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Abstract

Coarse-grained semantic categories such as
supersenses have proven useful for a range
of downstream tasks such as question an-
swering or machine translation. To date,
no effort has been put into integrating the
supersenses into distributional word rep-
resentations. We present a novel joint em-
bedding model of words and supersenses,
providing insights into the relationship be-
tween words and supersenses in the same
vector space. Using these embeddings in
a deep neural network model, we demon-
strate that the supersense enrichment leads
to a significant improvement in a range of
downstream classification tasks.

1 Introduction

The effort of understanding the meaning of words is
central to the NLP community. The word sense dis-
ambiguation (WSD) task has therefore received a
substantial amount of attention (see Navigli (2009)
or Pal and Saha (2015) for an overview). Words in
training and evaluation data are usually annotated
with senses taken from a particular lexical semantic
resource, most commonly WordNet (Miller, 1995).
However, WordNet has been criticized to provide
too fine-grained distinctions for end level applica-
tions. e.g. in machine translation or information
retrieval (Izquierdo et al., 2009). Although some
researchers report an improvement in sentiment pre-
diction using WSD (Rentoumi et al., 2009; Akkaya
et al., 2011; Sumanth and Inkpen, 2015), the pub-
lication bias toward positive results (Plank et al.,
2014) impedes the comparison to experiments with
the opposite conclusion, and the contribution of
WSD to downstream document classification tasks
remains “mostly speculative”(Ciaramita and Altun,
2006), which can be attributed to the too subtle

sense distinctions (Navigli, 2009). This is why su-
persenses, the coarse-grained word labels based
on WordNet’s (Fellbaum, 1998) lexicographer files,
have recently gained attention for text classification
tasks. Supersenses contain 26 labels for nouns, such
as ANIMAL, PERSON or FEELING and 15 labels
for verbs, such as COMMUNICATION, MOTION or
COGNITION. Usage of supersense labels has been
shown to improve dependency parsing (Agirre et
al., 2011), named entity recognition (Marrero et
al., 2009; Rüd et al., 2011), non-factoid question
answering (Surdeanu et al., 2011), question gen-
eration (Heilman, 2011), semantic role labeling
(Laparra and Rigau, 2013), personality profiling
(Flekova and Gurevych, 2015), semantic similar-
ity (Severyn et al., 2013) and metaphor detection
(Tsvetkov et al., 2013).

An alternative path to semantic interpretation
follows the distributional hypothesis (Harris, 1954).
Recently, word vector representations learned with
neural-network based language models have con-
tributed to state-of-the-art results on various lin-
guistic tasks (Bordes et al., 2011; Mikolov et al.,
2013b; Pennington et al., 2014; Levy et al., 2015).

In this work, we present a novel approach for
incorporating the supersense information into the
word embedding space and propose a new method-
ology for utilizing these to label the text with su-
persenses and to exploit these joint word and su-
persense embeddings in a range of applied text
classification tasks. Our contributions in this work
include the following:

• We are the first to provide a joint word-
and supersense-embedding model, which we
make publicly available1 for the research com-
munity. This provides an insight into the word
and supersense positions in the vector space

1https://github.com/UKPLab/
acl2016-supersense-embeddings



through similarity queries and visualizations,
and can be readily used in any word embed-
ding application.

• Using this information, we propose a super-
sense tagging model which achieves competi-
tive performance on recently published social
media datasets.

• We demonstrate how these predicted super-
senses and their embeddings can be used in a
range of text classification tasks. Using a deep
neural network architecture, we achieve an im-
provement of 2-6% in accuracy for the tasks of
sentiment polarity classification, subjectivity
classification and metaphor prediction.

2 Related Work

2.1 Semantically Enhanced Word
Embeddings

An idea of combining the distributional informa-
tion with the expert knowledge is attractive and
has been newly pursued in multiple directions. One
of them is creating the word sense or synset em-
beddings (Iacobacci et al., 2015; Chen et al., 2014;
Rothe and Schütze, 2015; Bovi et al., 2015). While
the authors demonstrate the utility of these em-
beddings in tasks such as WSD, knowledge base
unification or semantic similarity, the contribution
of such vectors to downstream document classi-
fication problems can be challenging, given the
fine granularity of the WordNet senses (cf. the dis-
cussion in Navigli (2009)). As discussed above,
supersenses have been shown to be better suited for
carrying the relevant amount of semantic informa-
tion. An alternative approach focuses on altering
the objective of the learning mechanism to capture
relational and similarity information from knowl-
edge bases (Bordes et al., 2011; Bordes et al., 2012;
Yu and Dredze, 2014; Bian et al., 2014; Faruqui
and Dyer, 2014; Goikoetxea et al., 2015). While, in
principle, supersenses could be seen as a relation
between a word and its hypernym, to our knowl-
edge they have not been explicitly employed in
these works. Moreover, an important advantage of
our explicit supersense embeddings compared to
the retrained vectors is their direct interpretability.

