documents which are relevant for a certain query. Text
segmentation can support the user in not only finding the relevant document, but also the relevant
segment of a relevant document. A possible strategy would be not to index whole documents but to
segment them first and index the segments (see Figure 2.8). Alternatively, relevant documents might be
segmented ad-hoc, presenting a relevant part to the user for each document.

Salton et al. [SAB93] suggest indexing documents not only at one single level of granularity, but on
document, section, and paragraph level. For a query, similarities to all indexed elements are calculated,
and most similar elements are presented to the user. This not only facilitates finding information for the
user but also increases the recall: Many long documents contain only a small piece of relevant infor-
mation, thus, exhibiting a low overall query similarity. Therefore, they are not returned for the query
whereas, on section level, query similarity is much higher for the specific parts containing the relevant
information which would likely appear in the result list. In some examples, the authors point up that
the recall significantly improves if several levels of document granularity are combined for information
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retrieval.

Hearst and Plaunt [HP93] apply TextTiling (see Section 2.3.3) to segment texts according to their
topical structure and index each document segment separately. In contrast to Salton, during retrieval,
similarity values are only calculated for segments. However, the authors measure improvements of up to
28.2 % for both precision and recall.

2.4.3 Language Modeling

As mentioned by Reynar [Rey98], many NLP tasks are based on statistic language models. Speech recog-
nition methods, for instance, often try to identify the most likely words according to the speech recording
and the applied language model. Reynar suggests a language model which assumes words to occur with
greater probability at a particular position if they are topically related to words of a certain environment
of this position. To find topically related words for another word, this word is to be used as a query
for an information retrieval system. The words within the results are assumed to be topically related.
Now, if the results are rather segments than whole documents, the assumption of topical relatedness is
more likely to be correct. Therefore, language modeling can be enhanced in this case by applying text
segmentation to index building of the information retrieval system which is in fact exactly the approach
we have mentioned in the previous section.

However, a system applying text segmentation methods to enhance language modeling is not yet
available to the best of our knowledge.

2.4.4 Hypertext Linking

Hypertexts are texts that may contain links to other text or also inner links. A possible application of text
segmentation would be to segment long texts and provide links between similar segments of the same
document which would facilitate browsing through large documents since manually created documents
often contain only few inner links (if any) since many authors only add links to other articles where
appropriate, assuming that their own article is read linearly and, thus, abandoning inner links.

2.4.5 Anaphora Resolution

Anaphoras are words referring to words which have appeared previously in the text. Many NLP methods
aim at resolving these references as this would contribute to the semantical expressiveness of the sen-
tences containing anaphoras. According to Kozima [Koz93], a segmentation of the text can considerably
facilitate anaphora resoltion: An anophara reference seldom crosses more than one segment boundary
since any reader would be irritated by such long-range references. Therefore, the assumption that the
referenced word is in the same segment or at least at the end of the previous one is reasonable and
heavily reduces the set of possibly referenced words. To our knowledge, no study on the degree of
improvement is available.
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3 Graph-Based Algorithms for Text Segmentation

This chapter presents the approaches which have been developed in proceedings of the Bachelor Thesis.
Their common property is that they consider texts as graphs in some stage of the algorithm: The first one
considers the whole analyzed text as a graph of its terms which are related to each other through edges
which indicate the semantic relatedness of the terms. The second one induces a subgraph on the text
graph and aim at establishing segments which are represented as maximum compact semantic graphs.
(For the definition of “compactness” in this respect, see Section 3.2.)

3.1 Cluster Blocks

The Cluster Blocks (CB) approach bases on our believe that a reasonable segmentation of a text in most
cases coincides with clusters of semantically related words of the text.

To clarify this proposition, have a look at Figure 3.1. It shows a text on the topic “Letters” where
tokens belonging to the categories “Invention”, “History”, “Case”, “Form”, “Begin”, and “Statistics” are
emphasized with different colors. We see clearly that distribution of words of that categories conforms
well to the – reasonably chosen – paragraphs of the text: For instance, words belonging to the category
“Invention”, i.e., words which are semantically related with the term “invention” and the term “inven-
tion” itself, exclusively appear in the first paragraph whereas occurrence of “Statistics” terms is restricted
to the last paragraph. If one would want to draw boundaries between the sentences, only according to
categories of the emphasized terms, they would likely be the same as they are in the real division.

The invention of letters was preceded by the West Semitic script, which appeared in Canaan around 

1000 BC. Antecedents are suspected in the Proto-Sinaitic inscriptions, dated to around 1800 BC. 

Virtually all alphabets have their ultimate origins from this system. The Greek alphabet, invented 

around 800 BC, as the first true alphabet, assigning letters not only to consonants, but also to vowels. 

Some writing systems have two major forms for each letter: an upper case form (also called capital or 

majuscule) and a lower case form (also called minuscule). Upper and lower case forms represent the 

same sound, but serve different functions in writing. Capital letters are most often used at the 

beginning of a sentence, as the first letter of a proper name, or in inscriptions or headers. They may 

also serve other functions, such as in the German language where all nouns begin with capital letters. 

The average distribution of letters, or the relative frequency of each letter's occurrence in text in a 

given language can be obtained analyzing large amounts of representative text. This information can 

be useful in cryptography and for other purposes as well. Letter frequencies vary in different types of 

writing. In English, the most frequently appearing ten letters are e, t, a, o, i, n, s, h, r, and d, in that 

order, with the letter e appearing about 13 % of the time. 

 

Legend: Invention History Case Form Begin Statistics 

 Figure 3.1: Example text (adopted from the English Wikipedia article “Letter”) clarifying the proposition
that word clusters conform to segment boundaries
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In other words: We can read the semantic structure of a text from the distribution of semantically
coherent vocabular. Note that “semantical cohesion” also includes morphological equality as can be seen
with the term “form” which has no directly related word in the text but constitutes an indicator of co-
hesion by itself. We call this indicator a block reaching from the first sentence containing a word of a
semantic category to the last one. (We will define this in detail later.)

This idea of building blocks according to term clusters is very similar to lexical chains (see Section
2.1.2); however, construction of those blocks works different than construction of lexical chains: A lexi-
cal chain is usually iteratively extended by adding words which are lexically related to the original chain
word whereas in our approach, we first consider the words of the text and do not build the blocks until
we have collected the words to semantically related clusters which we assume to indicate text segments.

We believe that this order where term clustering is done in a first step may promote better results of
segmentation. Each cluster is to indicate a significant topic of the text. Significant text topics and their
vocabulary which is assumed to be collected in the clusters often have one of the following characteris-
tics:

1. The topic is concentrated on a sequence of sentences constituting a rather short part of the whole
document.

2. The topic’s vocabulary is spread over the whole document.

3. The topic is introduced at the beginning of the document and picked up in a longer passage later.

There may be other distributions of topic vocabulary; however, we believe that most distributions have
one of these forms or at least a similar one. This allows to put together sentences of a topic to one (cases
1, 2) or two (case 3) or even more (a seldom case, though) blocks.

The blocks which are constructed this way should be a better indicator than lexical chains since a lex-
ical chain always pertains to exactly one semantical concept whereas a block pertains to a topic which is
assumed to be more appropriate to indicate segments: A single semantical concept may only span half a
segment, topics tend to conform to segment boundaries as they may include several semantical concepts.

What is more, clustering of text terms is also text-sensitive, i.e., two words V, W which are in different
clusters in text A may be in the same cluster in text B. This might happen, for instance, if text B contains
some additional terms which are related both to V and W, leading to a cluster containing both V and
W which indeed makes sense if many terms related to both words are existing. Lexical chains, on the
contrary, use a fixed relatedness measure according to which words are added to an existing or a new
chain and are therefore not sensitive to the actual content of a text that can cause two not obviously
related words to belong to the same topic cluster.

3.1.1 Quick Overview

The algorithm has the following main steps after selection of relevant features:

1. Build the semantical graph (see Section 2.1.3) on the selected features.

2. Perform a clustering on the semantical graph, producing clusters with great pairwise semantical
relatedness of features for every cluster.

3. For every (relevant) cluster, find sentences in the text containing terms of that cluster.
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4. For every cluster, find blocks of sentences in the text containing terms of the cluster with high
density.

5. Find sentence boundaries with high number of ending or beginning blocks and choose them as
segment boundaries.

Figure 3.2 shows a schematic overview of the approach.

3.1.2 Feature Selection

Selection of expressive features is crucial for the approach. If many unexpressive, high-frequency terms
are selected, they might, during clustering, quickly get arranged in lots of small unrelated clusters which
can then lead to bad results of segmentation. We have decided to select nouns (proper as well as com-
mon nouns), verbs, and adjectives since we observed in concert with Halliday and Hasan [HH76] that
other parts of speech such as pronouns, articles, or prepositions do not significantly contribute to the
semantical contents of a text if the syntactical structure is ignored. In a further step, stop words such as
auxiliary verbs are removed.

Besides selection of the features, we reduce them to common roots using lemmatization. This is
indispensable for we would under no circumstances expect terms such as “knife” and “knives” to be
assigned to different clusters which might happen in the case that the calculated semantical relatedness
value for two different terms with equal lemma (e.g., “knife” and “knives”) is much lower than 1.

3.1.3 Building the Semantic Graph

In the second step, the document is considered as a graph where the previously selected features consti-
tute the vertices and the semantic relationships between them constitute the edges. Note that we do not
include double features in this virtual graph, i.e., if a term occurs twice or more frequently, it is anyhow
represented only once in the graph. This is due to the idea not to weight different terms according to
their frequency but to find topics of the text, whether they are more or less important.

We weight the edges with some kind of semantic relatedness as described in Section 2.1.3. Particularly,
words are expected to be connected by an edge with maximum weight if they are semantically equal.
One could also think of using other kinds of measures for the edges. For instance, simple co-occurrence-
based values might be used, but we would expect significantly worse results for such a simple measure
since it does not take long-range relations of words into account and therefore there would not be a good
chance to find reasonable topical clusters in the graph.

Before the next step, a sparsification method is applied to the graph in order to remove edges with low
semantic relatedness values. In our approach, we consider two variants of sparsification:

Threshold value: All edges with a value below a constant are removed.

Quota: A fixed quota of all edges is retained.

The sparsification is necessary because the clustering method applied subsequently works with un-
weighted graphs.
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Figure 3.2: Cluster Blocks Algorithm
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Figure 3.3: Example clustering for important terms in the first paragraph of the text shown in Figure 3.1

3.1.4 Graph Clustering

In the clustering step, we aim at finding clusters of topically related words. For topically related words
should, among each other, have high semantic relatedness values, a clustering on the semantic graph is
expected to serve the purpose. This rests upon a work of Grineva et al. [GGL09] who applied the same
clustering algorithm as we will do to the semantic graph in order to find topical clusters of the text and
then extract keyphrases from them.

Consider the first paragraph of the text from Figure 3.1. For this paragraph, we would expect a clus-
tering similar to the one presented in Figure 3.3: Semantic relatedness values of edges between terms
within one of the topics “Invention”, “History”, and “Letter” should be sufficiently high to make the edges
endure the sparsification process so that the clustering will be able to detect the topical structure.

In short, we perform the clustering, according to Newman and Girvan [NG04], by removing edges
with high betweenness values until all edges are removed. Whenever the connected components change
during this process, we calculate a quality measure of the clustering, and finally we take the clustering
with the most salient maximum within the quality measures.

In detail, the clustering algorithm consists of the following steps:

1. If there are no more edges in the graph, go to step 6. Else, go to the next step.

2. Calculate shortest paths (ignoring edge weights) between all vertices of the graph and count for
each edge the number of shortest paths going along this edge. This value is called betweenness. If
between a pair of vertices, not only one shortest path exists, but n paths, add 1/n to the counter of
every edge for each path.
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3. Remove the edge with the highest betweenness value.

4. Consider the connected components of the current graph as clusters and calculate the modularity
of the clustering as suggested by Newman and Girvan: The modularity is the fraction of edges con-
necting vertices of the same cluster (in the original network where no edges have been removed)
minus the expected fraction of such edges in a network with equal number of nodes and edges and
same clustering where the edges are distributed randomly between vertices. It can be calculated
using the formula

∑

i

�

eii − a2
i

�

where ei j is the fraction of edges connecting vertices of clusters i
and j and ai is the fraction of edges having at least one endpoint in cluster i. This yields a value
lower than 1 where 0 indicates a random clustering and values near to 1 indicate networks with
strong community structure.

5. Go to step 1.

6. Smooth modularity values: For every three sequential values m1, m2, m3, set m′2 := (m1 + 2m2 +
m3)/4. Other smoothing masks are possible, but this one yielded the best results in our experiments
in order to diminish insignificant local maxima while retaining significant ones.

7. Calculate maximum strength of modularity values. This is done by moving left from the initial value
as long as values are decreasing, and calculating the difference of the lowest found value before
stopping and the initial modularity value. The same is done on the right side and both differences
are finally averaged to obtain the maximum strength. This procedure is in a way contrary to what
Hearst does in her approach TextTiling to calculate depth scores [Hea94]. The rationale behind it
is that the optimum clustering is often not the one with the absolutely maximum modularity value
but the clustering which has a salient local maximum.

8. Choose the clustering with highest maximum strength.

The number of clusters with more than one term was originally planned to be chosen as number of
segments because each topic is expected to have its own range in the text. Yet, this assumption could
not be held because the number of clusters found did in experiments not correlate with the number of
segments which might be due to the fact that in different documents topics are more or less woven and
segments contain more or less different topics.

3.1.5 Finding Blocks

After having constructed the topical clusters, the algorithm tries to identify the positions in the text
where the clusters are located. To this end, blocks of sequential sentences are identified for each cluster:
Every sentence within such a block must contain at least one term of the cluster to belong to the block.
There may be exceptions of sentences not containing a term if there are not more than a fixed number
of such sentences in a row. This number is a parameter of the algorithm. Furthermore, blocks for which
the number of sentences falls below a fixed threshold, another parameter, are discarded.

This idea of building blocks is in some respect similar to the construction of lexical chains as proposed
by Morris and Hearst [MH91] (see Section 2.3.1): While Morris and Hearst use word categories from a
thesaurus to represent the concepts of the chains, we use topics such as obtained from the clustering as
representative of blocks. Topics are in our opinion more appropriate as concept representatives in text
segmentation than thesaurus categories which are usually very fine-grained so that many lexical chains
actually belong to the same topic. Thus, construction of lexical chains according to thesaurus categories
might lead to deceptive chain boundaries as we have discussed in the introduction of Section 3.1.
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3.1.6 Finding Segment Boundaries

In the last step, the algorithm uses the previously found blocks to decide where to place the segment
boundaries. Similar to lexical chains again, sentence boundaries with a high number of beginning or
ending blocks are considered to be segment boundary candidates.

Therefore, these boundary strength values are first counted and than smoothed: Whereas three se-
quential modularity values of clusters have been smoothed with the formula m′2 := (m1 + 2m2 +m3)/4,
in this case we weight the value of m2 with 5 because tendency to insignificant local maxima is lower in
this case as we observed in experiments. This is better respected using the smoothing mask (1,5, 1). The
sentence boundaries with the highest smoothed boundary strength values are then chosen as segment
boundaries. If the number of segments is not provided, the algorithm proceeds similarly to the TextTil-
ing algorithm (see Section 2.3.3) and estimates the number according to the mean value µ and standard
deviation σ of the boundary strength values: As experiments have revealed, in many cases, the number
of boundaries which have a greater strength than µ+σ is a good guess for the number of actual segment
boundaries.

