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Abstract. Virtual Private Networks are a popular mechanism for building com-
plex network infrastructures. Such infrastructures are usually accompanied by
strict administrative restrictions on all VPN endpoints to protect the perimeter of
the VPN. However, enforcement of such restrictions becomes difficult if these
endpoints are personal computers used for remote VPN access. Commonly em-
ployed measures like anti-virus or software agents fail to defend against unan-
ticipated attacks. The Trusted Computing Group invested significant work into
platforms that are capable of secure integrity reporting. However, trusted boot
and remote attestation also require a redesign of critical software components to
achieve their full potential.
In this work, we design and implement a VPN architecture for trusted platforms.
We solve the conflict between security and flexibility by implementing a self-
contained VPN service that resides in an isolated area, outside the operating sys-
tem environment visible to the user. We develop a hardened version of the IPsec
architecture and protocols by addressing known security issues and reducing the
overall complexity of IPsec and IKEv2. The resulting prototype provides access
control and secure channels for arbitrary local compartments and is also com-
patible with typical IPsec configurations. We expect our focus on security and
reduced complexity to result in much more stable and thus also more trustworthy
software.

1 Introduction

VPNs are a simple and cost effective way to manage and control complex networks.
With increasing user mobility however, the VPN perimeter also becomes increasingly
complex. Mobile systems are expected to serve as secure VPN gateways, workstations
and personal devices at the same time. As a result, it becomes increasingly difficult to
assure the security of such systems. Allowing them to connect to a VPN potentially
undermines perimeter security and may expose the network to outside attacks. Vendors
try to solve this conflict with proprietary security software and software agents, but such
solutions increase complexity of the software stack while decreasing interoperability
with other software solutions.

With trusted computing, the state of a system can be measured at boot time. A hard-
ware anchor is used to vouch for the correctness of measurement reports, so that the
integrity of a system can be verified by remote parties before granting any kind of ac-
cess. The measurement itself however is not sufficient to trust the system. The integrity
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of a software configuration is only useful if the software itself can be trusted to fulfill
the security requirements. This implies a resistance to attacks and misconfiguration that
current commodity systems do not achieve. We follow architecture proposed in [1] to
separate volatile userspace environments from components that are critical to system
security and to allow strong isolation of userspaces for the different roles assumed by
the user.

An architecture similar to ours is described in in [2]. However, their work does not
consider integration with trusted computing technologies. and proved unsuitable for our
work to build up on.

1.1 Contribution

This work adapts the IPsec security architecture for a robust and reliable VPN ser-
vice for trusted platforms. In our design, critical functionality is externalized into iso-
lated, self-contained security services in a trusted hypervisor environment. We use a
central security policy from trusted storage to establish secure channels between iso-
lated userspace environments and to connect them to other IPsec networks. As a result,
our architecture enables coexistence of arbitrary userspace environments with restricted
workspaces while reliably enforcing the platform owner’s network access policy.

To harden our VPN security service, we investigate a simplified IPsec architecture
supporting only tunnel mode with ESP1 protection [3] and IKEv22 key negotiation [4].
By removing unnecessary functionality and features that allow insecure IPsec operation
modes, we resolve known security issues in IPsec and significantly reduce the complex-
ity of architecture and implementation.

We have implemented a prototype based on the L4 microkernel to verify the fea-
sibility of our solution, to evaluate its interoperability with commodity IPsec imple-
mentations, and to measure the complexity in terms of code size. Finally, we discuss
compatibility and security of our architecture and suggest feature improvements.

1.2 Applications

Our architecture has significant security-benefits for users that assume different roles
during their work. The typical example for home users is online banking, where the
sVPN architecture allows to setup a fully isolated userspace environment with strong
administrative restrictions to secure banking sessions. Similar use-cases can be found
in corporate environments, where access to critical network resources is often restricted
to machines with specific software configurations. In such setups, the sVPN service re-
solves the conflict between flexibility and security by moving all critical functionality
out of the userspace environment. Once we finish our integration with trusted storage
and remote attestation, our architecture also allows to verify the state of a peer’s secu-
rity subsystem, enforce arbitrary security requirements on connected userspaces. Ad-
ditionally, our design also delivers a very simple and usable way to deploy secure and
IPsec-compatible VPNs. Since our design also focuses on minimal complexity for the
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critical components, environments with high security demands may also benefit from
the possibility of formal code-reviews of the critical components of their VPN. Finally,
our implementation also provides virtualized IPsec gateways that can be used to con-
solidate hardware resources in more complex VPN setups.

1.3 Outline

We present the general idea of our architecture in section 2, followed by a requirements
analysis in section 3. In section 4, we investigate related VPN designs and security ar-
chitectures for microkernel environments. Section 5 reviews the security of the IPsec
architecture we leverage on. Based on these results, we design a secure compartmen-
talized VPN service in in section 6. Section 7 presents our prototype implementation
and compares its code-complexity with standard implementations. In sections 8 and 9,
we discusses how our modifications influence compatibility and security. We conclude
with summary of results and suggestions for future work.