2.2 Supersense Tagging
Supersenses, also known as lexicographer files or
semantic fields, were originally used to organize
lexical-semantic resources (Fellbaum, 1990). The

supersense tagging task was introduced by Cia-
ramita and Johnson (2003) for nouns and later
expanded for verbs (Ciaramita and Altun, 2006).
Their state-of-the-art system is trained and eval-
uated on the SemCor data (Miller et al., 1994)
with an F-score of 77.18%, using a hidden Markov
model. Since then, the system, resp. its reimple-
mentation by Heilman2, was widely used in applied
tasks (Agirre et al., 2011; Surdeanu et al., 2011;
Laparra and Rigau, 2013). Supersense taggers have
then been built also for Italian (Picca et al., 2008),
Chinese (Qiu et al., 2011) and Arabic (Schneider et
al., 2013). Tsvetkov et al. (2015) proposes the us-
age of SemCor supersense frequencies as a way to
evaluate word embedding models, showing that a
good alignment of embedding dimensions to super-
senses correlates with performance of the vectors
in word similarity and text classification tasks. Re-
cently, Johannsen et al. (2014) introduced a task
of multiword supersense tagging on Twitter. On
their newly constructed dataset, they show poor do-
main adaptation performance of previous systems,
achieving a maximum performance with a search-
based structured prediction model (Daumé III et
al., 2009) trained on both Twitter and SemCor data.
In parallel, Schneider and Smith (2015) expanded
a multiword expression (MWE) annotated corpus
of online reviews with supersense information, fol-
lowing an alternative annotation scheme focused
on MWE. Similarly to Johannsen et al. (2014),
they find that SemCor may not be a sufficient re-
source for supersense tagging adaption to different
domains. Therefore, in our work, we explore the
potential of using an automatically annotated Ba-
belfied Wikipedia corpus (Scozzafava et al., 2015)
for this task.

3 Building Supersense Embeddings

To learn our embeddings, we adapt the freely avail-
able sample of 500k articles of Babelfied English
Wikipedia (Scozzafava et al., 2015). To our knowl-
edge, this is one of the largest published and evalu-
ated sense-annotated corpora, containing over 500
million words, of which over 100 million are anno-
tated with Babel synsets, with an estimated synset
annotation accuracy of 77.8%. Few other automati-
cally sense-annotated Wikipedia corpora are avail-
able (Jordi Atserias and Attardi, 2008; Reese et

2https://github.com/kutschkem/
SmithHeilmann_fork/tree/master/
MIRATagger



1 About 10.9% of families were below
the poverty line, including 13.6% of those
under age 18.

2 About 10.9% of N.GROUP were below the
N.POSSESSION V.CHANGE 13.6% of those
under N.ATTRIBUTE 18.

3 About 10.9% of FAMILIES N.GROUP were below
the POVERTY LINE N.POSSESSION
INCLUDING V.CHANGE 13.6% of those under
AGE N.ATTRIBUTE 18.

Table 1: Example of plain (1), generalized (2) and
disambiguated (3) Wikipedia

al., 2010). However, their annotation quality was
assessed only on the training domain and as At-
serias et al. state (p.2316): “Wikipedia text differs
significantly ... from the corpora used to train the
taggers ... Therefore the quality of these NLP pro-
cessors is considerably lower than the results of
the evaluation in-domain.”

We map the Babel synsets to WordNet 3.0
synsets (Miller, 1995) using the BabelNet API
(Navigli and Ponzetto, 2012), and map these
synsets to their corresponding WordNet’s super-
sense categories (Miller, 1990; Fellbaum, 1990).
For the nested named entities, only the largest
BabelNet span is considered, hence there are no
nested supersense labels in our data. In this manner
we obtain an alternative Wikipedia corpus, where
each word is replaced by its corresponding super-
sense (see Table 1, second row) and another al-
ternative corpus where each word has its super-
sense appended (Table 1, third row). Using the Gen-
sim (Řehůřek and Sojka, 2010) implementation of
Word2vec (Mikolov et al., 2013a), we applied the
skip-gram model with negative sampling on these
three Wikipedia corpora jointly (i.e., on the rows
1, 2 and 3 in Table 1) to produce continuous rep-
resentations of words, supersense-disambiguated
words and standalone supersenses in one vector
space based on the distributional information ob-
tained from the data. 3 The benefits of learning this
information jointly are threefold:

1. Vectorial representations of the original words
are altered (compared to training on text only),
taking into account the similarity to super-
senses in the vector space

3The embeddings are learned using skip-gram as train-
ing algorithm with downsampling of 0.001 higher-frequency
words, negative sampling of 5 noise words, minimal word fre-
quency of 100, window of size 2 and alpha of 0.025, using 10
epochs to produce 300-dimensional vectors. Our experiments
with less dimensions and with the CBOW model performed
worse.

