
Transformation from Web PSM to Code

Yen-Chieh Huang1,2, Chih-Ping Chu1, Zhu-An Lin1, Michael Matuschek3
1Department of Computer Science and Information Engineering,

National Cheng-Kung University, Tainan, Taiwan
2Department of Information Management, Meiho Institute of Technology, Pingtung, Taiwan

3Department of Computer Science, University of Duesseldorf, Germany
E-mail :p7894121@mail.ncku.edu.tw

Abstract

This research proposes how class diagrams
that use the Unified Modeling Language (UML) can
be converted to a user interface of a Web page using
the Model Driven Architecture (MDA). From the
Platform Independent Model (PIM) we go to the Web
Platform Specific Model (PSM), and then to the
direct generation of code templates for Web page
applications. In this research the class diagrams are
drawn with the Rational Rose, then, using our
self-developed program, these diagrams can be
transformed into code templates with Servlets, JSP,
and JAVA. We implement a case study for verification,
and then calculate the transformation rate with lines
of code (LOC) coverage rate by measuring the LOC
after transforming and after the system is finished.
The results show the transformation rate is about
thirty-six to fifty percent, which represents that this
research can help the programmers to greatly reduce
the developing period.

Keywords: Model Driven Architecture, Platform
Independent Model, Platform Specific Model

Introduction

Software is largely intangible [1]. Software

development gradually transforms from structure
analysis and design to object-oriented analysis and
design, but the software industry is labor intensive,
even after finishing system analysis, the programmers
still start from scratch and write the code. Especially
in the application software development for Web
pages, in the last few years, there are many
researches have been proposed to reduce code and
development time. This research focuses on how
class diagrams can be transformed into Web pages,
the results could reduce the development time for
Web pages programmers. The common Web pages
developing tools include JSP, PHP, and ASP etc.. The
platform used in this research is JAVA, the Web pages
developing tool is JSP, relevant technology are JSP,
Servlets and Ajax. This research uses IBM Rational
Rose as the CASE tool for class diagram object
modeling, and the user interface code templates are
then created via the conversion program written by
ourselves.

2 Literature Review

 The object-oriented paradigm has gained
popularity in various guises not only in programming
languages, but also in user interfaces, operating
systems, databases, and other areas [2]. Classification,
object identity, inheritance, encapsulation, and
polymorphism and overload are the most prominent
concepts of object-oriented systems [3]. The UML is
a modeling language that helps describing and
designing software systems, particularly software
systems built using the object-oriented approach.
This research uses Robustness diagrams [4] for
describing the application environment of Web pages.
 The MDA is a framework for software
development defined by the Object Management
Group (OMG). It is the importance of models in the
software development process [5, 6]. The MDA
development life cycle included four kinds of models.
Computation Independent Models (CIM) describe
the requirements for the system and represent the
highest-level business model. It is sometimes called
“domain model” or “business model”. A PIM
describes a system without any knowledge of the
final implementation platform, and this PIM is
transformed into one or more PSMs. A PSM is
tailored to specify a system in terms of the
implementation constructs that are available in one
specific implementation technology. The final step in
the development is the transformation of each PSM to
code. The CIM, PIM, PSM, and code are shown as
artifacts of different steps in the software
development life cycle, which is shown in Figure 1.

Figure 1. MDA software development life cycle and
output artifacts

The most widely used architecture in the

environment of Web applications is Browser/Server
(B/S) approach, an example for a specific
Client/Server (C/S) structure [7]. The basic
architecture of Web systems includes a client browser,
a Web server, and a connecting network. The

16

principal protocol for communication is the
Hypertext Transfer Protocol (HTTP). The principal
language for expressing the context between the
client and the server is Hypertext Markup
Language (HTML) [8].

Relevant technologies for today’s Web
applications include CGI, Applets, ActiveX controls,
plug-ins and Ajax etc. To explain the general
structure of such a Client/Server system, a Web page
can be modeled into a class, and a client page can be
modeled into another class, which must be drawn by
the method of extending UML [9].

3 Transformation from Class Diagrams to Web
Applications

In the concept of MDA we must first create the

PSM design for a specific Web application. A Web
page can be expressed by class diagrams where every
stereotype (including stereotype classes and
associations) is defined in order to describe the
situation of every Web page, then the Web class
diagrams can be drawn and, in the final step, it can be
transformed into a code template.

3.1 Web Pages Components Mapping Methods

3.1.1 Stereotypes

In order to extend its function of use in UML,
we can use stereotypes to strengthen and define the
class model. Stereotypes allow us to get a more
proper description to the class objects, they can be
used for describing and limiting the characteristics of
the module components, and they exist in standard
UML components [10]. In this paper, we use Rational
Rose to define control classes and strengthen the
classes that describe the Web pages. This research
proposes stereotype class mapping methods as
described in Table 1.

3.1.2 Association Stereotypes
 In order to implement Web modules, it is vital
to control user-site and server-site requests and
responses via HTML in the network. Using
association stereotypes between classes is an optional
way to model HTTP parameters, and it is useful when
parameters are relatively complex or have special
semantics and extra documentation is necessary.
Therefore, this research proposes the mapping
methods of association stereotypes between classes as
shown in Table 2.