2 High-Level Architecture
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Fig. 1. Overview of the sVPN architecture interfacing with a commodity IPsec implementation
through WAN/Internet. The sVPN security service processes all data passing through a local
channel between "B" and the "Uplink Provider", according its IPsec policy. By applying IPsec
protection to some of the data streams, local channels are logically extended into secure remote
channels that reach through the unprotected area to a peer IPsec gateway.

Figure 1 shows the VPN architecture of two platforms connected through a wide
area network (WAN). The right system shows a commodity IPsec implementation,
while the left system shows the design proposed in this work.



In commodity systems, IPsec packet processing is typically implemented as part
of the network stack in the kernel. An IPsec boundary enforces the IPsec security pol-
icy (BYPASS, DISCARD, PROTECT) on all traffic that passes through it, dividing the system
into a "protected" and "unprotected" area. Userspace environments (compartments) in
the "protected" area use the VPN service by specifying the PROTECT-target on specific
traffic flows. The IPsec boundary then provides a secure channel through the "unpro-
tected" area. The channel ends at a peer IPsec boundary, which decapsulates the data
and forwards it to its local "protected" area. In such systems, key negotiation is typically
handled by the "protected" endpoints of the channel. With only a single IPsec boundary,
such systems also support only a single "protected" area that must be shared between
all userspace applications.

The left-hand system in contrast provides multiple isolated userspace environments
by design. Virtualization of legacy operating systems and basic operating system func-
tionality is provided by a trusted hypervisor, which is accompanied by an environment
of system and security services. Since the different userspace environments have poten-
tially conflicting security requirements, they build separate "protected" areas in IPsec
that require a dedicated logical IPsec boundary for policy enforcement. Similarly, the
key negotiation component is not part of any particular userspace environment anymore
but must be implemented as a neutral security service of the system. Both components
are thus implemented as self-contained security services in the trusted hypervisor envi-
ronment. They are configured by the platform owner and do not rely on any untrusted
components to maintain their security. Once packets are processed, the "unprotected"
area has the non-critical task of delivering the data to the destination IPsec gateway. Fig-
ure 1 thus only shows a single common uplink provider for post-processing and uplink
management.

The proposed compartmentalized architecture is called sVPN architecture through-
out this paper, our prototype implementation of it is called sVPN service or just sVPN.
In includes the two mentioned security services in the hypervisor environment and some
untrusted applications for pre- and post-processing.

3 Requirement Analysis

3.1 Functional Requirements

IPsec Virtualization In contrast to typical IPsec implementations, the sVPN service
has to be able to provide its VPN service for multiple "protected" areas with potentially
conflicting security requirements.

/R1/ sVPN must establish bidirectional channels between local compartments and
manage a separate IPsec security policy database (SPD) and security association
database (SAD) for each channel.

Usability To let users to benefit from the enhanced security of our design, it is nec-
essary that the user interface provides high usability and prevents typical configuration
errors.



/R2/ sVPN must provide a usable VPN configuration interface that is able to de-
fine and deploy secure VPNs and prevents accidental use of insecure cryptographic
primitives, operation modes or authentication schemes.

/R3/ sVPN must depend on as few components as possible to implement its security.
These dependencies must be specified and easy to understand.

Compatibility Interoperability with other IPsec-based VPN solutions is strongly de-
sired, as long as it does not conflict with the security of the VPN service.

/R4/ sVPN must be compatible with IPsec in typical VPN configuration.
/R5/ sVPN must provide basic support for the canonical key exchange protocol for

IPsec VPNs (i.e., IKEv2).

Security Subsystem We optimize our VPN service for low internal complexity to
facilitate formal security analysis and to reduce the possibility of security flaws in the
implementation.

/R6/ The sVPN architecture must isolate components that must be trusted to meet the
security requirements.

/R7/ All critical subcomponents and the services they depend on must be of manage-
able internal complexity with simple communication interfaces.

3.2 Security Requirements

Adversary Model To simulate the susceptibility of complex applications to local and
remote attacks, we assume an adversary to have full access to all userspaces a legal user
of the platform has access to. In contrast to legal users however, adversaries are assumed
to have no physical access to the platform. An adversary is considered successful if he
manages to extract secret key material from the sVPN security service or if he is able to
violate the sVPN security policy, for example by creating additional channels between
local compartments. In addition, when attacking only from "unprotected" compartments
or networks, i.e. without implicit knowledge of transmitted data, he is also considered
successful if he manages to extract data that is labeled with PROTECT in the sVPN
security policy.

The attack model for the sVPN security service is stronger than that of traditional
IPsec-based VPN solutions. The main difference is that local compartments which in-
terface with sVPN are assumed to be compromised, thus providing an attacker with re-
liable access to data transfers and statistics about resource usage to launch side-channel
attacks (e.g. timing attacks, traffic pattern analysis). We assume however that isolation
provided by the hypervisor also protects against side-channel attacks based on shared
resources[5, 6]. Therefore, we only considers side-channel attacks in form of traffic pat-
tern analysis.

