
Securing Legacy Software against Real-World Code-Reuse
Exploits: Utopia, Alchemy, or Possible Future?

Ahmad-Reza Sadeghi, Lucas Davi
Technische Universität Darmstadt, Germany and

Intel Collaborative Research Institute
for Secure Computing

Per Larsen
University of California, Irvine

ABSTRACT
Exploitation of memory-corruption vulnerabilities in widely-
used software has been a threat for over two decades and
no end seems to be in sight. Since performance and back-
wards compatibility trump security concerns, popular pro-
grams such as web browsers, servers, and office suites still
contain large amounts of untrusted legacy code written in
error-prone languages such as C and C++. At the same
time, modern exploits are evolving quickly and routinely in-
corporate sophisticated techniques such as code reuse and
memory disclosure. As a result, they bypass all widely de-
ployed countermeasures including data execution prevention
(DEP) and code randomization such as address space layout
randomization (ASLR).

The good news is that the security community has recently
introduced several promising prototype defenses that offer a
more principled response to modern exploits. Even though
these solutions have improved substantially over time, they
are not perfect and weaknesses that allow bypasses are con-
tinually being discovered. Moreover, it remains to be seen
whether these prototype defenses can be matured and inte-
grated into operating systems, compilers, and other systems
software.

This paper provides a brief overview of current state-of-
the-art exploitation and defense techniques against run-time
exploits and elaborates on innovative research prototypes
that may one day stem the tide of sophisticated exploits.
We also provide a brief analysis and categorization of ex-
isting defensive techniques and ongoing work in the areas
of code randomization and control-flow integrity, and cover
both hardware and software-based solutions.

Categories and Subject Descriptors
D.4.6 [Software]: Operating Systems—Security and Pro-
tection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’15, April 14–17, 2015, Singapore, Singapore
Copyright c© 2015 ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2737090.

Keywords
software exploitation; fine-grained randomization; control-
flow integrity

1. INTRODUCTION
When the C language was designed four decades ago, com-

puters were much less powerful, less networked, and thus
much less exposed to malicious activities. In the pursuit of
efficiency and flexibility, security features such as automatic
memory management, strong typing, and overflow checks
were omitted from C. As a result, programming errors can
lead to memory corruption that causes unexpected program
behavior and can be exploited for malicious purposes.

Modern systems incorporate a large amount of
C/C++/Objective-C code and hand-written assembly
code for performance and legacy reasons. This includes
operating system kernels, web browsers, document viewers
and language implementations for JavaScript, Flash, Java,
PHP, etc. Despite the existence of many type-safe lan-
guages, members of the C family consistently inhabit the
top ten in rankings of programming language popularity [54,
44]. This leaves the security research community with the
challenge of mitigating exploits without abandoning the
unsafe language features or introducing high overheads
while at the same time remaining fully compatible with all
existing code.

The goal of this paper is to give an overview of re-
cent offensive and defensive systems security research in the
context of runtime exploits. We start by giving a general
overview of code reuse attacks (Section 1.1) and defenses
(Section 1.2) and then describe offensive techniques that
threaten to undermine the security of several improved de-
fenses (Section 2). Finally, Section 3 highlights advanced
defenses that aim to resist offensive techniques while at the
same time offering practicality and efficiency.

1.1 From Code Injection to Code Reuse
The classic buffer overflow vulnerability allows an adver-

sary to inject malicious code on the stack and overwrite a
function’s return address in order to direct execution to the
exploit payload [3]. Stack smashing attacks became rare
after deployment of techniques such as stack canaries [14].
However, attackers quickly adapted and moved to exploita-
tion on the heap [42]. Modern operating systems defend
against code injection attacks through Data Execution Pre-
vention (DEP) [41]. DEP prohibits memory pages from be-



ing both writable and executable thereby preventing an ad-
versary from injecting and directly executing code.

While standard defenses have all but obsoleted some types
of attacks, new attacks have appeared in their place. In par-
ticular, code reuse emerged in response to the widespread
deployment of DEP as it turns out that injecting malicious
data is just as effective as malicious code injection [38]. The
most popular variant of code reuse, return-oriented pro-
gramming (ROP), reuses short code sequences, called gad-
gets, terminated by a return instruction (or another indirect
branch) [48, 12]. ROP has been applied to many processor
architectures: SPARC [9], Atmel AVR [22], PowerPC [35],
and ARM [33]. In addition, ROP has been shown to be
Turing-complete meaning that an adversary can generate
arbitrary malicious execution.