3.2 PSM to Code Template Transformation

 Every stereotype class has different
transformation model, in here; we describe a Servlet
transformation rule as an example. The attributes and

Table 1. Stereotypes Mapping in Class
Stereotypes Description

<<Servlet>>

Responsible for showing the request of
client site, and communicating with
back end module The methods of this
class contain at least Get() or Post().

<<Server
Page>>

A server page represents the server site
information, the attributes and methods
in this class are implemented by
Scripting Element.

<<Client
Page>>

A client page represents the <HTML>
element, which has two principal child
elements: <HEAD> and <BODY>.
The <HEAD> represents structural
information about the Webpage; the
<BODY> element represents the
majority of the displayed content [8].

<<Form>>

The HTML <<Form>> stereotype class
represents some attributes, such as
input boxes, text areas, radio buttons,
check boxes, and hidden fields, these
classes map directly to a <Form>
element [8].

<<Model>>

A <<model>> stereotype class
represents the logical operation of
business processes, which is
implemented by JAVA. Its meaning is
the same as traditional class diagrams,
therefore a class diagram notation can
ignore the <<Model>> stereotype in
this research.

Table 2. Association Stereotypes
Association Description

<<Build>>
This is an action of a Servlet or a
Server Page creates a Client Page or
a Form.

<<Link>> [8]
A relationship between a client page
and a server-side resource or Web
page.

<<Include>>[8] A directional association from a Web
page to another Web page.

<<Redirect>>

The client page should be
automatically replaced with another
client page, where Post and Get are
two methods to achieve this, among
others.

<<Object>> [8]

This represents many types of
embedded objects, such as Applet,
ActiveX controls.
The parameters for the object are
defined in the parameterized class.

<<Asynchronous>> The client page sends an
asynchronous request to Servlet.

<<Submit>>

A relationship between a <<Form>>
and a server page. Post or Get are
used for submitting, among other
methods.

methods in Servlet are implemented by traditional
JAVA, but the difference lies in the association
between classes. Generally speaking, a Servlet must

17

accept a Form request, and then a redirection to
another Webpage occurs. Its transformation steps are
as follow:
1. <<Form>> request- According to Form request the

association names (Get or Post), then declare the
method of doGet or doPost.

2. <<Client Page>> asynchronous- In Servlet,
implement the asynchronous pattern and then
declare the method doAsynWork.

3. << Redirect >>- Generate the code as follow:
RequestDispatcher view =
request.getRequestDispatcher("/****Redirect Page
***/");
view.forward(request, response);

4 Measurement

For the experimental evaluation we adopt
“code coverage” to calculate the result. Code
coverage is a measure used in software testing. It
describes the degree to which the source code of a
program has been tested. In this research, code
coverage represents the ratio of information in class
diagrams to the information in the full implemented
system. Talking about information, we define the way
of measurement and standard of quantification
analysis as follows:

4.1 The Way of Measurement

In a software development project, software
measurement can be achieved in a lot of ways, such
as lines of code (LOC), function point (FP), object
point, COCOMO, and Function requirement etc. We
choose LOC, and the reasons are:
1. The value is easily measured.
2. There is a direct relationship to the measurement

of person-months (effort).
3. Effort is also a size-oriented software metric [11].
For a class diagram, it expresses static information as
well as the relation between classes, and the resulting
LOC can be easily counted automatically after
transformation.

4.2 Counting Standard

LOC counters can be designed to count

physical lines, logical lines, or source lines by using a
coding standard and a physical LOC counter. For
different kinds of Coding Style, the LOC turns out
differently, so we need to define the Coding Standard
and Counting Standard which we use for our
measurement.
In this research, line counters are defined as follows:
1. XML has defined and self-defined tags in Web

pages, a set of tag counts as one line.
2. If the web pages are not XML, (e.g. Scripts,

Scriptlets, and Expressions), every line of code
counts as one line.

5 Case Study
5.1 Experiment Steps
 The CASE Tool selected for this experiment is
the Rational Rose from IBM which transforms class
diagrams into code templates. First, Rational Rose is
used to draw the class diagrams, then the labels of the
stereotypes are added in the class diagrams, and lastly
we utilize the program developed by ourselves to
transform the class diagrams into code templates.

5.2 Case Description
 To verify the theoretical structure proposed by
this research we use the practical example of a
Login/Register System. It has three main functions in
the Use Case Diagram. There are “Account
registration”, “User login”, and “Display Home
page”.

Figure 3 is a class diagram of PIM of a user
Login/Register System which reflects the Use Case
diagrams. In the preliminary design, which uses
Robustness diagrams for description, we include the
entity classes, boundary classes and control classes.
Boundary classes represent the shown Web page
content, i.e. the information in the system, such as the
account and password fields that LoginClient offers
for the user login. Control classes deal with the
parameter request by the boundary classes, such as
login request to LoginServlet of LoginClient, and
they are determined to call out Register of the Entity
class to deal with the request.