3.1.7 Runtime Analysis

The following steps of the algorithm mainly contribute to its runtime complexity:

Clustering. Building the semantic graph in the JUNG framework (see Section 5.5) has complexity O
�

T 2
�

where T is the number of relevant terms. Finding the optimum clustering with Girvan’s algorithm is
in O

�

T 5�: In each step which costs O
�

T 3
�

one edge is removed until all edges have been removed,
and the number of edges is in O

�

T 2
�

. Calculation of the modularity values for each possible
clustering does not contribute significantly (O (T )). Picking out the best clustering by means of the
modularity values is done by searching local maxima within those values. This additional effort
has complexity O (T ) because T is a boundary for the number of clusterings.

Building blocks from the given clusters. This has complexity O
�

T 2
�

because for each term every cluster
is examined whether it matches the term, and the maximum number of clusters is T .

Calculating boundary strengths, i.e., the number of beginning and ending blocks for each sentence. For
every cluster (up to T), there can be S

2
blocks where S is the number of sentences. This would be

the case if every second sentence constitutes a new block for the cluster. There cannot be more
blocks for one cluster because there must be a gap of at least one sentence between two blocks of
the same cluster. Thus, runtime complexity of this step is O (TS).

Finding segment boundaries by finding salient values of boundary strengths between sentences. For
that purpose, the list of boundary strength values is sorted and the top values indicate boundaries.
Thus, runtime complexity is O

�

S log S
�

for sorting.

Hence, the overall runtime complexity is O
�

T 5+ T 2+ TS+ S log S
�

= O
�

T 5� because O (S) = O (T )
(see Section 3.2.6).

3.2 Maximum Compact Segments

The Compact Segments (CS) approach is built on the idea of compactness of coherent text ranges: Seg-
ments usually address a specific topic, thus containing vocabular which for the most part is highly cohe-
sive in itself, i.e., most terms within a segment have a strong semantic relationship to some others within
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the same segment. Moreover, well chosen segments also have considerable semantical breaks to their
neighbor segments because if they would not, one should rather unify them with the semantically similar
neighbor sentences. This is why we try, in this algorithm, to maximize both compactness of segments
and boundary strength.

To make this clearer, have a look at the example text in Figure 3.1 again: Terms like form, case, and
capital in the middle paragraph are clearly semantically related. Contrariwise, they have only few com-
monalities with representative terms of the neighbor paragraphs such as origin, distribution, or frequency.
Therefore, it seems to be a good idea to segment a text in a way which maximizes the inner semantic co-
hesion of paragraphs and minimizes the semantic relatedness to neighbor sentences. Admittedly, in the
example text, there are also terms which seem to connect all paragraphs like letter, script, and writing.
However, they make up only a small part of all terms of the text; hence, a segment comprising the whole
text would not be very coherent.

Previous works have already tried to enhance text segmentation by maximizing internal cohesion and
minimizing external similarity. For instance, Ponte and Croft use pairwise similarity of sentence features
for calculation of both properties [PC97], and Malioutov and Barzilay merge both properties in one sin-
gle value, the normalized cut criterion [MB06]. Our approach differs from recent works in that it does
not consider sentences as units, but terms of the vocabulary in a set-of-words manner1. An advantage of
this procedure should be that off-topic sentences within a segment do not harm its cohesion too much
since the important factor of cohesion is, in our case, the whole vocabulary of a segment and not pairwise
sentence similarities or the like. Therefore, a single off-topic sentence, adding not too much off-topic vo-
cabulary, will not decrease cohesion significantly.

The advantage might be even greater for calculation of boundary strengths: Consider the case that
a segment contains one sentence more at its end than it would be appropriate due to a topic shift. In
a sentence-based comparison method, similarity of that segment and the following sentences is quite
low because only one sentence, namely the last one, likely has a stronger relatedness to the following
sentences. In our vocabulary-based approach, this one sentence might introduce lots of new terms
which are related to the following sentences. Therefore, the similarity of the segment and the following
sentences rises significantly if this one sentence is included. Consequently, we think that vocabulary-
based comparison can lead to more accurate segment boundaries.

3.2.1 Quick Overview

A schematic overview is presented in Figure 3.4.
The algorithm has the following main steps:

1. Divide the text into blocks. Each block consists of (nearly) the same number of sentences.

2. For each segment candidate (any sequence of blocks), calculate its segment quality:

a) Induce the semantic graph for the vocabulary of the candidate (step 1 in Figure 3.4).

b) Calculate the compactness of the graph as defined in Section 3.2.4 (step 2a in Figure 3.4).

c) Calculate the boundary strength of the candidate as defined in Section 3.2.4 (step 2b in Figure
3.4).

d) Merge compactness and boundary strength values to a segment quality value.

1 A term is in the “set of words” if it appears in the text, regardless of the number of its occurrences.
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Figure 3.5: Partition of the document into blocks and possible segment candidates

3. Find the optimum segmentation of the text which maximizes the sum of quality values of the
chosen segments.

3.2.2 Division into Blocks

Conceptually, each block should always have a length of one sentence. However, runtime must be taken
into consideration: As this approach is going to compute quality values for each possible segmentation
(where blocks are the smallest unit), runtime and memory usage is proportional to N(N+1)

2
where N is the

number of blocks. Due to this quadratic runtime behavior, number of blocks is limited to 100. Hence,
this algorithm will never produce more than 100 segments.

If the number of sentences S is greater than 100, each block is guaranteed to contain exactly S
100

sentences if S is a multiple of 100. If it is not, each block contains either
�

S
100

�

or
 

S
100

£

sentences.

3.2.3 Segment Candidates

The approach assigns a quality value to every possible segment which is called a segment candidate. A
segment candidate is any sequence of blocks in the text, e.g., 1st block to 2nd block, 1st block to 3rd
block, and 2nd block to 3rd block. Figure 3.5 illustrates the partition of the document into N blocks,
each with k sentences. It furthermore shows ranges of possible segment candidates: E.g., the candidate
(1, 3) covers the first and second block.

3.2.4 Segment Quality

For each segment candidate, a quality value Q is calculated indicating whether the candidate should
indeed constitute a segment. Positive values represent a candidate which is appropriate for being taken
as a segment, negative values suggest not to make the candidate a segment.

The quality value is calculated by the use of two criteria:

35



Compactness: The compactness of a candidate is a measure for the inner semantic similarity. Thus, a
candidate containing information about different topics has a lower compactness than a candidate
which is only about a single topic.

Boundary Strength: The boundary strength quantifies the semantic similarity of the candidate and its
adjacent sentences. The higher this value is, the less similar are the vocabulary of the candidate
and the terms of the adjacent sentences.

Both criteria are wished to be maximized since we aim at segments which talk about a single topic and
which significantly differ from adjacent sentences. At the same time, one of these criteria alone would
very likely not be sufficient: If we would only concentrate on the compactness, this would possibly yield
too many very short segments which are – just due to their shortness – very compact, though not having
notable semantic boundaries because adjacent sentences may still concern the same topic. If we would,
contrarily, only consider the boundary strength, this would possibly yield too many very long segments
which expose strong semantic boundaries, but contain different topics. This is why we propose a combi-
nation of both criteria.

For combination of both criteria, we define the quality function q which calculates the quality value
Q for given compactness and boundary strength values C and B and the number of sentences L the
candidate comprises:

Q = q (C , B, L)

We will analyze multiple variants of q which all have the following form:

q(C , B, L) = αLβC + (1−α) LγB− d (3.1)

α is a weighting factor between 0 and 1 which constitutes the weight with which the compactness
influences the quality. Correspondingly, 1−α indicates the weight of the boundary strength. β and γ can
be seen as length recompense factors for compactness and boundary strength part, respectively: If two
segment candidates have the same compactness value, but the second one has double length, it should
likely receive a greater score. Thus, β and γ will most likely have a value greater than 0 in the optimum
configuration.

d is an additional penalizer. For a constant number S of segments, the total penalty has a constant
value of Sd; hence, d does not impact the optimum segmentation for a given number of segments. In-
stead, its function is to tune the number of segments: The higher its value, the less segments will be in
the optimum segmentation and vice versa.

The idea of rating possible segments is not new: Malioutov and Barzilay [MB06] have defined their
Minimum Cut Criterion which rates possible partitions of the text according to which the final segmen-
tation is selected (see Section 2.3.4). They also consider a kind of boundary strength which is the “cut”
in their model, but do not calculate a value for compactness which, in our opinion, should enhance
results because too big segment candidates with strong boundaries, but different covered topics receive
too good scores if the concept of compactness is ignored. The next two subsections define in detail the
ingredients of our segment quality measure.

Compactness

The compactness as the first criterion of segment quality of a segment candidate is defined as the com-
pactness of the semantic graph induced by the features2 of the candidate. It is to express the strength
2 As for Cluster Blocks, we suggest lemmas of nouns, verbs, and adjectives to be used as features. Stop words are removed,

as well.
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Figure 3.6: Semantic graph of a segment candidate

of semantic cohesion of the candidate. E.g., if all edges within the semantic graph are 1, the semantic
cohesion will have maximum possible value, whereas many edges close to 0 will yield a low compactness
value. We now describe the detailled calculation of compactness:

In a first step, the semantic graph for the segment candidate is built. (Figure 3.6 gives an example.
Note that some 0-value edges are left out in the figure since the semantic graph is actually complete.)
Compactness is then calculated according to a work of Egghe and Rousseau from 2003 [ER03] which ex-
tends the compactness measure of Botafogo et al. [BRS92] for application to weighted graphs. Therein,
compactness of an undirected weighted graph, such as a semantic graph, is defined as

C =
MAX −

∑

1≤i< j≤V d
�

i, j
�

MAX −M IN
(3.2)

where d : {1,2, . . . , V}2→ [a, b] is a distance function indicating the dissimilarity of vertices, MAX is the
maximum possible sum of all edge weights, M IN is the minimum possible sum3, and V is the number
of vertices. Values of C close to 1 indicate a very compact graph, thus, having many edges with a low
distance value close to a, and values close to 0 indicate a very incompact graph.

Since in a semantic graph weights wi j indicate similarity rather than dissimilarity, we define:

d(i, j) := 1−wi j

The maximum sum of edge weights in the graph is achieved if d(i, j) = 1 for all edges (i, j). The minimum
sum occurs if d(i, j) = 0 for all edges (in case of wi j = 1). As the number of edges in a complete graph
with V edges is V (V−1)

2
, we set:

MAX :=
V (V − 1)

2
M IN := 0

Applying this to equation (3.2) yields:

C =
2

V (V − 1)

∑

1≤i< j≤V

wi j

This is exactly the average edge weight of the semantic graph.

3 The maximum possible sum happens if all edges have value b. Analogously, the minimum sum occurs for distance a on all
edges.
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Figure 3.7: Calculation of the boundary strength

Example. Consider the graph in Figure 3.6 to represent the terms which are present in a certain
segment candidate. In order to calculate compactness of this candidate, the average edge weight of this
semantic subgraph has to be evaluated. Since the graph contains 6 vertices and is actually complete, it
has 6·5

2
= 15 edges. Hence, compactness is:

C =
0.5+ 0.3+ 0.3+ 0.3+ 0.2+ 0.2+ 0.2

15
=

2

15
= 0.13

Boundary Strength

The second criterion of segment quality of a segment candidate is the boundary strength B. It is to in-
dicate the dissimilarity of a segment candidate and its adjacent sentences which are defined as the Sad j

preceding and Sad j subsequent sentences of the segment candidate. If there are not that many preceding
or subsequent sentences, the set of adjacent sentences will be smaller, accordingly.

The boundary strength is defined as:

B = 1−

∑Tad j

i=1 si

Tad j

B is to be understood as complement of the average semantic relatedness of the terms of the adjacent
sentences to the segment candidate. Tad j is the number of terms in the adjacent sentences. si is the
semantic relatedness of the i-th term of the adjacent sentences to the segment candidate. It is calculated
as the maximum relatedness of the term to any term of the segment candidate because this turned out to
be a significant indicator of the actual topical relatedness whereas the average of all relatedness values
to the terms of the segment candidate was not very expressive in our experiments.4 If the i-th term is
contained both in the adjacent sentences and in the segment candidate, its relatedness value si is set to 1.

Figure 3.7 illustrates calculation of boundary strengths: The red box contains the terms of the cur-
rently analyzed segment candidate, the black box contains the terms of its adjacent sentences. Dotted
lines indicate maxima of weights of edges with the same color. Note that the average value which is
calculated as shown in the figure is not the final boundary strength value; this is obtained by subtracting

4 This is more like Malioutov’s and Barzilay’s MinCut model defines the boundary strength which takes into account all
edges between the segment candidate and the rest of the document.
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that average value from 1.

Example. Now consider the semantic relatedness values given in Figure 3.8 and assume that there
are not more terms in the currently analyzed segment candidate and its adjacent sentences, respectively,
than shown in the figure. (This is not a realistic assumption. However, for this example, it serves the
purpose.) In order to calculate the boundary strength of this segment candidate, one has to find the
maximum relatedness value for each term of the adjacent sentences. In this case, we identify the values
0.4 for “invention” and 0.1 for “letter”. These values must then be averaged (0.25). The difference of 1
and this average is the boundary strength:

B = 1− 0.25= 0.75

3.2.5 Dynamic Programming for Optimization

The final step of the algorithm is finding the optimum segmentation with the maximum sum of segment
quality values. For that purpose, dynamic programming is applied as already done in similar ways by
Ponte and Croft [PC97] and Malioutov and Barzilay [MB06]. The reader may skip this subsection if she
is not interested in the details of dynamic programming.

Formally, we define the optimization problem as follows: For given segment candidate quality values
Q i j ∈ R denoting the segment quality of blocks i to j (excluding) and the number of blocks N , find the
segmentation Seg which maximizes the target function t:

t
�

Seg
�

=
|Seg|
∑

i=0

QSeg(i)Seg(i+1)

The solution space Ω is defined as Ω =P ({2,3, . . . , N}) where P denotes the power set of its argument.
A given segmentation Seg ∈ Ω is meant to contain the indexes of blocks which begin a new segment,
except for the first block which always begins a segment. E.g., for N = 10, Seg = {4} describes the
segmentation with two segments consisting of 1st to 3rd and 4th to 10th block.

Seg (i) denotes the i-th greatest element in Seg if 1≤ i ≤
�

�Seg
�

�, and additionally we define:

Seg (0) := 1

Seg
��

�Seg
�

�+ 1
�

:= N + 1
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Optimization is performed with dynamic programming. For that purpose, we define two N × N -
matrices V and W where vi j will contain the segment rating for an optimum segmentation of the first i
sentences into j segments and wi j will carry the number of sentences which are contained by the first
j − 1 segments of that optimum segmentation. Hence, W will allow the construction of the optimum
segmentation after the solution is found.

The matrices are initialized as following:

∀i : vi1 := Q1(i+1)
∀i ∀ j 6= 1 : vi j := null
∀i ∀ j : wi j := null

Afterwards, optimum segmentations are calculated for every possible number of segments J . Thus, for
J := 2, 3, . . . , N , it is set:

∀i ≥ J : viJ := maxJ−1≤k<i

�

vk(J−1)+Q(k+1)(i+1)

�

wiJ := argmaxJ−1≤k<i

�

vk(J−1)+Q(k+1)(i+1)

� (3.3)

The optimum segmentation Segnc for the first n blocks and a given number of segments c can than be
constructed by using the back-pointers in W :

Segnc =

(

; c = 1
�

wnc + 1
	

∪ Segwnc(c−1) c > 1
(3.4)

If the optimum number of segments c∗ is to be obtained using the quality values, it can be calculated
as:

c∗ = argmax1≤c≤N vNc (3.5)

With (3.4) and (3.5), we can get the overall optimum segmentation Seg∗ with the following formula-
tion:

Seg∗ = SegNc∗

3.2.6 Runtime Analysis

The runtime of the algorithm is mainly influenced by the following steps:

Calculation of compactness values for each possible segment. This has a runtime complexity of O
�

N T 2+ N2
�

where N is the number of blocks and T is the number of terms in the document: For every group
of segment candidates starting with a certain block, all terms of subsequent blocks are successively
added to the semantic graph (this is the term N T 2); the number of segment candidates, however,
is only bounded by N2.