1.2 Mitigating Code Reuse
We briefly introduce the most prominent techniques to

prevent code reuse: code randomization and control-flow
integrity.

Code randomization such as Address Space Layout Ran-
domization (ASLR) can in principle prevent ROP attacks by
making the location of gadgets unpredictable. Today, ASLR
is enabled on nearly all modern operating systems including
Windows, Linux, iOS, or Android. For the most part, cur-
rent ASLR implementations randomize the base (start) ad-
dress of segments such as the stack, heap, libraries, and the
executable itself between consecutive runs of the application.
The goal is to force adversaries to guess the location of the
functions and instruction sequences needed to successfully
launch a code reuse attack.

Unfortunately, ASLR suffers from two main problems:
first, the entropy on 32-bit systems is too low, and thus
ASLR is vulnerable to brute-force attacks [49]. Second,
ASLR is highly vulnerable to memory disclosure attacks [47]
where the adversary gains knowledge of a single runtime ad-
dress and uses that information to infer the memory layout
of the application.

To thwart these attacks, a number of fine-grained ASLR
and code randomization schemes have been recently pro-
posed [7, 32, 39, 28, 55, 30, 29]. The underlying idea in
these works is to randomize the data and code structure, for
instance, by shuffling functions or basic blocks (ideally for
each program run [55]). The assumption underlying all these
works is that the disclosure of a single address no longer al-
lows an adversary to launch a code reuse attack. However,
as will be explained in Section 2.1, more involved types of
memory disclosure vulnerabilities can be exploited to bypass
fine-grained code randomization.

Control-flow integrity (CFI) is another promising exploit
mitigation mechanism [1, 2]. The main idea of CFI is to
compute an application’s control-flow graph (CFG) prior to
execution, and then monitor its runtime behavior to ensure
that the control-flow follows a legitimate path in the CFG.
Any deviation from the CFG leads to a CFI exception and
subsequent termination of the application.

Validating all indirect control-flow transfers can have a
substantial performance impact that prevents widespread
deployment. For instance, when validating function returns
using a shadow stack, the average overhead of CFI can be
as high as 21% [1] on average. Consequently, several CFI
frameworks have been proposed that tackle the practical

shortcomings of the original CFI approach. ROPecker [13]
and kBouncer [40], for example, leverage the branch history
table of modern x86 processors to perform a CFI check on
a short history of executed branches. Zhang and Sekar [58]
and Zhang et al. [57] applied coarse-grained CFI policies
using binary rewriting to protect COTS binaries. In sec-
tion 2.2, we will discuss the security implications of CFI
policies that trade off security for efficiency.

2. ADVANCED ATTACKS
In this section we present two recent attack techniques

that undermine modern exploit mitigation techniques. First,
we present JIT-ROP, a just-in-time code-reuse attack that
bypasses defenses that are based on randomizing the code
layout of an application (Section 2.1). Second, we present
an attack technique that bypasses several control-flow in-
tegrity approaches (Section 2.2). These attacks demonstrate
weaknesses of two prominent exploit mitigation techniques,
namely code randomization and control-flow integrity. They
also motivate several improved mitigation techniques that
we discuss in Section 3.

2.1 Just-In-Time Code Reuse
Just-in-time return-oriented programming (JIT-ROP) cir-

cumvents fine-grained ASLR by finding gadgets and gener-
ating the ROP payload at runtime using the scripting envi-
ronment of the target application (e.g., a browser or docu-
ment viewer). As with many real-world ROP attacks, the
disclosure of a single runtime memory address is sufficient.
However, in contrast to standard ROP attacks, JIT-ROP
does not require the precise knowledge of the code part or
function the memory address points to. It can use any code
pointer such as a return address on the stack to instantiate
the attack. Based on that leaked address, JIT-ROP discloses
the contents of other memory pages by recursively search-
ing for pointers to other code pages and generates the ROP
payload at runtime.