2. Standalone supersenses are positioned in the
vector space, enabling insightful similarity
queries between words and supersenses, esp.
for unannotated words

3. Disambiguated word+supersense vectors of
annotated words can be employed similarly
to sense embeddings (Iacobacci et al., 2015;
Chen et al., 2014) to improve downstream
tasks and serve as input for supersense disam-
biguation or contextual similarity systems

In the following, the designation WORDS de-
notes the experiments with the word embeddings
learned on plain Wikipedia text (as in row 1 of
Table 1) while the designation SUPER denotes
the experiments with the word embeddings learned
jointly on the supersense-enriched Wikipedia (i.e.,
rows 1, 2 and 3 in Table 1 together).

4 Qualitative Analysis

4.1 Verb Supersenses

Table 2 shows the most similar word vectors to each
of the verb supersense vectors using cosine simi-
larity. Note that while no explicit part-of-speech
information is specified, the most similar words
hold both the semantic and syntactic information -
most of the assigned words are verbs.

VERBS
BODY wearing, injured, worn, wear, wounded,

bitten, soaked, healed, cuffed, dressed
CHANGE changed, started, added, dramatically, expanded

drastically, begun, altered, shifted, transformed
COGNITION known, thought, consider, regarded, remembered

attributed, considers, accepted, believed, read
COMMUNICATION stated, said, argued, jokingly, called,

noted, suggested, described, claimed, referred
COMPETITION won, played, lost, beat, scored

defeated, win, competed, winning, playing
CONSUMPTION feed, fed, employed, based, hosted

feeds, utilized, applied, provided, consumed
CONTACT thrown, set, carried, opened, laid

pulled, placed, cut, dragged, broken
CREATION produced, written, created, designed, developed

directed, built, published, penned, constructed
EMOTION want, felt, loved, wanted, delighted

disappointed, feel, like, saddened, thrilled
MOTION brought, led, headed, returned, followed

left, turned, sent, travelled, entered
PERCEPTION seen, shown, revealed, appeared, appears

shows, noticed, see, showing, presented
POSSESSION received, obtained, awarded, acquired, provided

donated, gained, bought, found, sold
SOCIAL appointed, established, elected, joined, assisted

led, succeeded, encouraged, initiated, organized
STATIVE included, held, includes, featured, served,

represented, referred, holds, continued, related
WEATHER glow, emitted, ignited, flare, emitting

smoke, fumes, sunlight, lit, darkened

Table 2: Top 10 most similar word embeddings for
verb supersense vectors



Figure 1: Verb supersense embeddings visualized
in the vector space (t-SNE)

Furthermore, using a large corpus such as
Wikipedia conveniently reduces the current need
of lemmatization for supersense tagging, as the
words are sufficiently represented in all their forms.
The most frequent error originates from assigning
the adverbs to their related verb categories, e.g.
jokingly to COMMUNICATION and drastically to
CHANGE. Such information, however, can be bene-
ficial for context analysis in supersense tagging.

Figure 1 displays the verb supersenses using
the t-distributed Stochastic Neighbor Embedding
(Van der Maaten and Hinton, 2008), a technique de-
signed to visualize structures in high-dimensional
data. While many of the distances are probable to
be dataset-agnostic, such as the proximity of BODY,
CONSUMPTION and EMOTION, other appear em-
phasized by the nature of Wikipedia corpus, e.g.
the proximity of supersenses COMMUNICATION

and CREATION or SOCIAL and MOTION, as can be
explained by table 2 (see e.g. led and followed).

Figure 2: Noun supersense embeddings (t-SNE)

4.2 Noun Supersenses
Table 3 displays the most similar word embeddings
for noun supersenses. In accordance with previ-
ous work on suppersense tagging (Ciaramita and
Altun, 2006; Schneider et al., 2012; Johannsen et
al., 2014), the assignments of more specific super-
senses such as FOOD, PLANT, TIME or PERSON

are in general more plausible than those for ab-
stract concepts such as ACT, ARTIFACT or COG-
NITION. The same is visible in Figure 2, where
these supersense embeddings are more central, with
closer neighbors. In contrast to the observations by
Schneider et al. (2012) and Johannsen et al. (2014),
the COMMUNICATION supersense appears well de-
fined, likely due to the character of Wikipedia.

NOUNS
ACT participation, activities, involvement, undertaken

ongoing, conduct, efforts, large-scale, success
ANIMAL peccaries, capybaras, frogs, echidnas, birds

marmosets, rabits, hatchling, ciconiidae, species
ARTIFACT wooden, two-floor, purpose-built, installed, wall

fittings, turntable, racks, wrought-iron, ceramic, stone
ATTRIBUTE height, strength, age, versatility, hardness

power, fluidity, mastery, brilliance, inherent
BODY abdomen, bone, femur, anterior, forearm

femoral, skin, neck, muscles, thigh
COGNITION ideas, concepts, empirical, philosophy, knowledge,

epistemology, analysis, atomistic, principles
COMMUNICATION written, excerpts, text, music, excerpted,

translation, lyrics, subtitle, transcription, words
EVENT sudden, death, occurred, event, catastrophic

unexpected, accident, victory, final, race
FEELING sadness, love, sorrow, frustration, disgust