Calculation of boundary strength values for each possible segment. The complexity is O
�

N2T
�

because
terms of the currently analyzed segment candidate and adjacent terms have to be collected for each
candidate. The number of adjacent terms may be considered to be constant since the number of
adjacent sentences is constant; however, the number of terms within the current candidate is only
bounded by T . The number of possible candidates is N(N+1)

2
∈ O

�

N2
�

.

Application of function q for merging compactness and boundary strength values. This has constant
runtime for every segment candidate and, thus, is in O

�

N2
�

.
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Finding the optimum segmentation with dynamic programming. As we have separated this component,
it uses sentences as smallest possible unit. As can be seen in equation (3.3), runtime complexity is
therefore in O

�

S3
�

where S is the number of sentences.

This yields a total runtime of O
�

N T 2+ N2+ N2T + N2+ S3
�

= O
�

N T 2+ N2T + S3
�

. As we can say
that, in average, a sentence contains a certain number of terms, it holds:

T = cS⇒ O (T ) = O (S)

Therefore, the total runtime complexity can be formulated as O
�

N T 2+ N2T + T 3
�

. For a given maxi-
mum number of blocks we have O

�

T 3
�

. If the maximum number of blocks is not provided, N is bounded
by S. Hence, the runtime complexity is not different in this case.
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4 Evaluation

Text segmentation algorithms have a weakly defined goal: dividing texts into “topically coherent” seg-
ments. This is what makes comparison of different algorithms difficult: Which of two segmentations can
be said to be “better” for a certain text? How can quality of segmentations be measured objectively? And
what kinds of texts can be used to test segmentation algorithms?

This chapter tries to answer these questions and presents the measures we have used to evaluate our
algorithms in a comparable way. It furthermore presents a new corpus for evaluation and, finally, the
results of our evaluations.

4.1 Methodology

The main idea of most frequently applied evaluation methods in text segmentation is based on compar-
ison of segmentations as calculated by the algorithms to be evaluated and “gold standard” segmenta-
tions. A gold standard segmentation for a certain text defines places within this text where actual topical
boundaries occur. The more (nearly) correct boundaries an algorithm detects, the better it is rated in
evaluation. However, definition of a measure which fairly quantifies this connection is not trivial. We
will use Pk and WindowDiff metrics to evaluate our algorithms on different corpora and, due to the pop-
ularity of those metrics, will be able to compare results to those of existing algorithms. Refer to Section
4.2 for the metrics we use and to Section 4.3 for the corpora. The rest of this section pertains to formal
definition of our evaluation process.

Formally, we define an evaluation as following: An evaluation E of a given text segmentation algorithm
A on a given corpus C is defined as tuple E = (A, C). The corpus itself consists of a set of texts TC and a
function segC which assigns a segmentation to each text in T : C =

�

TC , segC
�

. Hence, for t ∈ T , segC (t)
is the gold standard segmentation for text t in corpus C . A segmentation Seg is formally defined as
Seg ⊆ N \ {0,1} with

i ∈ Seg⇔ The i-th unit begins a new segment and i > 1.

The considered unit depends on the context; it may be tokens or sentences, for instance. The first unit
has index 1 and is never element of Seg since the first segment always begins with the first unit, regard-
less of the type of units. When we write Seg (i), we refer to the i-th greatest element of Seg. Additionally,
we define Seg (0) := 1, and Seg

��

�Seg
�

�+ 1
�

:=∞.

The function A(t) denotes application of algorithm A to text t and yields a segmentation of the text.
Accordingly, the function A(T ) denotes application of the algorithm to a set of texts T and yields a func-
tion which assigns the calculated segmentation to each text in T .

For a given quality metric m, we define the equally named function m
�

t, Seg1, Seg2
�

which yields the
result of the metric for a given text t, the gold standard segmentation Seg1 and a calculated segmentation
Seg2. The function m� (E) denotes the average result of the metric for the given evaluation definition E:

m� (E) = m� (A, C) :=

∑

t∈TC
m
�

t, segC (t) , A(t)
�

�

�TC

�

�
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4.2 Metrics

The goal of evaluation metrics in text segmentation is to obtain a comparable quality value for the seg-
mentation of a certain text with respect to a gold standard segmentation. Therefore, correct segment
boundaries should be rewarded, wrong or missing boundaries should be penalized. Early works on text
segmentation methods, e.g., Hearst’s presentation of TextTiling [Hea94], used precision and recall mea-
sures which are famous to rate information retrieval systems. Applied to text segmentation, precision
would denote the quota of gold standard boundaries within the set of calculated boundaries, and recall
denotes the quota of found gold standard boundaries with respect to all gold standard boundaries.

However, as pointed out by Beeferman et al. [BBL97], recall and precision are not quite appropriate
for evaluation of text segmentation algorithms which we will explain with the following example: Con-
sider the text presented in Figure 3.1. It consists of three paragraphs, each containing four sentences.
Thus, the gold standard segmentation with sentences as units would be Seg = {5, 9}. If we further pro-
ceed on the assumption that a segmentation algorithm yields the segmentation Seg = {4,8}, i.e., the
last sentences of the first and second paragraphs have wrongly been assigned to the second and third
segment, respectively, this would lead to precision and recall values 0. This is not what is desired in
this case since the algorithm has at least detected the correct number of segments and it missed correct
boundaries only closely. Hence, it should be rated better than an algorithm which, for example, does not
detect any boundary at all. This is the point where recall and precision fail.

4.2.1 Pk

As a new metric which should overcome the disadvantages of recall and precision, Beeferman et al.
proposed Pk [BBL97], [BBL99] which also takes into account near misses: The metric moves a sliding
window over the text – either on token or on sentence base – which has a first pointer and a second
pointer which point at units with a distance of k. E.g., if k = 2 and sentences are considered as units, the
pointers will iterate over the sentence pairs (1, 3) , (2,4), etc. For each analyzed pair of units

�

i, j
�

, three
cases are distinguished:

1. Units i and j are in the same segment, both in the calculated and the gold standard segmentation.

2. Units i and j are in the same segment in one segmentation, but in different segments in the other
one.

3. Units i and j are in different segments in both calculated and gold standard segmentation.

Case 2 is considered as an error, other cases are not because in case 2, calculated and gold standard
segmentations differ in that the one puts a boundary between the two units whereas the other does not.
The number of errors is then counted while the window moves over the text, and the result is defined as
the quota of errors with respect to the number of possible errors:

Pk
�

t, Seg1, Seg2
�

:=

∑|t|−k
i=1 er ror

�

i, i+ k, Seg1, Seg2
�

|t| − k

er ror
�

i, j, Seg1, Seg2
�

:=















0 if sm
�

i, Seg1
�

= sm
�

j, Seg1
�

∧ sm
�

i, Seg2
�

= sm
�

j, Seg2
�

0 if sm
�

i, Seg1
�

6= sm
�

j, Seg1
�

∧ sm
�

i, Seg2
�

6= sm
�

j, Seg2
�

1 if sm
�

i, Seg1
�

= sm
�

j, Seg1
�

∧ sm
�

i, Seg2
�

6= sm
�

j, Seg2
�

1 if sm
�

i, Seg1
�

6= sm
�

j, Seg1
�

∧ sm
�

i, Seg2
�

= sm
�

j, Seg2
�

sm
�

k, Seg
�

:=
�

�

�

b ∈ Seg|b ≤ k
	

�

�+ 1
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The er ror function returns 1 in case 2 we discussed above, and the sm function returns the index of the
segment the given unit belongs to.

The Pk measure can also be understood in a probabilistic manner as it indicates the probability that
two units of the text with a distance of k are inconsistently classified. Thus, Pk heavily depends on the
value of k: Values are becoming much better for small values of k because the probability of inconsistent
classification of two units in two segmentations is much lower if their distance is smaller. For compa-
rability, k must be standardized in some way. For that purpose, Beeferman suggests k to be set to half
the average segment size according to the gold standard segmentation. E.g., if a text is analyzed on
token-basis and contains 120 tokens and 4 segments, for evaluation with Pk, k must be set to 1

2
· 120

4
= 15.

An example for the calculation of the Pk value is presented in Figure 4.1: In the first step, the first
and the third unit are compared with respect to their segment membership. As they belong to the same
segment in both segmentations, no error is counted in this step. Contrariwise, the second step reveals an
error as defined in the previous case distinction because in the hypothesized segmentation, the second
and fourth units belong to the same segment while in the gold standard, there is a segment boundary
before the fourth unit. In the third and last step, there is no error again because units are in different
segments on both sides. The result for this example would be the number of errors divided by the
possible number of errors: 1

3
= 33.3%.

4.2.2 WindowDiff

As an improvement of Pk, Pevzner and Hearst suggest the WindowDiff metric [PH02]. They argue that
Pk penalizes false negatives more heavily than false positives and that it overpenalizes near misses.
Moreover, the number of segment boundaries is ignored in some cases. We will have a look at these
disadvantages by analyzing them for a simple example taken from the article “Vega” of the English
Wikipedia:

Vega is the brightest star in the constellation Lyra, the fifth brightest star in the night sky and
the second brightest star in the northern celestial hemisphere. Only Arcturus is brighter.

Astronomers term “metals” those elements with higher atomic numbers than helium. The metal-
licity of Vega’s photosphere is only about 32% of the abundance of heavy elements in the Sun’s
atmosphere.

This text contains 4 sentences, 62 tokens, and a gold standard segment boundary at the paragraph. If
we analyze this text on token base, the k parameter of Pk would be set to 15 because 31 is the average
segment length. Below, we suggest some examples where the disadvantages of Pk become obvious:

Lax penalization of false positives: If a segmentation algorithm does not find any segment boundary, 15
errors would occur during the Pk sliding window method; thus, Pk =

15
47
≈ 31.9%. If, however,

a segmentation algorithm would find a boundary after the first and the second sentence instead
(false positive after the first sentence), only 4 errors are found, namely when the second pointer
of the window is over the second sentence. This yields a total Pk value of 4

47
≈ 8.5%. Thus, false

positives are obviously not penalized as heavily as false negatives are.

Overpenalization of near misses: Consider the hypothesized segmentation which assumes a single seg-
ment boundary after the first sentence. In this case, 8 errors would be penalized for Pk: 4 when the
second pointer of the sliding window points at the second sentence, and another 4 when the first
pointer is over the second sentence. Pk would have the double value of the case in the previous
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Figure 4
An illustration of the fact that the Pk metric fails to penalize false positives that fall within k
sentences of a true boundary. Notation is as in Figure 2.

algorithm has made at least one false negative (missing boundary) error, but it is not
penalized for this error under Pk.

2.3 Problem 3: Sensitivity to Variations in Segment Size
The size of the segment plays a role in the amount that a false positive within the
segment or a false negative at its boundary is penalized. Let us consider false negatives
(missing boundaries) first. As seen above, with average size segments, the penalty for
a false negative is k. For larger segments, it remains at k—it cannot be any larger
than that, since for a given position i there can be at most k intervals of length k
that include that position. As segment size gets smaller, however, the false negative
penalty changes. Suppose we have two segments, A and B, and the algorithm misses
the boundary between them. Then the algorithm will be penalized k times if Size(A)+
Size(B) > 2k, that is, as long as each segment is about half the average size or larger.
The penalty will then decrease linearly with Size(A)+Size(B) so long as k < Size(A)+
Size(B) < 2k. To be more exact, the penalty actually decreases linearly as the size of
either segment decreases below k. This is intuitively clear from the simple observation
that in order to incur a penalty at any range ri for a false negative, it has to be
the case that ri > ai. In order for this to be true, both the segment to the left and
the segment to the right of the missed boundary have to be of size greater than
k; otherwise, the penalty can only be equal to the size of the smaller segment. When
Size(A)+Size(B) < k, the penalty disappears completely, since then the probe’s interval
is larger than the combined size of both segments, making it not sensitive enough to
detect the false negative. It should be noted that fixing Problem 2 would at least
partially fix this bias as well.

Now, consider false positives (extraneous boundaries). For average segment size
and a uniform distribution of false positives, the average penalty is k

2 , as described
earlier. In general, in large enough segments, the penalty when the false positive is
a distance d < k from a boundary is d, and the penalty when the false positive is a
distance d > k from a boundary is k. Thus, for larger segments, the average penalty
assuming a uniform distribution becomes larger, because there are more places in the
segment that are at least k positions away from a boundary. The behavior at the edges
of the segments remains the same, though, so the average penalty never reaches k.
Now, consider what happens with smaller segments. Suppose we have a false positive
in Segment A. As Size(A) decreases from 2k to k, the average false positive penalty
decreases linearly with it, because when Size(A) decreases below 2k, the maximum
distance any sentence can be from a boundary becomes less than k. Therefore, the
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Figure 4.2: Visualization of the problem why Pk may ignore segment boundaries (adopted from Pevzner
and Hearst [PH02])

example where two segment boundaries have been hypothesized. This shows that near misses are
penalized too much compared to false positives.

Number of segment boundaries ignored: We refer to another example for this case. Think of a reference
(Ref) and a hypothesized (Hyp) segmentation as shown in Figure 4.2. The sliding window covers
a longer range than contained by the second segment of the gold standard segmentation. If the
calculated segmentation wrongly introduces an additionally boundary within this segment as in
the figure, no error is counted because at each position of the window, the referenced units are
consistently classified ignoring the number of boundaries between the window pointers.

These drawbacks vanish with WindowDiff. WindowDiff is defined exactly as Pk, except that it is more
strict in certain cases. Like with Pk, a sliding window moves over the text and, at each position, points
at units of the text with a distance of k. Remember the case distinction we applied in the Pk section with
respect to the segment membership of the units i and j the window points at: The third case was applied
if the units belong to different segments, both in the calculated and in the gold standard segmentation
such as in Step 3 of Figure 4.1. This case was never considered to be an error. However, WindowDiff
distinguishes two sub cases:

1. The number of segment boundaries between unit i and unit j is equal in calculated and gold
standard segmentation.

2. The number of segment boundaries between unit i and unit j is not equal in calculated and gold
standard segmentation.

In WindowDiff, the second sub case is considered to be an error. Formally, WindowDiff is defined very
simlarly to Pk:
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Note that only the er ror function differs from the Pk error function in that it is based on the number of
segment boundaries between the two analyzed units, and not only on the membership in the same or in
different segments.

The impact on the example in Figure 4.1 is manifested in Step 3 which looks like in Figure 4.3 for
WindowDiff. The error in this step is caused by the fact that, between the third and fifth unit, there is
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Figure 4.3: Step 3 of the example in Figure 4.1 for WindowDiff

only one segment boundary in the hypothesized segmentation, but there are two in the gold standard
segmentation. This is not counted as an error in Pk because the number of segment boundaries between
the units is not taken into account if it is not zero in both segmentations.

We will now come back to the drawbacks of Pk mentioned at the beginning of this section in order to
show that WindowDiff solves most of those problems:

Lax penalization of false positives: Remember the example that a segmentation algorithm, applied to the
example text at the beginning of the section, finds one segment boundary after the first sentence
and another one after the second sentence. The first one is a false positive, assuming that the latter
one is the only boundary in the gold standard. As we have seen, Pk yields a value of 8.5% for this
case which is much lower than for a false negative. WindowDiff delivers the same value for the
false negative example. In the case of the false positive example, however, WindowDiff counts not
only 4, but 15 errors, namely, for each position the sliding window covers the boundary between
the first and the second sentence. Thus, the result of WindowDiff in this case is 15

47
≈ 31.9% which

equals the result for the false negative example. Obviously, with WindowDiff, false positives are no
longer rated better than false negatives.

Overpenalization of near misses: If only one segment boundary between the first and the second sen-
tence is hypothesized, Pk and WindowDiff both yield a value of 8

47
which was, in the Pk case, the

double value of what the false positive was rated with. For WindowDiff, the proportion between
this value and the false positive rating (31.9%) makes much more sense because a near miss should
rather be penalized more leniently than a false positive: A near miss is close to the correct solution
whereas a false positive introduces a new wrong boundary.