The workflow of a JIT-ROP attack is shown in Figure 1.
Here, we assume that fine-grained ASLR has been applied
to each executable module in the address space of the (vul-
nerable) application. First, the adversary exploits a memory
disclosure vulnerability to retrieve the runtime address of a
code pointer ¶. One of the main observations of Snow et
al. [51] is that the disclosed address will reside on a 4KB-
aligned memory page (Page0 in Figure 1). Hence, at run-
time, one can identify the start and end of Page0 ·. Us-
ing a disassembler at runtime, Page0 is then disassembled
on-the-fly ¸. The disassembled page provides 4KB of gad-
get space ¹, and more importantly, it is likely that it con-
tains direct branch instructions to other pages, e.g., a call to
Func B º. Since Func B resides on another memory page
(namely Page1), JIT-ROP can again determine the page
start and end, and disassemble Page1 ». This procedure
is repeated as long as new direct branches pointing to yet
undiscovered memory pages can be identified ¼. Using the
disassembled pages, a runtime gadget finder is then used
to identify useful ROP gadgets (e.g., LOAD, STORE, or
ADD ½). Finally, the ROP payload is composed based on
the discovered ROP gadgets and a high-level description of
the desired functionality provided by the adversary ¾.

The threat of memory disclosure is not limited to JIT-
ROP. For example, Shacham et al. [49], Bittau et al. [8] and
Siebert et al. [50] all demonstrated how attackers can re-



Vulnerable 
Application

Library 1

Library N

Memory 
Disclosure 

Vulnerability

Func_A

Start Page0

End Page0

Runtime 
Disassembler

0001110010

1100101101

Func_A

INS1, RET

CALL Func_B

Func_B

Start Page1

End Page1

0001110010

1100101101

Disassembled 
Page0 to Pagei

1 2

3 4

5

6

7 Runtime
Gadget Finder

LOAD STORE ADD …

JIT-ROP 
Compiler

ROP 
Payload

8

9
Fine-Grained ASLR

Address Space

High-Level 
Exploit 

Description

Figure 1: High-level overview of a JIT-ROP attack [51].

peatedly probe servers and analyze response characteristics
to remotely bypass both coarse and fine-grained ASLR.

2.2 Bypassing Coarse-Grained CFI
The benefits of the so-called coarse-grained solutions come

at the price of relaxing the original CFI policy. Abstractly
speaking, coarse-grained CFI allows for CFG relaxations
that allow many additional execution paths beyond those
intended by the programmer. The most notable difference
is that the coarse-grained CFI policy for return instructions
only validates if the return address points to an instruction
that follows directly after a call instruction [40, 58]. In con-
trast, the original policy for fine-grained CFI ensures that
the return address points to the original caller of a function
(based on a shadow stack). That is, a function return is only
allowed to return to its original caller. On the other hand,
several solutions use heuristics to compensate for the coarse-
grained protection of returns, e.g., by monitoring the num-
ber of instructions executed between a pre-defined number
of consecutive indirect branches [40, 13]. The goal is to de-
tect the execution of a number of short instruction sequences
which is a typical pattern of return-oriented programming
attacks.

Davi et al. [18] conduct a systematic security analysis of
the recently proposed CFI solutions including kBouncer [40],
ROPecker [13], CFI for COTS binaries [58], ROPGuard [23],
and Microsofts’ EMET tool [36]. In particular, they derive a
combined CFI policy that, for each type of indirect indirect
branch and behavioral heuristic (e.g., the number of instruc-
tion executed between two indirect branches), uses the most
restrictive setting among the aforementioned policies. Their
security analysis demonstrates that based on the access to
only a single — and commonly used system library in Win-
dows — an adversary can still construct a Turing-complete
gadget set. In particular, a new gadget type has been devel-
oped called long-NOP. This gadget bypasses heuristics that
check for chains of short instruction sequences by invoking a
long sequence that performs well-controlled memory writes
without disrupting the actual payload, i.e., it also compen-
sates for side-effects by saving registers before it is executed
and loading them after the memory writes have been issued.

Other researchers have demonstrated weaknesses of
coarse-grained CFI by constructing attacks that target spe-
cific CFI implementations. Göktas et al. [26] demonstrate
attacks against the Compact Control-Flow Integrity and

Randomization (CCFIR) [57] approach using call-preceded
gadgets to invoke sensitive functions via direct calls. Carlini
and Wagner [11] as well as Schuster et al. [46] demonstrate
flushing attacks that eliminate return-oriented programming
traces before a critical function is invoked.

3. ADVANCED DEFENSES
We now turn our attention to approaches that aim to with-

stand even the advanced exploitation techniques outlined in
the previous section.

