
Scalable Trust Establishment with Software Reputation

Sven Bugiel
System Security Lab

TU Darmstadt (CASED)
Darmstadt, Germany

sven.bugiel@trust.cased.de

Lucas Davi
System Security Lab

TU Darmstadt (CASED)
Darmstadt, Germany

lucas.davi@trust.cased.de

Steffen Schulz
System Security Lab

TU Darmstadt (CASED) &
Ruhr-Universität Bochum &
Macquarie University (INSS)

Darmstadt, Germany
steffen.schulz@trust.cased.de

ABSTRACT
Users and administrators are often faced with the choice
between different software solutions, sometimes even have
to assess the security of complete software systems. With
sufficient time and resources, such decisions can be based
on extensive testing and review. However, in practice this
is often too expensive and time consuming: When a user
decides between two alternative software solutions or a veri-
fier should assess the security of a complete software system
during remote attestation, such assessments should happen
almost in realtime.

In this paper, we present a pragmatic, but highly scalable
approach for the trustworthiness assessment of software pro-
grams based on their security history. The approach can be
used to, e.g. automatically sort programs in an App store by
their security record or on top of remote attestation schemes
that aim to access the trustworthiness of complex software
configurations. We implement our approach for the popu-
lar Debian GNU/Linux system, using publicly available in-
formation from open-source repositories and vulnerability
databases. Our evaluation shows reasonable prediction ac-
curacy for the more vulnerable packets and good accuracy
when considering entire system installations.

1. INTRODUCTION
A longstanding problem in computer science is how to as-

sess the trustworthiness of a given (remote) software system,
i.e., if it behaves as expected. To make reasonable decisions,
common metrics are required along which trust is quantifi-
able and comparable. Example use cases for this problem
are when a system administrator/user must decide between
alternative implementations of, e.g., a web server or mail
client, when a company decides on what programs are ac-
ceptable on employees’ laptops that intent to connect to the
company network, or even when choosing between different
available virtual machines to implement desired services in
the cloud. In all these cases, we require an objective, com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STC’11, October 17, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1001-7/11/10 ...$10.00.

prehensive metric that works efficiently and scales to systems
with several hundred interacting software systems.

In practice, there are several methods to measure the
trustworthiness of software components. They can be clas-
sified as (1) formal verification, (2) evaluation and testing,
and/or (3) reputation systems. However, approaches (1)
and (2) do generally not meet the required efficiency and
scalability due to the intensive manual work involved. In
particular, formal verification is used for scenarios with high
associated risks or software classified as mission critical, e.g.,
military applications, train controllers, or satellite firmware.
By specifying (semi-)formally the security goals, adversary
model, and requirements, software is developed (or adjusted)
such that it is verified to achieve these requirements. How-
ever, after several years of research, formal verification is
still too expensive for most mainstream applications and
requires too much time to keep up with the frequent re-
leases of many mainstream software programs. By contrast,
methodical evaluation and testing, for instance, according
to Common Criteria or by thorough penetration testing, is
more practical and frequently used by industry and gov-
ernment organizations. However, the process is still too
slow and costly for many applications and, moreover, po-
tentially error-prone due to the incompleteness of the test-
ing/evaluation procedure. Additionally, the testing results
are hard to interpret by a common user, who has to choose
between different software solutions for his requirements and
who wants to evaluate the security of these options. Finally,
we are not aware of any reputation-based system for software
programs that meets the required scalability and objectivity,
although in practice many users and administrators already
use subjective experience and recommendations in their de-
cision making processes.

Contribution.
In this paper, we present a pragmatic and lightweight ap-

proach to determine the trustworthiness of complex software
systems. We extend on previous works on statistical vulner-
ability prediction to derive the expected trustworthiness of
large commodity computer systems and provide a generic,
intelligible metric to aid in the assessment and comparison
of software security. We implement and evaluate the accu-
racy of our assessment scheme that can be used locally, to
assist in deciding between different software solutions, or to
assess the trustworthiness of remote software systems dur-
ing remote attestation. When assessing the trustworthiness
of complete system installations, we can predict their failure
rate within error margins of around 10% to 30%.

2. PROBLEM DESCRIPTION
Whether it is for large scale investment decisions, imple-

mentation of communication infrastructures or personal use,
system integrators and users are regularly confronted with
the decision between different software systems. One major
criterion for this decision making process is the trustworthi-
ness of the program, i.e., how likely it is to “behave as ex-
pected” with regards to the security and trust requirements
of the system integrator or user.

However, increasingly complex and rapidly evolving soft-
ware systems impede efficient security analysis and testing,
let alone formal analysis. Instead, users and system admin-
istrators typically rely on a vaguely defined reputation sys-
tem, built from personal experience, recommendations and
additional meta-data such as the programming language or
development process. This is particularly problematic in
cases where combinations of software systems must be eval-
uated in realtime, e.g., when evaluating client platforms in
remote attestation protocols.

We know of no works that investigate the accuracy of
these informal assessments. Nevertheless, we expect their
accuracy to decrease significantly with lower expertise of
evaluator and time available to make the assessment. In
the following sections we thus describe and evaluate an auto-
mated generic mechanism to derive the likelihood of security
failures in a given software, with the goal to support a more
accurate decision making processes. We identify the follow-
ing requirements for a practical and efficient assessment of
software trustworthiness.

Accuracy. The produced trustworthiness assessments must
be reasonably accurate to support the decision process.
Error margins must be available to judge the accuracy
of the assessment.

Universality. The desired assessment system must be ap-
plicable to any software, i.e., it must not depend on in-
dividual characteristics such as the programming lan-
guage or development process. However, individual
characteristics can be used to increase the prediction
accuracy.

Objectivity. The system must yield objective and repro-
ducible trustworthiness assessments. In particular, it
should be intelligible for the software developers which
events or design decisions result in worse trustworthi-
ness assessments and how assessment results can be
improved.