Number of segment boundaries ignored: Obviously, WindowDiff does not ignore the number of segment
boundaries any more. For the segmentations in Figure 4.2, 5 errors are counted at the positions of
the sliding window which are displayed in the graphic. Pk does not detect any error in this case.

4.2.3 Tokens or Sentences?

Pk and WindowDiff both depend on the smallest units of documents which are considered for the po-
sitions of the sliding window. E.g., for a document with 4 sentences, 80 tokens, and 2 segments, the k
parameter of Pk and WindowDiff will be set to either 1 sentence or 20 tokens. In the sentence case, the
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Sentence Segment # Tokens
1 1 27
2 1 4
3 2 11
4 2 20
∑

62

Table 4.1: Sentence lengths of the example text at the beginning of section 4.2.2

Segmentation Pk (tokens) Pk (sentences) WindowDiff (tokens) WindowDiff (sentences)
; 31.9% 33.3% 31.9% 33.3%
{2} 17.0% 66.7% 17.0% 66.7%
{3} 0.0% 0.0% 0.0% 0.0%
{4} 46.8% 66.7% 46.8% 66.7%
{2, 3} 8.5% 33.3% 31.9% 33.3%
{2, 4} 31.9% 100.0% 31.9% 100.0%
{3, 4} 23.4% 33.3% 31.9% 33.3%
{2,3, 4} 31.9% 66.7% 63.8% 66.7%

Table 4.2: Comparison of Pk and WindowDiff results for the example text at the beginning of section 4.2.2
on sentence and token base

window iterates over 3 different positions, in case of tokens, 60 positions are analyzed.

The main difference between both variants is that, on token base, length of sentences influences the
results of the metrics: For instance, when considering tokens, a near miss which is only a short sentence
(e.g., 5 tokens) from the gold standard boundary receives a more lenient penalty than a miss which
misses the actual boundary by a long sentence (e.g., 30 tokens). This is why we decided to use tokens
as smallest units for the sliding window.

We justify this decision by analyzing Pk and WindowDiff results for the example text at the beginning
of Section 4.2.2 on token and on sentence base. The text has sentence lengths as documented in Table
4.1. The gold standard places a segment boundary after the second sentence. Thus, the k parameter of
Pk and WindowDiff is set to 1 sentence and 15 tokens, respectively.

Table 4.2 lists Pk and WindowDiff results for given hypothesized segmentations. The first column de-
fines the hypothesized segmentations by enumerating the indexes of sentences before which a segment
boundary is placed. As expected, evaluation on token level is more fine-grained, and results on sentence
level only comprise the values 0%, 33.3%, 66.7%, and 100% as the maximum number of errors for four
sentences and k = 1 is 3. Furthermore, as we supposed, evaluation on sentence level over-penalizes near
misses with a short distance to the gold standard boundary. This can be seen for the segmentation {2}
where the short second sentence of the text has wrongly been assigned to the second segment. Pk and
WindowDiff only assign a result of 17% on token base whereas, on sentence base, a 66.7% penalty is
received which is obviously disproportionately excessive.

The same near miss is contained in the segmentation {2, 4} which additionally introduces a boundary
before the fourth sentence. However, it should not be rated more than twice as bad as the segmentation
{3, 4} which corrects the near miss. On token base, Pk and WindowDiff assign similar, if not equal, results
to these segmentations while an evaluation on sentence level yields a result of 100% for {2, 4} which is,
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again, not adequate in this case.

In conclusion one can say that evaluation on token level yields more reasonable results, especially
when the sentence lengths of the analyzed texts scatter strongly.

4.3 Corpora

An important issue of evaluation is the choice of an appropriate corpus. As defined in Section 4.1, a
corpus consists of a set of texts and a gold standard segmentation for each text. Corpora can be divided
into two types:

Artificial corpora consist of texts which are each built as a composition of different texts, i.e., every
text contains a certain number of coherent parts of different documents which are artificially put
together. Segment boundaries are desired at the artificial document part boundaries.

Natural corpora consist of whole texts pertaining to a certain topic each. Segment boundaries are de-
sired between sub topic paragraphs.

While artificial corpora are easier for segmentation algorithms due to the abrupt vocabulary cuts at
the boundaries, natural corpora are more realistic since most applications of text segmentations are in
the field of natural texts which are to be divided into sub topics.

In order to evaluate the capabilities of our algorithms for both artificial and natural corpora, we chose
two corpora for each type, namely the following:

1. Choi’s corpus [Cho00] consists of 700 texts. Every text consists of 10 segments. Each segment is
the first 3 to 11 sentences of a random document of a subset of the Brown corpus [KF67]. The set
can be subdivided into four groups:

a) 3 to 5 sentences in every segment: 100 texts

b) 6 to 8 sentences in every segment: 100 texts

c) 9 to 11 sentences in every segment: 100 texts

d) 3 to 11 sentences in every segment: 400 texts

2. Galley’s TDT1 and WSJ2 corpora [GMFLJ03] consist of 500 documents each. Similarly to Choi’s
corpus, the documents are concatenated artificially with 4 to 22 segments per document. Due to
time constraints, our algorithms (Cluster Blocks and Compact Segments) have been evaluated only
on 245 documents of the TDT corpus.

3. The corpus used by Malioutov and Barzilay [MB06] comprises transcripts of university lectures. 22
are taken from a lecture about artificial intelligence (AI), 33 are about physics. AI lectures have
been transcripted manually, the physics lectures have been transcripted both automatically and
manually. As the quality of automatic transcription in this case is very low, we only consider the
manual transcripts. Thus, this corpus contains 55 documents.

4. As a further corpus, we designed a corpus extracted from the English Wikipedia which contains 57
documents. For a detailled description of this corpus, refer to the next section.

The first two corpora are obviously artificial, the latter two are natural.

1 Topic Detection and Tracking
2 Wall Street Journal
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Name Type d t/d σ (t/d) t/sen seg/d σ (seg/d)
Choi artificial 700 1985.8 504.6 25.59 10 0
Galley (TDT) artificial 500 4277.7 1996.6 30.18 13 5.74
Galley (WSJ) artificial 500 7221.3 4596.2 23.89 13 5.74
Malioutov natural 55 8540.4 1410 17.65 8.42 4.17
Wikipedia natural 57 4626.3 2028.9 26.28 6.7 2.28

Table 4.3: Characteristics of evaluation corpora: “d” contains the number of documents in the corpus.
“t/d” denotes the average number of tokens per document. “t/sen” is the average number of to-
kens per sentence. “seg/d” is the average number of segments per document. The “σ” columns
indicate standard deviations.

Figure 2: A visualization of the structure of a Wikipedia
article as analyzed by the parser.

needs to be adjusted to each language edition. For most
language editions, the user community has introduced a
layout standard acting as a data schema to enforce a uni-
form structure of entries. However, as schemas evolve over
time, older entries are possibly not updated. Moreover, as
no contributor is forced to follow the schema, the structure
of entries is fairly inconsistent. Therefore, the parser is de-
signed to be robust against errors of incorrect usage of the
markup language.
The API is centered around the Java object WIKTIONARY.
It wraps the underlying database and allows to query the
database for information about a certain word by using the
word’s grapheme as query argument (see Listing 4). Ad-
ditionally, the desired part of speech or word language can
also be specified. The API allows to combine several lan-
guage editions of Wiktionary into one WIKTIONARY ob-
ject and query the contained entries simultaneously. For
each grapheme, Wiktionary contains a page with entries of
corresponding words for different languages and parts of
speech. In order to allow a structured access to the informa-
tion available for each word, the API maps each entry to the
object WIKTIONARYWORD. Thus, each WIKTIONARY-
WORD object contains the information for exactly one part
of speech and one language. The available information of
the entries can be accessed by calling the object’s methods,
which return the specified information on word or sense
level (see Listing 5).
Currently, the proposed API provides robust parsing of the
English and the German Wiktionary editions and extracts
structured information, including glosses, etymology, ex-
amples, quotations, translations, derived terms, characteris-
tic word combinations, lexical relations, as well as links to
other language editions of Wiktionary, Wikipedia articles,
and external web pages. The parser can be easily adjusted
to work with other language editions of Wiktionary.

5. Example Usage in NLP
The APIs for access to Wikipedia and Wiktionary pro-
posed in this paper have already been put into service for
large-scale NLP research, such as analyzing and accessing
the structure of the Wikipedia category graph (Zesch and
Gurevych, 2007), computing semantic relatedness between

words (Zesch et al., 2007), and semantic information re-
trieval (Gurevych et al., 2007).
When analyzing the structure of the Wikipedia category
graph, categories assigned to the articles of Wikipedia are
viewed as nodes in a directed graph, where the subcate-
gory relation between two categories is cast as a directed
edge between the corresponding nodes in the graph. The
CATEGORYGRAPH object in JWPL offers means to retrieve
graph parameters like diameter, cluster coefficient, or aver-
age shortest path length.
The structure of the resulting graph (as defined by the graph
parameters) is indicative of the possible performance of
graph-based NLP applications, e.g. computing the seman-
tic relatedness between words. This task requires to re-
trieve the corresponding Wikipedia article for each word,
and then to compute the minimum path length between the
categories of the two articles (see Listing 2). On this basis,
efficient algorithms for computing semantic relatedness us-
ing Wikipedia can be easily implemented using JWPL.
Another NLP related task that directly benefits from the ca-
pabilities of JWPL and JWKTL is semantic information
retrieval. Gurevych et al. (2007) describe work in which
electronic career guidance is used to support school leavers
in their search for a profession or vocational training. One
special challenge in this task is the vocabulary gap between
the language of the (expert-authored) documents from the
database and the language of the school leavers. JWPL has
been successfully used to bridge this vocabulary gap by us-
ing knowledge extracted from Wikipedia in the retrieval
process. Currently, we are working on the integration of
knowledge from Wiktionary into information retrieval us-
ing JWKTL.

6. Conclusion
Recently, the collaboratively created resource Wikipedia
was discovered as a lexical semantic knowledge base that
has the potential to trigger major performance increases in
such diverse NLP areas as text categorization, information
extraction, question answering, computing semantic relat-
edness, or named entity recognition. Its younger sister
project, Wiktionary, has lately emerged as a valuable re-
source complementing it. We have shown that these collab-
orative knowledge bases contain lexical semantic knowl-
edge which is not commonly encountered in linguistic
knowledge bases. The need of appropriate programmatic
access to the knowledge therein is self-evident.
This paper presented Java based APIs that allow for ef-
ficient access to Wikipedia and Wiktionary, and demon-
strated cases of their usage. As the APIs are freely available
for research purposes, we think that they will foster NLP re-
search using the collaborative knowledge bases Wikipedia
and Wiktionary.19
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Figure 4.4: Structure of a Wikipedia article (adopted from Zesch et al. [ZMG08])

An overview of the corpora we used for evaluation is given in Table 4.3. Salient is that the number of
tokens in the Choi documents is rather small compared to other corpora. Also, we see that Choi’s corpus
is the only one using a fixed number of segments for every document. On the one hand, this facilitates
tuning of segmentation algorithms for this corpus; on the other hand, it is not realistic and may lead
to over-fitting during tuning so that the tuned algorithms will always find a segment number close to
10. The number of tokens per sentence is low in Malioutov’s corpus which has its reason in the spoken-
speech nature of this corpus. This might make it difficult for algorithms to find exactly correct boundaries
for this corpus. However, since we use tokens and not sentences as smallest unit during evaluation (see
Section 4.2.3), near misses are penalized leniently and, thus, the representative character of results for
this corpus should not suffer from it.

4.3.1 Wikipedia Corpus

Natural-text corpora are difficult to generate because reasonable gold standard segment boundaries for
a big collection of texts are rare. Creating a gold standard manually would be too laborious and time-
consuming for this thesis. Thus, we decided to extract a corpus from articles of the English Wikipedia3

and to take the division into sections as a gold standard for segments.

Figure 4.4 shows an example structure of a Wikipedia article. For corpus generation, we extracted
top-level sections of articles and concatenated their textual contents to a pure-text corpus file. The con-

3 http://en.wikipedia.org/
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==========

Sentence 1.1

Sentence 1.2

...

Sentence 1.S_1

==========

Sentence 2.1

...

==========

...

==========

...

Sentence N.S_N

==========

Figure 4.5: Format of Choi’s corpus. N is the number of segments in the document. For each segment n,
Sn is the number of sentences in n.

tent of a section is constituted by the concatenation of the text of its paragraph elements and the content
of contained sections. Particularly, other elements such as tables and image captions are ignored during
generating the text for a section because text segmentation is meant to be applied to prose and not to
pieces of information such as table fields. Furthermore, sections with one of the titles “See also”, “Refer-
ences”, and “External links” are skipped as they do not contain information where segmentation makes
sense.

As Wikipedia is a free-to-all knowledge resource where everybody can edit articles, many articles are
quite short, erroneous, or exhibit a sloppy – or even missing – division into sections. However, there is
a category of articles called “Featured Articles” which only contains well elaborated texts. In particular,
separation into sections is in almost all cases appropriate to reasonably represent sub topics of the text
and, thus, to be used as gold standard segments for the corpus. Hence, we filtered out Featured Articles
from the English Wikipedia to use them for the Wikipedia corpus. Out of 1244 existing Featured Articles,
we randomly selected a set of 57 for our corpus.

4.3.2 Format

This section deals with the format in which evaluation corpora are serialized. We will first look at the for-
mat Choi defined for his corpus and which has been used in several other works such as for Malioutov’s
and Galley’s corpora. Afterwards, we describe and justify the format we have used for our Wikipedia
corpus and we have converted the other corpora to.

Choi defines the format as presented in Figure 4.5: Every document begins and ends with the de-
limiting character sequence “==========” which is also inserted at every gold standard segment
boundary. Every sentence within a segment begins a new row.

We suggest a separated format instead: Text and segment boundaries are separated into two files.
The text file simply contains the sentences of the text, without any line breaks as they actually provide
information to the segmenter about sentence boundaries which would not be available in real systems.
The gold standard file contains one line for each character offset of a segment boundary. E.g., for a
boundary after the 200st character of the text file, the gold standard file would contain a line with the
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number “200”. The numbers refer exactly to the positions of the boundary in the text file. Particularly, if
the text file is encoded in Windows-style, i.e., with line feed and carriage return at each line end, every
line break is accordingly counted as two characters. However, if a character in the text file takes two
bytes, e.g., in UTF-16 encoding, it is, nevertheless, counted as one single character.

The separated format has three advantages compared to Choi’s format:

• It does not provide more information to the segmenter than available in a real application. Partic-
ularly, sentence breaks are not provided.

• Text and boundaries are separated. This means, for one text, one could theoretically provide a set
of gold standards, possibly with different levels of granularity, without redundancy.

• The format allows boundaries within sentences. This might be useful for evaluation of fine-grained
segmenters which are to discover topical shifts also within sentences.

4.4 Tuning

The Cluster Blocks and Compact Segments algorithms have different parameters that must be tuned for
optimum results. Admittedly, optimum parameter values may depend on the kind of texts which the
algorithms are applied to: E.g., for longer texts, parameters causing a more coarse-grained segmentation
are possibly more appropriate than for shorter texts. However, this is a drawback most unsupervised
algorithms cannot avoid.

In this section, we give an overview of the parameters we have tuned for both algorithms and describe
the methodology.

4.4.1 Tuning Corpora

We decided to optimize the tuning parameters on subsets of Choi’s corpus because this artificial corpus
– where each documents consists of concatenated parts of different texts – is appropriate to analyze
whether an algorithm detects obvious and unique boundaries. As a first tuning step, we optimized the
parameters on a subset of five randomly chosen documents. In a second step, we compared results of
promising configurations on a corpus of 50 randomly selected documents. Finally, the best configuration
was chosen for evaluation on the whole corpus and on other corpora.