anger, affection, feelings, grief, fear
FOOD cheese, butter, coffee, milk, yogurt

dessert, meat, bread, vegetables, sauce
GROUP members, school, phtheochroa, ypsolophidae

pitcairnia, cryptanthus, group, division, schools
LOCATION northern, southern, northeastern, area, south

capital, town, west, region, city
MOTIVE motivation, reasons, rationale, justification, motive

justifications, motives, incentive, desire, why
OBJECT river, valley, lake, hills, floodplain

lakes, rivers, mountain, estuary, ocean
PERSON greatgrandfather, son, nephew, son-in-law, father

halfbrother, brother, who, mentor, fellow
PHENOMENON wind, forces, self-focusing, radiation, ionizing

result, intensity, gravitational, dissipation, energy
PLANT fruit, fruits, magnifera, sativum, flowers

caesalpinia, shrubs, trifoliate, vines, berries
POSSESSION property, payment, money, payments, taxes

tax, cash, fund, pay, $100
PROCESS growth, decomposition, oxidative, mechanism

rapid, reaction, hydrolysis, inhibition, development
QUANTITY miles, square, meters, kilometer, cubic,

ton, number, megabits, volume, kilowatthours
RELATION southeast, southwest, northeast, northwest, east

portion, link, correlation, south, west
SHAPE semicircles, right-angled, concave, parabola,

ellipse, angle, circumcircle, semicircle, lines
STATE chronic, condition, debilitating, problems, health

worsening, illness, illnesses, exacerbation, disease
SUBSTANCE magnesium, zinc, silica, manganese, sulfur

oxide, sulphate, phosphate, salts, phosphorus
TIME september, december, november, july, april

january, august, february, year, days
TOPS time, group, event, person, groups

individuals, events, animals, individual, plant

Table 3: Top 10 most similar word embeddings for
noun supersense vectors



4.3 Word Analogy and Word Similarity
Tasks

We also assess the changes between the individual
word embeddings learned on plain Wikipedia text
(WORDS) and jointly with the supersense-enriched
Wikipedia (SUPER). With this aim we perform
two standard embedding evaluation tasks: word
similarity and word analogy.

Mikolov et al. (2013b) introduce a word analogy
dataset containing 19544 analogy questions that
can be answered with word vector operations (Paris
is to France as Athens are to...?). The questions
are grouped into 13 categories. Table 4 presents
our results. Word vectors trained in the SUPER
setup achieve better results on groups related to
entities, e.g. Family Relations and Citizen to State
questions, where the PERSON and LOCATION su-
persenses can provide additional information to
reduce noise. At the same time, performance on
questions such as Opposites or Plurals drops, as this
information is pushed to the background. Enriching
our data with the recently proposed adjective super-
senses (Tsvetkov et al., 2014) could be of interest
for these categories.

Group/Vectors: WORDS SUPER
Capitals - common 91.1 94.7±0.99
Capitals - world 87.6 89.5±0.69
City in state 65.2 65.7±1.03
Nationality to state 94.5 95.2±0.58
Family relations 93.0 94.4±1.28
Opposites 56.7 54.6±3.21
Plurals 89.4 86.4±1.08
Comparatives 90.6 90.4±0.85
Superlatives 79.4 79.6±1.83
Adjective to adverb 20.2 22.2±1.53
Present to participle 64.2 64.6±1.57
Present to past 60.0 59.2±1.30
3rd person verbs 84.3 82.1±1.44
Total 75.0 76.0±0.28

Table 4: Accuracy and standard error on analogy
tasks. Tasks related to noun supersense distinctions
show the tendency to improve, while syntax-related
information is pushed to the background. In most
cases, however, the difference is not significant.

Without explicitly exploiting the sense infro-
mation, we compare the performance of our text-
trained (WORDS) to our jointly trained (SU-
PER) word vectors on the following word similar-
ity datasets: WordSim353-Similarity (353-S) and
WordSim353-Relatedness (353-R) (Agirre et al.,
2009), MEN dataset (Bruni et al., 2014), RG-65
dataset (Rubenstein and Goodenough, 1965) and
MC-30 (Miller and Charles, 1991).

Data: MEN 353-S 353-R RG-65 MC-30
WORDS 73.18 76.93 62.11 79.13 79.49
SUPER 74.26 78.63 61.22 79.75 80.94

Table 5: Performance of our vectors (Spearman’s ρ)
on five similarity datasets. Results indicate a trend
of better performance of vectors trained jointly with
supersenses.

The word embeddings for words trained jointly
with supersenses achieve higher performance than
those trained solely on the same text without super-
senses on 4 out of 5 tasks (Table 5). In addition, the
explicit supersense information could be further
exploited, similarly to previous sense embedding
works (Iacobacci et al., 2015; Rothe and Schütze,
2015; Chen et al., 2014). Furthermore, note that
while we report the performance of our embeddings
on the word similarity tasks for completeness, there
has been a substantial discussion on seeking alter-
native ways to quantify embedding quality with
the focus on their purpose in downstream applica-
tions (Li and Jurafsky, 2015; Faruqui et al., 2016).
Therefore, in the remainder of this paper we ex-
plore the usefulness of supersense embeddings in
text classification tasks.