3.1 Fine-Grained Code Randomization
The introduction of JIT-ROP and other offensive tech-

niques relying on memory disclosure, made it apparent
that increasing the granularity of code randomization is not
enough to thwart runtime exploits. There are two ways
that defenders can address the threat of memory disclosure:
1) taking steps to prevent memory disclosure or 2) tolerating
memory disclosure. We discuss each strategy in turn.

Hiding the code layout is one way to prevent adversaries
from launching JIT-ROP attacks against diversified code.
Backes and Nürnberger [6] proposed to prevent code discov-
ery (Step ¼) in the original JIT-ROP approach by hiding
pointers between code pages. Davi et al. [19] show that
this approach is insecure because the adversary can har-
vest code pointers from C++ virtual tables instead of fol-
lowing pointers between code pages. Backes et al. [5] and
Gionta et al. [25] later proposed two execute-only memory
solutions: XnR and HideM respectively. However, these two
approaches do not consider the threat of pointer harvesting.

Readactor by Crane et al. [16] aims at addressing some
of the shortcomings of previous approaches. Specifically, it
combines hardware-enforced execute-only memory and code
pointer hiding to prevent both direct memory disclosure
(code reads) and indirect disclosure through code pointer
harvesting. In addition, Readactor scales beyond bench-
marks to complex, real-world software such as browsers and
JIT engines. One remaining challenge is that Readactor
only runs on processors that support hardware accelerated
paging1 (HAP) and requires an operating system or kernel
extension to exposes these features to application programs.

1Intel calls this feature Extended Page Tables while AMD
markets this features as Nested Page Tables.



Control-flow randomization is an alternative way to tol-
erate code layout disclosure. Whereas Readactor, XnR, and
HideM aim to prevent memory disclosure the Isomeron ap-
proach by Davi et al. [19] instead tolerates memory dis-
closure. A successful ROP attack requires an attacker to,
among other things, 1) discover gadget addresses and 2) re-
liably transfer the control flow from one gadget to another.
Most probabilistic defenses target the first requirement. Iso-
meron targets the second and therefore operates on the con-
servative assumption that adversaries know the code layout
and instead randomizes control-flow transfers. In partic-
ular, Isomeron keeps two isomers (clones) of all functions
in memory; one isomer retains the original program layout
while the other is diversified. On each function call, Iso-
meron randomly determines whether the return instruction
should switch execution to the other isomer or keep exe-
cuting functions in the current isomer. Upon each function
return, the result of the random trial is retrieved, and if
a decision to switch was made, an offset (the distance be-
tween the calling function f and its isomer f ′) is added to
the return address. Since the attacker does not know which
return addresses will have an offset added and which will
not, return addresses injected during a ROP attack will no
longer be used “as is” and instead, the ROP attack becomes
unreliable due to the possible addition of offsets to the in-
jected gadget addresses. Since Isomeron is implemented as
dynamic binary instrumentation framework it suffers from
performance penalties and requires extra memory to hold
the two program instances. In order to bring the perfor-
mance overhead in line with efficient code layout random-
ization techniques [29, 20, 55], Isomeron could be integrated
into a compiler.

Isomeron may be able to simultaneously protect against
side-channel attacks in addition to code-reuse attacks. We
observe that Crane et al. uses a similar control-flow ran-
domization mechanism to rapidly alternate between two di-
versified program clones to thwart cache-based side-channel
attacks [15]. We believe the two approaches can be readily
combined.

3.2 Control-Flow Integrity
The literature on control-flow integrity is substantial.

Consequently, we limit our discussion to recent and uncon-
ventional approaches.

CFI policy randomization prevents attacks against
coarse-grained CFI. Opaque Control-Flow Integrity (O-CFI)
is a hybrid approach that recasts CFI as a bounds check-
ing problem [37]. Instead of checking the target address of
each indirect branch against a list of valid targets, O-CFI
checks that the target address is within the bounds defined
by the maximal and minimal addresses in the list of valid
targets. To avoid attacks wherein attackers construct a ROP
chain that adheres to all bounds checks, O-CFI randomizes
the code layout at load-time. Code layout randomization
has the desirable side-effect of also randomizing the bounds
that each ROP chain must adhere to. By protecting the
bounds table against memory leakage vulnerabilities, O-CFI
aims to resist JIT-ROP [51], Blind ROP [8], and gadget-
stitching attacks [18, 26, 11, 27]. With an average over-
head of 4.7%, O-CFI offers efficient protection on current
processors. However, forthcoming Intel processors will in-
clude Memory Protection eXtensions (MPX) with support
for hardware-accelerated bounds checking. Note that like