Scalability. The derivation of the trustworthiness assess-
ment should be automated to scale with the huge num-
ber of software programs available for commodity com-
puter systems. Furthermore, the employed trustwor-
thiness metric should allow efficient computation of the
aggregated trustworthiness for combinations of pro-
grams based on their individual assessments.

3. SOFTWARE TRUST AND REPUTATION
In the following we present a pragmatic and scalable ap-

proach to determine the trustworthiness of software systems
through software reputation. We first take a look at how
system administrators and users decide for or against us-
ing (trusting) a particular software today. Using this per-
spective, we define a pragmatic, objective notion of security

failure and trustworthiness and then present a metric to ex-
press trustworthiness prediction.

3.1 State-Of-The-Art in Practical Systems
As lined out in Section 1, our daily decisions for trusting

or not trusting a particular software are usually not deter-
mined by objective and comprehensive testing and evalua-
tion or even formal analysis, as these approaches are often
simply too expensive and time consuming, and scale poorly
in today’s rapidly changing software landscape.

In practice, the reliability of a program is often derived
based on subjective impressions, recommendations and past
experience. This reputation-based approach is well-known
and in fact very common for human interaction. In the soft-
ware landscape, such reputation is established based on per-
sonal experience with the software, reviews and recommen-
dations by (often only partly) trusted third parties. Such
events are in general difficult to track and often require the
users to contribute to extensive reputation infrastructures.
However, in software security, the overwhelming amount of
security incidents are, in fact, objective software defects that
are recorded and monitored in public databases. Moreover,
multiple previous works show that one can indeed estimate
the amount of future security failures based on past expe-
rience [12, 14, 13, 21], meaning security failure rate of a
program is a relatively stable, characteristic value.

3.2 An Objective Definition of Trust
In general, the definition of security failure depends on

the security goals and software environment of the respec-
tive usage scenarios, and is thus a highly subjective matter.
However, from the perspective of the software developer, a
different security notion can be identified where a given se-
curity failure is either caused by a particular software or not,
and a decision is made whether the program should be fixed
and users be warned on potentially unexpected behavior.
This decision is usually straightforward and determined by
common practices in software and security engineering, such
as reducing information flow, encapsulating complexity and
minimizing unexpected behavior. In this case, the security
failure is caused by an inherent security flaw in the software.
Hence, we can objectively define a software security failure
as follows:

Software Security Failure: A software security failure de-
scribes the event where the software’s author or the
security community decides that a flaw exists in a pro-
gram that must be fixed to prevent future security inci-
dents when using the program.

By this definition, an event is classified as security failure
based on a consensus decision. Individuals (or other com-
munities) may consider this decision as false, however, in
practice these decisions are usually straightforward and only
few incidents required a more detailed debate, as evidenced
by fact that major vulnerability databases and mailing lists
also always provide the name and version of the affected
software database1 However, we emphasize that by this def-
inition, a security failure does not imply that an actual at-
tack has succeeded in practice but only marks the discovery
of a vulnerability, which may lead to an attack under cer-
tain circumstances. Based on this definition, we can define
1See, e.g., the CVE database by MITRE (cve.mitre.org/)
or the bugtraq mailing list (seclists.org/bugtraq/).

cve.mitre.org/
seclists.org/bugtraq/

software trustworthiness as the likelihood of future security
failures:

Software Trustworthiness: Software Trustworthiness de-
scribes the probability of a particular piece of software
to elicit a security failure within a certain time frame.

Note that this notion of trustworthiness describes a pre-
diction into the future and thus only an estimate with a
certain accuracy. To derive this estimate, we use the previ-
ously observed effect that the rate of software security fail-
ures is rather constant for individual software programs and
its modules. For example, two thirds of the Red Hat Linux
software packages have been correctly predicted to be vul-
nerable, with a false positive rate of 17% [13].

3.3 A Metric for Software Reputation
Our system also requires an objective metric to express

the trustworthiness of one software as opposed to another.
Ideally, the metric should assign absolute trustworthiness
values to individual software programs, such that the rela-
tive advantage of one program over another can be quanti-
fied. Moreover, for optimal scalability it should be possible
to combine the assessments of individual software compo-
nents into assessments for different compositions of similar
software systems, as they are most commonly found in to
days commodity computing systems.

We meet these goals by basing our trustworthiness met-
ric on the Mean Time Between Failures (MTBF), a well-
known and common approach for predicting the reliability
of complex systems in electrical engineering [11, 7]. Specif-
ically, since the publication date of vulnerability fixes is of-
ten more dependent on the IT support or distributor and
thus not actually an objective characteristic of the respec-
tive software, we assume a Mean Time To Recover (MTTR)
of zero. As a result, since MeanTimeToFailure(MTTF) =
MTBF + MTTR = MTBF , we effectively measure the
trustworthiness of software as MTTF2.

Figure 1 illustrates the derivation and relationships of
MTBF, MTTR and MTTF: The MTBF is calculated as the
average of the durations that a component is working (bi),
while the MTTR is the average over the recovery times (ri).
The MTTF is the time between failures (di = ri + bi), and
identical to MTBF for ri = 0. To account for changes in
authorship and software development practices, we further
introduce Weighted Mean Time To Failure (MTTFλ) as a
weighted version of the MTTF where the impact of older
security failures decreases exponentially relative to an aging
parameter λ:

MTTF =
1

i

∑
i

di MTTFλ =

∑
i e

−ti/λ · di∑
i e

−ti/λ

To derive the aggregated failure rate of combined software
systems, we currently assume that all components depend
on each other (worst case scenario). As a result, each com-
ponent failure also leads to a system security failure, i.e.,
the failure rates of individual components can simply be

2In engineering, the MTTF is reserved for items that are
not repaired but immediately replaced. The semantic can
be adopted here as well, since vendors often only inform
their customers of security issues once the fix is available,
allowing them to replace the software.