5 Building a Supersense Tagger

The task of predicting supersenses has recently
regained its popularity (Johannsen et al., 2014;
Schneider and Smith, 2015), since supersenses pro-
vide disambiguating information, useful for numer-
ous downstream NLP tasks, without the need of
tedious fine-grained WSD. Exploiting our joint em-
beddings, we build a deep neural network model
to predict supersenses on the Twitter supersense
corpus created by Johannsen et al. (2014), based
on the Twitter NER task (Ritter et al., 2011), us-
ing the same training data as the authors. 45 The
datasets follow the token-level annotation which
combines the B-I-O flags (Ramshaw and Marcus,
1995) with the supersense class labels to represent
the multiword expression segmentation and super-
sense labeling in a sentence.

5.1 Experimental Setup
We implement a window-based approach with a
multi-channel multi-layer perceptron model using

4https://github.com/kutschkem/
SmithHeilmann_fork/tree/master/
MIRATagger/data

5https://github.com/coastalcph/
supersense-data-twitter



the Theano framework (Bastien et al., 2012). With
a sliding window of size 5 for the sequence learning
setup we extract for each word the following seven
feature vectors:

1. 300-dimensional word embedding,

2. 41 cosine similarities of the word to each stan-
dalone supersense embedding,

3. 41 cosine similarities of the word to each of
its word SUPERSENSE embeddings,

4. fixed vector of frequencies of each supersense
in Wikipedia, in order to simulate the MFS
backoff strategy,

5. for the given word, the frequency of each
word SUPERSENSE in our Wikipedia corpus,

6. part-of-speech information as a unit vector,

7. casing information as a 3-dimensional (up-
per/lower/mixed) unit vector

After a dropout regularization, the embedding sets
are flattened, concatenated and fed into fully con-
nected dense layers with a rectified linear unit
(ReLU) activation function and a final softmax.

5.2 Supersense Prediction
We evaluate our system on the same Twitter
dataset with provided training and development
(Tw-R-dev) set and two test sets: Tw-R-eval,
reported by Johannsen et al. as RITTER, and
Tw-J-eval, reported by Johannsen et al. as IN-
HOUSE. Our results are shown in table 6 and com-
pared to results reported in previous work by Jo-
hannsen et al. (2014), with two additional base-
lines: The SemCor system of Ciaramita and Altun
(2006) and the most frequent sense. Our system
achieves comparable performance to the best previ-
ously used supervised systems, without using any
explicit gazetteers.

To get an intuition.6 of how the individual feature
vectors contribute to the prediction, we perform an
ablation test by removing one feature group at a
time. The biggest performance drop in the F-score
(2.7–5.4) occurs when removing the the part of

6Intuition, since there are many additional aspects that may
affect the performance. For example, we keep the network
parameters fixed for the ablation, although the feature vectors
are of different lengths. Furthermore, our model performs a
concatenation of the feature vectors, hence only the ablation
extended to all possible permutations would verify the feature
order effect.

speech information, followed by the supersense
similarity features and supersense frequency priors
(0.2–3.0). The casing information has only a minor
contribution to Twitter supersense tagging (0–0.9).

System/Data: Tw-R-dev Tw-R-eval Tw-J-eval
Baseline and upper bound
Most frequent sense 47.54 44.98 38.65
Inter-annotator agreement 69.15 61.15
SemCor-trained systems
(Ciaramita and Altun, 2006)† 48.96 45.03 39.65
Searn (Johannsen et al., 2014) 56.59 50.89 40.50
HMM (Johannsen et al., 2014) 57.14 50.98 41.84
Ours Semcor 54.47 50.30 35.61
Twitter-trained systems
Searn (Johannsen et al., 2014) 67.72 57.14 42.42
HMM (Johannsen et al., 2014) 60.66 51.40 41.60
Ours Twitter (all features) 61.12 57.16 41.97
Ours Twitter no casing 61.06 56.20 41.13
Ours Twitter no similarities 63.47 56.78 39.44
Ours Twitter no frequencies 61.10 57.32 39.02
Ours Twitter no part-of-speech 57.08 54.45 36.50
Ours Twitter no word embed. 57.57 53.43 34.91

Table 6: Weighted F-score performance on super-
sense prediction for the development set and two
test sets provided by Johannsen et al. (2004). Our
system performs comparably to state-of-the-art sys-
tems.
† For the system of Ciaramita et al, the publicly avaliable reimplementation of
Heilman was used

6 Using Supersense Embeddings in
Document Classification Tasks

Word sense disambiguation is to some extent an
artificial stand-alone task. Despite its popularity,
its contribution to downstream document classifica-
tion tasks remains rather limited, which might be
attributed to the complexity of document prepro-
cessing and the errors cumulated along the pipeline.
In this section, we demonstrate an alternative, deep
learning approach, in which we process the origi-
nal text in parallel to the supersense information.
The model can then flexibly learn the usefulness
of provided input. We demonstrate that the model
extended with supersense embeddings outperforms
the same model using only word-based features on
a range of classification tasks.

