
Practical Secure
Function Evaluation

Diplomarbeit im Fach Informatik

vorgelegt von

Thomas Schneider

geb. 1. Juni 1983 in Koblenz

angefertigt am

Institut für Informatik
Lehrstuhl für Informatik 8

Künstliche Intelligenz
Friedrich-Alexander-Universität Erlangen–Nürnberg

Prof. Dr. Volker Strehl

Betreuer: Vladimir Kolesnikov, Ph.D.
(Bell Laboratories, Security Solutions/Cryptographic Systems,

600 Mountain Ave. Murray Hill, NJ 07974,USA)

Beginn der Arbeit: 7. September 2007
Abgabe der Arbeit: 27. Februar 2008

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als
der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.

Erlangen, den 27. Februar 2008

Thomas Schneider

Abstract

This thesis focuses on practical aspects of general two-party Secure Function Evaluation
(SFE). We give a new SFE protocol that allows free evaluation of XOR gates and is
provably secure against semi-honest adversaries in the random oracle model.

Furthermore, the extension of SFE to private functions (PF-SFE) using universal
circuits (UC) is considered. Based on our new practical UC construction, FairplayPF
is implemented as extension of the well-known Fairplay SFE system to demonstrate
practicability of UC-based PF-SFE.

Also new protocols for SFE and PF-SFE of functions alternatively represented as
Ordered Binary Decision Diagram (OBDD) are given.

Synopsis

Since the first publication of Yao [Yao86], Secure Function Evaluation (SFE) is a well-
researched problem. Continuing advances in available computational power and commu-
nication have made secure computation of many useful functions affordable. Recent work
like Fairplay [MNPS04] demonstrate practicability of general SFE. This thesis focuses
on several practical aspects of SFE.

Our new improved SFE protocol allows free evaluation of XOR gates and is provably
secure against semi-honest adversaries in the random oracle model - the same assump-
tions that Fairplay relies on. The protocol merges elements of the information-theoretic
SFE protocol GESS [Kol05] with Fairplay. This results in substantial performance im-
provements of 50% for many important circuit structures like addition or equality test.

SFE is extended to allow the evaluated function to be secret and only known by
one party, called SFE of private functions (PF-SFE). These settings occur naturally in
applications like no-fly-list-, credit report-, or medical history checking. It is known that
PF-SFE can easily be reduced to SFE of universal circuits (UC). We give a practical UC
construction [KS08] that is up to 50% smaller than the best UC of Valiant [Val76] when
used in today’s PF-SFE. FairplayPF [KS] was implemented as extension of Fairplay to
demonstrate practicability of PF-SFE based on the new UC construction. Using the
improved SFE protocol, UC-based PF-SFE can be improved by another factor of 4.

Besides these circuit-based approaches for SFE and PF-SFE new protocols for SFE
and PF-SFE of functions represented as Ordered Binary Decision Diagrams (OBDDs)
are given that are based on [KJGB06]. This SFE protocol for OBDDs is extended to the
malicious model and shown how to obtain a PF-SFE protocol for OBDDs at the cost of
a small overhead only.

The results of this thesis substantially improve general SFE for many practical func-
tions and demonstrate practicability of general PF-SFE for “small” functions.

i

ii

Kurzfassung

Diese Arbeit konzentriert sich auf praktische Aspekte allgemeiner, sicherer Funktionsaus-
wertung (SFE, engl. Secure Function Evaluation) zwischen zwei Teilnehmern. Ein
neues SFE Protokoll wird präsentiert, das eine kostenlose Auswertung von XOR Gattern
erlaubt und beweisbar sicher gegen “semi-honest” Angreifer im “Random Oracle” (RO)
Modell ist.

Zusätzlich wird die Erweiterung von SFE auf private Funktionen (PF-SFE) unter
Verwendung von universellen Schaltkreisen (UC, engl. Universal Circuit) betrachtet.
Basierend auf unserer neuen, praktischen UC Konstruktion wurde FairplayPF als Er-
weiterung des namhaften Fairplay SFE Systems implementiert, um die Praktikabilität
von UC-basierter PF-SFE zu demonstrieren.

Außerdem werden für Funktionen, die eine alternative Darstellung als geordnete,
binäre Entscheidungsdiagramme (OBDD, engl. Ordered Binary Decision Diagrams)
haben, neue SFE- und PF-SFE Protokolle angegeben.

Zusammenfassung

Seit der ersten Veröffentlichung von Yao [Yao86] ist sichere Funktionsauswertung (SFE,
engl. Secure Function Evaluation) ein gut erforschtes Gebiet. Anhaltende Erhöhungen
der verfügbaren Rechen- und Kommunikationsressourcen haben die sichere Auswertung
vieler nützlicher Funktionen erschwinglich gemacht. Neue Veröffentlichungen wie Fair-
play [MNPS04] demonstrieren die Praktikabilität von allgemeiner SFE. Diese Arbeit
konzentriert sich auf verschiedene praktische Aspekte von SFE.

Unser neues, verbessertes SFE Protokoll erlaubt die kostenlose Auswertung von XOR
Gattern und ist beweisbar sicher gegen “semi-honest” Angreifer im “Random Oracle”
(RO) Modell - die selben Annahmen, auf denen auch Fairplay basiert. Das Protokoll
kombiniert Elemente des informationstheoretischen SFE Protokolls GESS [Kol05] mit
Fairplay. Daraus resultiert eine erhebliche Effizienzverbesserung auf 50% für viele be-
deutende Schaltkreisstrukturen wie Addition oder Gleichheitstest.

SFE wird erweitert, so dass die ausgewertete Funktion geheim und nur einem Teil-
nehmer bekannt ist. Dies wird als SFE privater Funktionen (PF-SFE) bezeichnet. Prak-
tische Anwendungen hierfür sind das Prüfen von Flugverbotslisten, der Kreditwürdigkeit
oder der Krankheitsgeschichte. Es ist bekannt, dass PF-SFE leicht auf SFE von uni-
versellen Schaltkreisen (UC, engl. Universal Circuit) reduziert werden kann. Wir präsen-
tieren eine praktische UC Konstruktion [KS08], die bis zu 50% kleiner als der bisher
kleinste UC von Valiant [Val76] ist, wenn sie für heutige PF-SFE verwendet wird. Fair-
playPF [KS] wurde als Erweiterung von Fairplay implementiert, um die Praktikabilität
von PF-SFE basierend auf der neuen UC Konstruktion zu demonstrieren. Bei Ver-
wendung des verbesserten SFE Protokolls kann UC-basierte PF-SFE um einen weiteren
Faktor von 4 verbessert werden.

iii

Neben diesen schaltkreisbasierten Ansätzen für SFE und PF-SFE werden neue Pro-
tokolle für Funktionen vorgestellt, die als geordnete, binäre Entscheidungsdiagramme
(OBDD, engl. Ordered Binary Decision Diagrams) repräsentiert sind. Das SFE Pro-
tokoll für OBDDs basiert auf dem Protokoll aus [KJGB06], das auf das “malicious
model” ausgeweitet wird. Zusätzlich wird gezeigt, wie man daraus ein PF-SFE Pro-
tokoll für OBDDs mit nur geringem Zusatzaufwand erhält.

Die Ergebnisse dieser Diplomarbeit verbessern allgemeine SFE für viele praktische
Funktionen und demonstrieren die Praktikabilität von allgemeiner PF-SFE für “kleine”
Funktionen.

iv

Acknowledgements

First and foremost I would like to thank Vladimir Kolesnikov for his kind supervision
of this thesis and my six months research internship at Bell Labs, Security Solutions/
Cryptographic Systems in Murray-Hill, NJ, USA. His introduction into state of the art
research and methodologies in SFE, many fruitful hints, discussions and tons of thrown
away “crappy” drafts and ideas substantially contributed to the results of this thesis.
He gave me a very positive insight into scientific research and constructive cooperation.
The possibility to publish the results we found together on international conferences
combined with the two provisional patent applications were an outstanding opportu-
nity. Thanks for the nice time we worked and spent together in and around “the city”.
I’m looking forward to continuing our joint research in the future.

Special thanks also goes to Prof. Dr. Volker Strehl for kindly supervising this thesis
and encouraging me to go abroad during one semester for it. His interesting lectures,
motivating exercise classes and kind mentorship guided me throughout my studies and
formed my interest in theoretical computer science - especially cryptography. The sup-
port he gave opened plenty of opportunities during my studies and for continuing scien-
tific research in the future.

Thanks to my beloved girlfriend Karolin Steidel for her understanding, support and
encouragements during the last year and our wonderful time together.

Last but not least I would like to thank all people that contributed to parts of this
thesis with helpful comments, Prof. Dr. Rolf Wanka, Debbie Cook and as reviewers, my
father Klaus, my brother Matthias, and my university friends Korbinian Riedhammer
and Thomas Holleczek.

Thank you.

v

Acknowledgements

vi

Contents

1 Introduction 1

1.1 Contents and Contributions . 2

1.2 Publications and Copyright Notice. .3

1.3 Structure . 3

2 Notation, Definitions and Preliminaries 5

2.1 Notation . 5

2.2 Boolean Functions .5

2.2.1 Boolean Circuits . 5

2.2.2 Ordered Binary Decision Diagrams (OBDDs) . 6

2.3 Symmetric Encryption. .8

2.3.1 Semantic Security . 9

2.3.2 Block Ciphers. .9

2.3.3 Symmetric Encryption with Special Properties . 10

2.4 Random Oracle Model . 10

2.5 Oblivious Transfer. .11

2.6 Adversaries . 11

3 Secure Function Evaluation (SFE) 13

3.1 Introduction . 13

3.2 Commonalities of the Protocols. .14

3.2.1 General Protocol Structure . 14

3.2.2 Provable Security in the Semi-honest Model . 14

3.2.3 Security in the Malicious Model .15

3.3 Circuit-based SFE. .15

3.3.1 Yao’s Protocol . 16

3.3.2 Fairplay . 18

3.3.3 Gate Evaluation Secret Sharing (GESS). .18

3.3.4 Improved SFE . 20

3.4 OBDD-based SFE. 28

3.4.1 Improved OBDD-based SFE . 28

vii

Contents

3.5 Summary . 29

4 Secure Evaluation of Private Functions (PF-SFE) 33

4.1 Introduction . 33

4.2 Universal Circuit-based PF-SFE. 33

4.2.1 Applications . 34

4.3 OBDD-based PF-SFE . 34

5 Universal Circuit Constructions 37

5.1 Definitions and Preliminaries . 37

5.2 Valiant’s UC Construction . 38

5.3 A Practical UC Construction . 40

5.3.1 Simple Universal Block Construction .41

5.3.2 Recursive Universal Block Construction . 41

5.3.3 Generalized Permutation Blocks . 44

5.3.4 Efficient Selection Blocks . 46

5.3.5 Optimization of the UC Construction . 52

5.4 Comparison . 52

6 Implementation of PF-SFE 55

6.1 Fairplay . 55

6.2 FairplayPF . 58

7 Conclusion 61

7.1 Summary . 61

7.2 Outlook . 62

Appendices

List of Figures . 67

List of Tables . 69

List of Algorithms and Protocols . 71

List of Acronyms . 73

Index . 75

Bibliography. 77

viii

1 Introduction

Consider the following situation. Several parties, each of which has a private input,
wish to evaluate a function on their inputs. This need arises often indeed – almost any
transaction or a communication over a network can be cast as evaluation of a function
on the participant’s inputs. For example, in an online auction, the bidders and the
auctioneer are players who wish to evaluate the auction function, whose value is equal
to the ID of the highest bidder. Other natural and important examples include financial
transactions, voting, distributed database mining, etc.

A lot of the time, parties’ inputs need to be hidden from the rest of the world. For
example, in the case of the auction, unsuccessful bidders would want to preserve the
privacy of their bids. Depending on the function, some information about the parties’
inputs might be easily derived from the output of the function. For example, the winning
bid of an auction might necessarily be revealed. The goal of secure computation is to
ensure that no other information is leaked during the computation. Clearly, efficient
methods of secure evaluation of functions are of great interest. The problem is often
referred to as Secure Function Evaluation, or SFE.

As SFE is a very wide area of research this thesis focuses on the following subclass of
SFE protocols. Two-party SFE is considered, where the number of players is two. These
protocols can be run in one-round that allows relatively easy protection against mali-
cious players trying to cheat in the protocol (whereas often multi-party protocols run in
multiple rounds [GMW87, Can96]). General SFE protocols are discussed that can eval-
uate arbitrary functions (whereas special-purpose SFE protocols might be more efficient
but can only be used for a subclass of functions and applications such as number com-
parison [BK06] for auction functions, etc.). Computationally secure protocols are con-
sidered where adversaries’ resources are bounded polynomially (whereas in information-
theoretically secure protocols adversaries may have unlimited power). A wide range of
practical applications such as privacy-preserving no-fly-list-/credit history-/medical his-
tory checking, mobile code, or privacy-preserving database querying is covered with this
subclass of SFE protocols as described in this thesis.

Continuing advances in available computational power and communication have made
secure computation of many useful functions affordable. Several recent works approach
the problem of general two-party SFE from the practical angle, discuss and fine-tune
the implementation details [KJGB06, MNPS04]. By extending and improving this work
general two-party SFE is pushed further towards practicability.

1

1 Introduction

1.1 Contents and Contributions

As discussed before, this thesis focuses on practical aspects of general two-party SFE.
The currently best known approach for general SFE of Fairplay [MNPS04] is combined
with the information-theoretically secure approach of Gate Evaluation Secret Sharing
(GESS) [Kol05] to a new, practical method for general SFE, to which we refer to as
improved SFE in the following. This new method allows free evaluation of XOR gates
which results in substantial performance improvements of up to 50% for many important
circuit structures such as addition or number comparison. A proof of security in the semi-
honest model is given that is based on the random oracle (RO) assumption (same as
Fairplay).

In practice, there is often a need to not only protect the inputs, but the function
being evaluated as well. One example is checking a passenger against the no-fly list (or,
more generally, no-fly function of passenger’s data). Here, a compromise of the function
weakens the security of the system significantly. Other examples include credit checking
or background- and medical history checking functions.

This well-known problem called SFE of private functions (PF-SFE) is addressed by a
large amount of work like [FAZ05, CCKM00, SYY99, Pin02]. In PF-SFE, the evaluated
function is known only by one party and needs to be kept secret (i.e. everything besides
the size, the number of inputs and outputs is hidden from the other party). Full or even
partial revelation of these functions opens vulnerabilities in the corresponding process,
exploitable by dishonest participants (e.g. credit applicants), and should be prevented.

The problem of PF-SFE can be reduced to the “regular” SFE by parties evalu-
ating a Universal Circuit (UC) instead of a circuit defining the evaluated function
[SYY99, Pin02]. UC can be thought of as a “program execution circuit”, capable of
simulating any circuit C of certain size, given the description of C as input. Therefore,
disclosing the UC does not reveal anything about C, except its size. At the same time,
the SFE computes output correctly and C remains private, since the player holding C
simply treats description of C as additional (private) input to SFE. This reduction is the
most common (and often the most efficient) way of securely evaluating private functions
[SYY99, Pin02].

We improve previous PF-SFE constructions by giving a new simple and efficient UC
construction [KS08]. Our practical UC construction for simulating k gates has size
∼ 1.5k log2 k and depth ∼ k log k (depth can be improved to O(k) at the cost of a small
increase in size). It is up to 50% smaller than the best UC (Valiant’s UC [Val76] has
size ∼ 19k log k) for practical circuit sizes of up to ≈ 5000 gates. This improvement
results in corresponding performance improvement of SFE of (small) private functions.
Since, due to cost, only small circuits (i.e. < 5000 gates) are practical for PF-SFE, our
construction appears to be the best fit for many practical PF-SFE.

General PF-SFE is implemented using this UC construction as extension of the Fair-
play SFE system, called FairplayPF [KS]. Using our improved SFE protocol, UC-based

2

1.2 Publications and Copyright Notice

PF-SFE can be improved to cost as little as 25% of the previously best known solution
(which uses Fairplay as underlying SFE protocol).

Besides these circuit-based approaches for SFE and PF-SFE, new protocols for SFE
and PF-SFE of functions represented as Ordered Binary Decision Diagrams (OBDDs)
are given that are based on [KJGB06]. This SFE protocol for OBDDs is extended to the
malicious model and shown how to obtain a PF-SFE protocol for OBDDs at the cost of
a small overhead only.

The results of this thesis substantially improve general SFE for many practical circuits
and demonstrate practicability of general PF-SFE for “small” functions.

1.2 Publications and Copyright Notice

Parts of this thesis are published/submitted by Vladimir Kolesnikov and Thomas Schnei-
der in/to two international conferences. All rights reserved by Alcatel-Lucent as provi-
sional patents.

a) Chapter 4.2 and Chapter 5: “A Practical Universal Circuit Construction and Secure
Evaluation of Private Functions”. In Financial Cryptography and Data Security 2008
(FC08). [KS08]

b) Chapter 3.3.4: “Improved Garbled Circuit: Free XOR Gates and Applications”.
Submitted to International Colloquium on Automata, Languages and Programming
(ICALP08).

In order to emphasize that these parts of the thesis are published, formulated and
patented in close cooperation with my supervisor Vladimir Kolesnikov, I intensionally
use formulations “we” and “our” in combination with these results.

1.3 Structure

The thesis is structured as follows:

Chapter 2 introduces relevant primitives and notation used throughout this thesis.

Chapter 3 gives practical Secure Function Evaluation (SFE) protocols.

Chapter 4 extends SFE to private functions, called PF-SFE.

Chapter 5 describes universal circuit (UC) constructions suitable for PF-SFE.

Chapter 6 explains FairplayPF, an extension of Fairplay SFE system for PF-SFE.

Chapter 7 concludes the results of the thesis and gives and outlook to future work.

3

1 Introduction

4

2 Notation, Definitions and
Preliminaries

This chapter introduces relevant primitives and notation used throughout this thesis.

2.1 Notation

This thesis uses the following standard notations.
{0, 1}∗ denotes the space of finite binary strings, {0, 1}n the space of binary strings of

length n. a||b or just ab denotes the concatenation of strings a and b. 〈a, b〉 is a vector
with two components a and b, and its bit string representation is a||b.

For strings of the same length s, t ∈ {0, 1}∗, let s⊕ t denote their bitwise exclusive-or
(XOR).

Uniformly random sampling is denoted by the ∈R operator. For example, r ∈R D
means “choose r uniformly at random from D”.

X
c≡ Y denotes that random variables X and Y are computationally indistinguishable

(see [Gol01, 3.2 Computational Indistinguishability] for an exact definition of computa-
tional indistinguishability).

Abbreviations are introduced before they are used. A list of acronyms can be found
in the end of this thesis.

Throughout this thesis parties are referred to mainly by their function (Evaluator,
Constructor) or by their index (Pi). Sometimes names are used, where Alice is the Eval-
uator and Bob is the Constructor, depending on the context of the particular problem.

2.2 Boolean Functions

A boolean function f : {0, 1}u → {0, 1}v is a function that maps u binary inputs to
v binary outputs. The following representations of boolean functions are especially
relevant as they are the basis of SFE protocols described in this thesis.