15 12 9 6 3 0

15 12 9 6 3 0

r1 r2 r3

d1

b2

 𝑀𝑇𝑇𝑅 =
1

𝑖
 𝑟𝑖 = 2𝑖

 𝑀𝑇𝑇𝐹 =
1

𝑖
 𝑑𝑖 = 5𝑖 𝑀𝑇𝑇𝐹12 =

 𝑒
−𝑡𝑖

12 ×𝑑𝑖𝑖

 𝑒
−𝑡𝑖

12
𝑖

= 4,54

b1

d2 d3

t3
t2

 t1

b3

 𝑀𝑇𝐵𝐹 =
1

𝑖
 𝑏𝑖 = 3𝑖

Figure 1: Example for computing MTBF, MTTR,
MTTF and MTTFλ metrics. The upper time line
considers recovery periods ri, while the lower illus-
trates our case with an assumed MTTR of zero.

added up to estimate the failure rate of an aggregated soft-
ware system. The assumption appears reasonable consider-
ing the lack of strong isolation and information flow control
in commodity computer systems. Where strong isolation is
available, the assessment can be scoped to derive the trust-
worthiness of individual software stacks. For example, to
judge the security of an imminent security-sensitive trans-
action on a Linux system, one may argue that software that
is installed but not started since boot-up can be ignored.

In practice, users and administrators are often interested
in the estimated amount of security failures for a concrete
time period t. For example, when selecting software for a
secure isolated online banking compartment using virtual-
ization technology, it may be sufficient to know the security
failure rate for that compartment between the enforced sys-
tem updates. We define this metric as the Secure Transac-
tion Probability (STP), which is derived using the MTTF
and time frame t:

STP (t) =
t

MTTF
STPλ(t) =

t

MTTFλ

The STP is a function of the time t that the software at
the prover must be secure in order for some operation (i.e.,
a program executing in time t) to be considered secure. For
example, if the Mean Time To Failure is twice the trans-
action time t, then the transaction security is endangered
half of the time: STP (t) = 1

2
. Put differently, there will

be a security incident between approximately every second
security update, meaning half the critical user transactions
are in danger of compromise.

4. DESIGN AND IMPLEMENTATION
In this section we design and implement a prototype for

computing the trustworthiness of program suites (packages)
in a scalable fashion. We do this using the public repositories
and package meta-data from Linux open-source software dis-
tributions. We approximate software trustworthiness based
on public consensus, as by our definition in Section 3.2,
by mining the publicly available security advisory archive
of the Debian GNU/Linux distribution and the Common

Vulnerabilities and Exposures (CVE) database provided by
MITRE and associating the recorded (objective) security
failures with individual software packages.

4.1 Architecture
Figure 2 illustrates the overall process of linking pack-

age identities to security records for the remote attesta-
tion use-case (e.g., using property-based attestation [16].
At the prover, a TCG-style binary measurement list is cre-
ated directly from program execution flow, for example using
Integrity Measurement Architecture (IMA) [17]. The mea-
surements are resolved to their respective binary package
identities using publicly available binary package reposito-
ries. Based on package repository meta-data, the binary
packages are then resolved to source packages, i.e., more ab-
stract versions of the binary packages that are independent
of the local system’s architecture and binary versions, which
are provided to the verifier. At the verifier, the distribu-
tor’s security advisory archive and third party vulnerability
databases are used to associate recorded security incidents
with individual source packages. The resulting database of
security incidents per source package is then used to de-
rive the trustworthiness metrics as described in Section 3.3.
The trustworthiness of the prover is then simply derived by
looking up the individual reported source packages in the
trustworthiness database of the verifier.

Note that several different configurations are possible de-
pending on the trust model and usage scenario. For ex-
ample, instead of using TCG-style binary measurements of
files, the TCB of the prover might directly record and re-
port the list of installed applications (binary packages) to
the verifier, who should then additionally resolve these to
source packages. Alternatively, when using the system only
for informational purposes, e.g., for ordering programs in
an App store by their estimated trustworthiness, only the
components on the verifier side are needed.

Vulnerability
Databases

Security
Advisories

Trustworthiness
per program

System
Trustworthiness

Program
Execution

Measurements of
loaded programs

Loaded programs
(bin. packages)

Loaded programs
(src. packages)

Measurement
Policy

Binary package
repository

Source repository
meta-data

PROVER VERIFIER

Vendor/distributor of programs Locally or by third parties By vendors or third parties

Figure 2: Evaluation of the generic system trustwor-
thiness in systems with package repository.

To fully automate this process, we require the following
features:

Program Identifier: To associate trustworthiness ratings
or security incident reports of different security in-
formation providers and track them through differ-

ent versions of a program, every program must have
a unique identity. The chosen identifiers should be
globally unique or mappings between providers must
be maintained.

Program Repository: To map the trustworthiness data
associated with program identifiers to binary measure-
ments of individual program files, a repository of all
versions of deployable binaries and the meta-data to
associate this binary data with the abstract program
identifier are required.

Advisory Repository: For scalability, we require that the
security advisories are readily available and in a con-
sistent format, suitable for automated parsing. An ad-
visory must state which programs are affected, such
that the advisory can be mapped to a set of packages
in the repository, and which vulnerabilities have been
addressed by the update.

Completeness: For accurate trustworthiness estimations
and correct reconstruction of each program’s history,
we require that the advisory and program repositories
are complete, i.e., that no vulnerabilities have been
silently patched without issuing an advisory, all af-
fected programs are named in an advisory, and all de-
ployable programs are available in the program repos-
itory.

Vulnerability Info (optional): For more detailed statis-
tics on the history of vulnerabilities of particular pro-
grams, it is useful if the issued security advisories also
contain (references to) vulnerability details such as
their severity and publication date.