6.1 Experimental Setup

Both Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) are state-of-the-art seman-
tic composition models for a variety of text classifi-
cation tasks (Kim, 2014; Li et al., 2015; Johnson
and Zhang, 2014). Recently, their combinations
have been proposed, achieving an unprecedented
performance (Sainath et al., 2015). We extend the
CNN-LSTM approach from the publicly available
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Figure 3: Network architecture. Each of the four
different embedding channels serves as input to
its CNN layer, followed by an LSTM layer. After-
wards, the outputs are concatenated and fed into a
dense layer.

Keras demo7, into which we incorporate the su-
persense information. Figure 3 displays our net-
work architecture. First, we use three channels of
word embeddings on the plain textual input. The
first channel are the 300-dimensional word em-
beddings obtained from our enriched Wikipedia
corpus. The second embedding channel consists of
41-dimensional vectors capturing the cosine simi-
larity of the word to each supersense embedding.
The third channel contains the vector of relative
frequencies of the word occurring in the enriched
Wikipedia together with its supersense, i.e. provid-
ing the background supersense distribution for the
word. Each of the document embeddings is then
convoluted with the filter size of 3, followed by
a pooling layer of length 2 and fed into a long-
short-term-memory (LSTM) layer. In parallel, we
feed as input a processed document text, where
the words are replaced by their predicted super-
senses. Given that we have the Wikipedia-based
supersense embeddings in the same vector space
as the word embeddings, we can now proceed to
creating the 300-dimensional embedding channel
also for the supersense text. As in the plain text
channels, we feed also these embeddings into the

7https://github.com/fchollet/keras/
blob/master/examples/imdb_cnn_lstm.py

convolutional and LSTM layers in a similar fashion.
Afterwards, we concatenate all LSTM outputs and
feed them into a standard fully connected neural
network layer, followed by the sigmoid for the bi-
nary output. The following subsections discuss our
results on a range of classification tasks: subjectiv-
ity prediction, sentiment polarity classification and
metaphor detection.

6.2 Sentiment Polarity Classification

Sentiment classification has been a widely explored
task which received a lot of attention. The Movie
Review dataset, published by Pang and Lee (2005)8,
has become a standard machine learning bench-
mark task for binary sentence classification. Socher
et al. (2011) address this task with recursive au-
toencoders and Wikipedia word embeddings, later
improving their score using recursive neural net-
work with parse trees (Socher et al., 2012). Com-
petitive results were achieved also by a sentiment-
analysis-specific parser (Dong et al., 2015), with a
fast dropout logistic regression (Wang and Man-
ning, 2013), and with convolutional neural net-
works (Kim, 2014). Table 7 compares these ap-
proaches to our results for a 10-fold crossvalidation
with 10% of the data withheld for parameter tuning.
The line WORDS displays the performance using
only the leftmost part of our architecture, i.e. only
the text input with our word embeddings. The line
SUPER shows the result of using the full super-
sense architecture. As it can be seen from the table,
the supersense features improve the accuracy by
about 2%. Both systems are significantly different
(p < 0.01), using the McNemar’s test.

System Accuracy
Socher et al. (2011) 77.7
Socher et al. (2012) 79.0
Wang and Manning (2013) 79.1
Dong et al. (2015) 79.5
Kim (2014) 81.5
WORDS 79.4
SUPER 81.7±0.37

Table 7: 10-fold cross-validation accuracy and stan-
dard error of our system and as reported in previous
work for the sentiment classification task on Pang
and Lee (2005) movie review data

A detailed analysis of the supersense-tagged data
and the classification output revealed that super-
senses help to generalize over rare terms. Noun

8http://www.cs.uic.edu/liub/FBS/
sentiment-analysis.html



Positive reviews
Text Supersenses
beating the austin powers film at their own game , verbstative the nounlocation nouncognition nounartifact at their own nouncommunication ,
this blaxploitation spoof downplays the raunch in favor this nounact nouncommunication verbstative the nouncognition in nouncommunication
of gags that rely on the strength of their own cleverness of that verbcognition on the nouncognition of their own nouncognition
as oppose to the extent of their outrageousness . as verbcommunication to the nounevent of their nounattribute .
there is problem with this film that there verbstative nouncognition with this nouncommunication that
even 3 oscar winner ca n’t overcome , even 3 nounevent nounperson ca n’t verbemotion ,
but it ’s a nice girl-buddy movie but it verbstative a nice girl-buddy nouncommunication
once it get rock-n-rolling . once it verbstative rock-n-rolling
godard ’s ode to tackle life ’s wonderment is a nounperson nouncommunication to verbstative nouncognition ’s nouncognition verbstative
rambling and incoherent manifesto about the vagueness of topical a rambling and incoherent nouncommunication about the nounattribute of topical
excess . in praise of love remain a ponderous and pretentious excess . in nouncognition of nouncognition verbstative a ponderous and pretentious
endeavor that ’s unfocused and tediously exasperating . nounact that verbstative unfocused and tediously exasperating
Negative reviews
Text Supersenses
the action scene has all the suspense of a 20-car pileup , the nounact nounlocation verbstative all the nouncognition of a 20-car nouncognition ,
while the plot hole is big enough for a train car to drive while the nounlocation verbstative big enough for a nounartifact nounartifact to verbmotion
through – if kaos have n’t blow them all up . through – if nounperson have n’t verbcommunication them all up .
the scriptwriter is no less a menace to society the nounperson verbstative no less nounstate to noungroup
than the film ’s character . than the nouncommunication nounperson .
a very slow , uneventful ride a very slow , uneventful nounact
around a pretty tattered old carousel . around a pretty tattered old nounartifact .
the milieu is wholly unconvincing . . . the nouncognition verbstative wholly unconvincing
and the histrionics reach a truly annoying pitch . and the nouncommunication verbstative a truly annoying nounattribute .