2.2.1 Boolean Circuits

Boolean circuits are a classical representation of boolean functions used in complexity
theory and they also correspond to the circuit diagrams of stateless digital logic in

5

2 Notation, Definitions and Preliminaries

hardware. A boolean circuit with u inputs, v outputs and k gates is a finite directed
acyclic graph (DAG) with |V | = u + v + k vertices (nodes) and |E| edges. Each node
corresponds to either a gate, an input or an output. The edges are called wires. For
simplicity, the input- and output nodes are omitted in the graphical representation of a
circuit as seen in Fig. 2.1. For a more detailed definition see [Vol99].

G
1

G
3

G
4

G
2

Figure 2.1: Boolean Circuit with u = 5 inputs, v = 2 outputs, k = 4 gates G1, . . . , G4 in
topologic order and fan-out 2.

Any DAG and hence any boolean circuit can be topologically sorted efficiently in
O(|V |+ |E|) [CLRS01, Topological sort, pp. 549-552]. The topologic order of a boolean
circuit labels the gates with G1, . . . , Gk and ensures that the i-th gate Gi has no inputs
that are outputs of a successive gate Gj, where j > i. In complexity theory, a circuit
with such a topologic order is called a straight-line program [ALR99]. Given the values
of the inputs, the output of the boolean circuit can be evaluated by evaluating the gates
one-by-one in topologic order. Fig. 2.1 shows a boolean circuit with topologically ordered
gates G1, . . . , G4. Note, the topologic order is not necessarily unique.

Wout = G(Win1 , . . . ,Wind
) denotes a gate G which has d input wires W1, . . . ,Wd and

output wire Wout. Gate G computes a d-ary boolean function g : {0, 1}d → {0, 1} like
XOR, AND, OR, NAND, NOR or any other boolean function that can be expressed by
a function table with 2d entries.

The fan-out of a boolean circuit is the maximum out-degree of its underlying DAG.
The circuit in Fig. 2.1 has fan-out 2 as G2’s output is the input of two gates.

2.2.2 Ordered Binary Decision Diagrams (OBDDs)

Another possibility to represent boolean functions are OBDDs (Ordered Binary Decision
Diagrams) which were introduced by Bryant [Bry86]. A definition of OBDDs is given in
[KJGB06]:

6

2.2 Boolean Functions

“Given a Boolean function f(x1, x2, . . . , xn) of n variables x1, . . . , xn and a total or-
dering on the n variables, the OBDD for f , denoted by OBDD(f), is a rooted, directed
acyclic graph (DAG) with two types of vertices: terminal and non-terminal vertices.
OBDD(f) also has the following components:

• Each vertex v has a level, denoted by level(v), between 0 and n. There is a
distinguished vertex called root whose level is 0.

• Each nonterminal vertex v is labeled by a variable var(v) ∈ {x1, . . . , xn} and has
two successors, low(v) and high(v). Each terminal vertex is labeled with either 0
or 1. There are only two terminal vertices in an OBDD. Moreover, the labeling
of vertices respects the total ordering < on variables, i.e., if u has nonterminal
successor v, then var(u) < var(v).

Given an assignment A = 〈x1 ← b1, . . . , xn ← bn〉 to the variables x1, . . . , xn, the value of
the Boolean function f(b1, . . . , bn) can be found by starting at the root and following the
path where the edges on the path are labeled with b1, . . . , bn. OBDDs can also be used
to represent functions with finite range and domain. Let g be a function of n Boolean
variables with output that can be encoded by k Boolean variables. The function g can
be represented as an array of k OBDDs where the i-th OBDD represents the Boolean
function corresponding to the i-th output bit of g.”

As in this paper, function f is assumed to be a boolean function with one output only
in the following. The protocols can be easily extended for the case of functions with a
finite range.

x1

x2 x2

x3

x4 x4

0 1

0 1

1

1

11

1 0 0

0

00

Figure 2.2: OBDD for the function f(x1, x2, x3, x4) = (x1 = x2) ∧ (x3 = x4).

7

2 Notation, Definitions and Preliminaries

Example: “Fig. 2.21 shows the OBDD for the function f(x1, x2, x3, x4) = (x1 =
x2)∧ (x3 = x4) of four variables x1, x2, x3, x4 with the total ordering x1 < x2 < x3 < x4.

2

Notice that the ordering of the labels on the vertices on any path from the root to
the terminals of the OBDD corresponds to the total ordering of the Boolean variables.
Consider the assignment 〈x1 ← 1, x2 ← 1, x3 ← 0, x4 ← 0〉. In the OBDD shown in
Fig. 2.2, if we start at the root and follow the edges corresponding to the assignment,
we end up at the terminal vertex labeled with 1. Therefore, the value of f(1, 1, 0, 0) is 1.”

Bryant mentions that OBDDs are in many cases a reasonable representation of boolean
functions [Bry86]: “Although a function requires, in the worst case, a graph of size
exponential in the number of arguments, many of the functions encountered in typical
applications have a more reasonable representation.”

However, there are also functions encountered in typical applications that have an
efficient circuit representation but a lower bound for the size of the smallest OBDD
representation which is exponential. For example integer multiplication with at least
exponential OBDD representation [Bry91, Woe05] but efficient circuit representation of
size O(N log N log log N) [SS71] which was recently further improved to N log N2O(log∗ N)

[Für07]. Furthermore, finding an optimal variable ordering of OBDDs is NP-complete
[BW96].

Although this restricts the generality of OBDDs, in many practical cases the OBDD
can be minimized to a reasonable size. Algorithms to improve the variable ordering
of OBDDs are Rudell’s sifting algorithm [Rud93], the window permutation algorithm
[FMK91], genetic algorithms [DBG96, LB05], or algorithms based on simulted annealing
[BLW95].

2.3 Symmetric Encryption

Most of the protocols presented in this thesis use symmetric encryption schemes. This
section summarizes the needed definitions. A good introduction to the basic concepts
of encryption schemes is given in [Gol04, Chapter 5, Encryption Schemes].

[Gol04, Definition 5.1.1 (encryption scheme)]: An encryption scheme is a triple,
(G, E, D), where G is the probabilistic key-generation algorithm that outputs on in-
put 1n a pair of bit strings (e, d), the encryption key e and the decryption key d. The
parameter n serves as the security parameter of the encryption scheme. Encryption
algorithm E and the decryption algorithm D satisfy for any message m ∈ {0, 1}∗:

Pr[Dd(Ee(m)) = m] = 1 (2.1)

1This figure is a correction of Figure 1 in [KJGB06] which contained a small error.
2“OBDDs are sensitive to variable ordering, e.g., with the ordering x1 < x3 < x2 < x4 the OBDD for

f has 11 nodes.”

8

2.3 Symmetric Encryption

In a symmetric encryption scheme, the encryption key equals the decryption key: e = d.

This basic definition defines only the correctness of an encryption scheme but says
nothing about its security.

2.3.1 Semantic Security

A fundamental definition of security is semantic security [Gol04, 5.2 Definitions of Secu-
rity]: “Semantic security is a computational complexity analogue of Shannon’s definition
of perfect privacy which requires that the ciphertext yields no information regarding the
plaintext). Loosely speaking an encryption scheme is semantically secure if it is in-
feasible to learn anything about the plaintext from the ciphertext (i.e. impossibility is
replaced by infeasibility).”

Goldreich shows, that the definition of semantic security is equivalent to indistinguish-
able encryptions which “interprets security as the infeasibility of distinguishing between
encryptions of a given pair of messages. This definition is useful in demonstrating the
security of a proposed encryption scheme and for the analysis of cryptographic protocols
that utilize an encryption scheme.”

Summarized, a semantically secure encryption scheme allows an adversary who does
not know the encryption key neither to recover any information about the plaintext from
the ciphertext, nor to distinguish whether a ciphertext is the encryption of a known
plaintext or not.

2.3.2 Block Ciphers

A block cipher is an encryption scheme that operates on plaintexts of a specific length
(which is a function of the security parameter). A block cipher can easily be extended to
a general secure encryption scheme by block-wise encryption [Gol04, Construction 5.3.7].

[Gol04, Construction 5.3.9] shows a private-key block-cipher which is based on pseudo-
random functions and is proven semantically secure: Ek(x) = (r, V (k, r)⊕x), Dk(r, y) =
V (k, r) ⊕ y where r ∈R {0, 1}n and V (k, r) is a pseudorandom function that can be
constructed using any non-uniformly strong one-way functions.

Today, a very common practical instantiation for a block cipher is AES [NIS01] (Ad-
vanced Encryption Standard) which is not provably secure but widely believed to be
practically secure within the next years. The U.S. Government announced that AES
may also be used to protect classified information [NSA03]: “The design and strength
of all key lengths of the AES algorithm (i.e., 128, 192 and 256) are sufficient to protect
classified information up to the SECRET level. TOP SECRET information will require
use of either the 192 or 256 key lengths. The implementation of AES in products in-

9

2 Notation, Definitions and Preliminaries

tended to protect national security systems and/or information must be reviewed and
certified by NSA prior to their acquisition and use.”

2.3.3 Symmetric Encryption with Special Properties

Some of the protocols presented in this thesis require two special properties for the
semantically secure private-key encryption scheme that allow to decide whether a de-
cryption succeeded or not:

• elusive range: an encryption under one key is in the range of an encryption with
a different key with negligible probability, and

• efficiently verifiable range: given a key, a user can efficiently verify that a ciphertext
is in the range of that key.

These special properties can be easily obtained from a semantically secure encryption
scheme by appending 0n to the plaintext as described in [LP04, Section 3.1].

2.4 Random Oracle Model

Some practical SFE protocols are provably secure in the Random Oracle Model that
allows the usage of Random Oracles (RO). The ability to access this very powerful
primitive often results in substantial performance improvements compared to protocols
that are secure in the Standard Model (using no ROs).

A Random Oracle (RO) is a randomly chosen function that maps any query from its
finite input domain to a sequence of uniformly chosen random bits – a large object which
cannot be fully stored or traversed by polytime players. The RO always answers to the
same query with the same random sequence.

RO model gives oracle access to such a function to all players. Although it was shown
[CGH98] that a protocol secure in the RO model may not be secure once RO is in-
stantiated, “natural” RO protocols maintain their security in practice. RO paradigm
[BR93, Bel98] shows how to use ROs to develop practical, provably secure (in the RO
model) protocols: provide all parties, good and bad alike, with access to a (public) func-
tion H; prove correct a protocol assuming H is truly random, i.e. a RO; later, in practice,
set H to some specific function derived in some way from a standard cryptographic hash
function like SHA (Secure Hash Algorithm) [NIS02] or RIPEMD-160 [DBP96]. The
protocol of Chapter 3.3.4 follows this paradigm and is provably secure in the Random
Oracle Model.

10

2.5 Oblivious Transfer

2.5 Oblivious Transfer

Oblivious Transfer (OT) is a basic and very powerful cryptographic primitive executed
between two parties. The protocols presented in this thesis use 1-out-of-2 OT (OT 2

1)
where one party, the Sender, inputs two values x0 and x1 and the other party, the
Receiver, inputs his secret choice σ to the protocol. In the end of the OT 2

1 protocol,
Receiver learns the chosen input xσ while Sender learns nothing about the choice σ.

One of the most important applications of OT is SFE, as SFE can be reduced to a
parallel execution of one-round OT 2

1 in an unconditional sense [Kil88, Kol06] or more
efficiently based on cryptographic hardness assumptions. This reduction is explained in
detail in Chapter 3.

Protocols for one-round OT 2
1 are a widely studied primitive in the Standard Model

[BM89, AIR01] and improved implementations in the RO Model [NP01, BR93] that
minimize the number of expensive modular exponentiations.

2.6 Adversaries

In the context of this thesis, the adversary is not a potential “man-in-the-middle” that
attacks the communication channel between the parties and tries to read or modify
exchanged messages. Standard cryptographic techniques like message authentication
codes, symmetric encryption and authenticated key-exchange protocols can be used to
establish a secure channel between the parties and lock out this type of adversary.

The adversaries that are considered in SFE are the communicating parties themselves
that try to learn additional information during or after the execution of the protocol.
Depending on their power there are two different types of adversaries:

• “semi-honest (or passive) adversaries follow the protocol specification, but attempt
to learn additional information by analyzing the transcript of messages received
during execution.” [LP04]

• malicious (or active) adversaries may arbitrarily deviate from the protocol speci-
fication in order to learn additional information. Clearly, they are more powerful
than semi-honest adversaries.

A detailed high level discussion of these different types of adversaries is given in [Kol06,
Chapter 2.2].

All protocols presented in this thesis are provably secure against semi-honest adver-
saries as described in Chapter 3.2.2 and can be extended to be secure against malicious
adversaries as described in Chapter 3.2.3.

11

2 Notation, Definitions and Preliminaries

12

3 Secure Function Evaluation (SFE)

3.1 Introduction

Secure Function Evaluation (SFE) allows two participants to implement a joint compu-
tation that, in real life, may be implemented using a trusted third party, but does this
digitally without any trusted party. One classical example is the millionaires’ problem
[Yao86] where two millionaires want to know who is richer, without any of them reveal-
ing to the other his net worth.

More formally, SFE is a cryptographic protocol that allows two players, P1 with pri-
vate input x = x1, . . . , xu1 and P2 with private input y = y1, . . . , yu2 , to evaluate a
function f(x, y) on their private inputs. The SFE protocol ensures that both parties
learn the result of the evaluation but nothing about the other party’s private input. In
SFE, the function f is known to both parties. It suffices to consider SFE protocols with
deterministic same-output functionalities f only, as probabilistic or arbitrary function-
alities (where both parties get different outputs) can easily be reduced to this general
case [LP04].

There are many practical protocols that use a SFE protocol as basic building block.
Examples include Privacy Preserving Auctions [NPS99], Private Contract Negotiation
[FA05], Privacy-Preserving Credit Checking [FAZ05], Privacy-Preserving Remote Di-
agnostics [BPSW07], Secure Surveys [FPRJ04], Mobile Code [ACCK01], Autonomous
Agents [CCKM00], Untraceable Payment Systems [PW92], Secure computation of the
k-th ranked element [AMP04], etc.

Most of them use Yao’s SFE protocol (described later in Chapter 3.3.1), but in many
cases each of the SFE protocols described in this chapter can be used instead.

Chapter 3.2 summarizes commonalities of all SFE protocols that are described there-
after: Circuit-based SFE protocols in Chapter 3.3 and OBDD-based SFE protocols in
Chapter 3.4.

13

3 Secure Function Evaluation (SFE)

3.2 Commonalities of the Protocols

3.2.1 General Protocol Structure

The following one-round SFE protocols allow two parties, Constructor and Evaluator,
to securely evaluate a function f on their private inputs. In the beginning, Constructor
creates a garbled function f̃ (garbled circuit resp. garbled OBDD) corresponding to f .
In f̃ , the garbled values of the wires are two (randomly chosen) secrets that correspond
to the values 0 or 1. If f̃ evaluates to garbled output values, output translation tables are
provided to translate the garbled output to the corresponding binary values. Constructor
sends f̃ together with the input secrets that correspond to his private input to Evaluator.
Evaluator receives the input secrets corresponding to his inputs via (a parallel run of)
1-out-of-2 OT protocol. This ensures that Constructor doesn’t learn anything about
Evaluator’s inputs. After evaluating f̃ using the input secrets, Evaluator sends the result
back to Constructor. The following constructions differ mainly in the representation of
the function (circuit in Chapter 3.3 vs. OBDD in Chapter 3.4) and the methods for
garbling and evaluating it.

3.2.2 Provable Security in the Semi-honest Model

Each of the following protocols has a proof of security in the semi-honest model (see
Chapter 2.6 for the different adversary models). To prove security of protocol π which
evaluates a deterministic function f against semi-honest adversaries, two simulators Si

are constructed that simulate the view viewπ
i of party Pi during execution of π (i.e. all

inputs and randomness Pi provides as input to π together with the messages that it
receives during the run of π). Simulator Simi has as input everything that party Pi

knows (its secret input and the output of f) and simulates all messages that are sent
from the other party. The protocol π is secure against semi-honest adversaries, if the
output of the simulators is computationally indistinguishable from the real view of the
parties in the protocol:

{S1(x, f(x, y))}x,y∈{0,1}∗
c≡ {viewπ

1 (x, y)}x,y∈{0,1}∗ (3.1)

{S2(y, f(x, y))}x,y∈{0,1}∗
c≡ {viewπ

2 (x, y)}x,y∈{0,1}∗ (3.2)

The simulator for Constructor is simple. It invokes the OT-simulator to simulate the
view in the OT protocol and outputs f(x, y). The simulator for Evaluator also invokes
the OT-simulator and constructs a fake-garbled function that always evaluates to f(x, y)
and is computationally indistinguishable from the garbled representation of f . This fake
garbled function is sent to Evaluator instead.

14

3.3 Circuit-based SFE

3.2.3 Security in the Malicious Model

If a SFE protocol is provably secure in the semi-honest model it can be extended to be
also secure in the malicious model. The basic idea is to force both parties to follow the
protocol (deviations from the protocol are caught with high probability).

A simple and efficient method to catch a cheating Constructor (used in [MNPS04])
is cut-and-choose where Constructor creates m garbled functions. Evaluator can choose
m− 1 of these and obtains all secrets to verify that the garbled functions were created
correctly. The remaining garbled function is evaluated. This catches a cheating Con-
structor with probability 1− 1

m
. In order to prevent Evaluator from responding with the

wrong result of the function output he has to reply with the last key he used to decrypt
the result from the output table. This is demonstrated by extending the OBDD-based
SFE protocol of [KJGB06] (secure against semi-honest adversaries) to be secure against
malicious adversaries in Chapter 3.4.

In order to reduce Constructor’s cheating probability to be exponentially small in m,
more expensive techniques must be used.

One possibility is the compiler of Goldreich, Micali and Wigderson (known as GMW
compiler) [GMW87]. “This compiler converts any protocol that is secure for semi-honest
adversaries into one that is secure for malicious adversaries, and as such is a powerful
tool for demonstrating feasibility. However, it is based on reducing the statement that
needs to be proved (in our case, the honesty of the parties behavior) to an NP-complete
problem, and using generic zero-knowledge proofs to prove this statement. The resulting
secure protocol therefore runs in polynomial time but is rather inefficient.” [LP07]

Another method for more efficient SFE protocols that are provably secure in the ma-
licious model is to extend the cut-and-choose step which is a basic building block of
[LP07]. Their protocol opens m/2 of the garbled circuits in the cut-and-choose step,
evaluates the remaining m/2 garbled circuits and takes a majority of the result. Ad-
ditionally they ensure that Constructor provides the same input to all the evaluated
circuits using perfectly-hiding commitments. Their approach can also be used to get
exponential security against malicious Constructor in the OBDD-based SFE protocol of
Chapter 3.4.

3.3 Circuit-based SFE

The following circuit-based protocols allow two parties, Constructor and Evaluator, to
securely evaluate a function f which is represented as a corresponding boolean circuit C
(see Chapter 2.2.1). For simplicity of demonstration circuits C that contain gates with
two inputs are considered only. Generalizations for circuits that consist of gates with an
arbitrary number of inputs are described in the original publications.