4.4.2 Parameters

For the Cluster Blocks algorithm, tuning was performed for the following parameters4:

Sparsification mode (SM): This parameter has one of the values Threshold and Quota and defines how
edges are removed from the complete semantic graph before clustering. For details, refer to Section
3.1.3.

Sparsification value (SV): Defines either the threshold value for edges or the quota of edges which should
be removed. This is a value between 0 and 1. For tuning, we chose the domain {0,0.1, . . . , 1}.

Limit for number of edges (SL): Defines the maximum number of edges to be retained in the sparsifica-
tion process. If there are more edges remaining after applying the threshold or quota, excess edges

4 Letters in brackets define abbreviations for the parameters which are used in tables later.
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with low semantic relatedness values are removed. This parameter is necessary due to runtime
reasons, because for long documents, even a high threshold may yield many edges leading to a
long runtime since, when ignoring this upper limit for the number of edges, runtime complexity is
in O

�

T 5� where T is the number of terms in the document as we have seen in Section 3.1.7.

Smoothing mask for clustering quality values (CMM): This tuple defines the mask with which modular-
ity values of different possible clusterings are smoothed. Details are described in step 6 of Section
3.1.4. As domain for this parameter, we chose the masks (1) 5, (1, 1,1) , (1,2, 1) , (1, 5,1) , (1, 2,4, 2,1).

Maximum number of sequential sentences in a block without a word of the cluster (MS): If a block would
contain a greater gap than the number defined with this parameter, it is split into multiple blocks.
The domain is {0, 1,2, 3,4}.

Minimum length of a block (MBL): Blocks with less sentences than defined with this parameter are not
allowed. The domain is {1, 2,3, 4}.

Minimum length of a segment (MSL): This floating point value denotes the minimum length a segment
must have relative to the average segment length. If a boundary causes a segment to be too small,
it is discarded. We chose the domain {0,0.2, 0.4,0.6, 0.8,1}.

Smoothing mask for boundary strength values (BSM): A tuple of values defining the mask with which
boundary strength values are smoothed. Details can be found in Section 3.1.6. This parameter has
the same domain as CMM.

For the Compact Segments algorithm, tuning was done according to equation (3.1). Hence, the pa-
rameters in this case are:

Weight of compactness (α): A value between 0 and 1 where 1 denotes highest weight for compactness
and 0 denotes highest weight for boundary strength. We chose the domain {0,0.1, . . . , 1}.

Length recompense factors (β , γ) for compactness and boundary strength, respectively. We tested values
of the domain {0,0.1, . . . , 0.9, 1, 1.2, 1.5}.

Segment penalizer (d): Higher values for this parameter will cause the number of segments to be lower.
Therefore, we did not restrict its domain (except that we did not take negative values into account
because the value 0 already yields the maximum number of segments in every case) in order to be
able to tune it as necessary in every step.

Adjacent sentences (Sad j): This additional parameter denotes the number of sentences which are con-
sidered to be “adjacent” for a certain segment candidate in the text. This influences calculation of
boundary strength (see Section 3.2.4). We tested values from 1 up to 5.

4.4.3 Tuning Results

We performed tuning of the Cluster Blocks algorithm with provided number of segments as automatic
detection is, in this algorithm, not reliable enough. We tested 73 promising configurations on the five
documents of the Choi tuning corpus. This revealed the configurations shown in Table 4.4 to yield the
best results on the tuning corpus. The configuration in italic font is used for further evaluations.

Obviously, sparsification should be done in “Quota” mode and not in “Threshold” mode. This is due
to the fact that distribution of semantic relatedness values strongly differs between different documents:

5 No smoothing at all.
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SM SL SV CMM MS MBL MSL BSM Pk WindowDiff
Quota 1000 0.7 (1, 2, 1) 3 3 0.4 (1, 5, 1) 18.8% 19.4%
Quota 1000 0.7 (1, 2, 1) 2 3 0.4 (1) 20.2% 20.7%
Quota 1000 0.7 (1, 2, 1) 2 3 0.4 (1, 5, 1) 21.4% 22.0%
Quota 1 (1, 2, 1) 3 3 0.4 (1, 5, 1) 28.8% 29.2%

Table 4.4: Best configurations of the Cluster Blocks algorithm for the tuning corpus. The last configuration
is the best one abandoning semantic data, i.e., basing on word reiterations only.

α β γ Sad j Pk WindowDiff
0.9 1 0.6 4 12.4% 12.8%
0.5 1 0.6 4 12.6% 13.1%

0 0.6 4 12.6% 13.1%

Table 4.5: Best configurations of the Compact Segments algorithm for the tuning corpus with given number
of segments

While, in one document, a value of 0.3 is relatively high, in another document this may be too low to
respect in the sparsificated semantic graph. The quota mode always retains the same quota of semantic
relations which yields best results across multiple documents.

The upper limit of 1000 semantic relations has been chosen due to runtime reasons: Although a higher
limit might improve results on large documents, this would impair runtime performance disproportion-
ately compared to the degree of improvements.

The value SV = 0.7 indicates that ca. 30% of the strongest edges should be retained in the sparsificated
graph. The mask (1,2, 1) for smoothing the clustering quality values shows that smoothing indeed makes
sense because weak smoothing ((1, 5,1)) or no smoothing ((1)) yielded significantly worse results. The
importance of smoothing the boundary strength values, on the contrary, did not prove to be very high
since weak smoothing or no smoothing yielded best results.

The last row of table 4.4 shows the same configuration as the best one in the first row, except for SV
= 1, i.e., all semantic relations are removed and blocks in the text are detected based on pure word
reiterations. Results are significantly worse than for the first configuration which suggests that usage of
the semantic graph indeed enhances finding semantically related blocks.

The best configuration of Table 4.4 yielded Pk and WindowDiff values of 24.1 and 27.6%, respectively,
if the number of segments was not provided to the algorithm. This is also the configuration we chose for
further evaluations.

For given numbers of segments, the best results of Compact Segments on the tuning corpus could be
achieved with the configurations presented in Table 4.5.

Interestingly, the value of α which weights compactness against boundary strength does not seem
to have much impact on the quality of the found segmentation. However, if we chose α to be even
greater than 0.9 (e.g., 0.95 or 1), results became significantly worse. This indicates that compactness
only is not sufficient to find a good segmentation. However, as α = 0 still yields good results, boundary
strength alone seems to be a sufficient indicator for good segments. Yet, best results could be achieved
with α = 0.9 which shows that a combination of compactness and boundary strength should be the best
choice. But as mentioned, segmentations are quickly getting instable for greater values of α whereas for
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α β γ d Sad j Pk WindowDiff
0.5 1 0.6 0.05 4 11.2% 11.6%
0.9 1 0.6 0.009 4 11.5% 13.1%
0.9 1 0.6 0.01 4 13.0% 13.3%
0.5 1 0.6 0.045 4 11.7% 13.4%

Table 4.6: Best configurations of the Compact Segments algorithm for the tuning corpus without given
number of segments

Corpus No All C99 C99b TT MinCut U00 LCseg CB CS
Choi 46.8% 52.9% 12.7% 14.9% 49.9% 21.2% 10.5% 10.5% 33.3% 12.1%
Malioutov 42.3% 57.7% 38.6% 53.5% 57.0% 32.8% 34.2% 57.4% 42.0%
Galley (TDT) 43.9% 56.0% 10.2% 15.7% 51.9% 8.7% 7.0% 28.7% 19.0%
Galley (WSJ) 36.1% 63.9% 22.3% 24.1% 57.3% 17.7% 15.3%
Wikipedia (57) 37.6% 62.4% 50.3% 59.3% 59.5% 50.4%

Table 4.7: Collected Pk results of different algorithms on different corpora

all values between 0 and 0.9, the same segmentations were found for the tuning documents; hence, we
decided to choose the balance of compactness and boundary strength (α= 0.5).

The values of δ are not listed in the table because it does not influence the chosen segmentations if
the number of segments is provided. If the number was not provided, the configurations in Table 4.6
turned out to be the best ones for the tuning corpus. The configuration in italic font is used for further
evaluations.

In this case, α = 0.5 was most reliable for finding a good number of segments which confirms our
decision not to choose α = 0.9: With α = 0.9, d values must be chosen very small and insignificant in
order to obtain a reasonable number of segments. This suggests an instable behavior of the algorithm.
For α = 0.5, we can choose a slightly greater value for d (0.05). Thus, we chose the first configuration
listed in the table for further evaluations.

4.5 Results

Table 4.7 shows collected Pk results of different algorithms on the corpora which have been introduced
in Section 4.3. Unfortunately, we did not have the opportunity to perform evaluation of all algorithms
ourselves; in these cases, we fell back on the best values we found in available papers. Empty cells
indicate that results could not be found or calculated.

The following algorithms are considered in the table:

No: Baseline algorithm which does not set any segment boundary at all; i.e., the whole text is one big
segment in the output of this algorithm.

All: Baseline algorithm which sets a segment boundary wherever possible, i.e., between all sentences.

C99: This column contains values we have found in available papers on Choi’s C99 [Cho00]. Values
stem from Choi himself, Galley et al. [GMFLJ03], and Malioutov and Barzilay [MB06].

C99b: Choi’s C99 component we have used for evaluation. This component has not been tuned, e.g.,
with respect to the mask size. Instead, the default configuration (11×11-matrix) has been applied
to every corpus.
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Corpus No All C99 C99b TT MinCut U00 LCseg CB CS
Choi 46.8% 98.2% 14.6% 17.6% 65.9% 23.4% 11.6% 11.4% 36.8% 12.8%
Malioutov 42.3% 100.0% 40.5% 79.3% 97.0% 34.8% 36.3% 96.8% 44.9%
Galley (TDT) 43.9% 99.5% 12.7% 19.3% 77.6% 11.1% 9.1% 33.8% 21.2%
Galley (WSJ) 36.1% 100.0% 29.8% 32.1% 83.1% 24.1% 22.1%
Wikipedia (57) 37.6% 100.0% 58.1% 88.2% 83.6% 55.2%

Table 4.8: Collected WindowDiff results of different algorithms on different corpora
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Figure 4.6: WindowDiff results of C99 and TextTiling on artificial (bright) and natural (dark) corpora

TT: Choi’s implementation [Cho99] of TextTiling [Hea94] we have used for evaluation. This component
has not been tuned, either.

MinCut: Minimum Cut Model of Malioutov and Barzilay [MB06]. Vaues stem from the same paper.

U00: Utiyama’s and Isahara’s probabilistic U00 algorithm [UI01]. Values stem from Galley et al. [GM-
FLJ03] and Malioutov and Barzilay [MB06].

LCseg: Galley’s LCseg algorithm [GMFLJ03]. Values stem from the same paper.

CB: Our Cluster Blocks algorithm in the configuration presented in the previous section.

CS: Our Compact Segments algorithm in the configuration presented in the previous section.

Table 4.8 presents analogous values for the WindowDiff measure.

When comparing the results across different corpora, observe that artificial corpora (Choi, Galley)
yield clearly better results than natural corpora (Malioutov, Wikipedia). It is illustrated for C99 and
TextTiling in Figure 4.6 where bars of artificial corpora have bright color, bars of natural corpora have
dark color. This confirms the proposition formulated in Section 4.3 that artificially concatenated docu-
ments are much easier to segment due to abrupt vocabulary changes at segment boundaries. However,
this raises the question whether Pk and WindowDiff measures are fair for evaluation of segmentations
on natural documents. They are claimed to be comparable across different types of documents which is
obviously not fulfilled when artificial and natural documents are used. We think that the reason for it
is the concept of Pk and WindowDiff which permits only one “correct” segmentation for each document.
This is appropriate for artificial documents where segment boundaries are objectively unique, but not for
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Figure 4.7: Pk and WindowDiff results of different algorithms on Choi’s corpus

Corpus Eq C99 C99b U00 LCseg CB CS
Choi 41.4% 11.1% 14.1% 8.8% 8.7% 32.0% 10.8%
Malioutov 49.2% 41.1% 47.6% 43.4%
Galley (TDT) 46.8% 9.4% 15.1% 4.7% 6.2% 24.8% 14.2%
Galley (WSJ) 47.7% 19.6% 20.5% 15.2% 12.2%
Wikipedia (57) 52.3% 42.7% 47.3% 44.4%

Table 4.9: Collected Pk results of different algorithms on different corpora when the gold standard number
of segments is provided

natural documents where even different human annotators would likely choose different segments.6

The difficulty of segmenting natural texts can also be read from the fact that the baseline algorithm
“No” which does not place any segment boundary achieves best results (37.6% Pk and WindowDiff) on
the Wikipedia corpus. It would be interesting to see whether high-end algorithms such as U00, LCseg,
or also MinCut which has been designed for segmentation of natural texts perform better on Wikipedia.
For Malioutov’s natural corpus, at least, MinCut and U00 outperform the “No” baseline significantly.

Figure 4.7 compiles Pk and WindowDiff results of different algorithms on Choi’s corpus. Analyzing the
results of the algorithms, we see that U00 and LCseg obviously belong to the most reliable segmentation
algorithms – also across different corpora as can be seen in the table –, although also results of C99 are
still respectable. Cluster Blocks, with Pk� (CB,Choi) = 33.3% and WindowDiff� (CB,Choi) = 36.8%, can-
not compete with state-of-the-art algorithms; however, it is still better than the baseline algorithms and
TextTiling. Compact Segments with Pk of 12.1% and WindowDiff 12.8% performs slightly better than
Choi’s C99 (12.7 and 14.6%); however, it cannot achieve values of U00 and LCseg. On Choi’s corpus,
Compact Segments has also been tested without stop word removal which yielded Pk and WindowDiff
values 13.6% and 14.3%, respectively. As expected, with an improval of 1.5%, stop word removal con-
tributes to better detection of semantic structures and, thus, to better segmentation results.

6 Yet, understand this as a remark beyond the scope of this thesis; we will nevertheless continue using those metrics for
evaluation. However, at this point, we want to allude to an analysis of WindowDiff by Lamprier et al. [LALS07] who point
out similar disadvantages and suggest alternatives which might be suited to supersede WindowDiff in the future.
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Corpus Eq C99 C99b U00 LCseg CB CS
Choi 42.0% 13.9% 15.7% 9.4% 9.4% 33.6% 11.8%
Malioutov 50.1% 43.5% 48.9% 46.5%
Galley (TDT) 48.5% 11.9% 18.4% 6.3% 8.4% 27.3% 16.6%
Galley (WSJ) 51.9% 26.4% 27.3% 21.5% 18.3%
Wikipedia (57) 52.9% 45.1% 48.5% 45.9%

Table 4.10: Collected WindowDiff results of different algorithms on different corpora when the gold stan-
dard number of segments is provided
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Figure 4.8: WindowDiff results of different algorithms on Choi’s corpus with and without provided number
of segments

Besides, we have also collected Pk and WindowDiff results for some algorithms where the number
of segments in the gold standard has been provided. Data can be found in Tables 4.9 and 4.10. Note
that, in this case, the algorithms “No” and “All” have been replaced by “Eq”, another baseline algorithm,
placing the correct number of segment boundaries at equidistant positions. All results of C99, U00, and
LCseg have been adopted from the work of Galley et al. [GMFLJ03].

Figure 4.8 juxtaposes WindowDiff results for known and unknown number of segments on Choi’s cor-
pus. Absolute improvement for state-of-the-art algorithms is up to 2%.

Figure 4.9 shows much stronger improvement for the natural corpus Wikipedia which indicates that
the number of segments is difficult to compute for natural texts which is not very astonishing since seg-
mentations of natural texts may be more or less fine-grained. The problem is that – as mentioned before
– current evaluation metrics only allow for one single gold standard.