Isomeron, O-CFI randomizes the code layout but tolerates
code layout disclosure. Where Isomeron randomizes the
control-flow, O-CFI constrains the control-flow using a ran-
dom and thus unknown control-flow policy—in both cases,
the adversary is unable to reliably chain ROP gadgets to-
gether. The current implementation of O-CFI is based on
binary rewriting which makes it hard to recover a precise
control-flow graph. A source-based implementation of O-
CFI would be able to impose tighter bounds on indirect
control-flow transfers (particularly for programs written in
C++) and thus increase resilience to attacks.

Forward-edge CFI: In general, one can distinguish be-
tween backward and forward edges in the control-flow graph
(CFG) of an application. The former are representative for
function return instructions. In contrast, the latter edges are
due to function call and jump instructions. Recently, a num-
ber of approaches have focused on applying CFI to forward-
edges. In particular, compilers for C++ applications emit
indirect call instructions to support virtual method calling
via virtual tables. SAFEDISPATCH [31] and Google’s CFI
compiler [53] both ensure that an adversary cannot manip-
ulate a virtual table (vtable) pointer so that it points to an
adversary-controlled (malicious) vtable. However, these ap-
proaches require the source code of the application which
might not be always readily available. In order to protect
binary code, a number of CFI approaches have been pre-
sented recently [24, 56, 43]. Although these approaches re-
quire no access to source code, they are not as fine-grained
as their compiler-based counterparts. A novel attack tech-
nique denoted as COOP (counterfeit object-oriented pro-
gramming) undermines the CFI protection of these binary
instrumentation-based defenses by invoking a chain of vir-
tual methods through legitimate call sites to induce mali-
cious program behavior [45].

Hardware-assisted CFI: The majority of research on
CFI has focused on software-based solutions. However,
hardware-based CFI approaches have several advantages
over software-based counterparts: first, it is significantly
more efficient. Second, CFI support in hardware easily al-
lows compilers to harden software programs as only single
CFI instructions need to be emitted rather than complex and
large CFI checking code. Third, dedicated CFI hardware in-
structions and separate CFI memory provide an efficient and
strong protection of critical CFI control-flow data.

The first hardware-based CFI approach has been pre-
sented by Budiu et al. [10]. They realized the original
CFI proposal [1, 2] as a CFI state machine in a simulation
environment of the Alpha processor. HAFIX is a recent
hardware-based control-flow integrity protection that has
been implemented on real hardware targeting Intel Siskiyou
Peak and SPARC [17, 4]. It generates 2% performance
overhead across different embedded benchmarks and focuses
on thwart return-oriented programming attacks exploiting
function returns.

As previously mentioned, the original software-based CFI
implementation validates function returns using a shadow
stack [2]: all return addresses that are pushed on the pro-
gram’s stack through call instructions are copied to a pro-
tected shadow stack. However shadow stack significantly
decrease performance and lead to false positives for certain
programming constructs (e.g., C++ exceptions with stack
unwinding, setjmp/longjmp).



To reduce the cost of maintaining a shadow stack, HAFIX
simply confines function returns to active call sites [17]. In
other words, it forces a return to target a call-preceded in-
struction inside a function that is currently executing. This
CFI policy can be efficiently implemented in hardware and
requires only minimal changes to the compiler.

CFIBR
label

CFIDEL
label

CFIRET
label n

call

return

label

label 1

label 2

label n

Label State
Memory

HAFIX
Instructions

Standard
Instructions

1

3

2

Figure 2: Abstract design of HAFIX

Figure 2 shows the underlying design to enforce the
HAFIX CFI policy. To monitor functions that are currently
executing, HAFIX requires the compiler to assign unique
labels to each function. Further, it forces each subroutine
upon call to issue a CFIBR instruction. This instruction
loads the label of the function into a dedicated memory area,
called the label state memory, to indicate that the function is
active (Step ¶). Internally, direct and indirect call instruc-
tions lead to a processor state switch in which the processor
only accepts CFIBR. To deactivate a function, HAFIX uses
the CFIDEL instruction which effectively removes the label
from the label state memory (Step ·).