Table 8: Example of documents classified incorrectly with word embeddings and correctly with word and
supersense embeddings on Pang and Lee (2005) movie review data.

concepts such as GROUP, LOCATION, TIME and
PERSON appear somewhat more frequently in posi-
tive reviews while certain verb supersenses such as
PERCEPTION, SOCIAL and COMMUNICATION are
more frequent in the negative ones. On the other
hand, the supersense tagging introduces additional
errors too - for example the director’s cut is persis-
tently classified into FOOD.

Table 8 shows an example of positive and neg-
ative reviews which were consistently (5x in re-
peated experiments with different random seeds)
classified incorrectly with word embeddings and
classified correctly with supersense embeddings.
Often the wit of unusual expressions is lost for the
benefit of generalization. Some improvements ap-
pear to be a result of replacing proper names by
NOUN.PERSON.

6.3 Subjectivity Classification

Pang and Lee (2004) demonstrate that the subjec-
tivity detection can be a useful input for a sen-
timent classifier. They compose a publicly avail-
able dataset9 of 5000 subjective and 5000 objec-
tive sentences, classifying them with a reported
accuracy of 90-92% and further show that predict-
ing this information improves the end-level sen-
timent classification on a movie review dataset.
Kim (2014) and Wang and Manning (2013) fur-
ther improve the performance through different
machine learning methods. Supersenses are a nat-
ural candidate for subjectivity prediction, as we

9https://www.cs.cornell.edu/people/
pabo/movie-review-data/

hypothesize that the nouns and verbs in the sub-
jective and objective sentences often come from
different semantic classes (e.g. VERB.FEELING vs.
VERB.COGNITION). We employ the same archi-
tecture as in previous task, automatically annotat-
ing the words in the documents with their super-
senses. Our results are reported in Table 9. The
supersenses (SUPER) provide an additional infor-
mation, improving the model performance by up
to 2% over word embeddings (WORDS). The dif-
ference between both systems is significant. Based
on a manual error analysis, the supersense informa-
tion contributes here in a similar manner as in the
previous case. Subjective sentences contain more
verbs of supersense PERCEPTION, while objective
ones more frequently feature the supersenses POS-
SESSION and SOCIAL. Nouns in the subjective cat-
egory are characterized by supersenses COMMUNI-
CATION and ATTRIBUTE, while in objective ones
the PERSON and POSSESSION are more frequent.

System Accuracy
SVM (Pang and Lee, 2004) 90.0
NB (Pang and Lee, 2004) 92.0
CNN (Kim, 2014) 93.4
F-Dropout (Wang and Manning, 2013) 93.6
MV-CNN (Zhang et al., 2016) 93.9
WORDS 92.1
SUPER 93.9±0.26

Table 9: 10-fold cross-validation accuracy and stan-
dard error of our system and as reported in previous
work for binary classification on the subjectivity
dataset of Pang and Lee (2004)



6.4 Metaphor Identification
Supersenses have recently been shown to provide
improvements in metaphor prediction tasks (Ger-
shman et al., 2014), as they hold the informa-
tion of coarse semantic concepts. Turney et al.
(2011) explore the task of discriminating literal
and metaphoric adjective-noun expressions. They
report an accuracy of 79% on a small dataset rated
by five annotators. Tsvetkov et al. (2013) pursue
this work further by constructing and publishing
a dataset of 985 literal and 985 methaphorical
adjective-noun pairs10 and classify them. Gersh-
man et al. (2014) further expand on this work using
64-dimensional vector-space word representations
constructed by Faruqui and Dyer (2014) for clas-
sification. They report a state-of-the-art F-score
of 85% with random decision forests, including
also abstractness and imageability features (Wil-
son, 1988) and supersenses from WordNet, aver-
aged across senses.