The Cluster Blocks algorithm sticks out with its improvement from 83.6% WindowDiff before to 48.5%
with provided number of segments. For Malioutov’s corpus, improvent is even more salient. We suggest
this to be due to the way in which the number of segments is determined in the algorithm: A threshold
(mean value plus standard deviation) is used for the boundary strength, and sentence gaps with higher
values are chosen as segment boundaries. In natural texts, there are often not very salient boundary
strength values; thus, standard deviation is low and many values are above the threshold which may
lead to an exaggerated number of segments.
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Figure 4.9: WindowDiff results of different algorithms on the Wikipedia corpus with and without provided
number of segments

10,1%

14,4%

17,7%
11,7%

17,2%

20,4%

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

4-8 10-16 18-22

Number of Segments

Pk

WindowDiff

Figure 4.10: WindowDiff results of Compact Segments with provided number of segments for the TDT
corpus
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An interesting observation concerning the Compact Segments algorithm can be made in Figure 4.10
which shows WindowDiff results for three categories of documents within Galley’s TDT corpus. Every
category contains only those documents whose number of segments matches the range given by the
category’s name. Obviously, Compact Segments results become worse for a greater number of segments
which we have not observed in that extent for other algorithms. Yet, detailed analysis of this problem is
left for future work.
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5 Implementation

The previously presented algorithms Cluster Blocks and Compact Segments have been implemented in
IBM’s Natural Language Processing Framework UIMA1. This chapter shortly imparts a basic understand-
ing of the UIMA concepts and then describes the UIMA pipelines and components that have been used
and implemented in the course of the Bachelor Thesis.

Refer to Section 5.8 if you are searching for a compact overview of all implemented UIMA components.

5.1 UIMA

UIMA is a framework for management of unstructured information such as images, audio data, or –
most frequently used – text. The UIMA project was started in 2005 by IBM2 and is now supervised by
the Apache Software Foundation3. It is freely available on the Apache website and can be used with the
programming languages Java and C++.

UIMA is based on a pipeline concept: It considers every document as an artefact which moves through
a pipeline of components. Every component analyzes the document as needed and has access to a cen-
tral pool of document annotations where analyzation results may be saved or previous results may be
received from. All document-specific data is saved in a CAS4 which contains all document contents and
the annotations that have been added.

Components are generally divided into three kinds of types:

Collection Readers are placed at the beginning of a pipeline and load the documents to be analyzed,
e.g., from a certain input directory. The document text is saved in the UIMA structure and will not
be changed throughout the pipeline.

Annotators analyze the loaded documents and read and/or add annotations to the document which may
pertain to the whole document or even only to a certain part of the document.

Consumers read the document and its annotations and process them in some way. For instance, all data
might be saved to a file.

Frequently needed components such as file readers/writers, sentence or token splitters etc. are already
provided although implementation of new components is easy to handle. This simple and effective struc-
ture of UIMA has made it become the standard framework in NLP research and industry.

Within this Bachelor Thesis, we did not only use the standard UIMA components, but also components
of DKPro5, a collection of advanced flexible UIMA components [MZM+08].
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Figure 5.1: UIMA pipeline for generation of the Wikipedia corpus

5.2 Corpus Generation

For generation of our Wikipedia corpus (see Section 4.3.1), we used the pipeline presented in Figure 5.1.
The components are described below.

WikipediaIdFileReader*: This component bases on JWPL6, a freely available Wikipedia API of Zesch
et al. [ZMG08] which enables easy access to Wikipedia articles and categories. The
WikipediaIdFileReader reads a file expecting it to contain numeric IDs of Wikipedia articles to
be read in. In our case, we used a list of IDs of featured articles. The articles are received and
parsed with JWPL and Segment annotations are added according to the article’s structure (see the
PARAM_SECTION_GRANULARITY parameter for details). The text which is finally set as docu-
ment text does not contain table elements, image captions or the like, but only text passages. The
configuration parameters are set as following:

HOST, DB, USER, PASSWORD define the database connection which provides access to Wikipedia
articles.

LANGUAGE = Language.english

PARAM_SECTION_GRANULARITY = 1
This integer value defines the section level on which to split articles into segments. I.e.,
the value 1 means that only top-level sections are separated; the value 2 would stand for a
segmentation on the second level: E.g., if an article has three top-level sections which are each
divided into two sub-sections, that configuration would yield six segments for this article.

PARAM_SPLIT_PARAGRAPHS = false
This defines whether different paragraphs at a higher level than defined with
PARAM_SECTION_GRANULARITY should constitute separate segments. E.g., if granularity
is set to 2, multiple sequenced paragraphs on the first section level would be put into different
segments if this parameter was true.

1 Unstructured Information Management Architecture
2 http://www.research.ibm.com/uima/
3 http://uima.apache.org/
4 Common Analysis Structure
5 Darmstadt Knowledge Processing Repository
6 Java-based WikiPedia Library
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PARAM_SEGMENT_DELIMITER = “ ” (space character)
This parameters defines the string which separates two segments. We use only a space char-
acter, thus, not separating segments into paragraphs in document texts.

AnnotationOffsetWriter*: Writes the character offsets of a certain annotation type to a text file. In our
case, we apply this component to the annotation type Segment in order to save the gold standard
segmentation. The index of the first annotation is not saved as it is assumed that the first annotation
always begins at the first character. E.g., if the document contains three sections with character
offsets 0 - 120, 121 - 278, and 279 - 440 (all including), the component would only write the
two numbers 121 and 279 to the file as the other data can be restored from them and from the
document length. The configuration is:

PARAM_ANNOTATION_TYPE = de.tudarmstadt.ukp.dkpro.semantics.type.Segment

PARAM_OUTPUT_DIRECTORY = output directory
Defines the directory where to save the text file with the segment boundary offsets. The name
of the file is constituted by the document meta data, particularly, the document URI and its
title.

PARAM_PATH_LEVELS_TO_CARRY_OVER_FROM_INPUT_TO_OUTPUT_FILE = 0
In this pipeline, the value is not needed. Generally, the value constitutes how many parts
of the input file path should be copied to the path of output files. E.g., if input files are read
recursively from the directory “dirA/dirB/dirC” and are all located in one of the sub directories
“dir1”, “dir2”, and “dir3”, the value must be set to 1 if the structure of the result files should
be equal, i.e., if gold standard segmentation files for input files from “dir1” are to be located
in the sub directory “dir1” of the output directory. If all gold standard files are to be located
in the same directory and not in sub directories, this value must be 0.

PlainTextWriter*: Writes the document texts without any annotations
to text files. The parameters PARAM_OUTPUT_DIRECTORY and
PARAM_PATH_LEVELS_TO_CARRY_OVER_FROM_INPUT_TO_OUTPUT_FILE are defined as
for the AnnotationOffsetWriter.

Components with an asterisk (*) have been implemented in the course of this thesis.

5.3 Preprocessing

The preprocessing pipeline is shown in Figure 5.2. Rectangles below the CAS pipeline arrow constitute
UIMA components. Arrows from the pipeline to components indicate reading annotations, arrows to
the pipeline indicate writing annotations. Added annotation types are represented as ellipses above the
pipeline arrow.

This pipeline consists of DKPro components which are, together with their configuration, shortly de-
scribed in the following list:

FileSystemReader: Reads all text files of a certain directory. Saves document meta data such as the file
URI to the annotation pool.

UkpSentenceSplitter: Divides the text into sentences by adding according Sentence annotations.

UkpTokenizer: Adds Token annotations for words in the text which are separated by punctuation marks
or spaces.

TreeTaggerPosLemmaTT4J: Finds lemmatized roots of tokens and adds corresponding Lemma annota-
tions. Also annotates the tokens with part-of-speech tags.
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Figure 5.2: UIMA preprocessing pipeline

PosFilter: Selects certain parts of speech by annotating them with FilteredToken annotations. The pa-
rameters in our configuration are:

PARAM_ADJ = true

PARAM_N = true

PARAM_V = true

This selects adjectives, nouns, and verbs.

CohesionIndicatorAnnotator*: Selects tokens which are to be used for segmentation analysis. For that
purpose, Lemmas are tagged with a CohesionIndicator annotation. As we only want to use those
lemmas which are annotated as FilteredTokens, the parameter configuration is:

PARAM_USE_POS_FILTER = true

LexSemGraphAnnotator: Creates an AnnotationPair for every pair of CohesionIndicators in the text. This
actually constitutes the edges of the semantic graph. The parameter configuration is:

PARAM_ANNOTATION_TYPE = “de.tudarmstadt.ukp.dkpro.semantics.type.CohesionIndicator”

PARAM_STRING_METHOD = “getStringRepresentation”

PARAM_UNIQUE_TERMS = true

EsaAnnotationPairSemRelAnnotator: Calculates semantic relatedness values for the edges that have been
created in the previous step and adds according SemanticRelatedness annotations. This component
uses explicit semantic analysis (ESA) such as described in Section 2.1.3, applied to the Wiktionary7

knowledge repository. The configuration is as follows:

PARAM_INDEX = “”

PARAM_CACHED_INDEX = Wiktionary index file

PARAM_SCORE_CACHE_SIZE = 50

PARAM_VECTOR_CACHE_SIZE = 50

XmiWriterCasConsumer: Saves the whole document, including all annotations, to an XMI file. Configu-
ration:

7 http://en.wiktionary.org/
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Figure 5.3: UIMA evaluation pipeline

PARAM_COMPRESS = true

5.4 Evaluation

The evaluation pipeline is shown in Figure 5.3. The design is the same as for the preprocessing pipeline.
Additionally, dashed lines indicate optional elements of the pipeline.

The used components are shortly described here:

XmiCollectionReader: Is the counterpart of the XmiWriterCasConsumer and reads document contents
and annotations from XMI files in a certain directory.

SegmentQuantityAnnotator*: Looks up the number of desired segments according to the gold standard
(see Section 4.1) and adds a corresponding SegmentQuantity annotation to the document. This
component is only applied if the number of segments should be provided to the segmentation
algorithm. The following parameters must be set:

PARAM_GOLD_STANDARD_INPUT_DIRECTORY = Directory with gold standard segment files

PARAM_PATH_LEVELS_TO_CARRY_OVER_FROM_INPUT_TO_GOLD_STANDARD_FILE = Integer
value
The meaning of this value is the same as explained with the AnnotationOffsetWriter in Section
5.2.

Segmenter: Executes a segmentation algorithm and adds appropriate Segment annotations. This compo-
nent is to be understood abstract, i.e., in praxis, at this place a concrete segmentation component
is applied. Concrete segmentation components are described in Sections 5.5 and 5.6.

PkWindowDiffEvaluator*: Compares the calculated segmentation such as given by the Segment anno-
tations with the desired gold standard segmentation such as defined by the gold standard files.
Calculates Pk and WindowDiff values for each document in the pipeline and collects them. After
the pipeline has finished, averaged values are printed to an output file. An example output file is
shown in Figure 5.4: Each line contains results of a certain group of analyzed documents. In this
case, we used Choi’s corpus which is divided into files with names containing one of the strings
“3-5”, “6-8”, “9-11”, and “3-11”. Thus, we defined appropriate regular strings matchings those
groups of files to obtain separate results for them. The last row contains results for all documents.
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| Avg. (P_k) | Avg. (WindowDiff) | Avg. (# Segment) | Avg. (! Segments) | #

-------------------------------------------------------------------------------------------------------

URIs matching ".*3-5.*" | 0.134665 | 0.140993 | 9.01000 | 10.0000 | 100

URIs matching ".*6-8.*" | 0.116584 | 0.117495 | 9.12000 | 10.0000 | 100

URIs matching ".*9-11.*" | 0.106371 | 0.108329 | 9.14000 | 10.0000 | 100

URIs matching ".*3-11.*" | 0.148934 | 0.159004 | 8.42250 | 10.0000 | 400

All documents | 0.136194 | 0.143262 | 8.70857 | 10.0000 | 700

Figure 5.4: Example output file of the PkWindowDiffEvaluator

The second and third columns contain Pk and WindowDiff results; the fourth column presents the
average number of calculated segments, the fifth column shows the average number of desired
segments, and the last column simply informs about the number of documents belonging to the
current document group.
The parameters of the component are defined as following:

PARAM_ANNOTATION_TYPE = “de.tudarmstadt.ukp.dkpro.semantics.type.Segment”

PARAM_GOLD_STANDARD_INPUT_DIRECTORY = Directory with gold standard segment files

PARAM_PATH_LEVELS_TO_CARRY_OVER_FROM_INPUT_TO_GOLD_STANDARD_FILE = Integer
value
This value is defined as for the AnnotationOffsetWriter in Section 5.2.

PARAM_MALIOUTOV_EVALUATION = false
If this is true, Pk and WindowDiff are not only calculated with our implementation, but also
with an implementation of Malioutov he used for evaluation of his Minimum Cut Model
[MB06]. However, evaluation with Malioutov’s implementation is much slower than with
ours.

PARAM_OUTPUT_FILE_NAME = Path to results file

PARAM_EVALUATION_LEVEL_TYPE = “de.tudarmstadt.ukp.dkpro.core.type.Token”
Pk and WindowDiff can be calculated both on token and sentence level (see Section 4.2.3).
This parameter constitutes the level on which to evaluate segmentations.

PARAM_URI_REGEX_GROUPS = Array of regular expression strings
These regular expressions denote groups of files which should be evaluated separately. A
processed file is only included into a group if its URI matches the regular expression of the
group. E.g., if the value of this parameter is {“.*txt”, “.*ref”, “.*dat”}, the output file will
contain separate result rows for documents which have a filename ending with “txt”, “ref”,
and “dat”.

PARAM_PK = true
Constitutes whether to use the Pk measure.

PARAM_WINDOW_DIFF = true
Constitutes whether to use the WindowDiff measure.

PARAM_K_VALUES = { 0.5 }
This array of float values constitutes which values for k should be used for Pk and WindowDiff.
The values are relative to the average segment length, i.e., the value 0.5 indicates that k will
be half the average segment length which is the standard configuration for those measures.

PARAM_SEGMENT_QUANTITY = true
Constitutes whether the number of calculated segments should be printed to the output file.

PARAM_GOLD_STANDARD_SEGMENT_QUANTITY = true
Constitutes whether the number of segments in the gold standard should be printed to the
output file.
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5.5 Cluster Blocks

The component

de.tudarmstadt.ukp.dkpro.semantics.segmentation.annotator.ClusterBlockSegmenter

implements the Cluster Blocks algorithm described in Section 3.1. The parameters have the following
values in our pipelines8:

PARAM_ANNOTATION_TYPE = “de.tudarmstadt.ukp.dkpro.semantics.type.CohesionIndicator”
This parameter denotes the type of annotations to be considered for clustering: In the semantic
graph clustering is applied to, features of this type constitute the vertices, even if they are not
connected by SemanticRelatedness annotations. (This is for the case that SemanticRelatedness an-
notations with weak relatedness values have been removed earlier since the previously connected
terms should not be ignored in this case.)

PARAM_STRING_METHOD = “getStringRepresentation”
This method of the annotations of the type defined with the previously described parameter is used
to obtain the term string of the annotations to be used for the semantic graph. This might differ
from the original token text, e.g., if lemmatization has been applied.

PARAM_CLUSTERER = “de.tudarmstadt.ukp.dkpro.semantics.segmentation.graph.GirvanNewmanClusterer”
This parameter defines the clusterer with which to perform the clustering on the semantic graph.
This must be the name of a class implementing the interface

de.tudarmstadt.ukp.dkpro.semantics.segmentation.graph.Clusterer.

The GirvanNewmanClusterer is our implementation of Girvan’s and Newman’s clustering method
[NG04]. We have based our implementation on the EdgeBetweenness component of the JUNG
framework9. We have extended this clustering implementation by automatic finding of the opti-
mum clustering according to the modularity values of clusterings (see Section 3.1.4).