15

3 Secure Function Evaluation (SFE)

3.3.1 Yao’s Protocol

Yao’s protocol [Yao86] is the first and most famous one-round two-party SFE protocol.
Lindell and Pinkas give a detailled description and a proof of security in the semi-honest
model of Yao’s protocol in [LP04]. Recently, Lindell and Pinkas published a version of
Yao’s protocol which is secure against malicious adversaries [LP07].

Protocol 3.1 shows Yao’s two-party SFE protocol that is explained in the following.

Protocol 3.1 Yao’s two-party SFE protocol

• Inputs:
P1 (Constructor) has private input x = 〈x1, .., xu1〉 ∈ {0, 1}u1 and
P2 (Evaluator) has private input y = 〈y1, .., yu2〉 ∈ {0, 1}u2 .

• Auxiliary input: A boolean acyclic circuit C such that ∀x ∈ {0, 1}u1 , y ∈
{0, 1}u2 , it holds that C(x, y) = f(x, y), where f : {0, 1}u1 ×{0, 1}u2 → {0, 1}v. C
is required to be such that if a circuit-output wire leaves some gate G, then gate
G has no other wires leading from it into other gates (i.e. no circuit-output wire is
also a gate-input wire). Likewise, a circuit-input wire that is also a circuit-output
wire enters no gates.

• The protocol:

1. P1 constructs the garbled circuit and sends it (i.e. the garbled tables and
output decryption tables) to P2.

2. Let W1, ..,Wu1 be the circuit input wires corresponding to x, and let
Wu1+1, ..,Wu1+u2 be the circuit input wires corresponding to y. Then,

a) P1 sends P2 the garbled values wx1
1 , .., w

xu1
u1 .

b) For every i ∈ {1, .., u2}, P1 and P2 execute a 1-out-of-2 oblivious transfer
protocol, where P1’s input is (k0

u1+i, k
1
u1+i), and P2’s input is yi.

All u2 OT instances can be run in parallel.

3. P2 now has the garbled circuit and the garblings of circuit’s input wires.
P2 evaluates the garbled circuit using the input garblings and outputs f(x, y).

4. P2 sends f(x, y) to P1.

In Step 1 of Yao’s protocol, P1 first creates a garbled circuit (GC) from the given
boolean circuit C: for each wire Wi of C, he randomly chooses two N -bit secrets, w0

i

and w1
i , where wj

i is a garbled value, or garbling, of the Wi’s value j. (Note: wj
i does not

reveal j as it is chosen randomly.)

16

3.3 Circuit-based SFE

Further, for each gate Gi, P1 creates a garbled table Ti, with the following property:
given a set of garblings of Gi’s inputs, Ti allows to recover the garbling of the corre-
sponding Gi’s output, and nothing else. For simplicity of presentation only the case of
a 2-input gate is presented in the following which can easily be generalized to n-input
gates. For gate Gi with Wc = gi(Wa, Wb) the garbled table Ti contains a random per-
mutation of the following entries:

Ew0
a
(Ew0

b
(w

gi(0,0)
c))

Ew0
a
(Ew1

b
(w

gi(0,1)
c))

Ew1
a
(Ew0

b
(w

gi(1,0)
c))

Ew1
a
(Ew1

b
(w

gi(1,1)
c)).

For each of the 22 possible input combinations, the input garblings are used to encrypt
the corresponding output garblings using a semantically secure symmetric encryption
scheme E that has the special properties described in Chapter 2.3.3. These special
properties allow to determine which decryption succeeded during evaluation of GC. For
each output wire Wo of C, P1 creates an output decryption table that contains the pairs
〈w0

o, 0〉 and 〈w1
o, 1〉. The garbled circuit consists of the garbled tables and the output

decryption tables.

In Step 2, P1 sends the garbled circuit together with the garblings that correspond
to his inputs to P2. The garblings that correspond to P2’s inputs are sent via parallel
executions of 1-out-of-2 OT protocol for each input bit.

Afterwards in Step 3, P2 can evaluate the garbled circuit using the input garblings he
obtained. He computes the garbled output values by evaluating the garbled circuit gate
by gate in topologic order, using the garbled tables Ti. The special properties of E are
used to decide which entry of each garbled function table was decrypted successfully.
Wi’s garbling wj

i are called active if Wi assumes the value j when C is evaluated on the
given input. Observe that for each wire, P2 can obtain only its active garbling. For the
output wires, P2 uses the output decryption tables to determine the unencrypted result
of the evaluation. P2 learns (only) the output of the circuit, and no internal wire values.

Finally in Step 4, (semi-honest) P2 sends the output to P1. (This step is trivial in the
semi-honest model, and is usually not considered in the analysis.)

Correctness of GC follows from method of construction of garbled tables Ti. Nei-
ther party learns any additional information from the protocol execution. The proof
of correctness and security in the semi-honest model of Yao’s protocol can be found in
[LP04].

17

3 Secure Function Evaluation (SFE)

3.3.2 Fairplay

Fairplay is “a full-fledged system that implements generic secure function evaluation
(SFE)” [MNPS04]. It is based on Yao’s protocol and extends it to be secure against
malicious adversaries in the random oracle model. For performance reasons, Fairplay
uses a cryptographic hash function H (implemented as SHA-1) instead of the symmet-
ric encryption scheme E used in Yao’s protocol. To show the security of the protocol,
SHA-1 is modeled as RO.

Constructor assigns to each wire Wi two random n-bit strings (keys) k0
i resp. k1

i that
represent the values 0 resp. 1 (Fairplay uses n = 80 as security parameter). Also, a
permutation bit pi ∈R {0, 1} is randomly chosen for each wire. The garblings wj

i consist
of the key and the permutation bit: w0

i = 〈k0
i , pi〉 , w1

i = 〈k1
i , pi〉.

For each gate Gi with Wc = gi(Wa, Wb) that computes, an Encrypted-Garbled-Truth-

Table (EGTT) is constructed: EGTT [x, y] = H(kx
a ||i||x′||y′)⊕H(ky

b ||i||x′||y′)⊕ w
gi(x,y)
c

with x′ = x⊕ pa, y
′ = y⊕ pb. The table entries of the EGTT are permuted based on the

permutation bits pa and pb to obtain the permuted EGTT (PEGTT) that corresponds
to the garbled table Ti in Yao’s protocol described before.
For each of Evaluator’s output wires Wi, an output decryption table is created that
contains 〈H(k0

i), 0〉 and 〈H(k1
i), 1〉, where H is a collision resistant hash function, which

is implemented as SHA-1. The garbled circuit C̃ consists of all PEGTTs and all output
decryption tables.

The garbled circuit and the secrets corresponding to Constructor’s inputs are sent
to Evaluator. Security against malicious Constructor is provided by a cut-and-choose
technique where Evaluator obtains m garbled circuits and asks Constructor to open the
secrets for m− 1 of them and evaluate the remaining one. Evaluator obtains the secrets
corresponding to his inputs via 1-out-of-2 OT.

Now, Evaluator evaluates the garbled circuit gate by gate in topologic order. For each
garbled gate Gi with Wc = gi(Wa, Wb) and input garblings wa = 〈ka||x〉 , wb = 〈kb||y〉
he decrypts the garbled output value from the corresponding PEGTT entry: wc =
H(ka||i||x||y)⊕H(kb||i||x||y)⊕ PEGTT [x, y].
For each of his own circuit output values he uses the corresponding output decryption
table to obtain the unencrypted output values. The garbled output values of Constructor
are sent back to him who can (secured against malicious Evaluator) interpret them to
obtain his unencrypted output values.

3.3.3 Gate Evaluation Secret Sharing (GESS)

Gate Evaluation Secret Sharing (GESS) was introduced by Vladimir Kolesnikov in
[Kol05]. GESS is a secret sharing scheme designed for use in SFE. GESS provides a

18

3.3 Circuit-based SFE

non-cryptographic reduction from SFE to OT in the semi-honest model. This allows
SFE with information-theoretic (IT) security when instantiated with an IT-secure OT
protocol.

In GESS, the two garbled values s0
i and s1

i corresponding to the values 0 and 1 of wire
Wi are called shares. Fig. 3.1 shows a GESS gate with two inputs. A GESS scheme
consists of a pair of algorithms (Shr, Rec). Shr is a randomized algorithm that generates
the input shares of a gate when given the output shares (executed by Constructor). Rec
is a deterministic algorithm that combines the input shares of a gate to the output share
(executed by Evaluator).

G

s
2
0

s
2
1

0
s
1

1
s
1

1
s
3

0
s
3

Figure 3.1: GESS gate

In the following two fundamental constructions of GESS are given using Fig. 3.1 as ex-
ample. The paper contains generalizations and further optimizations (e.g. for AND/OR
gates).

2-input XOR GESS gate G: g(x1, x2) = x1 ⊕ x2

Shr(s0
3, s

1
3) with s0

3, s
1
3 ∈ {0, 1}n: choose R ∈R {0, 1, }n, set s0

1 = R, s1
1 = s0

3⊕s1
3⊕R, s0

2 =
s0
3 ⊕R, s1

2 = s1
3 ⊕R.

Rec(s1, s2) with s1, s2 ∈ {0, 1}n: output s1 ⊕ s2.
2-input arbitrary GESS gate: g(x1, x2) arbitrary

Shr(s0
3, s

1
3) with s0

3, s
1
3 ∈ {0, 1}n: choose b ∈R {0, 1}, R0, R1 ∈R {0, 1}n, set blocks

Bij = g(i, j)⊕Ri. Set input shares as follows
wire 1 wire 2, if b = 0 wire 2, if b = 1

wire value 0 s0
1 = bR0 s0

2 = B00B10 s0
2 = B10B00

wire value 1 s1
1 = bR1 s1

2 = B01B11 s1
2 = B11B01

Rec(s1, s2) with s1 = b′r, s2 = a0a1, b′ ∈ {0, 1}, r, a0, a1 ∈ {0, 1}n: output r ⊕ ab′ .

For SFE with GESS, Constructor creates the input shares for the circuit by calling Shr
for each gate of the circuit (bottom up). Afterwards he sends the shares corresponding
to the inputs to Evaluator (using OT for those corresponding to Evaluator’s inputs).
Evaluator combines the input shares gate-by-gate (bottom-down) using Rec and finally
obtains the result. This result is sent back to Constructor.

The author of the paper notes, that the “GESS approach is especially efficient on
small circuits, since it does not use encryption” and “that the efficiency of Yaos garbled

19

3 Secure Function Evaluation (SFE)

circuit technique in the standard model can be (slightly) improved by using IT GESS
on ’the bottom part’ of the circuit”. GESS can also be used to improve “the bottom
part” of the improved SFE protocol presented in the next section.

3.3.4 Improved SFE

This section presents our new improved SFE protocol which is a combination of Fairplay
(Chapter 3.3.2) and the efficient information-theoretic SFE implementation of XOR-
gates in GESS (Chapter 3.3.3). In Fairplay, XOR gates cost as much as other gates
(i.e. in computation and communication required for creation, transfer and evaluation
of the garbled tables). The XOR gates of GESS are free of these costs. However, his
construction imposes a restrictive global relationship on the wire secrets, which prevents
its use in previous GC schemes. In this section, we show how to overcome this restriction.

First, we show an SFE implementation of the XOR gate G, derived from GESS. Let
G have two input wires Wa, Wb and output wire Wc. Garble the wire values as follows.
Randomly choose w0

a, w
0
b , R ∈R {0, 1}N . Set w0

c = w0
a ⊕ w0

b , and ∀i ∈ {a, b, c} : w1
i =

w0
i ⊕ R. It is easy to see that the garbled gate output is simply obtained by XORing

garbled gate inputs (see Table 3.1 for explicit calculation). Further, garblings wj
i do not

reveal the wire values they correspond to.

Table 3.1: Correctness of garbled XOR-gate Wc = XOR(Wa, Wb).
wa wb wc = wa ⊕ wb

w0
a w0

b w0
c := w0

a ⊕ w0
b

w0
a w1

b w1
c := w0

c ⊕R = w0
a ⊕ (w0

b ⊕R) = w0
a ⊕ w1

b

w1
a w0

b w1
c := w0

c ⊕R = (w0
a ⊕R)⊕ w0

b = w1
a ⊕ w0

b

w1
a w1

b w0
c := w0

a ⊕ w0
b = (w0

a ⊕R)⊕ (w0
b ⊕R) = w1

a ⊕ w1
b

We can now pinpoint the restriction that the above XOR construction imposes on the
garbled values – the garblings of the two values of each wire in the circuit must differ
by the same value, i.e. ∀i : w1

i = w0
i ⊕ R, for some global R. In contrast, in previous

GC constructions, all garblings wj
i were chosen independently at random, and proofs of

security relied on that property.
Our main observation is that it is not necessary to select all garblings indepen-

dently. In our construction (Chapter 3.3.4), we choose a random R once, and garble
wire values, so that ∀i : w1

i = w0
i ⊕R.

Improved Garbled Circuit Construction

Let C be a circuit. We first note that NOT gates can be implemented “for free” by simply
eliminating them and inverting the correspondence of the wires’ values and garblings.
We thus do not further consider NOT gates.

20

3.3 Circuit-based SFE

We implement XOR gates as discussed above. Further, we replace each XOR-gate
with n > 2 inputs with n− 1 two-input XOR-gates.

We implement all other gates using standard garbled tables [MNPS04]. Namely, each
gate with n inputs is assigned a table with 2n randomly permuted entries. Each entry is
an encrypted garbling of the output wire, and garblings of the input wires serve as keys
to decrypt the “right” output value. For simplicity, we present our construction and
proof for the case n = 2. The generalization to n-input gates (n ≥ 1) is straightforward.

In Algorithm 3.2 below, each garbling w = 〈k, p〉 consists of a key k ∈ {0, 1}N and
a permutation bit p ∈ {0, 1}. The key is used for decryption of the table entries,
and p is used to select the entry for decryption. The two garblings w0

i , w
1
i of each

wire Wi are related as required by the XOR construction: for a chosen R ∈R {0, 1}N ,
∀i : w1

i = 〈k1
i , p

1
i 〉 = 〈k0

i ⊕R, p0
i ⊕ 1〉, where w0

i = 〈k0
i , p

0
i 〉. H : {0, 1}∗ 7→ {0, 1}N+1 is a

RO.

We now formalize the above intuition and present the GC construction (Algorithm 3.2)
and evaluation (Algorithm 3.3). In SFE, Algorithm 3.2 is run by P1 and Algorithm 3.3
is run by P2.

Note, our encryption of table entries (Step 3(c)iii) is similar to that of Fairplay
[MNPS04, Section 4.2]. Fairplay uses eva,vb

= H(kva
a ||i||pva

a ||p
vb
b)⊕H(kvb

b ||i||pva
a ||p

vb
b)

⊕ w
gi(va,vb)
c . This is a non-essential difference; we could use Fairplay’s encryption.

Intuition for security. (A formal proof is given in Chapter 3.3.4.) Algorithm 3.2
uses the output of the RO H as a one-time pad to encrypt the garbled output values
in the garbled tables (Step 3(c)iii) and the garbled output tables (Step 4a). Note, any
specific combination of H’s inputs (keys and gate indices) is used for encryption of
at most one table entry throughout our construction. (We assume that concatenation
and string representation inside H is done “right”.) Further, since the evaluator of the
garbled circuit only knows one garbled value per wire, he can decrypt exactly one entry
of Gi’s garbled table. All other entries are encrypted with at least one key that cannot
be guessed by a polytime evaluator. Therefore, one of the two of garbled values of every
wire looks random to him.

We now give the corresponding GC evaluation algorithm, run by P2. Recall, P2

obtains all garbled tables and the garblings of P1’s input values from P1. Garblings of
input values held by P2 are sent via OT.

The GC construction and evaluation algorithms can be directly used to obtain the GC-
based SFE protocol, in the standard manner described in Chapter 3.2.1. Protocol 3.1
shows the complete two-party SFE protocol.

Proof of correctness

Claim. Let x = 〈x1, .., xu1〉 and y = 〈y1, .., yu2〉 be the inputs of C on input wires
W1, ..,Wu1 and Wu1+1, ..,Wu1+u2 . Then, given the garbled tables and the garbled input
values wx1

1 , .., w
xu1
u1 and wy1

u1+1, .., w
yu2
u1+u2

, produced by Algorithm 3.2, Algorithm 3.3 out-

21

3 Secure Function Evaluation (SFE)

Algorithm 3.2 Construction of improved garbled circuit

1. Randomly choose global key offset R ∈R {0, 1}N

2. For each input wire Wi of C

a) Randomly choose its garbled value w0
i = 〈k0

i , p
0
i 〉 ∈R {0, 1}N+1

b) Set the other garbled output value w1
i = 〈k1

i , p
1
i 〉 = 〈k0

i ⊕R, p0
i ⊕ 1〉

3. For each gate Gi of C in topological order

a) label G(i) with its index: label(Gi) = i

b) If Gi is an XOR-gate Wc = XOR(Wa, Wb) with garbled input values
w0

a = 〈k0
a, p

0
a〉 , w0

b = 〈k0
b , p

0
b〉, w1

a = 〈k1
a, p

1
a〉 , w1

b = 〈k1
b , p

1
b〉:

i. Set garbled output value w0
c = 〈k0

a ⊕ k0
b , pa ⊕ pb〉

ii. Set garbled output value w1
c = 〈k0

a ⊕ k0
b ⊕R, pa ⊕ pb ⊕ 1〉

c) If Gi is a 2-input gate Wc = gi(Wa, Wb) with garbled input values
w0

a = 〈k0
a, p

0
a〉 , w0

b = 〈k0
b , p

0
b〉 , w1

a = 〈k1
a, p

1
a〉 , w1

b = 〈k1
b , p

1
b〉:

i. Randomly choose garbled output value w0
c = 〈k0

c , p
0
c〉 ∈R {0, 1}N+1

ii. Set garbled output value w1
c = 〈k1

c , p
1
c〉 = 〈k0

c ⊕R, p0
c ⊕ 1〉

iii. Create Gi’s garbled table. For each of 22 possible combinations of Gi’s
input values va, vb ∈ {0, 1}, set

eva,vb
= H(kva

a ||k
vb
b ||i)⊕ wgi(va,vb)

c

Sort entries e in the table by the input pointers, i.e. place entry eva,vb
in

position 〈pva
a , pvb

b 〉

4. For each circuit-output wire Wi (the output of gate Gj) with garblings
w0

i = 〈k0
i , p

0
i 〉 , w1

i = 〈k1
i , p

1
i 〉:

a) Create garbled output table for both possible wire values v ∈ {0, 1}. Set

ev = H(kv
i ||“out”||j)⊕ v

Sort entries e in the table by the input pointers, i.e. place entry ev in position
pv

i . (There is no conflict, since p1
i = p0

i ⊕ 1.)

puts C(x, y).