System F1-score on test set
(Gershman et al., 2014) 85
WORDS 81.91±2.81
SUPER 87.23±2.36

Table 10: F1-score and a standard error on a pro-
vided test set for the adjective-noun metaphor pre-
diction task Gershman et al. (2014). WORDS: word
embeddings only, SUPER: multi-channel word em-
beddings with the supersense similarity and fre-
quency vectors added

Since this setup is simpler than the sentence clas-
sification tasks, we use only a subset of our archi-
tecture, specifically the left half of Figure 3, i.e.
our word embeddings, similarity vectors and super-
sense frequency vectors. Since there are only two
words in each document, we leave out the LSTM
layer. We merge the similarity and frequency lay-
ers by multiplication and concatenate the result to
the word embedding convolution, feeding the out-
put of the concatenation directly to the dense layer.
Table 10 shows our results on a provided test set.
Based on McNemar’s test, there is a significant dif-
ference (p < 0.01) between our system based on
words only and the one with supersenses.

7 Discussion

Unlike previous research on supersenses, our work
is not based on a manually produced gold stan-

10http://www.cs.cmu.edu/˜ytsvetko/
metaphor/datasets.zip

dard, but on an automatically annotated large cor-
pus. While Scozzafava et al. (2015) report a high
accuracy estimate of 77.8% on sense level, the
performance and possible bias on tagged super-
senses are yet to be evaluated. We are also aware
that some of the previously proposed approaches
for building word sense embeddings (Rothe and
Schütze, 2015; Chen et al., 2014; Iacobacci et al.,
2015) could be eventually extended to supersenses.
We strongly encourage the authors to do so and
perform a contrastive evaluation comparing these
methods. Additionaly, a different level of granu-
larity of the concepts, such as WordNet Domains
(Magnini and Cavaglia, 2000) could be explored.

8 Conclusions and Future Work

We have presented a novel joint embedding set
of words and supersenses, which provides a new
insight into the word and supersense positions in
the vector space. We demonstrated the utility of
these embeddings for predicting supersenses and
manifested that the supersense enrichment can lead
to a significant improvement in a range of down-
stream classification tasks, using our embeddings
in a neural network model. The outcomes of this
work are available to the research community.11. In
follow-up work, we aim to apply our embedding
method on smaller, yet gold-standard corpora such
as SemCor (Miller et al., 1994) and STREUSLE
(Schneider and Smith, 2015) to examine the impact
of the corpus choice in detail and extend the train-
ing data beyond WordNet vocabulary. Moreover,
the coarse semantic categorization contained in su-
persenses was shown to be preserved in translation
(Schneider et al., 2013), making them a perfect can-
didate for a multilingual adaptation of the vector
space, e.g. extending Faruqui and Dyer (2014).
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Kravalova, Marius Paşca, and Aitor Soroa. 2009.
A study on similarity and relatedness using distribu-
tional and WordNet-based approaches. In Proceed-
ings of the 2009 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics - Human Language Technologies,
pages 19–27. Association for Computational Lin-
guistics.

Eneko Agirre, Kepa Bengoetxea, Koldo Gojenola, and
Joakim Nivre. 2011. Improving dependency pars-
ing with semantic classes. In Proceedings of the
49th Annual Meeting of the Association for Compu-
tational Linguistics: short papers-Volume 2, pages
699–703. Association for Computational Linguis-
tics.

Cem Akkaya, Janyce Wiebe, Alexander Conrad, and
Rada Mihalcea. 2011. Improving the impact of sub-
jectivity word sense disambiguation on contextual
opinion analysis. In Proceedings of the 15th Confer-
ence on Computational Natural Language Learning,
pages 87–96. Association for Computational Lin-
guistics.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements.
Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop.

Jiang Bian, Bin Gao, and Tie-Yan Liu. 2014.
Knowledge-powered deep learning for word embed-
ding. In Machine Learning and Knowledge Discov-
ery in Databases, pages 132–148. Springer.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Conference on Artifi-
cial Intelligence.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2012. Joint learning of words and
meaning representations for open-text semantic pars-
ing. In International Conference on Artificial Intel-
ligence and Statistics, pages 127–135.

Claudio Delli Bovi, Luis Espinosa Anke, and Roberto
Navigli. 2015. Knowledge base unification via
sense embeddings and disambiguation. In Proceed-
ings of the 2015 Conference on Empirical Methods
on Natural Language Processing, pages 726–736.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Ar-
tificial Intelligence Research (JAIR), 49(1-47).

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and
disambiguation. In Proceedings of the 2014 Con-
ference on Empirical Methods on Natural Language
Processing, pages 1025–1035.

Massimiliano Ciaramita and Yasemin Altun. 2006.
Broad-coverage sense disambiguation and informa-
tion extraction with a supersense sequence tagger.
In Proceedings of the 2006 Conference on Empiri-
cal Methods on Natural Language Processing, pages
594–602. Association for Computational Linguis-
tics.

Massimiliano Ciaramita and Mark Johnson. 2003. Su-
persense tagging of unknown nouns in WordNet. In
Proceedings of the 2003 Conference on Empirical
Methods on Natural Language Processing, pages
168–175. Association for Computational Linguis-
tics.
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