The first three requirements are realistic when consider-
ing the well-maintained public software repositories of large
open-source software distributors. The completeness require-
ment for the distributor’s security advisory archive is rather
strong. However, from our experience large distributors are
very aware of this responsibility. The main open-source dis-
tributions maintain an internal network for exchange of vul-
nerability information and the security teams and vulnera-
bility databases follow a policy of full disclosure, allowing
developers, users and researchers to verify if vulnerabilities
were handled correctly. Public security advisory databases,
such as the CVE, provide vulnerability reports in a consis-
tent and parsable manner, including references to severity
ratings by NIST.

4.2 Security in mainstream OSS distributions
We reviewed several mainstream Linux distributions as

to whether they fulfill the requirements formulated in the
previous section. The results are summarized in Table 1.

As expected, all major distributions publish repository
information and security advisories, although the commer-
cial RedHat distribution makes the package repositories and
package metadata only available to their customers.

All distributors also use the CVE database to refer to in-
dividual public vulnerabilities, but with sometimes lacking
consistency. The SuSE advisories often describe vulnerabili-
ties in several different packages at once and are not easy to
parse automatically. The Fedora advisories also lack struc-
ture and lack consistent referencing of the respective CVE
records.

Requirement D
e
b
ia

n

U
b
u
n
tu

R
e
d
H

a
t

F
e
d
o
ra

S
u
S
E

F
re

e
B

S
D

Program Repository X X (X) X X X
Advisory Repository X X (X) - - X
Adv. Completeness X X (X) - X -

Table 1: Fulfillment of requirements by the major
Linux distributions

Fedora and FreeBSD fail the completeness requirement.
FreeBSD provides security advisories for the core system
applications, but apparently follows a much more relaxed
policy regarding the several thousand other packages in the
ports collection. Fedora mixes security advisories with gen-
eral update information from their bug-tracking system, which
is not easily filtered. In contrast, Debian features an on-
line security bug tracker where the status of incidents can
be searched by package name, vulnerability ID or advisory.
Only Debian also publishes a list of CVEs that have been
reviewed but do not affect Debian, assisting in verifying the
completeness of the process. The largely-based Debian sys-
tem Ubuntu also fulfills our requirements but suffers from
rather high frequency of regression bugs due to incorrect se-
curity fixes, which would likely distort the derivation of the
actual security incident rate per package.

4.3 Introducing TrustMiner
We implemented a prototype named TrustMiner for the

Debian GNU/Linux distribution. TrustMiner maintains a
track record of vulnerabilities per program and computes
the software trustworthiness of arbitrary sets of programs as
MTTF or MTTFλ. For attestation, it resolves binary mea-
surements recorded by IMA [17] to the corresponding De-
bian binary packages, or directly uses a list of binary pack-
ages. The binary packages are resolved to source packages
using the Debian source repository metadata. On the verifi-
cation side, TrustMiner uses the CVE vulnerability database,
the Debian Security Advisories3, and the NIST Common
Vulnerability Scoring System (CVSS) [10] to create a track
record of security incidents for each source package. The
list of identified programs running at the prover are matched
against the verifier’s database of security track records, yield-
ing the overall trustworthiness of the prover’s system.

The mechanism can also be queried locally, to aid sys-
tem administrators in comparing the security of alternative
program implementations more objectively. The latter is
particularly interesting as Debian also features an alterna-
tives framework, where package meta-data is used to declare
that a particular package is an alternative implementation
of another package, so that apt-sec can be used to provide
alternative suggestions with a higher level of trustworthiness
upon installation of packages.

Although we did not encounter any fundamental problems
which make our approach outright impractical or less scal-
able, we found multiple minor issues that could be optimized
for more effective and accurate verification of remote Debian
installations:

3http://www.debian.org/security/

• We found no vendor that directly supports the re-
quired unique program IDs. Although all the investi-
gated distributions maintain extensive meta-data and
source package information, the names are occasionally
changed due to political issues. A recent example is the
OpenOffice.org suite of packages, which was renamed
to LibreOffice as the software project was forked. We
decided to maintain a list of source package aliases to
take these instances into account.

• Debian and Ubuntu sometimes publish revisions to
their advisories due to incorrect and incomplete fixes,
or fixes that break other (non-security) functionality.
Unfortunately, neither Debian nor Ubuntu appear to
have strict policies on how security-critical advisory re-
visions are distinguished from non-critical regressions.
We decided to simply count only the vulnerabilities
that have an CVE associated with them. This usually
means that distribution-specific security issues are ig-
nored.

• If multiple binary packages are created from a single
source package, it is typically unclear which of the
binary packages are affected by a flaw in the source
package. For simplicity, the distributor will typically
redistribute all associated binary packages, resulting
in reduced trustworthiness of possibly unaffected pro-
grams. For example, the ISC BIND program also in-
cludes simple tools for DNS name resolution, which
are presumably not affected by all the security flaws of
the BIND server.

• Programs using Python or Java usually only ship source
code in their binary packages that is compiled on-
demand by the respective interpreter or Just-in-Time
(JIT) compiler. In these cases, the source files are of-
ten not loaded at all during execution, but only their
time stamp is checked to see if they should be re-
compiled. Hence, IMA is not sufficient as a measure-
ment agent but instead the respective JIT compilers
and interpreters should be modified to provide the re-
quired measurements. However, this limitation is out
of scope of this work.

5. EVALUATION
We evaluate our approach using our prototype for the De-

bian GNU/Linux distribution. We predict the security fail-
ure rates for individual packages for the year 2010, using
only data available up until 2009. We then compare the
actual vulnerability records of 2010 with our estimations to
find the accuracy that can be expected from our approach.
Finally, we do the same evaluation for complete system in-
stallations, represented by three typically configurations.