In HAFIX, return instructions need to target an active
call site. This is enforced by switching the processor state
where only the so-called CFIRET instruction is allowed. In
this state, only a CFIRET that uses a currently active label
in the label state memory is allowed (Step ¸). Otherwise, a
CFI exception is raised.

On the compiler side, HAFIX only requires the compiler to
emit the new CFI instructions at their corresponding places:
CFIBR at function start, CFIRET at all call sites, and CFIDEL

at function return.
HAFIX reduces the number of available call sites by 80%

for static benchmark binaries. In other words, only every
fifth call site is a valid target of a return. Obviously, the
gadget space is further reduced for applications that link to
shared libraries since only the instruction following the call
of a library function is a valid target for the return.

Currently, HAFIX targets bare-metal code for static ap-
plications running on embedded processors. It remains to
show how HAFIX can be applied to complex applications
that also link to shared libraries and run on top of a oper-
ating system.

3.3 Code-Pointer Integrity
Based on a careful and detailed analysis of memory cor-

ruption [52], Szekeres et al. identified code-pointer integrity
(CPI) as a defensive alternative to both code randomiza-
tion and control-flow integrity. Whereas CFI seeks to detect

invalid targets of control-flow transfers, CPI places sensi-
tive control-flow data (e.g., function pointers and return ad-
dresses) in a“safe region”separated from all non-control-flow
data. Kuznetsov et al. [34] presented the first implementa-
tion of code-pointer integrity. Although the worst-case over-
heads of CPI are high, the overall cost of protection is com-
petitive with CFI and code randomization. CPI is no silver
bullet, however, and bypasses have started to appear [21].

4. CONCLUSION
While we have barely skimmed the surface of modern

offensive and defensive research, we hope to have brought
some clarity to the exciting field of runtime exploits. We do
not anticipate that any of the advanced defenses we have
discussed will put an end to exploitation overnight. In-
stead, we expect slow but steady progress towards mature
software-based defenses, slower progress towards support for
hardware security mechanisms, and glacially slow progress
towards safer languages. It is evident that building secure
systems that contain large amounts of unsafe legacy code is
a non-trivial if not impossible undertaking.

5. REFERENCES
[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti.

Control-flow integrity. In ACM Conference on
Computer and Communications Security, CCS ’05,
pages 340–353, 2005.

[2] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti.
Control-flow integrity principles, implementations, and
applications. ACM Transactions on Information
System Security, 13:4:1–4:40, 2009.

[3] Aleph One. Smashing the stack for fun and profit.
Phrack Magazine, 7(49), 1996. http:
//www.phrack.org/issues.html?id=14&issue=49.

[4] O. Arias, L. Davi, M. Hanreich, Y. Jin, P. Koeberl,
D. Paul, A.-R. Sadeghi, and D. Sullivan. HAFIX:
Hardware-assisted flow integrity extension. In Design
Automation Conference, DAC ’15, 2015.

[5] M. Backes, T. Holz, B. Kollenda, P. Koppe,
S. Nürnberger, and J. Pewny. You can run but you
can’t read: Preventing disclosure exploits in
executable code. In ACM Conference on Computer
and Communications Security, CCS ’14, 2014.

[6] M. Backes and S. Nürnberger. Oxymoron - making
fine-grained memory randomization practical by
allowing code sharing. In USENIX Security
Symposium, 2014.

[7] S. Bhatkar, R. Sekar, and D. DuVarney. Efficient
techniques for comprehensive protection from memory
error exploits. In USENIX Security Symposium, 2005.

[8] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and
D. Boneh. Hacking blind. In IEEE Symposium on
Security and Privacy, S&P ’14, 2014.

[9] E. Buchanan, R. Roemer, H. Shacham, and S. Savage.
When good instructions go bad: generalizing
return-oriented programming to RISC. In ACM
Conference on Computer and Communications
Security, CCS ’08, 2008.

[10] M. Budiu, U. Erlingsson, and M. Abadi. Architectural
support for software-based protection. In Workshop on
Architectural and System Support for Improving
Software Dependability, ASID ’06, 2006.



[11] N. Carlini and D. Wagner. ROP is still dangerous:
Breaking modern defenses. In USENIX Security
Symposium, 2014.

[12] S. Checkoway, L. V. Davi, A. Dmitrienko, A.-R.
Sadeghi, H. Shacham, and M. Winandy.
Return-oriented programming without returns. In
ACM Conference on Computer and Communications
Security, CCS ’10, 2010.