22

3.3 Circuit-based SFE

Algorithm 3.3 Evaluation of improved garbled circuit

1. For each input wire Wi of C

a) Receive corresponding garbled value wi = 〈ki, pi〉

2. For each gate Gi (in the topological order given by labels)

a) If Gi is an XOR-gate Wc = XOR(Wa, Wb) with garbled input values
wa = 〈ka, pa〉 , wb = 〈kb, pb〉

i. Compute garbled output value wc = 〈kc, pc〉 = 〈ka ⊕ kb, pa ⊕ pb〉
b) If Gi is a 2-input gate Wc = gi(Wa, Wb) with garbled input values wa =
〈ka, pa〉 , wb = 〈kb, pb〉

i. Decrypt garbled output value from garbled table entry e in position
〈pa, pb〉: wc = 〈kc, pc〉 = H(ka||kb||i)⊕ e

3. For each C’s output wire Wi (output of gate Gj) with garbling wi = 〈ki, pi〉

a) Decrypt output value fi from garbled output table entry e in row pi :
fi = H(ki||“out”||j)⊕ e

Proof. First we show that Step 2 of Algorithm 3.3 correctly computes all garbled output
values by correctly evaluating each garbled gate. We show this by induction on the gates
of the circuit in the order of the labels. A garbled gate G̃i is evaluated correctly if its
garbled output value corresponds to the output value of the corresponding un-garbled
gate Gi in C. Step 2a correctly computes a garbled XOR gate which follows directly
from the construction of a garbled XOR gate in Algorithm 3.2, Step 3b and Table 3.1.
Step 2b correctly computes a garbled 2-input gate G̃i: This garbled gate was constructed
by Algorithm 3.2, Step 3c from the corresponding un-garbled gate Gi with functionality
gi. Let wa, wb be the garbled input values of G̃i that correspond to the input values
va, vb of Gi. Thus, 〈ka, p̃a〉 = wa = wva

a = 〈kva
a , p̃va

a 〉 ; 〈kb, p̃b〉 = wb = wvb
b = 〈kvb

b , p̃vb
b 〉. The

evaluation of G̃i decrypts the permuted entry e in row p̃a, p̃b. This is the correct row as it
corresponds to the right values va, vb in the construction: ∀j ∈ {a, b} : p̃j = vj⊕pj = p̃

vj

j .
If vj = 0 then p̃0

j = pj, otherwise p̃1
j = 1 ⊕ pj in accordance to the construction. The

decryption of entry e in this row computes the correct garbled output value of the gate
wc = H(ka||kb||i)⊕ e = H(ka||kb||i)⊕H(kva

a ||k
vb
b ||i)⊕ w

gi(va,vb)
c = w

gi(va,vb)
c .

Now we show that Step 3 of Algorithm 3.3 correctly decrypts the correctly com-
puted garbled output values. Each C̃’s garbled output wire W̃i (output of gate G̃j)
was constructed by Algorithm 3.2, Step 4 from a un-garbled output wire Wi of C. Let
wi = 〈ki, p̃i〉 be the correctly computed garbled value of output wire W̃i that corresponds
to the output value vi of Wi. Thus, 〈ki, p̃i〉 = wi = wvi

i = 〈kvi
i , p̃vi

i 〉. Step 3a of Algo-

23

3 Secure Function Evaluation (SFE)

rithm 3.3 decrypts the correct permuted entry e in row p̃i: p̃i = vi ⊕ pi = p̃vi
i . If vi = 0

then p̃0
i = pi, otherwise p̃1

i = 1 ⊕ pi in accordance to the construction. The decryp-
tion of entry e in this row yields the correct output value: fi = H(ki||“out”||j) ⊕ e =
H(ki||“out”||j)⊕H(kvi

i ||“out”||j)⊕ vi = vi. ut

Proof of Security

Our protocol is secure against semi-honest adversaries, who are not allowed to deviate
from the protocol. Analogously to Fairplay (Chapter 3.3.2), (w.h.p) malicious behavior
of players can be prevented by using cut-and-choose, providing output decryption tables
corresponding to Evaluator’s outputs only and sending the garblings of Constructor’s
outputs back; we don’t discuss malicious players further.

We prove security in the simulator paradigm. Intuitively, a protocol π is secure
if whatever is seen by its party, can be computed only from that party’s input and
output. The view of a party Pi, viewπ

Pi
(x, y), consists of the party’s own input, ran-

domness, and all messages that Pi receives in the execution of π. Thus, a protocol is

secure, if there exist simulators S1, S2, such that {S1(x, f(x, y)} c≡ {viewπ
P1

(x, y)} and

{S2(y, f(x, y)} c≡ {viewπ
P2

(x, y)}.

Case 1 - P1 is corrupted. P1’s view in Protocol 3.1 consists only of the view in
the OT protocols in Step 2b. The following S1(x, f(x, y)) simulates the view of P1.
Let SOT

1 be the simulator that is guaranteed to exist for P1 in the secure 1-out-of-2
OT protocol. S1 constructs a garbled circuit using Algorithm 3.2. Then S1 feeds the
constructed garblings of the input wires corresponding to y to SOT

1 , and obtains the
simulated transcript of the OT, which he outputs. S additionally outputs x and the
randomness used in construction of GC. It is not hard to see that the output of the
simulator is indistinguishable from the view of P1.

Case 2 - P2 is corrupted. We construct a simulator S2 that given input (y, f(x, y))
simulates the view of P2. P2 receives a garbled circuit (including garbled inputs), which
S2 must simulate. However, S2 doesn’t know P1’s input x. Thus, S2 can not honestly
generate the garbled circuit, since it doesn’t know which of the input garblings corre-
sponding to x to hand to P2 in Step 2a of the protocol. Instead, S2 generates a fake
garbled circuit that always evaluates to f(x, y), using a slightly modified Algorithm 3.2.
The only modification, in Step 4a, appropriately forges the output tables:

4. For each circuit-output wire Wi (the output of gate Gj) with garblings
w0

i = 〈k0
i , p

0
i 〉 , w1

i = 〈k1
i , p

1
i 〉:

a) Create fake garbled output table for both possible wire values v ∈ {0, 1} of
the same encrypted output value. Set

ev = H(kv
i ||“out”||j)⊕ fi(x,y)

24

3.3 Circuit-based SFE

Sort entries e in the table by the input pointers, i.e. place entry ev in position
pv

i .

Let SOT
2 be an OT simulator for P2. S2 outputs y, and the fake garbled circuit (i.e. its

tables). Further, for each input wire Wi held by P2, S2 runs and outputs SOT
2 (yi, w

yi

i).
Finally, S2 simulates the received garblings of the input wires Wj held by P1 simply by
outputting w0

j (fake garblings corresponding to x = 0..0).

Theorem. The output of S2 is indistinguishable from the real view of P2.

Proof (sketch). First, observe that S2 feeds SOT
2 proper inputs (i.e. y and the cor-

responding honestly generated garblings). Thus, simulation of Step 2b of the protocol
is indistinguishable from the real execution. The crux of the proof is in showing the
indistinguishability of the fake and real circuits (which include the tables and the input
garblings that P2 sees). This is addressed next.

First, observe, pointers pj
i are independent of the parties’ inputs, and thus are easily

simulated by S2. For ease of presentation, we omit the details of pointer simulation from
the proof.

We now show that no polytime procedure D can distinguish simulated and real garbled
circuit transcripts with non-negligible probability. We proceed inductively, gate by gate
in topological order, in proving this for each partial transcript τi, where τ0 includes all
active secrets on the input wires, and each τi additionally includes the garbled tables of
first i gates.

Induction base. It is easy to see that the partial transcript τ0 – active secrets on the
input wires – is distributed identically in real and simulated cases. Indeed, these secrets
are uniformly random in the domain. Moreover, clearly, no distinguisher D0 can output
with non-negligible probability the global key offset R̂ used in the construction of the
(either simulated or real) transcript.

For the induction step, suppose no polytime Di−1 can with non-negligible advantage
distinguish the τi−1 transcripts (i.e. those including the active secrets on the inputs and
the first i− 1 garbled tables). Moreover, assume that no polytime Di−1 can output the
global key offset R̂ with non-negligible probability when given τi−1. We show that these
properties hold also when additionally given the i-th garbled table.

Recall, the i-th garbled table contains (a permutation of) entries:
H(ka||kb||i)⊕ v00

H(ka||kb ⊕ R̂||i)⊕ v01

H(ka ⊕ R̂||kb||i)⊕ v10

H(ka ⊕ R̂||kb ⊕ R̂||i)⊕ v11

where v00, .., v11 ∈ {kc, kc⊕R̂} are the output secrets that correspond to the four possible
gate input combinations. (Garbled output tables have one input and consist of two
entries. The corresponding claims hold for these cases as well, via a natural modification
of the following argument addressing two-input gates.)

25

3 Secure Function Evaluation (SFE)

Without loss of generality, suppose the active gate input secrets are ka and kb. By
the induction assumption, no polytime Di−1 can compute both ka and ka ⊕ R̂, and
both kb and kb ⊕ R̂ (otherwise Di−1 can output R̂). Thus, Di−1 can call functions
H(ka||kb⊕R̂||i), H(ka⊕R̂||kb||i), or H(ka⊕R̂||kb⊕R̂||i) only with negligible probability.
Further, because of the inclusion of the gate index i, these function calls have not been
made in the construction of (real or simulated) τi. Therefore, due to RO properties,
except with negligible probability, all the inactive entries in the i-th table are distributed
identically to random strings, from the point of view of Di−1, and thus do not provide
help to Di−1 in computing R̂. Therefore, polytime Di cannot output R̂ or call any
of H(ka||kb ⊕ R̂||i), H(ka ⊕ R̂||kb||i), or H(ka ⊕ R̂||kb ⊕ R̂||i), except with negligible
probability. Therefore, no polytime Di can distinguish the real and simulated transcripts
τi with non-negligible probability.

This completes the induction and the proof of the theorem. ut

Application of Improved SFE

We now present several motivating examples – practical functions whose SFE benefits
from improvements of our construction. Universal circuit (UC) constructions (Chap-
ter 5) do not explicitly use many XOR gates. We show how to modify these circuits
to mainly consists of XOR gates, achieving fourfold reduction of garbled circuit size.
Further, we show how to reduce in half the size of garbled circuits of commonly used
blocks, such as integer addition and equality test.

Universal Circuits (Chapter 5) and Permutation Networks (Chapter 5.3.3).
As described later in Chapter 5, the size of a UC mainly comes from programmable
switching networks (such as the permutation networks described in Chapter 5.3.3) con-
necting the simulated gates. In turn, these networks are constructed from two types of
switching blocks shown in Fig. 3.2, as discussed in [Wak68, Val76, KS08]. The Y -block
can be programmed to output one of its two inputs. The X-block can be programmed
to either pass or cross over its two inputs to the two outputs. A natural SFE imple-
mentation of the Y -block uses a 2-input garbled gate with a garbled table with 22 = 4
encrypted table entries. Similarly, X-block is implemented by two 2-input garbled gates
(one for each of its two outputs), resulting in a garbled table of 2 · 22 = 8 entries.

Y : = or

(a) Y switching block

X : = or

(b) X switching block

Figure 3.2: Switching blocks

We show how to take advantage of free XOR gates and implement both X- and
Y -blocks with only two garbled table entries each. Since permutation network [Wak68]

26

3.3 Circuit-based SFE

consists only of X-gates, this results in 75% size reduction of its SFE. UC consists almost
exclusively of X-gates. Valiant’s UC [Val76] for a circuit of k gates has size ∼ 19k log k.
The ∼ 19k log k − k overhead gates are X-gates that come from switching networks.
Our new practical UC construction described in Chapter 5.3 similarly consists almost
exclusively of X-blocks, and of very few Y -blocks and simulated gates. Thus, UC enjoys
almost 75% garbled table size reduction.

Let f : {0, 1} 7→ {0, 1} be a function (implemented with two garbled table entries). We
implement X- and Y -blocks as follows (see Fig. 3.3). Y (a1, a2) = b1 = f(a1 ⊕ a2)⊕ a1;
X(a1, a2) = (b1, b2), where b1 = f(a1 ⊕ a2) ⊕ a1, b2 = f(a1 ⊕ a2) ⊕ a2. It is easy to see
that setting f = f0 to the zero function results in Y choosing left input, and X passing
the inputs. Further, setting f = fid to the identity function results in Y choosing the
right input, and in X crossing its inputs:

f = f0 : b1 = 0⊕ a1 = a1; b2 = 0⊕ a2 = a2.
f = fid : b1 = (a1 ⊕ a2)⊕ a1 = a2; b2 = (a1 ⊕ a2)⊕ a2 = a1.

f

a
1

a
2

b
1

(a) Y switching block

f

a
1

a
2

b
1

b
2

(b) X switching block

Figure 3.3: Efficient implementation of switching blocks

This construction can be extended to implement programmable switching blocks X
and Y , which take an additional programming input bit p. This bit determines behavior
of X- (pass or cross) and Y -blocks (left or right input). The natural construction for the
Y - (resp. X-) switching block uses one (resp. two) 3-input gate(s) with 23 = 8 (resp.
16) encrypted table entries. In our XOR-based construction, function f is then replaced
by a two-input AND-gate (with p being the second input) with 22 = 4 encrypted table
entries. Clearly, p = 0 sets f = f0, and p = 1 sets f = fid, allowing to program X- and
Y -blocks. As above, the size of Y - and X-blocks is reduced by 50% and 75% respectively.

Integer Adder and Multiplier. An adder for n-bit integers a, b is composed from
a chain of n full adder (FA) blocks as shown in Fig. 3.4(b)1. A FA block (see Fig.
3.4(a)) has as inputs a carry-in ci from the previous FA block and the two input bits

1The last FA block can be replaced by a smaller half-adder block.

27

3 Secure Function Evaluation (SFE)

ai and bi. It outputs two bits: carry-out ci+1 = (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci) and sum
si = ai⊕bi⊕ci. The straightforward implementation of a FA uses two 3-input gates with
2 · 23 = 16 encrypted table entries. We can compute si “for free” using free XOR-gates,
and use only one 3-input gate with 23 = 8 encrypted table entries to compute ci+1. The
size of a FA block, and hence that of an n-bit adder is reduced by 50%.

FA

a
i
b
i

s
i

c
ic

i+1

(a) Full Adder (FA)

FA

a
n-1

b
n-1

s
n-1

0

c
n

FA

a
0
b
0

s
0

FA

a
1
b
1

s
1

...
c
1

c
2

c
n-1

c
0

s
n

(b) n-bit Adder built from n FA blocks

Figure 3.4: Adder for two n-bit integers a and b

As circuits for integer multiplication consist of bit-multipliers (2-input AND-gates) and
adders, the improved implementation of adders can directly be used to correspondingly
improve integer-multiplication circuits.

Integer Equality Test. A similar construction is used to test equality of two n-bit
integers a and b. Now, we do not compute si, and use carry bits as inequality flags. The
carry-out bit is defined as ci+1 = (ai 6= bi)∨ ci = (ai⊕ bi)∨ ci. A simple implementation
uses two 2-input gates or one 3-input gate (each costs 8 encrypted table entries). Free
XOR gate reduces the cost to that of one 2-input OR gate (4 encrypted table entries).
The size of equality test block is thus reduced by 50%.

3.4 OBDD-based SFE

Kruger et al. [KJGB06] give a protocol for SFE based on the OBDD representation of a
boolean function (see Chapter 2.2.2). They show that for many functions their OBDD-
based SFE implementation outperforms the currently best circuit-based SFE implemen-
tation Fairplay (bitwise AND, integer addition, equality test, Millionaires Problem, par-
ity checking). For functions with a large OBDD representation2 (integer multiplication
and keyed database lookup) Fairplay performs better.

Depending on the size of the OBDD, OBDD-based SFE is a good alternative to
circuit-based SFE protocols and both methods can also be combined securely.

3.4.1 Improved OBDD-based SFE

In the following a scheme for two party SFE of functions represented as OBDDs is in-
troduced which is secure in the malicious model. The scheme applies known techniques

2See the discussion about efficiency of OBDD representations for certain functions in Chapter 2.2.2.

28

3.5 Summary

to the protocol of [KJGB06] who present a provably secure OBDD-based SFE protocol
in the semi-honest model. Their scheme uses a semantically secure encryption scheme
E that has the special properties described in Chapter 2.3.3 to determine whether a de-
cryption succeeded. Performance can be improved using a point-and-permute technique
as shown in the end of this section. Protocol 3.4 shows how to construct and evaluate a
garbled OBDD Õ to securely evaluate a function represented as OBDD O.

Protocol 3.4 differs from Protocol 1 of [KJGB06] by the following minor changes to
provide security in the malicious model:

Step 1: Creator garbles the whole OBDD and sends the secrets corresponding to its
own inputs to Evaluator instead of traversing the OBDD with its own inputs and
garbling the remaining part of the OBDD. This clearly results in an overhead as
the garbled OBDD contains more encrypted nodes but allows cut-and choose to
catch a malicious Evaluator as described in the following.

Step 2: Evaluator obtains the keys corresponding to his inputs via an OT protocol which
is secure in the malicious model [LP07]. Afterwards he is able to evaluate the
garbled OBDD. In the end, Evaluator sends the secret used to decrypt the terminal
node to Constructor who can use this to get the function output, too and to catch
a malicious Evaluator. Cut-and-choose provides security against malicious Creator
similar to the approach used in Fairplay (Chapter 3.3.2): Creator constructs m
garbled OBDDs and opens the secrets to all but one garbled OBDD which is
randomly chosen by Evaluator. This allows to catch a cheating Creator with
probability 1− 1/m.

This protocol and the original protocol can be improved to directly find the intended
successor to decrypt instead of trying to decrypt both successors and decide which one is
the right one using the special properties of the symmetric encryption scheme described
in Chapter 2.3.3. This also allows usage of a semantically symmetric encryption scheme
without the overhead to provide these special properties. The improvement uses the
Permute and Point (PP) Technique of [Kol05] which is also used in Fairplay (Chap-
ter 3.3.2): For all nodes vi at level level(vi) = `, the encrypted successor nodes in E(vi)

are either all permuted or not (random for each level). Based on this, a single bit is
appended to the secrets s0

` and s1
` to indicate which successor node to decrypt during

evaluation.

3.5 Summary

Table 3.2 shows a comparison of the SFE protocols explained in the last sections w.r.t.
the underlying proof of security and if they use the Random Oracle Assumption (RO).
The used encryption method to create/evaluate the garbled tables are (from fast to slow):

29

3 Secure Function Evaluation (SFE)

Protocol 3.4 Improved OBDD-based SFE
Input: Both parties inputs include the OBDD(f) O for the Boolean function f(x1, . . . , xn)
with the ordering x1 < . . . < xn. Furthermore, Evaluator holds the inputs (i1, . . . , ik) corre-
sponding to the first k variables x1, . . . , xk, and Constructor has the inputs (ik+1, . . . , in).