5.1 Base Data
We used the Debian Security Advisorys (DSAs) published

as of 2001, starting with “DSA-011”, as it is the first DSA
with a format suitable for automatic parsing. The last con-
sidered DSA is “DSA-2139”, resulting in 2129 considered
DSAs and 4530 unique vulnerabilities in 443 programs. Fig-
ure 3 shows the overall distribution of actual vulnerabilities
recorded per package in this period. We show only the name
of every fifth package due to space constraints.

http://www.debian.org/security/

 1

 10

 100

 1000

lin
u
x
-2

.6
ic

e
d
o
v
e

m
y
s
q
l

x
p
d
f

p
h
p
m

y
a
d
m

in
c
u
p
s
y
s

s
a
m

b
a

k
d
e
g
ra

p
h
ic

s
ti
ff

w
o
rd

p
re

s
s

v
lc

c
a
c
ti

x
in

e
-l
ib

tc
p
d
u
m

p
c
v
s

lib
x
m

l2
o
p
e
n
ld

a
p

e
g
lib

c
p
e
rl

g
h
o
s
ts

c
ri
p
t

p
ro

ft
p
d

k
v
m

g
a
im

p
d
ft
o
h
tm

l
g
n
u
p
g

w
e
b
c
a
le

n
d
a
r

g
n
u
tl
s

s
it
e
b
a
r

lib
a
p
a
c
h
e
-m

o
d
-s

s
l

d
o
v
e
c
o
t

w
3
m

-s
s
l

n
a
g
io

s
im

lib
2

e
g
ro

u
p
w

a
re

s
tr

o
n
g
s
w

a
n

o
p
e
n
a
fs

n
e
tk

it
-t

e
ln

e
t-

s
s
l

lib
e
x
if

g
o
p
h
e
r

c
u
p
s

w
g
e
t

ty
p
e
s
p
e
e
d

ta
r

p
d
n
s
-r

e
c
u
rs

o
r

m
a
ra

d
n
s

lib
s
n
d
fi
le

ip
s
e
c
-t

o
o
ls

g
s
t-

p
lu

g
in

s
-b

a
d
0
.1

0
e
v
o
lu

ti
o
n
-d

a
ta

-s
e
rv

e
r

c
p
io

b
o
n
s
a
i

z
g
v

x
e
n
-u

ti
ls

u
w

-i
m

a
p

s
q
l-
le

d
g
e
r

s
h
a
d
o
w

rd
e
s
k
to

p
p
u
ls

e
a
u
d
io

o
s
h

m
t-

d
a
a
p
d

m
a
h
-j
o
n
g

lis
ta

r
lib

m
ik

m
o
d

k
v
ir
c

im
lib

g
n
u
p
g
2

e
p
ic

d
o
k
u
w

ik
i

b
o
m

b
e
rc

lo
n
e

a
b
iw

o
rd

z
n
c

x
w

in
e

x
fs

tt
w

o
rd

n
e
t

w
3
m

m
e
e
-s

s
l

u
n
a
rj

V
u
ln

e
ra

b
ili

ti
e
s

Vulnerability Distribution

Figure 3: Number of vulnerabilities per program, sorted to illustrate the distribution of vulnerabilities. (Note
that only every fifth program name is displayed on the x-axis.)

Table 2 shows the 20 packages with the most recorded
vulnerabilities until 2010, their respective MTTF for λ =
12 and the corresponding estimated (STP12(365)) and ac-
tual (Vuln. 2010) amount of vulnerabilities for 2010. Note
that for licensing reasons, Debian lists the Mozilla Firefox,
Thunderbird and SeaMonkey programs as iceweasel, ice-
dove, and iceape. Readers unfamiliar with Debian Linux
may lookup the other package names in the Debian package
directory http://www.debian.org/distrib/packages.

Considering the distribution of vulnerabilities shown in
Figure 3, it is clear that vulnerabilities are not equally dis-
tributed but clearly follow a pattern. This is consistent with
the results of related work such as [14], and substantiates our
working hypothesis that every program has a certain char-
acteristic security failure rate.

It is also interesting to note that the Linux kernel has
the by far highest rate of security bugs. This confirms the
common knowledge between Linux system administrators
that it is very hard to isolate local users and prevent them
from gaining root privileges, which is particularly problem-
atic when using it in systems like Xen or Android that can-
not keep up with the rapid development and (often silent)
patching of potential security bugs.

5.2 Prediction Accuracy
We use the software trustworthiness to compute the num-

ber of expected future vulnerabilities per year as STP12(365) =
365days ·MTTF12. Figure 4 shows the predicted vulnerabili-
ties per package for 2010, as well as the corresponding actual
vulnerabilities per package that have been recorded in that
year. We removed all packages with a prediction rate of less
than 1 vulnerability per year, leaving 196 packages.

Sorted again by the number of vulnerabilities per package,
the correlation between prediction and observation is clearly
visible. However, it also becomes clear that the prediction
accuracy decreases with reduced overall security failure rate.

To compare TrustMiner to existing vulnerability predic-
tion schemes, we calculate the average recall and precision
as used in previous works [14, 13, 21]. However, previous
approaches only use a classification of packages as vulnera-

Vuln. MTTF12 STP12(365) Vuln. Packet
< 2010 2010

391 3.1 118.9 89 linux-2.6
288 169.2 2.2 - linux-2.4
188 17.6 20.7 23 iceweasel
171 14.4 25.3 23 icedove
158 6.2 59.2 53 xulrunner
94 351.4 1.0 - mozilla
90 274.0 1.3 8 php
89 28.1 13.0 22 iceape
83 38.1 9.6 10 wireshark
56 552.3 0.7 15 mysql
51 73.1 5.0 - clamav
45 42.3 8.6 2 xpdf
40 58.6 6.2 0 ruby
40 73.9 4.9 7 cups
38 205.6 1.8 0 xorg-server
35 118.8 3.1 4 openssl
35 132.5 2.8 3 krb5
33 105.8 3.5 6 postgresql
31 62.4 5.9 8 phpmyadmin
30 533.6 0.7 0 mantis