PARAM_GIRVAN_NEWMAN_CLUSTERER_SMOOTH_MASK: If the parameter PARAM_CLUSTERER is
not defined and, thus, the GirvanNewmanClusterer is used, this parameter sets the mask which is
used for smoothing the modularity values of calculated clusterings. This influences the selection of
the optimum clustering. For details, see step 6 in Section 3.1.4.

PARAM_MAX_DELIMITING_BLOCK_SENTENCES: Defines the maximum number of sentences within
a block which do not contain any word of the associated cluster.

PARAM_MIN_BLOCK_LENGTH: Defines the minimum number of sentences a block must consist of.

PARAM_MIN_SEGMENT_LENGTH: This float value constitutes the minimum length of a segment, rel-
ative to the average segment length. E.g., if the hypothesized number of segments is 10, the
document contains 100 sentences, and this parameter is 0.5, each segment must contain at least
0.5 · 100

10
= 5 sentences.

PARAM_BOUNDARY_STRENGTH_SMOOTH_MASK: Defines a Float array which is applied as a smooth-
ing mask to the list of boundary strength values. E.g., the smoothing suggested in Section 3.1.6
can be achieved with the mask (1, 2,1).

Additionally, before executing the actual segmenter component, a sparsificator is executed which re-
moves edges from the semantic graph with low relatedness values. This component is implemented
in
8 Values which are not given here are provided in the Evaluation chapter.
9 Java Universal Network/Graph framework; http://jung.sourceforge.net/
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de.tudarmstadt.ukp.dkpro.semantics.segmentation.annotator.SemanticRelatednessSparsificator

and has the following parameters:

PARAM_MODE: This parameter must be one of the constants MODE_THRESHOLD and
MODE_REMOVE_RATIO. The threshold mode removes all edges with a relatedness value
lower than a constant. The ratio mode removes a certain ratio of edges where those with lower
relatedness values are removed preferably.

PARAM_VALUE: Defines the threshold and ratio value, respectively. It must be a float value between 0
and 1.

PARAM_MAX_RELATIONS: This integer value defines the maximum number of SemanticRelatedness
annotations to retain. If there are more annotations after application of the threshold or the ratio
sparsification, excess annotations with the lowest relatedness values are removed.

PARAM_RESPECTED_ANNOTATION_TYPE = “de.tudarmstadt.ukp.dkpro.semantics.type.CohesionIndicator”
Defines the type of annotations which are candidates for being connected in the semantic graph.
This influences the number of removed edges in the ratio mode since the totally possible number
of edges depends on the annotation type.

5.6 Maximum Compact Segments

The Compact Segments algorithm is implemented in the component class

de.tudarmstadt.ukp.dkpro.semantics.segmentation.annotator.MaximumCompactnessSegmenter.

It has the following configuration parameters and parameter values in our pipeline:

PARAM_ANNOTATION_TYPE = “de.tudarmstadt.ukp.dkpro.semantics.type.CohesionIndicator”
As for the ClusterBlockSegmenter, this parameter defines the type of annotations which are part of
semantic graphs.

PARAM_STRING_METHOD = “getStringRepresentation”
This, again, denotes the name of the method of annotations which returns the string representation
of terms.

PARAM_MAX_SEGMENT_LENGTH = 1
This float value defines the maximum length of a segment to be considered during analyzation of
a document. The length is relative to the document length. I.e., with the value 1, every possible
segment length is considered.

PARAM_MAX_UNIT_COUNT = 100
As explained in Section 3.2.2, blocks are considered as smallest units during analyzation in this
algorithm. This parameter denotes the maximum number of blocks. If more sentences than blocks
are existing, blocks will contain multiple sentences. If this parameter is 0, every sentence will
constitute a separate block. The rationale of this block limitation is to avoid runtime complexity of
compactness and boundary strength value calculation to become cubic in the number of terms.

PARAM_ALPHA = 0.5
The α value in equation (3.1).

PARAM_BETA = 1
The β value in equation (3.1).
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PARAM_GAMMA = 0.6
The γ value in equation (3.1).

PARAM_D = 0.05
The d value in equation (3.1).

5.7 Other Issues of Implementation

Besides the components described in the previous sections we have also implemented, and adapted re-
spectively, some more components which are presented in this section.

For evaluation purposes, we applied implementations of other segmentation algorithms, namely Freddy
Choi’s C99 and Marti Hearst’s TextTiling (see Section 2.3). Those implementations were already avail-
able as UIMA components and, hence, could uniformly be inserted into the evaluation pipeline (Figure
5.3) as “Segmenter” components. Unfortunately, existing implementations did not provide a possibil-
ity to pre-define the number of segments to be calculated which would be desirable for comparability.
Therefore, we adapted the existing C99 UIMA implementation

de.tudarmstadt.ukp.dkpro.semantics.annotator.segmentation.C99segmenter

so that it made use of SegmentQuantity annotations if existing. The TextTiling implementation was more
difficult to adapt; thus, we contented ourselves with C99 and left adaptation of TextTiling open for future
work.

Furthermore, we implemented a degenerated segmenter in the class

de.tudarmstadt.ukp.dkpro.semantics.segmentation.annotator.DegeneratedSegmenter.

This component is a segmenter which places segment boundaries either at every sentence boundary, at no
sentence boundary, or in equal distances. The component is configured with the following parameters:

PARAM_MODE: a Mode constant
Mode constants are defined in the same component and comprise the following values:
NO_SEGMENTS (only one segment for the whole document), ALL_SEGMENTS (segment bound-
ary at each boundary of the considered annotation type, e.g., at each sentence bound-
ary), FIXED_NUMBER_OF_SEGMENTS (as many equally sized segments as defined with the
PARAM_COUNT_SEGMENTS parameter or, if available, with existing SegmentQuantity annota-
tions).

PARAM_SEGMENTATION_LEVEL_TYPE: the class name of the annotation type which to separate into
segments
As we have chosen sentences to be the smallest unit of segmentation, we used the class name

de.tudarmstadt.ukp.dkpro.core.type.Sentence.

PARAM_COUNT_SEGMENTS: the number of equally sized segments to create in mode
FIXED_NUMBER_OF_SEGMENTS
This parameter is not used if a SegmentQuantity annotation is available which provides the desired
number of segments.

5.8 Component Overview

This section provides an overview of all UIMA components which have been implemented in the course
of the thesis. Table 5.1 contains the following columns:
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Type: The type of the component. This is one of CollectionReader, Annotator, and Consumer.

Name: The name of the component. The package of all listed components is

de.tudarmstadt.ukp.dkpro.semantics.segmentation.X

where X is, according to the type, one of “reader”, “annotator”, and “consumer”. Abstract compo-
nents are rendered in italic font.

Extends: The superclass of the component. All properties of the superclass also count for this component.
Particularly, the values of the columns Needs and Edits/Adds/Removes should be minded.

Needs: The annotation types the component needs. The most types are standard DKPro types. New
types are located in the package

de.tudarmstadt.ukp.dkpro.semantics.type.

Types of annotations which can be used by a component but are not necessary are given in square
brackets.

Edits/Adds/Removes: Annotations of the types listed here are edited in some way. The DocumentMeta-
Data annotation is created by all CollectionReaders, but not mentioned in the table.

Description: A short description of the purpose of the component.
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6 Summary

This thesis pursued three intentions: To give an overview of existing text segmentation algorithms, to
examine the possibility of exploiting semantic graphs in two new approaches, and to evaluate the new
approaches based on the metrics Pk and WindowDiff and, among others, with a new Wikipedia-based
corpus.

Before going into details of existing approaches, the thesis gave an overview of the main concepts of
Natural Language Processing which one should be aware of when concerning oneself with text segmen-
tation approaches. Possible categorizations of text segmentation algorithms have been suggested. In
presentation of existing algorithms, we concentrated on works which exploit lexical cohesion and are
linear and unsupervised. Lexical cohesion can manifest itself in word reiterations as well as in other
features pertaining to the lexical value of words. We found works on text segmentation which based on
word reiterations only, such as Hearst’s TextTiling [Hea93] or also Choi’s C99 [Cho00], but many algo-
rithms also take into account other features. This can, for instance, be categories of words in dictionaries
such as applied by Okumura and Honda [OH94], or co-occurent frequency vectors such as used by Ferret
[Fer07]. We have seen that there are at least four types that can be distinguished with respect to the
way in which algorithms find segment boundaries: 1. Lexical Scores are calculated in some works which
express cohesion or also semantic dissimilarity between blocks of texts. According to the scores which
are assigned to possible segments or possible segment boundaries, the final segmentation is chosen. 2.
Lexical Chains are applied in order to find lexically coherent strings in a text. Based on the found chains,
segment boundaries are chosen. 3. Clustering methods are applied, whether to matrices [Cho00] or
to graphs [MB06], in order to find an optimum segmentation. 4. Probabilistic Models are implanted
such as done by Utiyama and Isahara [UI01], finding an optimum segmentation with respect to certain
probability definitions of word co-occurrences, segment lengths, or cue words.

Applications of text segmentation have been presented: For instance, text summarization can be en-
hanced by exploiting calculated segments in order to compose reasonable summaries covering all seg-
ments. In information retrieval systems, text segmentation can improve user contentment by presenting
only relevant passages, and, at least as important as that, it can enhance recall and precision by using
smaller pieces of texts for building the index. Further applications have been identified in the fields of
language modeling, hyptertext linking, and anaphora resolution.

Two new approaches of text segmentations have been introduced. They focused on exploitation of
semantic graphs which have in recent work not extensively been examined for their usefulness in text
segmentation although many applications to other fields such as text summarization, keyphrase extrac-
tion, and query answering can be found. The first algorithm, Cluster Blocks, aims at finding topically
related groups of vocabulary by performing a clustering on the semantic graph. These clusters are then
assigned to blocks of sentences in the text, similarly to lexical chains. Segment boundaries are chosen at
position with a high number of beginning or ending blocks. We have justified this procedure by giving an
example of a text where one could obviously draw reasonable boundaries according to the distribution
of topically related words in the text. Because of the similarity to lexical chain approaches in final finding
segment boundaries, one could, consequently, classify Cluster Blocks into the group “Lexical Chains” we
have defined in the Related Work section. The “Clustering” group is less appropriate because the clus-
tering which is performed in our algorithm is not the final step which finds the segments; it is merely a
preperation step which yields topical clusters of the text.
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Compact Segments, the second new algorithm, finds an optimum segmentation with respect to segment
quality values which are assigned to every segment candidate. The quality value depends on the two
criteria compactness expressing the inner cohesion of a segment candidate and boundary strength which
indicates the lexical dissimilarity of the candidate and adjacent sentences. Both values are calculated
with respect to the semantic graph. We motivated this with an example that showed how compactness
value for a given semantic subgraph of a segment candidate indicates the semantic cohesion. A dynamic
programming method has been presented for optimization although other methods are possible, too,
such as solving a shortest-path problem of a graph with appropriate edge weights. As this algorithm
primarily bases on the segment quality values which can be understood as a kind of complex values for
lexical cohesion, the group “Lexical Scores” of our classification scheme would best meet the algorithm’s
characteristics.

The thesis then described the methodology which has been applied in order to evaluate the quality of
the new algorithms compared to baseline and other algorithms. Particularly, Pk and WindowDiff metrics
have been presented and advantages of WindowDiff have been outlined. Both metrics are error met-
rics yielding values between 0 and 1 (0 and 100%, respectively), i.e., values close to 0 indicate a better
quality. The metrics compare calculated segmentations with gold standard segmentations and penalize
wrong boundary positions, however, handling near misses leniently which makes them more appropriate
for evaluating text segmentation algorithms than, for instance, recall and precision, well known metrics
stemming from evaluation of information retrieval systems. Pk and WindowDiff can be applied both on
token and on sentence base; our decision for the first variant has been justified with an example. During
evaluation, we have noted that Pk and WindowDiff might not really be appropriate for evaluation of
segmentations on natural documents: The one “correct segmentation” according to which those metrics
are calculated can hardly be defined for such documents.

Four corpora have been used in evaluation one of which, based on Wikipedia, we have generated for
this thesis. Characteristics of the corpora have been summarized, and we have pointed out that they
must be divided into two groups: two artificial corpora whose documents consist of concatenations of
different document parts, and two natural corpora with single-topic documents which are divided into
sub topics.

The process of tuning involved different parameters for our two algorithms. For Cluster Blocks, it could
be seen that usage of semantic relations yields better results than pertaining to pure word reiterations
for building blocks. For Compact Segments, we achieved best results for equally weighted compactness
and boundary strength values.

During evaluation on other corpora, for the Cluster Blocks algorithm, detecting the number of ac-
tual segments turned out to be a hard problem since the number of clusters does not, as we originally
believed, exhibit a dependency on the number of segments. When the number of segments was pro-
vided to the algorithm, it achieved results about 32% for Pk and WindowDiff on Choi’s corpus which
is significantly worse than Choi’s C99 but better than baseline algorithms and still better than Hearst’s
TextTiling. Compact Segments was on the same quality level as C99 (about 12% Pk and 13% WindowDiff
on Choi’s corpus), but could not keep up with Utiyama’s and Isahara’s U00 and LCseg of Galley et al.
which achieve values of 10.5% for Pk and 11.5% WindowDiff on the same corpus. For large numbers of
segments, Compact Segments exhibited slight quality problems.

Concerning the different types of corpora, results revealed significant differences between natural and
artificial corpora as natural documents are much more difficult to segment correctly according to the
only correct gold standard.
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The previous chapter has finally documented the UIMA pipelines which have been used for corpus
generation and evaluation of the new algorithms. Newly implemented UIMA components have been
summed up in an overview table.

6.1 Future Work

In evaluation, we have seen that the Cluster Blocks algorithm indeed achieves better results if not only
word repetitions are used for building blocks, but also semantical clusters. However, the clusters obtained
from Girvan’s and Newton’s clustering algorithm have not always satisfied the expectations: Often, many
very small clusters of one or two terms were found, and one or two very big clusters contained nearly half
the vocabulary of the text. This suggests that results of the Cluster Blocks algorithms could be enhanced
significantly if the clusters were more appropriate and conformed better to the topics of the text. For
that purpose, one could examine clustering results with different semantic measures than we used. The
semantic relatedness values we obtained from the Wikitionary index (see Section 5.3) are often very low
and differ only insignificantly. Better results may be achieved using the Wikipedia index, for instance.
Also, another clustering algorithm would be worth a try although Grineva et al. [GGL09] claim to have
yielded good results with Girvan’s algorithm for finding topical clusters. As a more complicated idea,
one could also consider a clustering algorithm which takes into account edge weights: In our present
algorithm, we discard edges with low semantic relatedness values according to a threshold or a quota,
and then perform the clustering with the remaining edges, ignoring edge weights. If edge weights would
be respected by the clustering algorithm, one could, instead, apply it to the complete graph where edges
with weight 0 would be considered as “not important”. This would also promise more reasonable clus-
ters; however, we did not find an appropriate clustering method for weighted graphs so far and, thus,
fell back on Girvan’s well-proven algorithm for unweighted graphs.

Cluster Blocks can also be improved with respect to automatic detection of the number of boundaries.
This is in the current version, as described in Section 3.1.6, done by using a cutoff value for the boundary
strengths, based on mean value and standard deviation. However, this did not prove to be very stable
as for some texts the algorithm assumed more than 30 boundaries where only 10 have been in the gold
standard. We found Hearst’s TextTiling to run into similar problems during estimating the number of
segment boundaries on the same way; so far, however, we did not find a better solution.

For the Compact Segments algorithm, a main point of improvement could be, in our opinion, the
generation of even more expressive compactness and boundary strength values. This might partially be
achieved by using other semantic resources since, as mentioned, the Wiktionary index often does not
deliver that strong semantic relatedness values.