1. Constructor performs the following steps:

a) First, Constructor augments O with some number of dummy nodes (to ensure that
Evaluator always traverses n nodes in his phase of the protocol).

b) Constructor uniformly and independently at random creates n pairs of secrets
(s0

1, s
1
1), . . . , (s

0
n, s1

n). In addition, for each node v he creates a secret sv.

c) He assigns a uniformly random label, label(v), to each node v.

d) Constructor garbles all nodes whose level is between 0 and n − 1 in the following
manner. Let v be a node such 0 ≤ level(v) ≤ n − 1 and define level(v) = `. The
encryption of v, denoted by E(v), is a label and a randomly ordered ciphertext pair

(label(v), Esv⊕s0
`
(label(low(v))||slow(v)), Esv⊕s1

`
(label(high(v))||shigh(v)))

where the labels are pre-pended to the secret with a separator symbol and the order
of the ciphertexts is determined by a fair coin flip. Roughly speaking, the secrets
corresponding to the 0-successor and 1-successor of node v are encrypted with the
secret corresponding to v and its level.
Note that dummy nodes have the same structure as normal nodes, except that
the ciphertext pair contain encryptions of the same message since dummy nodes
have the same 0 and 1-successors. Provided the encryption scheme is semantically
secure, this poses no problem since the keys are chosen uniformly at random.
Lastly, there are two terminal nodes of the form (label(tb), Estb

(b)) for b = 0 or 1.

e) Constructor sends to Evaluator the encryption of all nodes and the secret svroot

corresponding to the root, called the garbled OBDD Õ.

f) Constructor sends the secrets corresponding to his input sx1
1 , . . . , sxk

k to Evaluator.

2. Evaluator performs the following steps:

a) He engages in n−k 1-out-of-2 OTs to obtain the secrets corresponding to his input
s
xk+1

k+1 , . . . , sxn
n .

b) Now Evaluator is ready to start his computation. Suppose x1 = 0. With s0
1 and

svroot , he decrypts both ciphertexts in E(vroot) and decides which gives the correct
result by using the verifiable range property of the encryption scheme. Evaluator
now has both slow(v) (the secret corresponding to the 0-successor of vroot) and
label(low(v)) (which tells Evaluator which encrypted node is used to evaluate his
next input). Continuing this way, Evaluator eventually obtains a label and a secret
corresponding to one of the terminal nodes, which he decrypts to determine the
result of the OBDD on the shared inputs.

c) Evaluator sends the secret he used to decrypt the terminal node to Constructor
who uses this to verify honesty of Evaluator and to obtain the result, too.

30

3.5 Summary

XOR of bitstrings (XOR), semantically secure symmetric encryption (E), cryptographic
hash function as RO instantiation (H) and semantically secure symmetric encryption
with the special properties described in Chapter 2.3.3 (Espec).

Function
Protocol Reference

Proof of Security
Encrypt

Represent. semi-honest malicious RO

Circuit

Yao 3.3.1 X Espec

Fairplay 3.3.2 X X X H
GESS 3.3.3 X XOR
Improved SFE 3.3.4 X X X H/XOR

OBDD
OBDD SFE [KJGB06] X Espec

Impr. OBDD SFE 3.4 X X E

Table 3.2: Comparison of the described SFE protocols

For each function representation, the different protocols might also be combined to
further improve performance. Improved SFE combined with GESS in the bottom part of
the circuit is a promising combination for efficient and practical SFE in the semi-honest
model.

31

3 Secure Function Evaluation (SFE)

32

4 Secure Evaluation of Private
Functions (PF-SFE)

4.1 Introduction

In practice, not only the inputs, but also the function being evaluated needs to be pro-
tected. One example is checking a passenger against the no-fly list (or, more generally,
no-fly function of passenger’s data). Here, a compromise of the function weakens the se-
curity of the system significantly. Other examples include credit checking or background-
and medical history checking functions.

This extension of SFE is called SFE of private function (PF-SFE) and addressed by
a large amount of work like [FAZ05, CCKM00, SYY99, Pin02].

In PF-SFE, the evaluated function is known only by one party and needs to be kept
secret (i.e. everything besides the size, the number of inputs and the number of out-
puts is hidden from the other party). Full or even partial revelation of these functions
opens vulnerabilities in the corresponding process, exploitable by dishonest participants
(e.g. credit applicants), and should be prevented.

Based on the representation of the private function there are different approaches for
PF-SFE that are described in the following.

4.2 Universal Circuit-based PF-SFE

It is well known that the problem of PF-SFE can be reduced to the “regular” circuit-
based SFE [SYY99, Pin02]. This is done by parties evaluating a Universal Circuit
(UC) instead of a circuit defining the evaluated function. UC can be thought of as a
“program execution circuit”, capable of simulating any circuit C of certain size, given
the description of C as input. Therefore, disclosing the UC does not reveal anything
about C, except its size. At the same time, the SFE computes output correctly and C
remains private, since the player holding C simply treats description of C as additional
(private) input to SFE. This reduction is the most common (and often the most efficient)
way of securely evaluating private functions [SYY99, Pin02]. The next chapter shows
constructions for universal circuits.

33

4 Secure Evaluation of Private Functions (PF-SFE)

4.2.1 Applications

As discussed above, UC is naturally used to extend the functionality or privacy in
numerous practical SFE applications, in particular those based on Yao’s garbled circuit
[Yao82, Yao86, LP04].

To perform PF-SFE, instead of evaluating the circuit directly, a UC that is pro-
grammed with the original circuit is evaluated. As UC can be programmed with any
circuit, the evaluated function is entirely hidden from the evaluator.

Next, some natural applications that can be extended by using universal circuits are
discussed.

Frikken et. al [FAZ05] show a privacy-preserving credit checking scheme that is based
on the evaluation of a garbled circuit. Their scheme is limited to the special class of
credit-checking policies that can be expressed as the weighted sum of criteria. By eval-
uating a universal circuit their scheme can be extended to arbitrary, more complicated,
private credit-checking policies.

Cachin et al. [CCKM00] describe autonomous mobile agents which migrate between
several distrusting hosts. Garbled-circuit-based, their scheme ensures the privacy of the
inputs of the visited hosts but not the structure of the mobile agent’s code. The privacy
of the executed code can be guaranteed by evaluating universal circuits instead.

Ostrovsky and Skeith [OS05] show how to filter remote streaming data (e.g airports’
passenger lists, on-line news feeds or internet chat-rooms) using secret keywords and
their combinations, such as no-fly lists. Their protocol allows Collector (e.g. airport)
to obliviously filter out entries that match the (encrypted) query, which are then sent
back for decryption. Their scheme can be naturally extended to allow a much finer
private matching criteria, additionally preserving data privacy, as follows. The Collector
encrypts each filtered stream element with a random pad. The querying party thus
obtains the list of encrypted matches. In the second round, the querying party uses PF-
SFE (e.g. using our UCk) to search the matching data with an arbitrary, more detailed
private search function.

4.3 OBDD-based PF-SFE

The protocol for SFE with OBDDs of Chapter 3.4 (resp. the original protocol of
[KJGB06]) can directly be used as PF-SFE protocol for a private function represented
as OBDD, which is secure semi-honest Evaluator (security against malicious players can
be achieved by zero-knowledge proofs appropriately). In the protocol of Chapter 3.4
the cut-and-choose step must be left out, of course, as otherwise the function would
be revealed to Evaluator. Hence, Constructor might also traverse the OBDD with his
inputs and garble the remaining OBDD starting from node vinit again as in the original
construction to reduce the size of the garbled OBDD and avoid the transfer of his input

34

4.3 OBDD-based PF-SFE

secrets. Evaluator is able to decrypt the label and the secret for exactly the n (resp.
n − k) nodes on the path through the OBDD for the inputs. Thus, he learns nothing
about the structure of the OBDD. The only additional information (besides OBDD’s
size, number of inputs and outputs) Evaluator obtains is that he has to use the inputs
in the given order x1 < . . . < xn (resp. xk+1 < . . . < xn) which results in a OBDD repre-
sentation of the function that has the observed size. This very small leak of information
can also be eliminated: Evaluator first securely evaluates a programmable permutation
block P n

n (resp. P n−k
n−k) as described later in Chapter 5.3.3 with a circuit-based SFE-

protocol. This permutation block is programmed by Constructor to permute the secrets
corresponding to the n (resp. n− k) inputs from a pre-defined order to the order of the
garbled OBDD and hence hides the order of the inputs entirely.

While the UC-based PF-SFE protocols described before increase the size of the eval-
uated circuit dramatically (evaluation of a much larger universal circuit), the increase
between SFE and PF-SFE for functions represented as OBDDs is much smaller.

35

4 Secure Evaluation of Private Functions (PF-SFE)

36

5 Universal Circuit Constructions

As described in Chapter 4.2, universal circuits can be used to reduce PF-SFE to SFE
for functions represented as circuit. In this chapter different constructions for universal
circuits are presented. Intuitively, a universal circuit (UC) is a circuit that can be pro-
grammed to simulate any other circuit.

First, basic notations and building blocks are defined in Chapter 5.1 before the actual
UC constructions are presented and compared in the following sections.

5.1 Definitions and Preliminaries

In the following, a gate is the implementation of a boolean function {0, 1}2 → {0, 1} that
has two inputs and one output. Acyclic circuits are considered that consist of connected
gates with arbitrary fan-out, i.e. the (single) output of each gate can be used as input
to an arbitrary number of gates. Further, each output of the circuit C is the output of
a gate and not a redirected input of C.

A block Bu
v is a circuit that has u inputs in1, .., inu and v outputs out1, .., outv (the

variable u is always associated with inputs and v with outputs). Bu
v computes a function

fB : {0, 1}u → {0, 1}v that maps the input values to the output values. For simplicity,
Bu

v is identified with fB, written as: B(in1, . . . , inu) = (out1, . . . , outv). The size of
a block B, size(B), is the number of gates B consists of; its depth, depth(B), is the
maximum number of gates between any input and any output of B. A block can be a
sub-block of a larger block. A circuit is constructed as a collection of functional blocks,
as this simplifies presentation.

A programmable block is a block that consists of connected programmable gates with
unspecified function tables. Programming a programmable block is done by providing a
specific function table for each of its gates.

A Universal Circuit UCu,v,k is a programmable block with u inputs and v outputs that
can be programmed to simulate any circuit C with up to u inputs, v outputs and k gates.
UCC denotes UC that is programmed to simulate circuit C, that is ∀(in1, . . . , inu) :
UCC(in1, . . . , inu) = C(in1, . . . , inu).

A one-output switching block Y is a programmable block that computes (in1, in2) →
in1 or in2, as shown in Fig. 3.2(a). It is implemented by one gate programmed with the
corresponding function table. size(Y) = depth(Y) = 1.

37

5 Universal Circuit Constructions

A two-output switching block X is a programmable block shown on Fig. 3.2(b) that
computes (in1, in2) → (in1, in2) or (in2, in1). It is implemented by using (in parallel)
two Y blocks: one for each of the outputs. size(X) = 2; depth(X) = 1.

A selection block Su
v is a programmable block that selects for each of its v outputs one

of the u input values (with duplicates). Su
v is programmed according to the selection

mapping (σi)
v
i=1, σi ∈ {1..u} that selects the σi-th input as the i-th output. That is, a

programmed Su
v computes S(in1, . . . , inu) = (inσ1 , . . . , inσv).

A Su
1 selection block can be implemented by (u−1) Y blocks that are programmed to

switch the desired input value inσ1 to the output. Shallow Su
1 is obtained by arranging

Y blocks in a tree as shown in Fig. 5.1. Thus, size(Su
1) = u− 1, depth(Su

1) = log u.

S
u

in1, ..., inu

out1

Y

...

inu-3 inu-2inu-1 inuin1 in2 in3 in4 ...

Y

Y Y Y Y

Y...

...

1

Figure 5.1: Su
1 selection block with minimal depth(Su

1) = log u

A naive implementation of Su
v selection block uses a Su

1 selection block for each of the
v outputs, resulting in size(Su

v) = v(u− 1) and depth(Su
v) = log u. Selection blocks are

crucial for our UC construction. Much more efficient Su
v constructions are described in

Chapter 5.3.4.

5.2 Valiant’s UC Construction

Valiant [Val76] gave an asymptotically optimal universal circuit construction. Including
all optimizations, he shows how to construct a UC of size(UCV aliant

u,v,k) = (19k + 9.5u +
9.5v) log k+O(k). In the following, Valiant’s basic construction described in [Weg87, 4.2
Universal Circuits] is summarized while the optimizations to obtain the small pre-factors
are omitted.

It suffices to construct a universal circuit that is able to simulate circuits with fan-
out 2 only as each circuit C with arbitrary fan-out can easily converted into such one

38

5.2 Valiant’s UC Construction

by duplicating gates with fan-out > 2. Let m = u + k̃, where u is the number of
inputs of the simulated circuit C and k̃ is the number of gates with fan-out 2 after
conversion. Valiant’s UC consists of m distinguished nodes where the first u of them
are identified with the inputs of C. The remaining k̃ distinguished nodes are connected
to gate simulation blocks that can be programmed to simulate the corresponding gates.
UC now must ensure that the 2 outputs of each distinguished node can be connected
to each successor distinguished node. This switching can be reduced to two universal
graphs U(m) of size O(m log m), fan-out and fan-in 2 for all nodes, fan-out and fan-in
1 for m distinguished nodes, such that all directed acyclic graphs of size m and fan-out
and fan-in 1 can be simulated.

p1 p2

(a) U(2)

p1 p2 p3

(b) U(3)

p2p1 p4p3

(c) U(4)

Figure 5.2: Universal Graphs U(m) - recursion base

Fig. 5.2 shows U(m) for some constant m. The direction of the edges is from left to
right and omitted. Distinguished nodes pi (�) correspond to the u inputs of C resp. k̃
gate simulation blocks while switching nodes (•) are replaced with X switching blocks
in the UC construction.

p1 p2

q1

r1

pm-3 pm-2 pm-1 pm

qx-1 qx

rx-1 rx

Figure 5.3: Universal Graph U(m) - recursive construction

For larger m = 2x+2, U(m) can be recursively constructed from two U(x), Uq(x) and
Ur(x), as shown in Fig. 5.3. Marked nodes (+) q1, . . . , qx resp. r1, . . . , rx are replaced
with the distinguished nodes (�) of the two smaller universal graphs Uq(x) resp. Ur(x).

To simulate a given circuit C with Valiant’s UC, C is first converted into a circuit
with k̃ ≥ k gates of fan-out 2. Afterwards, two universal graphs U(m) where m = k̃ + u
are constructed where the distinguished nodes (�) are connected to the u inputs and the
k̃ gate simulation blocks. The switching nodes (•) are replaced by X switching blocks
and can be programmed corresponding to the structure of the wires of C by finding an
embedding of C into the two universal graphs U(m).

39

5 Universal Circuit Constructions

In the next section our new practical UC construction is presented which is not asymp-
totically optimal but smaller for circuits used in practical PF-SFE. Further, we believe
that implementation and programming of our practical UC construction is more self-
contained and straightforward as it does not rely on graphs and graph embedding but
only on the structure of the simulated circuit itself.

5.3 A Practical UC Construction

In this section, we present our modular UC construction. All of the necessary building
blocks were introduced in Chapter 5.1; in this Section we show how to assemble them to
a UC. Then, starting from Chapter 5.3.3, we design improved versions of some building
blocks, which results in performance improvement of our UC.

In our UC construction, we simulate each gate Gi of the original circuit C. That is,
for each Gi, UCu,v,k has a corresponding programmable Gi-simulation gate GSim

i . In our
construction, we always ensure that inputs, outputs and semantics of GSim

i correspond
to Gi. Additionally, we hide the wiring of C by ensuring that every possible wiring can
be implemented in UCu,v,k. This is the natural method of construction of UC, and is, in
fact, employed by Valiant [Val76].

We design our UC construction recursively (we build a circuit from two circuits of
smaller size). We first note that the input/output interface of UCu,v,k is different from
that of the natural recursion step. This is why we introduce a universal block Uk. Uk

can be viewed as a UC with specific input and output semantics. Namely, Uk has 2k
inputs and k outputs, since this is a maximum UCu,v,k can have. Further, we restrict
that Uk’s inputs in2i−1, in2i are only delivered to the simulation gate GSim

i , and Uk’s i-th
output comes from GSim

i . (Of course, input of some gates Gi may come from any other
gates’ outputs, and not from in2i−1 or in2i, which may not be used at all. Uk allows
this; it only restricts that Gi’s input cannot come from other inj). Uk is thus a UC for
the class of circuits of size k with the above input/output restrictions.

S
u

S
k≥v

Uk

2k

k

2k≥u

v

in1, ..., inu

out1, ..., outv

UCuniversal circuit

universal block

input selection block

output selection block

Figure 5.4: Modular universal circuit construction

40

5.3 A Practical UC Construction

Now, given an implementation of Uk, it is easy to construct UCu,v,k (shown on Fig.
5.4). We need to provide the input selection block, which directs inputs of UC to the
proper inputs of Uk. Finally, we need the output selection block, directing outputs of Uk

to the proper outputs of UC, and discarding unused outputs. Both blocks are instances
of selection blocks discussed above.

In the following, we refer to the gates of the circuit Ck by their index. We choose a
topologic order of the gates G1, . . . , Gk, which ensures that the i-th gate Gi has no inputs
that are outputs of a successive gate Gj, where j > i. Since we only consider acyclic
circuits, we can always obtain this ordering by topological sorting with complexity O(k).

Now we present two Uk constructions. Plugged in the construction of Fig. 5.4, they
both give a complete UC construction.

5.3.1 Simple Universal Block Construction

A straight-forward implementation of a universal block Uk can be constructed as shown
in Fig. 5.5: For the first (second) input of every gate simulation block GSim

i a selection
block Si

1 selects the input for GSim
i from the corresponding input to the universal block

in2i−1 (in2i) and the outputs of the previous (i−1) gate simulation blocks GSim
1 , . . . , GSim

i−1 .

This results in size(U simple
k) = k2 which is not practical if k grows.

G
1

G
2

G
k

G
k-1

U
k

S
2

1

S
2

1

S
k

1

S
k

1

...

...

...

...

...

in
1

in
2

in
3

in
4

in
2k-1

in
2k

out
1

out
2

out
k-1

out
k

Figure 5.5: Simple universal block construction

Next we will present a more efficient practical construction for the universal block Uk.

5.3.2 Recursive Universal Block Construction

In this section, we describe a natural divide-and-conquer procedure for constructing
Uk, capable of simulating any circuit Ck of size k, with the input/output restrictions
mentioned above.

41

5 Universal Circuit Constructions

Suppose we have two universal blocks Uk/2, universal for circuits Ck/2 of size k/2.
We would like to combine them to obtain Uk. Clearly, because of their universality,
one of Uk/2 could simulate the “upper” half of Ck (i.e. gates G1 through Gk/2) , and the
other Uk/2 could simulate the lower half (gates Gk/2+1, . . . , Gk). Note, by the topological
ordering, there is no data going into the upper Uk/2 from the lower one. Thus, Uk must
only direct its inputs/outputs and allow implementation of all possible data paths from
the upper Uk/2 to the lower one. This can be naturally done, as shown on Fig. 5.6(a).
We describe this in detail below.

Uk

k

Uk/2

Mk

S
k/2

Uk/2

in1, ..., ink ink+1, ..., in2k

out1, ..., outk/2 outk/2+1, ..., outk

(a) Recursive construction of Uk

Mk

...

out1, ..., outk

out1 outk

in1, ..., ink
0 0

in1, ..., ink
1 1

in1
0
in1
1

Y1 Yk

ink
0
ink
1

(b) Mixing block Mk

G

U
1

in
1
in
2

out
1

(c) U1

Figure 5.6: Recursive universal block construction

The first k inputs to Uk in1, .., ink are directly sent to the upper Uk/2. Note, the order
of the inputs matches the interface perfectly, so no additional manipulation is required.
The k/2 outputs of the upper (resp. lower) Uk/2 are sent directly to the first (resp.
second) half of the outputs of Uk. Again, interfaces match, and no manipulation is
required.