Table 2: Number of vulnerabilities and MTTF of
the top 20 vulnerable packets until 2009, and the
respective vulnerability predictions (STP) and ac-
tual vulnerabilities recorded in 2010. Discontinued
programs are marked with “-”.

ble or not using Support Vector Machines (SVMs) while our
approach focuses on finding a useful absolute estimate for
the number of vulnerabilities to expect. For the purpose of
this comparison we thus simply treat every package with an
STP12(365) ≥ 2 as vulnerable. This results in an average
recall of 54%, meaning that of all vulnerable packages, 54%
are marked as vulnerable. Furthermore, of all the packages
TrustMiner marked as vulnerable, 57% are actually vulner-
able (precision). As can be seen in Table 3, these results
are comparable to [14] (predicting vulnerable components of

http://www.debian.org/distrib/packages

 0.1

 1

 10

 100

lin
u

x
-2

.6
ic

e
w

e
a

s
e

l
ic

e
d

o
v
e

w
e

b
k
it

m
o

z
ill

a
c
la

m
a

v
s
q

u
id

g
u

a
rd

s
ilc

-c
lie

n
t/

s
ilc

-t
o

o
lk

it
c
a

m
lim

a
g

e
s

ty
p

o
3

-s
rc

ra
ils

w
o

rd
p

re
s
s

o
p

e
n

o
ff

ic
e

.o
rg

n
s
s

h
o

rd
e

3
k
v
m

a
s
te

ri
s
k

v
lc

p
o

p
p

le
r

o
p

e
n

e
x
r

d
ru

p
a

l
e

x
p

a
t

lc
m

s
o

p
e

n
s
s
l

p
o

s
tg

re
s
q

l
a

p
r

m
a

n
ti
s

p
o

lip
o

p
h

p
b

b
2

q
t4

-x
1

1
k
a

z
e

h
a

k
a

s
e

s
a

m
b

a
a

p
a

c
h

e
2

fi
re

b
ir
d

to
m

c
a

t
x
in

e
-l
ib

lib
v
o

rb
is

p
y
th

o
n

lib
m

o
d

p
lu

g
a

p
r-

u
ti
l

m
c

e
lo

g
lib

p
n

g
v
im

s
q

u
id

g
p

d
f

o
p

e
n

s
w

a
n

lib
d

b
d

-p
g

-p
e

rl
c
y
ru

s
-s

a
s
l2

-h
e

im
d

a
l

p
c
re

3
e

k
g

lib
p

a
m

-k
rb

5
b

in
d

9
tc

p
d

u
m

p
g

n
u

tl
s

c
v
s

lib
x
m

l2
p

d
n

s
-r

e
c
u

rs
o

r
d

o
v
e

c
o

t
n

a
s

rd
e

s
k
to

p
e

g
lib

c
s
m

a
rt

y
n

a
g

io
s

m
a

ilm
a

n
im

p
4

m
a

ra
d

n
s

c
e

n
te

ri
c
q

s
p

lit
v
t

g
n

u
p

g
s
e

n
d

m
a

il
s
e

re
n

d
ip

it
y

te
te

x
-b

in
m

t-
d

a
a

p
d

g
lib

c
ff

m
p

e
g

-d
e

b
ia

n
lib

tk
-i
m

g
g

tk
+

2
.0

e
x
im

e
g

ro
u

p
w

a
re

o
p

e
n

s
c

w
o

rd
n

e
t

e
v
o

lu
ti
o

n
g

d
k
-p

ix
b

u
f

lib
n

e
t-

d
n

s
-p

e
rl

g
n

u
m

p
3

d
lib

x
s
lt

k
d

e
b

a
s
e

p
y
th

o
n

-d
n

s
n

e
t-

s
n

m
p

ic
u

m
a

ilu
ti
ls

fr
e

e
ra

d
iu

s
s
d

l-
im

a
g

e
1

.2
lib

e
x
if

g
s
-g

p
l

w
e

b
m

in
lib

p
h

p
-a

d
o

d
b

V
u

ln
e

ra
b

ili
ti
e

s
Vulnerability Prediction for 2010

Actual Vulnerabilities in 2010

Figure 4: Number of predicted (solid line) and actual vulnerabilities (dashed boxes) for 2010, sorted by
prediction rate. Only every second package name is displayed.

the Firefox Browser), and slightly more accurate than those
of [21] (predicting vulnerable programs in Windows Vista).
However, TrustMiner does not provide the same accuracy
as the SVM-based approach presented in [13], which pre-
dicts the vulnerability of packages using packet dependen-
cies. While the authors of [13] are not completely sure why
this metric provides such high accuracy, we hope to combine
it with our system in the future to provide maximum predic-
tion accuracy. However, we aim to maintain our advantage
of having a metric that can easily be understood by humans
and can also provide a notion of the relative trustworthiness
distance between two alternative software implementations.

TrustMiner [14] [13] [21]
Recall 54% 45% 65% 20%
Precision 57% 70% 83% 66%

Table 3: Predication Accuracy of TrustMiner vs.
other approaches. Of all vulnerable packages, 54%
are marked as vulnerable. Of all packages marked
as vulnerable, 57% actually were found to be vulner-
able.

The rate of security incidents and thus also the accuracy
of our prediction fluctuates strongly for packages relatively
very low security incident rates. As also observed in pre-
vious works, the accuracy increases if the package is more
vulnerable. As a result, our system suffers low accuracy for
a very large amount of packets, resulting in rather bad over-
all precision and recall rates. However, the relation between
security incidents and prediction accuracy also means that
the overwhelming amount of security incidents are predicted
rather accurately as they correctly estimated vulnerability
rates form the bulk of the overall security incident rate.