User

DBManagerRegisterLoginServlet

RegisterServlet

Index

RegisterClient

Post

<<Submit>>

<<Redirect>>

LoginClient

Post
<<Submit>>

<<Redirect>>

<<Redirect>>

Figure 3. The PIM of a Login/Register System

Use Case 1: Account Registration
 This use case includes the boundary classes
RegisterClient, RegisterForm, and RegisterBackForm,
the control class RegisterServlet, and the entity class
Register as back end. Between the classes
RegisterClient and RegisterServlet, there are
asynchronous relations, so the Ajax pattern will be
used for realizing the code transformation.When the
user succeeds to register, the class RegisterServlet
will redirect him to the Index home page.
Use Case 2: User Login
 This use case includes the boundary classes
LoginClient, LoginForm, and LoginToRegister and
the control class LoginServlet. When the user inputs
his account and password, the class LoginForm will
send a request to the class LoginServlet using the
Post method, and then the class LoginServlet makes
the decision if the user is redirected to the Index or

18

the class LoginClient.
Use Case 3: Display the home page
 The home page includes Index and
AVLTreeApplet, and is displayed by a Java Applet. It
is described how the Applet object is loaded and
integrated into the Index home page via object
parameter classes.

5.3 Measurement Result
 We measured the LOC of the code template for
each use case after transformation and the LOC of the
finished system by the previously defined counting
standard. The data is shown in Table 3.

Table 3. Measurement Result
 LOC of Code

template after
transform

LOC of
finished
system

Transform
ratio

Use Case 1: Account Registration
registerclient.html 42 95 44%
RegisterServlet.java 14 38 37%
Use Case 2: User Login
loginclient.html 11 22 50%
LoginServlet.java 11 21 50%
Use Case 3: Display home page
index.jsp 5 14 36%

The results show that the transformation rate is
about thirty-six to fifty percent. When we focus on
the part not responsible for the program logic in this
class, this is a relatively high proportion. The
transformation into the code template according to
the defined Web page class diagrams represents the
static structure model of the system, consisting of
attributes, operations, and associations between
classes. However, the system operation logic cannot
be expressed in detail. This part is still up to the
programmers.

6 Conclusion
 Nowadays, Web code must be programmed
from scratch even if the PSM analysis is finished, but
in this research we proposed a method of code
template transformation. By adding stereotypes to
class diagrams, they can describe Web pages,
synchronous or asynchronous relations, and we can
transform them into code templates with distinct
logical, control, and view code blocks using
JSP&Servlets or the MVC model.

Asynchronous relations can be realized using
many methods. This research adopts Foundations of
Ajax to express that the client site responds to the
server site. Furthermore, reverse engineering is a
factor to be considered, so that maybe change of the
code can be reflected in the Web class diagrams
afterwards.
 For the case study example in this research, a
class diagram transformed into code templates can
only be achieved about thirty-six to fifty percent of
the whole system, which expresses that it does not
discover all the sufficient information we want.

Because of the definition of class diagrams and

the representing models, they can only express static
class content and relationships. There are also other
aspects that cannot be described in design and
transformation for more complicated program logic.

For this reason, we can make use of sequence
diagrams, and state diagrams, in order to describe the
dynamic call and transfer between the states. So, the
further research will study how to create Web code
templates from interaction diagrams and behavior
diagrams.

Reference

[1] Lethbridge, T.C. and Laganiere, R.,
Object-Oriented Software Engineering:
Practical Software Development using UML
and JAVA Second Edition, Mcgraw-Hill, 2005.

[2] Nierstrasz, O., A Survey of Object-Oriented
Concepts, In Object-Oriented Concepts,
Databases and Applications, W. Kim and F.
Lochovsky, , ACM Press and Addison-Wesley, 1989,
pp. 3-21.

[3] Gottlob, G., Schrefl, M. and Rock, B.,
Extending Object-Oriented Systems with Roles,
ACM Transactions on Information Systems, Vol.
14, No. 3, Jul. 1996, pp. 268-296.

[4] Ambler, S.W., The Object Primer: Agile
Model-Driven Development with UML 2.0,
Cambridge Univ Pro, 2004.

[5] Kleppe, A., Warmer, J. and Bast, W., MDA
Explained: The Model Driven Architecture™:
Practice and Promise, Addison Wesley, Apr.
2003.

[6] Koch, N., Classification of model
transformation techniques used in UML-based
Web engineering, IET Software, Vol. 1, Issue 3,
Jun. 2007, pp. 98-111.

[7] Li, J., Chen, J. and Chen, P., Modeling Web
Application Architecture with UML, IEEE
CHF, 30 Oct. 2000, pp. 265-274.

[8] Conallen, J., Building Web Applications with
UML Second Edition, Addison Wesley, 2002.

[9] Conallen, J., Modeling Web Application
Architectures with UML, Communications of
the ACM, Vol. 42, No. 10, Oct. 1999.

[10] Djemaa, R.B., Amous, I., and Hamadou, A.B.,
WA-UML: Towards a UML extension for
modeling Adaptive Web Applications, Eighth
IEEE International Symposium on Web Site
Evolution, 2006, pp. 111-117.

[11] Humphrey, W.S., PSP A Self-Improvement
Process for Software Engineers, Addison
Wesley, Mar. 2005.

19