[13] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and R. H.
Deng. ROPecker: A generic and practical approach for
defending against ROP attacks. In Network And
Distributed System Security Symposium, NDSS ’14,
2014.

[14] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke,
D. Beattie, A. Grier, P. Wagle, Q. Zhang, and
H. Hinton. StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In USENIX
Security Symposium, 1998.

[15] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and
M. Franz. Thwarting cache side-channel attacks
through dynamic software diversity. In Network And
Distributed System Security Symposium, NDSS ’15,
2015.

[16] S. Crane, C. Liebchen, A. Homescu, L. Davi,
P. Larsen, A.-R. Sadeghi, S. Brunthaler, and
M. Franz. Readactor: Practical code randomization
resilient to memory disclosure. In IEEE Symposium on
Security and Privacy, S&P ’15, 2015.

[17] L. Davi, P. Koeberl, and A.-R. Sadeghi.
Hardware-assisted fine-grained control-flow integrity:
Towards efficient protection of embedded systems
against software exploitation. In Design Automation
Conference - Special Session: Trusted Mobile
Embedded Computing, DAC ’14, 2014.

[18] L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose.
Stitching the gadgets: On the ineffectiveness of
coarse-grained control-flow integrity protection. In
USENIX Security Symposium, 2014.

[19] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and
F. Monrose. Isomeron: Code randomization resilient
to (just-in-time) return-oriented programming. In
Network And Distributed System Security Symposium,
NDSS ’15, 2015.

[20] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A.-R.
Sadeghi. Gadge me if you can: secure and efficient
ad-hoc instruction-level randomization for x86 and
ARM. In ACM Symposium on Information, Computer
and Communications Security, ASIACCS ’13, 2013.

[21] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar,
T. Tang, H. Shrobe, S. Sidiroglou-Douskos,
M. Rinard, and H. Okhravi. Missing the point: On the
effectiveness of code pointer integrity. In IEEE
Symposium on Security and Privacy, S&P ’15, 2015.

[22] A. Francillon and C. Castelluccia. Code injection
attacks on Harvard-architecture devices. In ACM
Conference on Computer and Communications
Security, CCS ’08, 2008.

[23] I. Fratric. ROPGuard: Runtime prevention of
return-oriented programming attacks.
http://www.ieee.hr/_download/repository/Ivan_

Fratric.pdf, 2012.

[24] R. Gawlik and T. Holz. Towards automated integrity
protection of C++ virtual function tables in binary
programs. In Annual Computer Security Applications
Conference, ACSAC ’14, 2014.

[25] J. Gionta, W. Enck, and P. Ning. Hidem: Protecting
the contents of userspace memory in the face of
disclosure vulnerabilities. In ACM Conference on Data
and Application Security and Privacy, CODASPY ’15,
2015.

[26] E. Göktas, E. Athanasopoulos, H. Bos, and
G. Portokalidis. Out of control: Overcoming
control-flow integrity. In IEEE Symposium on Security
and Privacy, S&P ’14, 2014.

[27] E. Göktas, E. Athanasopoulos, M. Polychronakis,
H. Bos, and G. Portokalidis. Size does matter: Why
using gadget-chain length to prevent code-reuse
attacks is hard. In USENIX Security Symposium, 2014.

[28] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W.
Davidson. ILR: Where’d my gadgets go? In IEEE
Symposium on Security and Privacy, S&P ’12, 2012.

[29] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and
M. Franz. Profile-guided automatic software diversity.
In IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’13, 2013.

[30] T. Jackson, A. Homescu, S. Crane, P. Larsen,
S. Brunthaler, and M. Franz. Diversifying the software
stack using randomized NOP insertion. In S. Jajodia,
A. K. Ghosh, V. Subrahmanian, V. Swarup, C. Wang,
and X. S. Wang, editors, Moving Target Defense II,
volume 100 of Advances in Information Security.
Springer New York, 2013.

[31] D. Jang, Z. Tatlock, and S. Lerner. SAFEDISPATCH:
Securing C++ virtual calls from memory corruption
attacks. In Network And Distributed System Security
Symposium, NDSS ’14, 2014.

[32] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning.
Address space layout permutation (ASLP): Towards
fine-grained randomization of commodity software. In
Annual Computer Security Applications Conference,
ACSAC ’06, 2006.