Even for some programs with a larger amount of vulnera-
bilities per year, strong fluctuations are visible. This is likely
due to the changing interest of penetration testers and vul-
nerability researchers and also due to the fast development
and replacement of software in current Linux desktop sys-
tems. As a result, the vulnerability rates of individual pack-
ages randomly increase for shorter periods of time, resulting
in the strong noise visible in Figure 4. However, such fluctua-

tions should cancel each other out when considering systems
consisting of several software packages. As a last step, we
thus consider the prediction accuracy of aggregated systems
instead of only individual software packages.

Evaluation of Aggregate Software Systems.
To derive the prediction accuracy for entire system instal-

lations, we evaluate three typical Debian installations as well
as the Debian base installation. This process is very similar
to assigning an overall trustworthiness value during remote
attestation of the respective system. However, as explained
earlier, our prototype can also use the packages list provided
by the installer instead of binary measurements provided by
IMA. We use this feature here to attest not only the exe-
cuted applications but the complete systems. Specifically,
we consider the following three installation types:

• The base system represents the minimal Debian in-
stallation and yields the highest (but still rather low)
trustworthiness.

• The desktop system is comprised of the K Desktop
Environment (KDE) and X11, the Mozilla browser and
email clients Firefox and Thunderbird, OpenOffice and
the VLC video player.

• The server system is a Linux/Apache/MySQL/PHP
(LAMP) installation with an additional Lightweight
Directory Access Protocol (LDAP) server and OpenSSH.

Table 4 shows the overall MTTF and MTTF12 for the
respective systems as well as the corresponding expected and
actual vulnerability rates for the year 2010. The achieved
prediction accuracy is significantly higher than for the above
consideration of individual programs. The MTTF metric
performs better for the server and base system, while the
MTTF12 metric suffers less in the Desktop installation. We
assume this is due to the higher stability of the server and
base system components over time. Current Linux desktops
and desktop applications get developed, forked and replaced
rapidly, resulting in short-lived applications with rather high
vulnerability rates.

Vulnerability rates Base System Desktop Server
MTTF (days/vuln.) 3.6 1.1 2.8
MTTF12 (days/vuln.) 2.7 1.1 2.4
STP(365) (vuln./yr) 101.5 322.6 128.8
STP12(365) (vuln./yr) 134.7 301.7 153.4
Actual Vuln. in 2010 106 222 116
MTTF Accuracy 95.6% 68.8% 90.1%
MTTF12 Accuracy 78.7% 73.6% 75.6%

Table 4: Expected and actual vulnerability rates in
2010 for different system setups.

6. RELATED WORK

6.1 Remote Attestation Concepts
Remote attestation aims at establishing trust into a re-

mote computer systems through verifiable reporting the sys-
tem’s software state. The original concept introduced by
the Trusted Computing Group [19, 17] uses cryptographic
hashes of the software binaries to allow the identification of
installed software on the reporting system. Extensions to
this design were proposed that use virtualization technol-
ogy [3, 4], mandatory access control schemes [6], or isolation
mechanisms in hardware [9, 8, 18] to minimize the attested
code base. Although these schemes improve the efficiency
and scalability of remote attestation, they still only report
the identity of software components but not their security
or trustworthiness.

The concept of property-based attestation (PBA) was in-
troduced to address this problem [16, 15, 2]. Their idea is to
bind the identity of individual programs to certain security
properties using digital signatures. However, these works
do not specify what kinds of properties to report or how to
measure them.

In this context, our approach can be seen as a possible
extension of existing remote attestation schemes that con-
siders specifically the validation of reported software con-
figurations at the verifier. While our prototype uses IMA
measurements as input, one might also use our predicted
trustworthiness values per package in context of PBA, as
one of several properties to attest to.

6.2 Vulnerability Metrics and Prediction
As we described in Section 4, our approach is based on

traditional software reliability measurements such as the
MTTF. These metrics have been developed in prior works [7,
11], however, they mainly target software functionality in-
stead of software security. Regarding security metrics, a
generic software security metric based on the CVSS scor-
ing system is presented in [20]. They consider the severity
and risk of the vulnerabilities (provided by the CVSS scor-
ing system) to derive the security of a particular software.
However, they do not substantiate the motivation of their
security metric definition. Further, they only apply their
security metric to selected web browser and webserver ap-
plications.

Multiple prior works consider the prediction of vulnera-
bilities using Support Vector Machines (SVMs). In [21] the
authors analyze vulnerability prediction for Windows Vista,
finding high correlation between metrics such as code churn,
complexity, coverage and organizational measures and the
amount of vulnerabilities. They deploy logical regression

methods to predict future vulnerabilities, but suffer from a
rather low recall, of about 20%. Vulture [14] analyzes vul-
nerability databases and archives to associate past vulnera-
bilities with specific program components in Mozilla Firefox.
Using SVMs. Their recall and precision rates are similar to
TrustMiner (cf. Section 5.2, however, Vulture requires ac-
cess to source code and manual intervention to associate vul-
nerabilities with the right source code components, reducing
scalability. Another work found a strong correlation between
vulnerabilities and package dependencies [13]. They applied
SVMs on dependency data and vulnerability reports to pre-
dict vulnerabilities in RedHat Linux. They report rather
good prediction accuracy, predicting two third of vulnerable
packages (65% average recall) and correctly marking 4 out
of 5 packets as vulnerable (83% precision). The authors of
[1] use the vulnerability density, which reflects the number
of vulnerabilities in a given size of code, and the vulnera-
bility discovery rate to model and determine the amount of
hidden vulnerabilities in Windows XP and RedHat Linux.

Our approach differs from prior work in our choice of the
metric, which is very intuitive and provides richer semantics
for subsequent security assessment than the classification
approach using SVMs. Specifically, our metric allows to
directly derive the security of aggregated systems and also
to quantify the relative difference in trustworthiness between
any two packages. Yet, we achieve similar accuracy rates,
especially when considering entire system installations as
shown in Section 5.2.