We now only need to show how the inputs to the lower Uk/2 are provided. These
inputs could come from (any GSim

i gate of) the upper Uk/2. Therefore, we also wire the

outputs of upper Uk/2 into a selection block S
k/2
k . This allows to direct, with duplicates,

the output of any gate of upper Uk/2 to any position of the input interface of lower
Uk/2 (and thus to any gate of lower Uk/2). Additionally, (some of) lower Uk/2’s inputs
could come from the Uk inputs ink+1, ...in2k. Since the lower Uk/2 simulates gates Gk/2+1

through Gk of Ck, inputs ink+1, ...in2k are already ordered to match lower Uk/2’s interface.
Now, for each input of lower Uk/2, we need to switch between the two input wires: one

provided by upper Uk/2 via S
k/2
k , and the other coming from Uk’s input directly. This

is easily achieved by a Y switching block. On the diagram, for ease of presentation,
we combine the k of these Y blocks into a mixing block Mk, shown on Fig. 5.6(b) with
size(Mk) = k · size(Y) = k and depth(Mk) = 1.

42

5.3 A Practical UC Construction

The base case of the recursive construction is U1, a universal block implementing a
single gate. U1 is implemented by a single programmable gate as shown in Fig. 5.6(c).
This completes the description of the recursive Uk construction.

The above immediately implies efficient methods of UC programming, given the circuit
Ck. In particular, if the first (resp. second) input of a gate Gj in the lower half of Ck

(k/2 < j ≤ k) is connected to an input of Ck, the mixing block Mk is programmed to
select the corresponding input in2j−1 (resp. in2j) of Uk by programming Y2j−k−1 (resp.
Y2j−k) of Mk correspondingly (see Fig. 5.6(b)). Otherwise, if Gj is connected to an

output of a gate Gi in the upper half of Ck (1 ≤ i ≤ k/2), Mk and S
k/2
k are programmed

to select the corresponding output from the upper Uk/2 block by programming Y2j−k−1

(resp. Y2j−k) correspondingly and programming S
k/2
k with σ2j−k−1 = i (resp. σ2j−k = i).

We now compute the complexity of our constructions Uk and UC (using selection
block constructions of Chapter 5.3.4). Recall, the cost of Yao’s garbled circuit depends
only on its size, and not on depth. Note, size(U1) = 1, depth(U1) = 1.

size(Uk) = 2size(Uk/2) + size(S
k/2
k) + size(Mk)

= k · size(U1) +

log(k)−1∑
i=0

2i(size(S
k/2i+1

k/2i) + size(Mk/2i))

= k +

log(k)−1∑
i=0

2i(6
k

2i+1
log(

k

2i+1
) + 3 +

k

2i
)

= k + 3k log2 k − 2k log k − 3k

log(k)−1∑
i=0

i + 3

log(k)−1∑
i=0

2i

= k + 3k log2 k − 2k log k − 3k · 0.5(log(k)(log(k)− 1)) + 3(k − 1)

= 1.5k log2 k − 0.5k log k + 4k − 3;

depth(Uk) = 2depth(Uk/2) + depth(S
k/2
k) + depth(Mk) = . . .

= k log k + k + 4 log k − 12.

Using the optimization of Chapter 5.3.5, Uk has complexity size(Uk) = 1.5k log2 k −
1.5k log k + 6k − 5 and depth(Uk) = k log k + 4 log k − 11.

Uk combined with input- and output-selection blocks of Chapter 5.3.4 as shown in
Fig. 5.4, results in a UC construction of complexity

size(UC) = 1.5k log2 k + 2.5k log k + 9k + (u + 2k) log u + (k + 3v) log v

−2u− 4v + 1;

depth(UC) = k log k + 2k + v + 7 log k + 2 log u + 3 log v − 14.

43

5 Universal Circuit Constructions

5.3.3 Generalized Permutation Blocks

To construct the efficient selection blocks Su
v presented in Chapter 5.3.4 we need two

useful generalizations of the permutation blocks of Waksman [Wak68].

P u
u Permutation Block

A permutation block P u
u is a programmable block that can be programmed to output any

permutation of the inputs. Formally, given a permutation (πi)
u
i=1, πi ∈ {1, . . . , u},∀i 6=

j : πi 6= πj that selects for the i-th output a unique input πi, P u
u computes P (in1, .., inu) =

(inπ1 , .., inπu).
When u is a power of 2, Waksman [Wak68] describes an efficient recursive P u

u con-
struction built from X switching blocks. His P u

u has size(P u
u) = 2u log u − 2u + 2 and

depth(P u
u) = 2 log u− 1.

Waksman also gives an efficient recursive algorithm to program the X switching blocks
of his construction. (Fig. 5.7 describes a slight generalization of Waksman’s construction;
fixing u = v in Fig. 5.7 corresponds to Waksman’s P u

u .) The programming algorithm
takes a u× u permutation matrix for the permutation (πi) as input. It splits this u× u
permutation matrix into two u/2 × u/2 permutation matrices that are recursively im-

plemented by the left and the right P
u/2
u/2 permutation sub-block and programs the X

switching blocks correspondingly. Using a sparse matrix representation for the permu-
tation matrices, this algorithm can be efficiently implemented in O(u log u).

We note that Waksman’s construction can be naturally generalized to the cases where
u 6= v, i.e. the number of inputs and outputs differ. Below we define the resulting
objects (which we call “truncated permutation” and “expanded permutation” blocks),
and present their efficient constructions.

P
u/2
v/2P

u/2
v/2

...

out1, ..., outv

X X

out1 out2 out3 outv-1out4 outv

P
u
v

...

X

inu-1inu

...

...

X

in3 in4

X

in1 in2

in1, ..., inu

Figure 5.7: Recursive construction of a P u
v permutation block

44

5.3 A Practical UC Construction

TP u≥v
v Truncated Permutation Block

A TP u≥v
v truncated permutation block permutes a subset of v of the u inputs to the

v ≤ u outputs. The remaining u − v input values are discarded. Formally, an output
mapping (µi)

v
i=1, µi ∈ {1, . . . , u},∀j 6= i : µi 6= µj selects the µi-th input as the i-ths

output. The truncated permutation block computes TP (in1, . . . , inu) = (inµ1 , . . . , inµv).
The TP u≥v

v block is constructed recursively analogous to Waksman’s permutation
network construction as seen in Fig. 5.7. W.l.o.g we assume u and v are even at each re-
cursion step (otherwise we introduce an unused dummy input or output with small over-

head). If u ≥ 2 the TP u≥v
v truncated permutation block is divided into two TP

u/2≥v/2
v/2

truncated permutation sub-blocks. The upper u/2 X switching blocks distribute the in-
puts of TP u≥v

v to the two sub-blocks. The lower (v/2− 1) X switching blocks distribute
the outputs of the two sub-blocks to the outputs of TP u≥v

v as shown in Fig. 5.7. At the
base of the recursion, if v = 1, a Su

1 selection block selects the intended input.
The TP u≥v

v block is programmed using a natural generalization of Waksman’s recursive
programming algorithm. The intended output mapping (µi) is expressed as a u × v
truncated permutation matrix. In each recursion step the algorithm splits the u × v
matrix into two u/2× v/2 truncated permutation matrices implemented by the left and
right sub-block and programs the X switching blocks accordingly. In the end of the
recursion, if the truncated permutation matrix is a u × 1 matrix with a one in the i-
th row, the Su

1 selection block is programmed to select the i-th input value as output:
σ1 = i. This algorithm can be implemented in O((u + v) log v) using sparse matrix
representations.

The complexity of this construction is

size(TP u≥v
v) = v · size(S

u/v
1) +

log(v)−1∑
i=0

2i(
u

2i+1
+

v

2i+1
− 1) · size(X)

= (
u + v

2
log(v)− v + 1) · size(X) + (u− v) · size(Y)

= (u + v) log v + u− 3v + 2 ;

depth(TP u≥v
v) = (2 log v − 1) · depth(X) + depth(S

u/v
1)

= log u + log v − 1 .

EP u
v≥u Expanded Permutation Block

An EP u
v≥u expanded permutation block permutes the u inputs to a subset of u of the

v ≥ u outputs. The remaining v−u outputs are allowed to obtain any input value (they
are intended to be discarded later and are called dummy outputs). Formally, an input
mapping (µi)

u
i=1, µi ∈ {1, . . . , v},∀j 6= i : µi 6= µj specifies that the i-th input should

be mapped to the µi-th distinct output. The expanded permutation block computes
EP (in1, . . . , inu) = (out1, . . . , outv) where (outs = inr) ↔ (µr = s), s ∈ {1, . . . , v}, r ∈
{1, . . . , u}.

45

5 Universal Circuit Constructions

The construction of the EP u
v≥u is analogous to the previously described TP u≥v

v block.
At the base of the recursion, if u = 1, the single input in1 is connected to each of the v
outputs.

The programming algorithm of EP u
v≥u is analogous to that of TP u≥v

v as well. The
input is a u × v matrix that corresponds to (µi) and it can be implemented in O((u +
v) log u).

The construction has complexity

size(EP u
v≥u) =

log(u)−1∑
i=0

2i(
u

2i+1
+

v

2i+1
− 1) · size(X)

= (u + v) log u− 2u + 2 ;

depth(EP u
v≥u) = (2 log u) · depth(X)

= 2 log u .

5.3.4 Efficient Selection Blocks

We use truncated and expanded permutation blocks of the previous section to build
efficient selection blocks Su

v , used directly in the UC construction.

Y ...

TP
u≥v
v

S
u≥v
v

in1, ..., inu

P
v
v

Y Y

out1, ..., outv

(a) Efficient Su≥v
v selection block

out1, ..., outv

P
v
v

Y

v≥uS
u

v≥uEP
u

...Y Y

in1, ..., inu

(b) Efficient Su
v≥u selection block

Figure 5.8: Efficient Su
v selection blocks

Efficient Su≥v
v Selection Block

We obtain the efficient Su≥v
v selection block from one TP u≥v

v truncated permutation
block, one P v

v permutation block, and (v−1) Y switching blocks as shown in Fig. 5.8(a).
It is not hard to see that the above Su≥v

v is indeed a selection block, i.e. it can be
programmed with any selection mapping (σi)

v
i=1, σi ∈ {1, . . . , u}. To program Su≥v

v , first
count the frequency of occurrence cj of each input value in the output: cj = #{σi : σi =
j; i ∈ {1 . . . v}}; j ∈ {1 . . . u}. Note, 0 ≤ cj ≤ v and

∑u
j=1 cj = v. The TP u≥v

v truncated
permutation block is programmed to

46

5.3 A Practical UC Construction

1. map the needed inputs (cj 6= 0) to its (
∑j−1

k=1 ck)-th output and

2. map the unused inputs (cj = 0) to an unused (dummy) output.

The (v− 1) Y switching blocks connected to the outputs of TP u≥v
v duplicate the needed

inputs as necessary and feed them to the P v
v permutation block. They are programmed

as follows. If the right input of a Y block is a needed output (produced by Step 1),
then the Y block selects it as output. Otherwise, the output of the neighbor Y block is
selected. For each j, this construction inputs cj copies of inj into the P v

v permutation
block. P v

v then permutes these values to the corresponding outputs indicated by the
selection mapping (σi). The complexity of this construction is

size(Su≥v
v) = size(TP u≥v

v) + (v − 1) · size(Y) + size(P v
v)

= ((u + v) log v + u− 3v + 2) + (v − 1) + (2v log v − 2v + 2)

= (u + 3v) log v + u− 4v + 3 ;

depth(Su≥v
v) = depth(TP u≥v

v) + (v − 1) · depth(Y) + depth(P v
v)

= (log u + log v − 1) + (v − 1) + (2 log v − 1)

= log u + 3 log v + v − 3 .

Efficient Su
v≥u Selection Block

An efficient Su
v≥u selection block can be constructed and programmed analogously, but

using a EP u
v≥u expanded permutation block instead as shown in Fig. 5.8(b). Its com-

plexity is

size(Su
v≥u) = size(EP u

v≥u) + (v − 1) · size(Y) + size(P v
v)

= ((u + v) log u− 2u + 2) + (v − 1) + (2v log v − 2v + 2)

= (u + v) log u + 2v log v − 2u− v + 3 ;

depth(Su
v≥u) = depth(EP u

v≥u) + (v − 1) · depth(Y) + depth(P v
v)

= (2 log u) + (v − 1) + (2 log v − 1)

= 2 log u + 2 log v + v − 2 .

Improved Su
2u Selection Block

In this section, we improve the efficient Su
v≥u selection block construction shown before

for the case v = 2u, most frequently used in our recursive construction of the universal
block Uk. We improve by replacing the EP u

v≥u expanded permutation block in the
construction of Su

v≥u in Fig. 5.8(b) with a smaller P u
u permutation block and a different

connection of the (v − 1) Y blocks as shown in Fig. 5.9. Our construction achieves

size(Su
2u) = 6u log u + 3 ;

depth(Su
2u) = 4 log u + 2u− 1 .

47

5 Universal Circuit Constructions

out1, ..., out2u

S
u
2u

in1, ..., inu

P
2u
2u

uP
u

...Y2u-1 Y2u-2 Yu+1Y2u

x1 x2 x3 xu

YuY3Y2
...

x2 x3 xux1

y1 y2 y3 yu

yu+1y2u-3y2u-2y2u-1y2u

y1, ..., y2u

Figure 5.9: Improved Su
2u selection block

Lemma. Construction of Fig. 5.9 is a Su
2u selection block.

Proof. To prove this Lemma, we only need to show that the upper permutation block
P u

u together with the layer of Y blocks output the selected values (with the right number
of duplicates each) in some order. (The rest, i.e. imposing the desired order, is done
by the lower permutation block P 2u

2u .)

We use the network of Y blocks to duplicate (or omit) inputs as required by the
selection block specification. The upper permutation block P u

u can be programmed
to deliver the desired input ini to any Y -layer input xj not already used by another
input. For example, if input ini needs to be duplicated ci times, this can be achieved by
programming the permutation to map ini to xj, and have blocks Yj through Yj+ci−1 to
output xj. This way, as required, the value ini would be duplicated ci times.

For efficiency reasons, the wiring of the Y -layer is limited. In particular, input xi is
delivered only to blocks Yi and Y2u−i+1, which are in column i. From there, xi can be
propagated “to the right” from Yi (i.e. to blocks Yi+1, ..., in the lower row) and/or ”to
the left“ from Y2u−i+1 (i.e. to blocks Y2u−i+2, ..., in the upper row). Note, blocks Yi and
Y2u−i+1 cannot receive different inputs from P u

u . They, however, can produce different
outputs, since one or both of them could be propagating the value of their neighbouring
Y block.

It is not immediately clear that the inputs in1...inu can be permuted such that the
Y -layer can provide the right number of duplicates for each input. We show, that this
in fact can be done. We observe that this permutation and the Y -layer programming
can be reduced to the following box-packing problem.

48

5.3 A Practical UC Construction

2 3 1 4 4 5

413122

Figure 5.10: Valid arrangement of boxes produced by Algorithm 5.1 for boxes of size
(cj) = {2, 3, 1, 4, 4, 5, 4, 1, 3, 1, 2, 2, 0, 0, 0, 0}. Dark gray head cells contain
size.

Box-packing. (See Fig. 5.10 for illustration.) There are u rectangular boxes of sizes
c1, . . . , cu, where ci ∈ {0, . . . , 2u} and

∑u
i=1 ci = 2u. Each non-empty i-th box consists of

a head cell (dark gray), and ci−1 trailing cells (light gray). There is a rectangular 2×u
grid of slots that consists of an upper row and a lower row. A box of size ci occupies
ci consecutive slots in one row (one exception is that the right-most box might wrap
around from the lower to the upper row, as seen on Fig. 5.10). The boxes in the upper
row are oriented with heads to the right, and the boxes in the lower row are oriented
with heads to the left. A collision occurs when two heads occupy slots in the same
column. The arrangement of all u boxes is called valid, if it contains no collisions. (Note
that a valid arrangement leaves no empty slots.) A solution to the box-packing problem
is a valid arrangement.

A procedure for a valid arrangement of the boxes of sizes c1, . . . , cu gives the following
natural programming of the P u

u permutation block and the Y -layer. Associate (1-to-1)
each input ini of size ci with a box of same size ci and compute a valid arrangement.
Then, input ini is switched by P u

u to xj if the j-th column is occupied by the head of
the box associated with ini. Inputs ini with ci = 0 (unused inputs) are switched to
the columns j which have no head boxes. Both switching blocks Yi and Y2u−i+1 of each
column i are programmed as follows. They select input xi iff the corresponding slot in
the valid arrangement is occupied by the head (otherwise, the output of the neighbored
Y switching block is selected). It is not hard to see that this programming results in the
desired output, given the corresponding valid arrangement of boxes.

The next Lemma shows an efficient box-packing procedure. This completes the proof
of the previous Lemma. ut

Lemma. Algorithm 5.1 efficiently produces a valid arrangement for any given set of
u boxes of sizes c1, . . . , cu; 0 ≤ cj ≤ 2u;

∑u
j=1 cj = 2u.

Proof. Note, since
∑

cj = 2u, for each box of size 2+ i, there must be i boxes of size
1, or i/2 boxes of size 0, or a corresponding combination.

A) Algorithm 5.1 always puts all boxes and terminates. We first show that Step 2
eliminates all boxes of size 1. Indeed, suppose the contrary, a block of size 1 remains.
Then, in each previous execution of Step 2a, we eliminated blocks of sizes s2 ≥ s1 ≥ 2
and s1 +s2−4 blocks of size 1, and in Step 2b we eliminated a block of size s1 and s1−2

49

5 Universal Circuit Constructions

Algorithm 5.1 Box-packing

0. Each box is always put in the leftmost unoccupied slots in the specified row.

1. Sort boxes by size in increasing order.

2. while there is at least one box of size 1, do

a) if there are at least two boxes of minimal sizes s2 ≥ s1 ≥ 2 left

i. put the box of size s1 in the upper row

ii. put remaining (but no more than s1-2) boxes of size 1 in lower row

iii. put the box of size s2 in the lower row (possibly wrap around)

iv. put remaining (but no more than s2-2) boxes of size 1 in upper row

b) else // there is only one box of size s1 ≥ 2 left

i. put the remaining boxes of size 1 in the lower row

ii. put the box of size s1 ≥ 2 in the lower row and wrap around

3. while there is at least one box of minimal size s3 ≥ 2 left, do

a) if there is another box of minimal size s4 ≥ s3 ≥ 2 left

i. put the box of size s3 in the upper row

ii. put the box of size s4 in the lower row (possibly wrap around)

b) else // there is only one box of size s3 ≥ 2 left

i. put the box of size s3 ≥ 2 in the lower row and wrap around

4. end

blocks of size 1. Since
∑

cj = 2u, there could not have been more blocks of size 1 than
we eliminated, and we arrive at contradiction. Further, Step 3 eliminates all remaining
boxes of size ≥ 2. In each iteration, at least one box of size s3 ≥ 2 is eliminated either
in Step 3(a)i or Step 3(b)i, until all boxes of size ≥ 2 are eliminated. (Observe, at each
iteration, upper row “grows” not more than the lower. Thus, Algorithm’s actions are
always legal.)