[33] T. Kornau. Return-oriented programming for the
ARM architecture. Master’s thesis, Ruhr University
Bochum, Germany, 2009.

[34] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea,
R. Sekar, and D. Song. Code-pointer integrity. In
USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’14, 2014.

[35] F. Lindner. Router exploitation. http://www.
blackhat.com/presentations/bh-usa-09/LINDNER/

BHUSA09-Lindner-RouterExploit-SLIDES.pdf, 2009.

[36] Microsoft. Enhanced Mitigation Experience Toolkit.
https://www.microsoft.com/emet.

[37] V. Mohan, P. Larsen, S. Brunthaler, K. Hamlen, and
M. Franz. Opaque control-flow integrity. In Network
And Distributed System Security Symposium,
NDSS ’15, 2015.

[38] Nergal. The advanced return-into-lib(c) exploits: PaX
case study. Phrack Magazine, 11(58), 2001. http:
//www.phrack.org/issues.html?issue=58&id=4.

[39] V. Pappas, M. Polychronakis, and A. D. Keromytis.
Smashing the gadgets: Hindering return-oriented
programming using in-place code randomization. In



IEEE Symposium on Security and Privacy, S&P ’12,
2012.

[40] V. Pappas, M. Polychronakis, and A. D. Keromytis.
Transparent ROP exploit mitigation using indirect
branch tracing. In USENIX Security Symposium, 2013.

[41] PaX. Homepage of The PaX Team, 2001.
http://pax.grsecurity.net.

[42] J. Pincus and B. Baker. Beyond stack smashing:
Recent advances in exploiting buffer overruns. IEEE
Security & Privacy, pages 20–27, 2004.

[43] A. Prakash, X. Hu, and H. Yin. vfGuard: Strict
protection for virtual function calls in COTS C++
binaries. In Network and Distributed System Security
Symposium, NDSS ’15, 2015.

[44] The redmonk programming language rankings, 2015.
http://redmonk.com/sogrady/2015/01/14/

language-rankings-1-15/.

[45] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R.
Sadeghi, and T. Holz. Counterfeit object-oriented
programming: On the difficulty of preventing code
reuse attacks in C++ applications. In IEEE
Symposium on Security and Privacy, S&P ’15, 2015.

[46] F. Schuster, T. Tendyck, J. Pewny, A. Maaß,
M. Steegmanns, M. Contag, and T. Holz. Evaluating
the effectiveness of current anti-ROP defenses. In
International Symposium on Research in Attacks,
Intrusions and Defenses, RAID ’14, 2014.

[47] F. J. Serna. The info leak era on software exploitation.
In Black Hat USA, 2012.

[48] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In ACM Conference on Computer and
Communications Security, CCS ’07, 2007.

[49] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space
randomization. In ACM Conference on Computer and
Communications Security, CCS ’04, 2004.

[50] J. Siebert, H. Okhravi, and E. Söderström.
Information leaks without memory disclosures:
Remote side channel attacks on diversified code. In
ACM Conference on Computer and Communications
Security, CCS ’14, 2014.

[51] K. Z. Snow, F. Monrose, L. V. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-in-time code
reuse: On the effectiveness of fine-grained address
space layout randomization. In IEEE Symposium on
Security and Privacy, S&P ’13, 2013.

[52] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK:
eternal war in memory. In IEEE Symposium on
Security and Privacy, S&P ’13, 2013.

[53] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,

Ú. Erlingsson, L. Lozano, and G. Pike. Enforcing
forward-edge control-flow integrity in GCC & LLVM.
In USENIX Security Symposium, 2014.

[54] Tiobe programming community index, 2015.
http://www.tiobe.com/index.php/content/

paperinfo/tpci/index.html.

[55] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin.
Binary stirring: self-randomizing instruction addresses
of legacy x86 binary code. In ACM Conference on
Computer and Communications Security, CCS ’12,
pages 157–168, 2012.

[56] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song.
VTint: Defending virtual function tables’ integrity. In
Network and Distributed System Security Symposium,
NDSS ’15, 2015.

[57] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,
S. McCamant, D. Song, and W. Zou. Practical control
flow integrity & randomization for binary executables.
In IEEE Symposium on Security and Privacy,
S&P ’13, 2013.

[58] M. Zhang and R. Sekar. Control flow integrity for
COTS binaries. In USENIX Security Symposium,

2013.