One could also think about taking into account the frequency of words which, in semantic graphs,
originally vanishes because every word is represented exactly once. For instance, an alternative graph
representation could be used in which the number of vertices for a word matches the number of its occur-
rences, and edge weights between vertices for equal words might be set to 1. This would, consequently,
lead to higher compactness values for texts containing many word reiterations.

Tuning of the number of segments is currently done with the parameter d (see Section 4.4.2) which
tends to be quite small for reasonable numbers of segmentations which impairs reliability of this method
since little variation may have big impact on the number of estimated segments. Therefore, another,
more reliable way for this estimation would be desirable.
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Besides functionality, runtime is an issue which is definitely worth improving it: Both algorithms need
the complete semantic graph to work properly which is costly to build, particularly due to the high num-
ber of semantic relatedness values to be calculated for different pairs of terms. This preprocessing took –
per document – up to an hour of calculation time on a 2 GHz machine. In order to enhance this, instant
calculation of semantic relatedness values must possibly replaced by a large database containing relat-
edness values for most relevant pairs of terms of the corpus. Additionally, more features, e.g., adjectives
and verbs, could be left out in order to obtain a smaller semantic graph.

Runtime of the Cluster Blocks algorithm itself which has, in the current version, complexity O
�

T 5�

(see Section 3.1.7) might be enhanced by a less complex clustering algorithm which allows for a faster
selection of the optimum clustering: As Girvan’s and Newman’s clustering algorithm does not naturally
deliver an optimum clustering but many possible clusterings, each of these have to be analyzed for their
quality which is a main reason for the high complexity of the algorithm. Nevertheless, while preprocess-
ing with building the semantic graph takes dozens of minutes, the actual algorithm could be executed
mostly in less than a minute.

The Compact Segments algorithm had in our experiments with a complexity of O
�

T 3
�

an acceptable
runtime of about 10 seconds per medium-length1 document (ignoring preprocessing) which is mainly
brought about by optimization with dynamic programming (see Section 3.2.6). Hence, this complexity
cannot be reduced significantly.

1 ca. 2000 tokens

75



List of Figures

2.1 Overview of important text segmentation approaches . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Lexical chains illustrating the idea of boundary strengths (adopted from Okumura and

Honda) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Tokenization in TextTiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Lexical Cohesion Profile (adopted from Kozima) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Ranking and clustering (adopted from Choi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Sentence similarity plot for an example text (adopted from Malioutov and Barzilay) . . . . 20
2.7 Construction of the graph (U00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8 Text segmentation for enhancing information retrieval systems . . . . . . . . . . . . . . . . . . 24
3.1 Example text (adopted from the English Wikipedia article “Letter”) clarifying the proposi-

tion that word clusters conform to segment boundaries . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Cluster Blocks Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Example clustering for important terms in the first paragraph of the text shown in Figure

3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Compact Segments Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Partition of the document into blocks and possible segment candidates . . . . . . . . . . . . . 35
3.6 Semantic graph of a segment candidate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Calculation of the boundary strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 Example for calculation of the boundary strength . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1 Calculation of the Pk metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Visualization of the problem why Pk may ignore segment boundaries (adopted from Pevzner

and Hearst [PH02]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Step 3 of the example in Figure 4.1 for WindowDiff . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Structure of a Wikipedia article (adopted from Zesch et al. [ZMG08]) . . . . . . . . . . . . . 50
4.5 Format of Choi’s corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6 WindowDiff results of C99 and TextTiling on artificial (bright) and natural (dark) corpora 56
4.7 Pk and WindowDiff results of different algorithms on Choi’s corpus . . . . . . . . . . . . . . . 57
4.8 WindowDiff results of different algorithms on Choi’s corpus with and without provided

number of segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.9 WindowDiff results of different algorithms on the Wikipedia corpus with and without

provided number of segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.10 WindowDiff results of Compact Segments with provided number of segments for the TDT

corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 UIMA pipeline for generation of the Wikipedia corpus . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 UIMA preprocessing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 UIMA evaluation pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Example output file of the PkWindowDiffEvaluator . . . . . . . . . . . . . . . . . . . . . . . . . 66

76



List of Tables

2.1 Overview of presented text segmentation methods . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Sentence lengths of the example text at the beginning of section 4.2.2 . . . . . . . . . . . . . 48
4.2 Comparison of Pk and WindowDiff results for the example text at the beginning of section

4.2.2 on sentence and token base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Characteristics of evaluation corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Best configurations of the Cluster Blocks algorithm for the tuning corpus . . . . . . . . . . . 54
4.5 Best configurations of the Compact Segments algorithm for the tuning corpus with given

number of segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Best configurations of the Compact Segments algorithm for the tuning corpus without

given number of segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Collected Pk results of different algorithms on different corpora . . . . . . . . . . . . . . . . . 55
4.8 Collected WindowDiff results of different algorithms on different corpora . . . . . . . . . . . 56
4.9 Collected Pk results of different algorithms on different corpora when the gold standard

number of segments is provided . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.10 Collected WindowDiff results of different algorithms on different corpora when the gold

standard number of segments is provided . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1 Overview of implemented UIMA components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

77



Bibliography

[BBL97] Doug Beeferman, Adam Berger, and John Lafferty. Text segmentation using exponential
models. In In Proceedings of the Second Conference on Empirical Methods in Natural Language
Processing, pages 35–46, 1997.

[BBL99] Doug Beeferman, Adam Berger, and John Lafferty. Statistical models for text segmentation.
In Machine Learning, pages 177–210, 1999.

[BE97] Regina Barzilay and Michael Elhadad. Using lexical chains for text summarization. In In
Proceedings of the ACL Workshop on Intelligent Scalable Text Summarization, pages 10–17,
1997.

[BRS92] Rodrigo A. Botafogo, Ehud Rivlin, and Ben Shneiderman. Structural analysis of hypertexts:
identifying hierarchies and useful metrics. ACM Trans. Inf. Syst., 10(2):142–180, 1992.

[Cho99] F. Y. Y. Choi. Jtexttile: A free platform independent text segmentation algorithm, 1999.

[Cho00] Freddy Y. Y. Choi. Advances in domain independent linear text segmentation. In Proceedings
of the 1st North American chapter of the Association for Computational Linguistics conference,
pages 26–33, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[EB08] Jacob Eisenstein and Regina Barzilay. Bayesian unsupervised topic segmentation. In EMNLP
’08: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages
334–343, Morristown, NJ, USA, 2008. Association for Computational Linguistics.

[Eis09] Jacob Eisenstein. Hierarchical text segmentation from multi-scale lexical cohesion. In
NAACL ’09: Proceedings of Human Language Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for Computational Linguistics, pages 353–361,
Morristown, NJ, USA, 2009. Association for Computational Linguistics.

[ER03] Leo Egghe and Ronald Rousseau. A measure for the cohesion of weighted networks. J. Am.
Soc. Inf. Sci. Technol., 54(3):193–202, 2003.

[ESK01] Levent Ertöz, Michael Steinbach, and Vipin Kumar. Finding topics in collections of docu-
ments: A shared nearest neighbor approach. In In Proceedings of Text Mine’01, First SIAM
International Conference on Data Mining, 2001.

[Fel98] Christiane Fellbaum. WordNet: An electronic lexical database. MIT Press, 1998.

[Fer07] Olivier Ferret. Finding document topics for improving topic segmentation. In Proceedings
of the 45th Annual Meeting of the Association of Computational Linguistics, pages 480–487,
Prague, Czech Republic, June 2007. Association for Computational Linguistics.

[GGL09] Maria Grineva, Maxim Grinev, and Dmitry Lizorkin. Extracting key terms from noisy and
multitheme documents. In WWW ’09: Proceedings of the 18th international conference on
World wide web, pages 661–670, New York, NY, USA, 2009. ACM.

[GM07] Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness using
wikipedia-based explicit semantic analysis. In IJCAI’07: Proceedings of the 20th interna-
tional joint conference on Artifical intelligence, pages 1606–1611, San Francisco, CA, USA,
2007. Morgan Kaufmann Publishers Inc.

78



[GMFLJ03] Michel Galley, Kathleen McKeown, Eric Fosler-Lussier, and Hongyan Jing. Discourse seg-
mentation of multi-party conversation. In ACL ’03: Proceedings of the 41st Annual Meeting
on Association for Computational Linguistics, pages 562–569, Morristown, NJ, USA, 2003.
Association for Computational Linguistics.

[Hea93] Marti A. Hearst. Texttiling: A quantitative approach to discourse segmentation, 1993.

[Hea94] Marti A. Hearst. Multi-paragraph segmentation of expository text, 1994.

[Hea97] Marti A. Hearst. Texttiling: Segmenting text into multi-paragraph subtopic passages. Com-
putational Linguistics, 23(1):33–64, 1997.

[HH76] M. A. K. Halliday and R. Hasan. Cohesion in English. Longman, London, 1976.

[HP93] Marti A. Hearst and Christian Plaunt. Subtopic structuring for full-length document access.
In SIGIR ’93: Proceedings of the 16th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 59–68, New York, NY, USA, 1993. ACM.

[KF67] H. Kucera and W. N. Francis. Computational analysis of present-day American English. Brown
University Press, Providence, RI, 1967.

[KF93] Hideki Kozima and Teiji Furugori. Similarity between words computed by spreading activa-
tion on an english dictionary. In Proceedings of the sixth conference on European chapter of
the Association for Computational Linguistics, pages 232–239, Morristown, NJ, USA, 1993.
Association for Computational Linguistics.

[Koz93] Hideki Kozima. Text segmentation based on similarity between words. In Proceedings of
the 31st annual meeting on Association for Computational Linguistics, pages 286–288, Mor-
ristown, NJ, USA, 1993. Association for Computational Linguistics.

[LALS07] Sylvain Lamprier, Tassadit Amghar, Bernard Levrat, and Frederic Saubion. On evaluation
methodologies for text segmentation algorithms. In ICTAI ’07: Proceedings of the 19th IEEE
International Conference on Tools with Artificial Intelligence, pages 19–26, Washington, DC,
USA, 2007. IEEE Computer Society.

[Lin98] Dekang Lin. An information-theoretic definition of similarity. In ICML ’98: Proceedings of
the Fifteenth International Conference on Machine Learning, pages 296–304, San Francisco,
CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[MB06] Igor Malioutov and Regina Barzilay. Minimum cut model for spoken lecture segmenta-
tion. In In Proceedings of the Annual Meeting of the Association for Computational Linguistics
(COLING-ACL 2006, pages 25–32, 2006.

[MH91] J. Morris and G. Hirst. Lexical cohesion computed by thesaural relations as an indicator of
the structure of text. Computational Linguistics, 17:21–48, 1991.

[MH06] Saif Mohammad and Graeme Hirst. Distributional measures of concept-distance: a task-
oriented evaluation. In EMNLP ’06: Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing, pages 35–43, Morristown, NJ, USA, 2006. Association for
Computational Linguistics.

[MH10] Meghana Marathe and Graeme Hirst. Computational Linguistics and Intelligent Text Pro-
cessing, chapter Lexical Chains Using Distributional Measures of Concept Distance, pages
291–302. Springer Berlin / Heidelberg, 2010.

79



[MZM+08] Christof Müller, Torsten Zesch, Mark-Christoph Müller, Delphine Bernhard, Kateryna Igna-
tova, Iryna Gurevych, and Max Mühlhäuser. Flexible uima components for information
retrieval research. In Proceedings of the LREC 2008 Workshop ’Towards Enhanced Interoper-
ability for Large HLT Systems: UIMA for NLP’, pages 24–27, Marrakech, Morocco, Mai 2008.

[NG04] M E Newman and M Girvan. Finding and evaluating community structure in networks. Phys
Rev E Stat Nonlin Soft Matter Phys, 69(2):026113.1–15, February 2004.

[OH94] Manabu Okumura and Takeo Honda. Word sense disambiguation and text segmentation
based on lexical cohesion, 1994.

[PC97] Jay M. Ponte and W. Bruce Croft. Text segmentation by topic. In ECDL ’97: Proceedings of the
First European Conference on Research and Advanced Technology for Digital Libraries, pages
113–125, London, UK, 1997. Springer-Verlag.

[PGKT06] Matthew Purver, Thomas L. Griffiths, Konrad P. Körding, and Joshua B. Tenenbaum. Un-
supervised topic modelling for multi-party spoken discourse. In ACL-44: Proceedings of
the 21st International Conference on Computational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics, pages 17–24, Morristown, NJ, USA, 2006.
Association for Computational Linguistics.

[PH02] Lev Pevzner and Marti A. Hearst. A critique and improvement of an evaluation metric for
text segmentation. Computational Linguistics, 28:1–19, 2002.

[Por97] M. F. Porter. An algorithm for suffix stripping, pages 313–316. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1997.

[Rey98] Jeffrey C. Reynar. Topic segmentation: Algorithms and applications, 1998.

[SAB93] Gerard Salton, J. Allan, and C. Buckley. Approaches to passage retrieval in full text infor-
mation systems, 1993.

[SM86] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., New York, NY, USA, 1986.

[SM02] H. Grogory Silber and Kathleen F. McCoy. Efficiently computed lexical chains as an interme-
diate representation for automatic text summarization. Comput. Linguist., 28(4):487–496,
2002.

[TVN10] George Tsatsaronis, Iraklis Varlamis, and Kjetil Norvag. Semanticrank: Ranking keywords
and sentences using semantic graphs. In Proceedings of COLING’2010, Beijing, China, August
2010, 2010.

[UI01] Masao Utiyama and Hitoshi Isahara. A statistical model for domain-independent text seg-
mentation. In ACL ’01: Proceedings of the 39th Annual Meeting on Association for Compu-
tational Linguistics, pages 499–506, Morristown, NJ, USA, 2001. Association for Computa-
tional Linguistics.

[XC96] Jinxi Xu and W. Bruce Croft. Query expansion using local and global document analysis.
In SIGIR ’96: Proceedings of the 19th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 4–11, New York, NY, USA, 1996. ACM.

[Yaa97] Yaakov Yaari. Segmentation of expository texts by hierarchical agglomerative clustering. In
Proceedings of RANLP’97, Bulgaria, 1997.

80



[Zes09] Torsten Zesch. Study of Semantic Relatedness of Words Using Collaboratively Constructed
Semantic Resources. PhD thesis, Darmstadt University of Technology, 2009.

[ZMG08] Torsten Zesch, Christof Müller, and Iryna Gurevych. Extracting lexical semantic knowledge
from wikipedia and wiktionary, 2008.

81


	Introduction
	Motivation
	Goals
	Structure

	Background
	General Concepts of Natural Language Processing
	Preprocessing
	Similarity and Cohesion
	Lexical-Semantic Graphs

	Text Segmentation
	Definition
	Categorization
	Segment Cues

	Related Work
	Construction of Lexical Chains
	Lexical Chains
	Lexical Scores
	Clusters/Partitions
	Probabilistic Models
	Summary Table

	Applications
	Text Summarization
	Information Retrieval
	Language Modeling
	Hypertext Linking
	Anaphora Resolution


	Graph-Based Algorithms for Text Segmentation
	Cluster Blocks
	Quick Overview
	Feature Selection
	Building the Semantic Graph
	Graph Clustering
	Finding Blocks
	Finding Segment Boundaries
	Runtime Analysis

	Maximum Compact Segments
	Quick Overview
	Division into Blocks
	Segment Candidates
	Segment Quality
	Dynamic Programming for Optimization
	Runtime Analysis


	Evaluation
	Methodology
	Metrics
	Pk
	WindowDiff
	Tokens or Sentences?

	Corpora
	Wikipedia Corpus
	Format

	Tuning
	Tuning Corpora
	Parameters
	Tuning Results

	Results

	Implementation
	UIMA
	Corpus Generation
	Preprocessing
	Evaluation
	Cluster Blocks
	Maximum Compact Segments
	Other Issues of Implementation
	Component Overview

	Summary
	Future Work

	List of Figures
	List of Tables
	Bibliography