B) Algorithm 5.1 produces a valid arrangement. We need to show that no step of
Algorithm 5.1 causes a collision. It is easy to see that Step 2a and Step 2b never
cause a collision. Further, once Step 2 has finished, the number of occupied slots in
the upper row ωup is less or equal to the number of occupied slots in the lower row
ωdown, with 0 ≤ ωdown − ωup ≤ s2 − 2 (here s2 is the size of the most recently put
block in Step 2(a)iv). Since the boxes are processed in increasing order, in Step 3,
s3 ≥ s2 ≥ 2. If the box of size s3 is the last remaining one, it is put in the lower

50

5.3 A Practical UC Construction

row in Step 3(b)i and, as is easy to see, doesn’t cause a collision. Otherwise, in Step
3(a)i, the box of size s3 is put in the upper row. The number of occupied slots in the
upper row is now ω′

up = ωup + s3, and the upper row has at least two more occupied
slots than the lower row: ω′

up − ωdown = (ωup + s3) − ωdown ≥ 2. This implies that
the next Step 3(a)ii doesn’t cause a collision when putting the box of length s4 ≥ s3

into the lower row. After Step 3(a)ii, the number of occupied slots in the lower row is
ω′

down = ωdown +s4. In the end of the current iteration of Step 3, the number of occupied
slots in the upper row is again less or equal to the number of occupied slots in the lower
row: ω′

down − ω′
up = (ωdown + s4)− (ωup + s3) = (ωdown − ωup) + (s4 − s3) ≥ 0 and hence

the length relationship between the upper and lower rows (0 ≤ ω′
down − ω′

up ≤ s4 − 2) is
the invariant of Step 3. Therefore, no iteration of Step 3 causes a collision. As no step
causes a collision, Algorithm 5.1 produces a valid arrangement.

C) Algorithm 5.1 is efficient. Sorting of the u boxes in Step 1 costs O(u log u). Steps
2 and 3 have a runtime of O(u), as in every iteration at least one box is eliminated.
Hence the runtime of Algorithm 5.1 is in O(u log u). ut

Depth-optimal Efficient Selection Blocks

In computationally secure SFE protocols, the only cost measurement is the size of a
circuit - the number of gates that needs to be minimized. In some applications also the
depth needs to be minimized as this determines the size of the shares like in GESS (see
Chapter 3.3.3) or the number of rounds in multi-party protocols. This section shows
how to reduce the depth of the practical universal circuit construction to O(k) (which
is asymptotically optimal) by reducing the depth of the selection blocks.

The previously described efficient selection block constructions Su≥v
v and Su

v≥u shown
in Fig. 5.8 minimize the size to O((u + v) log(u + v)) but NOT the depth which is
O(u + v). The depth of these efficient selection blocks can be minimized at the cost of
a small increase in size as follows. If the chain of Y gates between the two permutation
blocks is replaced with the extension of Waksman’s permutation network W b′ described
in [Hei86], the duplication of the values can be done with a depth of only O(log(u + v))
and a small increase in size to O((u + v) log(u + v)) instead of v − 1 gates. This results
in depth-optimal selection blocks SdepthOpt with size(SdepthOpt) ∈ O((u + v) log(u + v))
and depth(SdepthOpt) ∈ O(log(u + v)).

Using these depth-optimal selection blocks instead, a depth-optimal practical uni-
versal circuit UCdepthOpt

pract can be constructed with a constant factor of increase in size

only, size(UCdepthOpt
pract) ∈ O(k log2 k)), but improved (asymptotically optimal) depth of

depth(UCdepthOpt
pract) ∈ O(k) instead of O(k log k).

51

5 Universal Circuit Constructions

5.3.5 Optimization of the UC Construction

As the order of the two inputs of a gate simulation block G can be swapped by swapping
its function table, we can omit the last row of X blocks in the lower P k

k permutation

block of the S
k/2
k selection block in the construction of Uk (see Fig. 5.6(a), Fig. 5.9 and

Fig. 5.7) and adapt the programming correspondingly. This results in a reduction of

∆size(Uk) =

log(k)−1∑
i=0

2i(k · 2−i − 2)

= k log k − 2k + 2 ;

∆depth(Uk) =

log(k)−1∑
i=0

2i

= k − 1 .

5.4 Comparison

We now compare our UC solution to the best previously known Valiant’s UC [Val76].
Recall, we consider circuits UCu,v,k, universal for circuits of k gates, u inputs and v
outputs. Valiant’s UC is denoted by UCV aliant

u,v,k and ours by UCu,v,k with sizes

size(UCV aliant
u,v,k) = 19k log k+ 9.5u log k+ 9.5v log k + O(k)

size(UCu,v,k) = 1.5k log2 k+ 2.5k log k+ (u + 2k) log u+ (k + 3v) log v + O(k)
.

To help visualize the relationship, Table 5.1 shows sample relative sizes of our UC

construction compared to Valiant’s: sizerel =
size(UCu,v,k)

size(UCV aliant
u,v,k)

. We also note the break-

even point keq = k|sizerel=1 — the maximum size of circuits for which our UC is smaller.

Table 5.1: Comparison of Practical- and Valiant’s UC construction
circuit inputs and outputs break-even relative size sizerel

u v point keq k = 1, 000 k = 5, 000 k = 10, 000

few o(k) o(k) 2, 048 91.8% 110.2% 118.1%
0.5k 0.1k 5, 000 86.0% 100.1% 106.2%
0.5k 0.25k 8, 000 83.1% 96.4% 102.1%
1k 0.5k 117, 000 69.0% 79.5% 84.0%

many 2k 1k 26, 663, 000 53.6% 60.9% 64.1%

While Valiant’s construction is asymptotically better, our UC is up to 50% smaller
for small circuits, due to much lower constant factors. For PF-SFE, small circuits are of
most interest, since only they can be evaluated efficiently today (indeed, UC for 5000-
gate circuits has size ≈ 106). In addition, our construction is more detailed and seems to

52

5.4 Comparison

be much easier to implement than Valiant’s. Thus, we believe that our UC construction
is a good fit for practical PF-SFE.

In support of this contribution, FairplayPF was implemented as extension of the
Fairplay SFE system [MNPS04] for general PF-SFE based on our UC construction as
described in the next chapter.

53

5 Universal Circuit Constructions

54

6 Implementation of PF-SFE

FairplayPF is an extension of the Fairplay SFE system for general two-party PF-SFE
based on UCs. The design and implementation of both systems, Fairplay for SFE and
FairplayPF for PF-SFE, is described and compared in this chapter.

6.1 Fairplay

As already described in Chapter 3.3.2, Fairplay [MNPS04] implements general two-party
SFE. It is written in JAVA and published under GPL (GNU General Public License).
Source-code, binaries and example programs can be found on the Fairplay 1.0 project
homepage [MNPS].

The left branch of Fig. 6.1 shows the high-level structure of Fairplay while Fig. 6.2(a)
shows the design and program flow in detail:

compiler +
optimizer

UC choose,
construct &
program

types, vars, functions,
operators (+,-,<,&,...),
commands(if-then-else, for)

wires
n-input gates

SFDL

program

SHDL

circuit

alicePF bobPF

PF-SFE

alice bob

SFE

Fairplay FairplayPF

Figure 6.1: FairplayPF - Extending Fairplay for PF-SFE

55

6 Implementation of PF-SFE

The function the two parties Alice and Bob want to compute is described in SFDL
(Secure Function Description Language). The SFDL program instructs a virtual “trusted
party” what to do. SFDL resembles a simplified hardware description language like
VHDL (Very high speed integrated circuit Hardware Description Language) including
types, variables, functions, boolean operators (+,−, <, &, . . .) and control structures like
if-then-else or for-loops with constant range. A detailed description of the syntax and
semantics of SFDL can be found in [MNPS04, Appendix A]. Fairplay also includes a
GUI (SFE.GUI.GUIMain) that assists the programmer in creating SFDL programs with
graphical code templates.

Fairplay provides a secure hardware compiler and optimizer that compiles a SFDL
file into a SHDL (Secure Hardware Description Language) circuit representation. SHDL
circuits consist of wires and n-input gates with their input wires and function tables
only. The compiler can be invoked by Alice (run_alice -c SFDLprogram.txt) and
Bob (run_bob -c SFDLprogram.txt).

Using the SHDL circuit as input, Alice and Bob run the two-party SFE protocol
to correctly and securely implement the fictional trusted party. The communication
channel between Alice and Bob is a TCP connection. After having compiled the SFDL
program to a SHDL circuit, Bob starts the server with

run_bob -r SFDLprogram.txt <seed> <ot_type>

where <seed> is a seed for the PRNG (Pseudo-Random Number Generator) and
<ot_type> is the number of one of the several implemented OT protocols that should
be used for OT. Similarly, Alice invokes the client on the compiled SHDL circuit with

run_alice -r SFDLprogram.txt <seed> <hostname> <num_iterations>

where <hostname> is the hostname (e.g. DNS name or IP address) of Bob and
<num_iterations> is the number of rounds the protocol is executed.

After the TCP connection has been established, the client and the server execute
the on-line SFE protocol as seen in Fig. 6.2(a). Bob garbles the circuit m times and
sends them to Alice. Alice randomly choses one of them for evaluation and asks Bob to
reveal the secrets of the other m − 1 garbled circuits. Alice verifies that these opened
circuits are constructed according to the protocol and waits for Bob to send her the
secrets corresponding to his inputs. The users Bob resp. Alice are asked to enter their
secret inputs. Afterwards, Alice and Bob execute the specified OT protocol where Alice
obtains the secrets corresponding to her inputs. In the end, Alice evaluates the garbled
circuit using the input secrets, sends the output back to Bob and outputs it.

56

6.1 Fairplay

Off-line

On-line
SFE

GUI

SFDL
program

(file)

(object)

Circuits send

Read Int

Reveal secrets

Input+input send

OT sender

Output

SFDL compiler+
Circuit optimizer

SHDL parser

m x Circuit garbler

SHDL
circuit

circuit

(file)

Garbled
circuits

(object)

Bob

SFDL compiler+
Circuit optimizer

SHDL parser

Circuits receive

Circuit choose

Circuits verify

Input receive

Input

OT chooser

Circuit evaluator

Output

(object)circuit

SHDL
circuit

(file)

Alice

(a) Program flow of Fairplay

On-line
PF-SFE

Off-line

GUI

SFDL
program

(file)

UC construct

SFDL compiler+
Circuit optimizer

SHDL-PF
compiler

SHDL
circuit

(file)

Bob

SHDL
circuit

(file)

UC select

Input+input send

OT sender

Output

(object)

Circuit send

Circuit garbler

circuit

Garbled
circuit

(object)

UC program

UC extract

(object)UC

UC construct

Alice

UC select

Interface
description

(file)

Input receive

Input

OT chooser

Circuit evaluator

Output

Circuit receive

(object)circuit

UC extract

(object)UC

(b) Program flow of FairplayPF

Figure 6.2: Comparison of program flow

57

6 Implementation of PF-SFE

6.2 FairplayPF

In order to show practicability of universal circuit based PF-SFE described in Chap-
ter 4.2 and the new practical universal circuit construction of Chapter 5.3, FairplayPF
was implemented as part of this thesis. FairplayPF is an extension of the Fairplay 1.0
system for general two-party PF-SFE based on UCs. Source-code, binaries and example
programs can be found on the FairplayPF homepage [KS].

A main design criteria of FairplayPF was to be as close to the original Fairplay as
possible to allow easy migration between Fairplay (SFE) and FairplayPF (PF-SFE)
back-and-forth. The similarities can be found in the high-level structure of FairplayPF
shown in the right branch of Fig. 6.1 as well as the design and program flow shown in
Fig. 6.2(b). The blocks that are newly introduced in FairplayPF are filled gray.

While Fairplay provides the SFDL program and the SHDL circuit to both parties
Alice and Bob, in FairplayPF only Bob creates the SFDL program (optionally using
the Fairplay GUI) and compiles the circuit (run_bobPF -c SFDLprogram.txt). This
invokes first the original Fairplay SFDL compiler and afterwards the FairplayPF com-
piler that converts Fairplay’s SHDL circuit containing n-input gates to a SHDL circuit
that contains 2-input gates only. This is simply done by applying Shannon’s expansion
theorem [Sha49]:

f(x1, x2, . . . , xn) =
(
x1 ∧ f(0, x2, . . . , xn)

)
∨

(
x1 ∧ f(1, x2, . . . , xn)

)
Of course, this could be optimized further but the Fairplay compiler currently only
produces (n > 2)-input gates in few cases like in full-adder cells that are compiled to
3-input gates (see also Chapter 3.3.4). The most efficient implementation of a full-adder
has 5 two-input gates whereas the application of Shannon’s expansion theorem produces
6 two-input gates.

The SHDL-PF compiler outputs an SHDL circuit for Bob (SFDLprogram.txt.Bob)
and an interface description for Alice (SFDLprogram.txt.Alice). The SHDL circuit for
Bob is compatible to those used in Fairplay but uses 2-input gates only (it can directly
be used for SFE with Fairplay by invoking run_bob -r SFDLprogram.txt.Bob ...

and run_alice -r SFDLprogram.txt.Bob ...). The interface description for Alice
only contains the names of Alice’s inputs and the dimension of the UC to be evaluated,
namely the total number of inputs u, outputs v and gates k. Bob sends this generated
interface description to Alice.

Now, Alice and Bob run the on-line PF-SFE protocol over a TCP connection. Bob
starts the server with

run_bobPF -r SFDLprogram.txt <seed> <ot_type> [UC_type]

with the same semantics as in Fairplay’s run_bob described before and an optional
argument [UC_type] to specify the UC implementation that should be used. If this

58

6.2 FairplayPF

parameter is omitted, the smallest UC implementation for the given circuit is selected
automatically. Similarly, Alice invokes the client with

run_alicePF -r SFDLprogram.txt <seed> <hostname> <num_iterations> [UC_type]

After the TCP connection has been established, the client and the server execute the
on-line PF-SFE protocol as seen in Fig. 6.2(b). Both players select the UC implemen-
tation that produces the smallest UC that is able to simulate the circuit with the given
shape and construct it. Bob programs the UC with the given SHDL circuit and both
parties extract a circuit representation of the (programmed in Bob’s case) UC. Now, Bob
garbles the programmed UC and sends it to Alice. The rest of the protocol is identical
to the Fairplay protocol: Alice obtains the secrets corresponding to her inputs, evaluates
the garbled UC, sends the result back to Bob and outputs it.

59

6 Implementation of PF-SFE

60

7 Conclusion

This thesis investigates and improves practical aspects of Secure Function Evaluation
(SFE). The final chapter gives a summary of the contents of the previous chapters,
concluding with an outlook w.r.t. possible directions for future work in practical SFE.

7.1 Summary

As explained in Chapter 1, general two-party SFE has become truly practical with
Fairplay being the reference implementation for practical circuit-based SFE.

Boolean functions can be expressed either as circuits or - with some restrictions - as
OBDDs which is shown in Chapter 2. The security of practical SFE protocols is based on
fast symmetric cryptographic primitives such as semantically secure symmetric encryp-
tion or RO to improve efficiency. Oblivious transfer (OT) is used to send the garblings
corresponding to evaluators’ inputs while guaranteeing his privacy. Two different types
of adversaries - semi-honest and malicious - with different power w.r.t. being able to
deviate from the protocol in order to learn additional information.

Practical SFE protocols are given in Chapter 3. After the formal definition and
practical examples for SFE, the commonalities of these SFE protocols are shown. They
all have the same protocol structure and can be extended to be secure in the malicious
model in a similar way. Circuit-based practical SFE protocols include the classical
protocol of Yao, its RO based implementation Fairplay, the information-theoretically
secure SFE protocol GESS and our newly introduced combination of the latter two,
improved SFE that allows free evaluation of XOR gates with many practical applications.
Also, OBDD representation of functions can be directly used for SFE. The combination
of different SFE protocols as described in the summary can be used to obtain more
efficient practical SFE protocols.

In some applications, the function to be evaluated needs to be private as explained in
Chapter 4. PF-SFE can be reduced to SFE of a larger UC for functions expressed as
circuit or the OBDD representation can be used directly with a small overhead only.

UCs can be programmed to simulate the functionality of any circuit. Two possible
constructions of Valiant and our new practical UC construction are compared w.r.t.
their application in PF-SFE in Chapter 5.

PF-SFE was implemented as extension of the Fairplay SFE system and the practical
UC construction, called FairplayPF as described in Chapter 6. The design of FairplayPF
is very close to the original Fairplay system and allows easy migration and re-use of

61

7 Conclusion

Fairplay SFE programs. FairplayPF shows practicability of PF-SFE for circuits with
approximately 5000 gates. Using improved SFE as underlying protocol, this can be
improved by another factor of 4.

7.2 Outlook

Civilization is the progress toward a society of privacy. The savage’s whole
existence is public, ruled by the laws of his tribe. Civilization is the process
of setting man free from men.
Ayn Rand (1905 - 1982), The Fountainhead (1943)

Indeed, the right for privacy is a human right as stated in article 12 of The Universal
Declaration of Human Rights [OHC]:

No one shall be subjected to arbitrary interference with his privacy, family,
home or correspondence, nor to attacks upon his honour and reputation.
Everyone has the right to the protection of the law against such interference
or attacks.

But are we still on the way of civilization toward a society of privacy? The 2007 Inter-
national Privacy Ranking [Int07] again showed the alarming decay in the protection of
privacy in many countries including Germany, the US and Canada. Fig. 7.1 shows the
map of surveillance societies around the world from this study.

But not only the states violate our privacy - what if we have to reveal important
parts of our privacy in form of confidential data in order to get something we really
need? For example our credit history in order to qualify for a credit or our medical
history to qualify for an insurance or a job? Of course the providers of a service have to
check whether we qualify for the service but do they really need access to the appliers’
personal data to do so? The problem is the potential misuse of personal data - even
if not intentionally maybe accidentally [Sch06]. This thesis showed in many examples,
how practical SFE resp. PF-SFE can be used to solve the problem of evaluating a public
resp. private function on private data while maintaining data privacy.

Of course, protocols for SFE and PF-SFE are much more expensive (in terms of
computation and communication) than giving the private data to the service provider
who evaluates the function directly on it. But how can users insist on their right for
privacy and demand privacy preservation from service providers? Simply by not giving
out their private data.

One solution is to boycott those providers that do not provide privacy preservation.
Further, SFE and PF-SFE need to be pushed further toward usability and practicability
to minimize the overhead that service providers have to pay. Then they might seriously
consider using these secure protocols in order to have new marketing arguments for
privacy-aware customers.

62

7.2 Outlook

Figure 7.1: Map of Surveillance Societies around the world (from [Int07]).