7. LIMITATIONS AND FUTURE WORK
We presented a pragmatic approach to measure the trust-

worthiness of a complex software system. Our proposal is
based on software reputation schemes in the sense that we
derive the trustworthiness of individual software packages
from the number and timing of reported vulnerabilities.

Although our prototype makes some strong assumptions
on the availability and consistency of the used data, these
are easily met by larger free software distributors such as
Debian and Ubuntu that feature public software repositories
and comprehensive security support. However, all of the
major Linux distributions we examined could improve the
accessibility of their security advisory databases by making
them more consistent and machine readable.

By leveraging the information provided in the CVE and
advisory databases, we essentially rely on public consensus
to derive our security statistics and, hence, assessments. It
is certainly possible that the used databases contain incom-
plete or wrong information. In particular, the security team
of the distributor may misjudge the impact of vulnerabili-
ties on certain packets or simply miss them. However, both
databases are subject to public scrutiny and the past has
shown that any problems in, e.g., Debian’s handling of se-
curity issues, receives widespread attention and analysis [5].
Hence, it is unlikely that sufficient misinformation accumu-
lates to significantly bias the statistical results.

For future work, it would be interesting to see if the sever-
ity ratings according to the CVSS also follow a pattern that
can be used to increase prediction accuracy, and if the ap-
proach of [13] using package dependencies can be adopted
to improve the accuracy of our system. Based on avail-
able package meta-data in Debian, we aim to extend Trust-
Miner to provide a tool that automatically suggests alterna-
tive (more secure) implementations of similar applications.

8. REFERENCES

[1] O. H. Alhazmi, Y. K. Malaiya, and I. Ray. Measuring,
analyzing and predicting security vulnerabilities in
software systems. Computers & Security,
26(3):219–228, 2007.

[2] L. Chen, H. Löhr, M. Manulis, and A.-R. Sadeghi.
Property-based attestation without a trusted third
party. In Information Security Conference (ISC).
Springer, 2008.

[3] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: a virtual machine-based platform for
trusted computing. In Symposium on Operating
Systems Principles (SOSP). ACM, 2003.

[4] V. Haldar, D. Chandra, and M. Franz. Semantic
remote attestation: A virtual machine directed
approach to trusted computing. In USENIX Virtual
Machine Research and Technology Symposium, 2004.

[5] K. N. Jacob Appelbaum, Dino Dai Zovi. Crippling
crypto: The Debian OpenSSL debacle. In: The Last
Hackers On Planet Earth (HOPE), 2008.

[6] T. Jaeger, R. Sailer, and U. Shankar. PRIMA:
Policy-reduced integrity measurement architecture. In
ACM Symposium on Access control models and
technologies (SACMAT). ACM, 2006.

[7] M. R. Lyu, editor. Handbook of software reliability
engineering. McGraw-Hill, Inc., 1996.

[8] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. TrustVisor: efficient TCB
reduction and attestation. In IEEE Symposium on
Research in Security and Privacy (S&P). IEEE, 2010.

[9] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki. Flicker: An execution infrastructure
for TCB minimization. In European Conference on
Computer Systems (EuroSys). ACM, 2008.

[10] P. Mell, K. Scarfone, and S. Romanosky. A complete
guide to the Common Vulnerability Scoring System
Version 2.0.
http://www.first.org/cvss/cvss-guide.pdf, 2007.

[11] J. D. Musa, A. Iannino, and K. Okumoto. Software

reliability: measurement, prediction, application.
McGraw-Hill, Inc., 1987.

[12] N. Nagappan, T. Ball, and A. Zeller. Mining metrics
to predict component failures. In International
conference on Software engineering (ICSE). ACM,
2006.

[13] S. Neuhaus and T. Zimmermann. The beauty and the
beast: vulnerabilities in RedHat’s packages. In
USENIX Annual Technical Conference (USENIX).
USENIX, 2009.

[14] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller.
Predicting vulnerable software components. In
Conference on Computer and Communications
Security (CCS). ACM, 2007.

[15] J. Poritz, M. Schunter, E. Van Herreweghen, and
M. Waidner. Property attestation — scalable and
privacy-friendly security assessment of peer computers.
Technical Report RZ 3548, IBM Research, 2004.

[16] A.-R. Sadeghi and C. Stüble. Property-based
attestation for computing platforms: Caring about
properties, not mechanisms. In New Security
Paradigms Workshop (NSPW). ACM, 2004.

[17] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn.

Design and implementation of a TCG-based integrity
measurement architecture. In USENIX Security
Symposium. USENIX, 2004.

[18] E. Shi, A. Perrig, and L. van Doorn. BIND: A
fine-grained attestation service for secure distributed
systems. In IEEE Symposium on Research in Security
and Privacy (S&P). IEEE, 2005.

[19] Trusted Computing Group (TCG). TPM Main
Specification, Version 1.2, Revision 116, 2011.

[20] J. A. Wang, H. Wang, M. Guo, and M. Xia. Security
metrics for software systems. In Annual Southeast
Regional Conference. ACM, 2009.

[21] T. Zimmermann, N. Nagappan, and L. Williams.
Searching for a needle in a haystack: Predicting
security vulnerabilities for windows vista. In
International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2010.

http://www.first.org/cvss/cvss-guide.pdf

	Introduction
	Problem Description
	Software Trust and Reputation
	State-Of-The-Art in Practical Systems
	An Objective Definition of Trust
	A Metric for Software Reputation

	Design and Implementation
	Architecture
	Security in mainstream OSS distributions
	Introducing TrustMiner

	Evaluation
	Base Data
	Prediction Accuracy

	Related Work
	Remote Attestation Concepts
	Vulnerability Metrics and Prediction

	Limitations and Future Work
	References