This justifies further directions of research in practical SFE and PF-SFE, such as:

• Extending Fairplay and FairplayPF with our improved SFE protocol of Chap-
ter 3.3.4.

• Using GESS in the bottom part of circuits as described in Chapter 3.5.

• Implementing the OBDD-based protocol for PF-SFE of Chapter 4.3 and compare
it with FairplayPF.

• Combining circuit- and OBDD-based sub-functions for SFE or PF-SFE.

• Implementing Valiant’s UC construction for practical use in FairplayPF to be able
to evaluate larger circuits and to compare it with our practical UC construction.

• Using hardware acceleration like FPGAs or cryptographic coprocessors for SFE.

63

7 Conclusion

64

Appendices

65

List of Figures

2.1 Boolean Circuit . 6
2.2 OBDD . 7

3.1 GESS gate . 19
3.2 Switching blocks . 26
3.3 Efficient implementation of switching blocks 27
3.4 Adder for two n-bit integers a and b . 28

5.1 Su
1 selection block with minimal depth 38

5.2 Universal Graphs U(m) - recursion base 39
5.3 Universal Graph U(m) - recursive construction 39
5.4 Modular universal circuit construction 40
5.5 Simple universal block construction . 41
5.6 Recursive universal block construction 42
5.7 Recursive construction of a P u

v permutation block 44
5.8 Efficient Su

v selection blocks . 46
5.9 Improved Su

2u selection block . 48
5.10 Valid arrangement of boxes . 49

6.1 FairplayPF - Extending Fairplay for PF-SFE 55
6.2 Comparison of program flow . 57

7.1 Map of Surveillance Societies around the world 63

67

List of Figures

68

List of Tables

3.1 Correctness of garbled XOR-gate . 20
3.2 Comparison of the described SFE protocols 31

5.1 Comparison of Practical- and Valiant’s UC construction 52

69

List of Tables

70

List of Algorithms and Protocols

3.1 Yao’s two-party SFE protocol . 16
3.2 Construction of improved garbled circuit 22
3.3 Evaluation of improved garbled circuit 23
3.4 Improved OBDD-based SFE . 30

5.1 Box-packing . 50

71

List of Algorithms and Protocols

72

List of Acronyms

AES Advanced Encryption Standard
DAG Directed Acyclic Graph
FPGA Field-Programmable Gate Array
GESS Gate Evaluation Secret Sharing
GUI Graphical User Interface
OBDD Ordered Binary Decision Diagram
OT Oblivious Transfer
PF-SFE Secure Function Evaluation of Private Functions
PP Permute and Point
PRNG Pseudo-Random Number Generator
resp. respectively
RO Random Oracle
SFDL Secure Function Description Language
SFE Secure Function Evaluation
SHA Secure Hash Algorithm
SHDL Secure Hardware Description Language
UC Universal Circuit
VHDL Very high speed integrated circuit Hardware Description Lan-

guage
w.h.p. with high probability
w.r.t. with respect to
XOR exclusive-or

73

List of Acronyms

74

Index

A
Adversary . 11
AES . 9

B
Block . 37

Permutation Block 26, 35, 44
Expanded . 45, 47
Truncated . 45, 46

Programmable Block 37
Selection Block 38, 41, 46, 47

Depth-optimal 38, 51
Switching Block see X and Y
Universal Block 40, 41, 43
X . 26, 27, 38, 39, 44
Y . 26, 27, 37, 38, 42

Block Cipher .9
Boolean

Circuit . 5, 6, 16, 61
Function 5–8, 37, 61

C
Circuit see Boolean Circuit
Computational Indistinguishability 5
Cut-and-choose 15, 18, 29, 34, 56

D
DAG . 6, 7, 39

E
Expansion Theorem .58

F
Fairplay 18, 20, 21, 28, 29, 31, 55, 58, 61, 63
FairplayPF . 58, 61, 63
Fan-out . 6, 37–39

G
Garbled

Circuit 14–18, 26, 34, 56
Function . 14, 15
OBDD 14, 29, 30, 34, 35
Table . 17, 18, 20, 21
Value 14, 16, 19–21, 61

Garbling see Garbled Value
GESS . 18–20, 31, 61, 63

I
Integer

Addition . 27, 28, 58
Equality Test . 28
Multiplication . 28

M
Model

Malicious . 11, 15, 16, 18, 28, 29, 34, 61
RO . see RO model
Semi-honest 11, 14–17, 19, 29, 31, 34, 61
Standard .10, 20

O
OBDD .6–8, 28, 29, 61
OT 10, 14, 17–19, 21, 30, 56, 61

75

Index

P
Permutation Network see Block
PF-SFE . 33, 34, 61–63

OBDD-based 34, 35, 61, 63
UC-based . 33–35, 37, 40, 52, 58, 61, 63

PP . 18, 21, 29
Privacy . 62

R
RO .10, 18, 21, 29, 61

Instantiation 10, 18, 31
Model .10, 18
Paradigm . 10

S
Security Parameter 8, 9, 18
Semantic Security . 9, 29
SFDL . 56, 58
SFE 1, 13, 14, 19, 29, 34, 61–63

Circuit-based 15, 28, 33, 55, 61, 63
Fairplaysee Fairplay
GESS . see GESS
Improved SFE 3, 20, 31, 61

OBDD-based 28, 31, 61, 63
of Private Functionssee PF-SFE
Yao 13, 16–18, 31, 34, 43, 61

SHA . 10, 18
SHDL . 56, 58
Simulator . 14, 24
Straight-line Program . 6
Symmetric Encryption 8, 61

with Special Properties . . 10, 17, 29, 31

T
Topologic Order 6, 18, 41

U
UC26, 27, 33, 34, 37, 38, 40, 61

Practical UC Construction 3, 27, 40, 52,
58, 61

Valiant 27, 38–40, 52, 61, 63
Universal Graph . 39

X
XOR5, 19, 20, 26, 28, 29, 61

76

Bibliography

[ACCK01] Joy Algesheimer, Christian Cachin, Jan Camenisch, and Gunter Karjoth.
Cryptographic security for mobile code. In SP ’01: Proceedings of the IEEE
Symposium on Security and Privacy, page 2. IEEE Computer Society, 2001.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer:
How to sell digital goods. In Advances in Cryptology – EUROCRYPT 2001,
volume 2045 of LNCS, pages 119–135. Springer, 2001.

[ALR99] Eric Allender, Michael C. Loui, and Kenneth W. Regan. Complexity classes.
In Mikhail J. Atallah, editor, Algorithms and Theory of Computation Hand-
book, chapter 27. CRC Press, 1999.

[AMP04] Gagan Aggarwal, Nina Mishra, and Benny Pinkas. Secure computation of
the k-th ranked element. In Advances in Cryptology – EUROCRYPT 2004,
volume 3027 of LNCS. Springer, 2004.

[Bel98] Mihir Bellare. Practice-oriented provable-security. In ISW ’97: Proceedings
of the First International Workshop on Information Security, pages 221–231,
London, UK, 1998. Springer-Verlag.

[BK06] Ian F. Blake and Vladimir Kolesnikov. Conditional encrypted mapping and
comparing encrypted numbers. In Financial Cryptography and Data Secu-
rity, FC06, volume 4107 of LNCS, pages 206–220. Springer, 2006.

[BLW95] Beate Bollig, Martin Löbbing, and Ingo Wegener. Simulated annealing to
improve variable orderings for OBDDs. ACM/IEEE International Workshop
on Logic Synthesis (IWLS), 1995.

[BM89] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and ap-
plications. In CRYPTO ’89: Proceedings on Advances in cryptology, pages
547–557, New York, NY, USA, 1989. Springer-Verlag New York, Inc.

[BPSW07] Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and Emmett Witchel.
Privacy-preserving remote diagnostics. In Proc. ACM CCS, pages 498–507,
New York, NY, USA, 2007. ACM.

77

Bibliography

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM Conference on Com-
puter and Communications Security, pages 62–73, 1993.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, 35(8):677–691, 1986.

[Bry91] Randal E. Bryant. On the complexity of VLSI implementations and graph
representations of boolean functions with application to integer multiplica-
tion. IEEE Trans. Comput., 40(2):205–213, 1991.

[BW96] Beate Bollig and Ingo Wegener. Improving the variable ordering of OBDDs
is NP-complete. Transactions on Computers, 45(9):993–1002, Sep 1996.

[Can96] Ran Canetti. Studies in Secure Multiparty Computation and Applications.
PhD thesis, 1996.

[CCKM00] Christian Cachin, Jan Camenisch, Joe Kilian, and Joy Müller. One-round
secure computation and secure autonomous mobile agents. In ICALP ’00:
Proceedings of the 27th International Colloquium on Automata, Languages
and Programming, pages 512–523, London, UK, 2000. Springer-Verlag.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited. In Proc. 30th ACM Symp. on Theory of Computing, pages
209–218, 1998.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Second Edition. The MIT Press, Septem-
ber 2001.

[DBG96] Rolf Drechsler, Bernd Becker, and Nicole Gockel. Genetic algorithm for
variable ordering of OBDDs. Computers and Digital Techniques, IEEE Pro-
ceedings, 143(6):364–368, Nov 1996.

[DBP96] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A
strengthened version of RIPEMD. In Proceedings of the Third International
Workshop on Fast Software Encryption, pages 71–82, London, UK, 1996.
Springer-Verlag.

[FA05] Keith B. Frikken and Mikhail J. Atallah. Achieving fairness in private con-
tract negotiation. In Financial Cryptography and Data Security, FC05, pages
270–284, 2005.

[FAZ05] Keith B. Frikken, Mikhail J. Atallah, and Chen Zhang. Privacy-preserving
credit checking. In EC ’05: Proceedings of the 6th ACM conference on Elec-
tronic commerce, pages 147–154, New York, NY, USA, 2005. ACM Press.

78

Bibliography

[FMK91] Masahiro Fujita, Yusuke Matsunaga, and Taeko Kakuda. On variable or-
dering of binary decision diagrams for the application of multi-level logic
synthesis. In EURO-DAC ’91: Proceedings of the conference on European
design automation, pages 50–54, Los Alamitos, CA, USA, 1991. IEEE Com-
puter Society Press.

[FPRJ04] Joan Feigenbaum, Benny Pinkas, Raphael S. Ryger, and Felipe Saint Jean.
Secure computation of surveys. In EU Workshop on Secure Multiparty Pro-
tocols (SMP). ECRYPT, 2004.

[Für07] Martin Fürer. Faster integer multiplication. In STOC ’07: Proceedings of the
thirty-ninth annual ACM symposium on Theory of computing, pages 57–66,
New York, NY, USA, 2007. ACM.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game. In Proc. 19th ACM Symp. on Theory of Computing, pages 218–229.
ACM, 1987.

[Gol01] Oded Goldreich. Foundations of Cryptography, volume 1: Basic Tools.
Cambridge University Press, 2001. Draft available at http://www.wisdom.
weizmann.ac.il/∼oded/foc-vol1.html.

[Gol04] Oded Goldreich. Foundations of Cryptography, volume 2: Basic Appli-
cations. Cambridge University Press, 2004. Draft available at http:

//www.wisdom.weizmann.ac.il/∼oded/foc-vol2.html.

[Hei86] Friedhelm Meyer auf der Heide. Efficient simulations among several models
of parallel computers. SIAM J. Comput., 15(1):106–119, 1986.

[Int07] Privacy International. The 2007 international privacy ranking, 2007.
http://www.privacyinternational.org/article.shtml?cmd[347]

=x-347-559597.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proc. 20th ACM
Symp. on Theory of Computing, pages 20–31, Chicago, 1988. ACM.

[KJGB06] Louis Kruger, Somesh Jha, Eu-Jin Goh, and Dan Boneh. Secure function
evaluation with ordered binary decision diagrams. In Proc. ACM CCS, pages
410–420. ACM Press, 2006.

[Kol05] Vladimir Kolesnikov. Gate evaluation secret sharing and secure one-round
two-party computation. In Advances in Cryptology – ASIACRYPT 2005,
volume 3788 of LNCS, pages 136–155. Springer, 2005.

[Kol06] Vladimir Kolesnikov. Secure Two-Party Computation and Communication.
PhD thesis, University of Toronto, June 2006.

79

http://www.wisdom.weizmann.ac.il/~oded/foc-vol1.html
http://www.wisdom.weizmann.ac.il/~oded/foc-vol1.html
http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html
http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html
http://www.privacyinternational.org/article.shtml?cmd[347]=x-347-559597
http://www.privacyinternational.org/article.shtml?cmd[347]=x-347-559597

Bibliography

[KS] Vladimir Kolesnikov and Thomas Schneider. FairplayPF. http://

thomaschneider.de/FairplayPF.

[KS08] Vladimir Kolesnikov and Thomas Schneider. A practical universal circuit
construction and secure evaluation of private functions. In Financial Cryp-
tography and Data Security, FC08, LNCS. Springer, 2008.

[LB05] Wolfgang Lenders and Christel Baier. Genetic algorithms for the variable
ordering problem of binary decision diagrams. In FOGA, pages 1–20, 2005.

[LP04] Yehuda Lindell and Benny Pinkas. A proof of Yao’s protocol for secure
two-party computation. Cryptology ePrint Archive, Report 2004/175, 2004.
http://eprint.iacr.org/2004/175.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-
party computation in the presence of malicious adversaries. In Advances
in Cryptology – EUROCRYPT 2007, volume 4515 of LNCS, pages 52–78.
Springer-Verlag, 2007.

[MNPS] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay 1.0
project. http://www.cs.huji.ac.il/project/Fairplay/fp1.html.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay — a
secure two-party computation system. In USENIX, 2004.

[NIS01] NIST, U.S. National Institute of Standards and Technology. Federal infor-
mation processing standards publication (FIPS 197). Advanced Encryption
Standard (AES), November 2001. http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf.

[NIS02] NIST, U.S. National Institute of Standards and Technology. Federal infor-
mation processing standards publication (FIPS 180-2). Announcing the Se-
cure Hash Standard, August 2002. http://csrc.nist.gov/publications/
fips/fips180-2/fips-180-2.pdf.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
SODA ’01: Proceedings of the twelfth annual ACM-SIAM symposium on
Discrete algorithms, pages 448–457, Philadelphia, PA, USA, 2001. Society
for Industrial and Applied Mathematics.

[NPS99] Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy preserving auctions
and mechanism design. In 1st ACM Conf. on Electronic Commerce, pages
129–139, 1999.

80

http://thomaschneider.de/FairplayPF
http://thomaschneider.de/FairplayPF
http://eprint.iacr.org/2004/175
http://www.cs.huji.ac.il/project/Fairplay/fp1.html
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips-180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips-180-2.pdf

Bibliography

[NSA03] NSA, U.S. National Security Agency. CNSS policy no. 15, fact sheet no.
1. National policy on the use of the Advanced Encryption Standard (AES)
to protect national security systems and national security information, June
2003. http://www.cnss.gov/Assets/pdf/cnssp 15 fs.pdf.

[OHC] OHCHR, United Nations Office of the High Commisioner for Human Rights.
Universal declaration of human rights. http://www.unhchr.ch/udhr/lang/
eng.htm.

[OS05] Rafail Ostrovsky and William E. Skeith III. Private searching on streaming
data. In Advances in Cryptology – CRYPTO 2005, volume 3621 of LNCS,
pages 223–240, 2005.

[Pin02] Benny Pinkas. Cryptographic techniques for privacy-preserving data mining.
SIGKDD Explor. Newsl., 4(2):12–19, 2002.

[PW92] Birgit Pfitzmann and Michael Waidner. How to break and repair a ”provably
secure” untraceable payment system. In Advances in Cryptology – CRYPTO
91, pages 338–350, London, UK, 1992. Springer-Verlag.

[Rud93] Richard Rudell. Dynamic variable ordering for ordered binary decision di-
agrams. In ICCAD ’93: Proceedings of the 1993 IEEE/ACM international
conference on Computer-aided design, pages 42–47, Los Alamitos, CA, USA,
1993. IEEE Computer Society Press.

[Sch06] Bruce Schneier. The eternal value of privacy. Wired News,
May 18 2006. http://www.wired.com/politics/security/commentary/

securitymatters/2006/05/70886.

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell
Systems Technical Journal, 28(1):59–98, 1949.

[SS71] Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer
Zahlen (Fast multiplication of large numbers). Computing, 7(3):281–292,
1971.

[SYY99] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocom-
puting for NC1. In Proc. 40th IEEE Symp. on Foundations of Comp. Sci-
ence, pages 554–566, New York, 1999. IEEE.

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). In Proc. 8th ACM
Symp. on Theory of Computing, pages 196–203, New York, NY, USA, 1976.
ACM Press.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

81

http://www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf
http://www.unhchr.ch/udhr/lang/eng.htm
http://www.unhchr.ch/udhr/lang/eng.htm
http://www.wired.com/politics/security/commentary/securitymatters/2006/05/70886
http://www.wired.com/politics/security/commentary/securitymatters/2006/05/70886

Bibliography

[Wak68] Abraham Waksman. A permutation network. J. ACM, 15(1):159–163, 1968.

[Weg87] Ingo Wegener. The complexity of Boolean functions. John Wiley & Sons,
Inc., New York, NY, USA, 1987.

[Woe05] Philipp Woelfel. Bounds on the OBDD-size of integer multiplication via
universal hashing. J. Comput. Syst. Sci., 71(4):520–534, 2005.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proc. 23rd IEEE
Symp. on Foundations of Comp. Science, pages 160–164, Chicago, 1982.
IEEE.

[Yao86] Andrew C. Yao. How to generate and exchange secrets. In Proc. 27th IEEE
Symp. on Foundations of Comp. Science, pages 162–167, Toronto, 1986.
IEEE.

82

	Introduction
	Contents and Contributions
	Publications and Copyright Notice
	Structure

	Notation, Definitions and Preliminaries
	Notation
	Boolean Functions
	Boolean Circuits
	Ordered Binary Decision Diagrams (OBDDs)

	Symmetric Encryption
	Semantic Security
	Block Ciphers
	Symmetric Encryption with Special Properties

	Random Oracle Model
	Oblivious Transfer
	Adversaries

	Secure Function Evaluation (SFE)
	Introduction
	Commonalities of the Protocols
	General Protocol Structure
	Provable Security in the Semi-honest Model
	Security in the Malicious Model

	Circuit-based SFE
	Yao's Protocol
	Fairplay
	Gate Evaluation Secret Sharing (GESS)
	Improved SFE

	OBDD-based SFE
	Improved OBDD-based SFE

	Summary

	Secure Evaluation of Private Functions (PF-SFE)
	Introduction
	Universal Circuit-based PF-SFE
	Applications

	OBDD-based PF-SFE

	Universal Circuit Constructions
	Definitions and Preliminaries
	Valiant's UC Construction
	A Practical UC Construction
	Simple Universal Block Construction
	Recursive Universal Block Construction
	Generalized Permutation Blocks
	Efficient Selection Blocks
	Optimization of the UC Construction

	Comparison

	Implementation of PF-SFE
	Fairplay
	FairplayPF

	Conclusion
	Summary
	Outlook
	List of Figures
	List of Tables
	List of Algorithms and Protocols
	List of Acronyms
	Index
	Bibliography