Further, we assume that the IPsec architecture has no security flaws aside from
those mentioned in section 5.1, i.e. that the core IKEv2 protocol, the ESP protocol
and the IPsec architecture itself are sound. Based on these assumptions, we identify
the following requirements for the sVPN architecture to remain secure in the described
attack model.



Virtualization Security sVPN has to provide a logically isolated IPsec boundary for
every compartment that uses the service, thus isolating every connected userspace en-
vironment into a separate "protected" area.

/S1/ sVPN must be able to identify endpoints of a local channel and must enforce the
corresponding IPsec policy for that channel.

/S2/ Communication channels between local compartments that are not directed through
sVPN must be restricted by the hypervisor such that they can not be used to circum-
vent the security enforced by sVPN.

/S3/ Although acting as a common endpoint for multiple local channels, sVPN must
not break isolation between compartments that are not allowed to establish a chan-
nel between each other.

IPsec Security sVPN must provide a secure VPN service through secure authentica-
tion, key management and secure channels.

/S4/ The sVPN architecture must provide a secure channel for deploying IPsec policy
and authentication secrets to the sVPN service.

/S5/ sVPN must never disclose any key data to untrusted components. Accessibility
of key material must be minimized to the necessary sub-components of sVPN.

/S6/ sVPN must be able to directly authenticate the user of a "protected" area when
required so by IPsec policy.

/S7/ The IPsec compatible remote channels provided by sVPN must be secure.
/S8/ sVPN must be able to enforce restrictions on the configuration of compartments

that request a particular VPN access.

Since non-critical functionality of sVPN, including receiving and sending of data, is
externalized to the connecting "protected" and "unprotected" compartments which are
expected to be compromised, it is not possible to protect against DoS in the adversary
model described above. If a DoS resistance similar to commodity IPsec implementa-
tions is desired, it can thus be implemented in the traffic pre-processing in untrusted
compartments.

4 Related Work

Hypervisor-based operating systems environments with userspaces on multiple virtual
machines have recently been reconsidered as a base for increased security. The idea to
externalize security subsystems into a hypervisor environment resulted in several new
architectures like sHype, Terra, EROS, Nizza and Perseus [7–10, 1, 11].

A conceptionally similar setup can be found in many microkernel operating sys-
tems, but their current IPsec implementations do not exploit the features of their en-
vironment for additional security. They exist only in form of adapted versions from
monolithic systems or university classes 3.

3 See for example www.cis.syr.edu/~wedu/seed/Labs/IPSec/, where simple IPsec pro-
cessing is regularly implemented on Minix 3.



With µSINA, the authors of [2] present a comparable redesign of IPsec for Nizza.
In their architecture, a "network hub" is added to the operating system environment of
a Fiasco/L4 microkernel. It processes traffic between two paravirtualized Linux com-
partments that run on top of the microkernel (L4Linux compartments), enforcing IPsec
policies and traffic protection. µSINA aims for enhanced reliability and security by
minimizing the attack surface of critical components. An implementation of the IPsec
packet processing component is provided with the Viaduct security service.

µSINA was later supplemented by a key negotiation component [12]. To manage the
high complexity of the IKEv1 protocol, this component was implemented as a port of
the isakmpd server from the OpenBSD project. Two adapter components for translation
to Unix sockets and the servers native management interface PF_KEYv2 [13] where
added to simplify the port.

However, the Viaduct source code is difficult to read, poorly documented and con-
tains considerable amount of non-critical code, for example to route packets between
compartments. We were also unable to test it since the development was discontinued
and does not work with the current DROPS environment. From the descriptions of the
IKEv1 implementation in [12], it is also obvious that µSINA suffers from the high
complexity of the IKEv1 standard.

In contrast to µSINA, we do not aim for a generic IPsec implementation. As de-
tailed in the following sections, we propose a more abstract VPN service instead that
implements only a reduced set of the IPsec functionalities and exploits the potential
of secure virtualization and trusted computing architecture. The resulting design solves
many common security issues of VPN endpoints and maximizes the leverage on policy
enforcement available through remote attestation.

5 IPsec Security

The IPsec security standard was first specified in 1995 [14]. It is a collection of Internet
standards that provide access control, integrity protection and authentication, confiden-
tiality and partial protection against packet replay.

The Internet Engineering Task Force (IETF) published the latest version of the ar-
chitecture in [15], featuring mainly a simplified design and description. The associated
Internet Key Exchange (IKE) protocol was subject to a major redesign and published
as version 2 (IKEv2) in [4]. IPsec uses two protocols to implement its security ser-
vices on a per packet basis, Authenticated Header (AH) and Encapsulated Security
Payload (ESP). While the latest version of AH was published without major modifi-
cations [16], the current revision of ESP [3] was enhanced with extended Traffic Flow
Confidentiality (TFC) and Combined Cipher Modes. The term IPsec is used throughout
this work to refer to this latest revision of architecture and protocols.

The reader is referred to [17] for an introduction to IPsec or [18] for a review that
focuses on cryptographic aspects. For a discussion of the IKE protocol design and al-
ternatives see [19].



5.1 Security Issues

One of the early known security evaluation of IPsec is the comprehensive analysis in
[20]. Its authors criticize the complexity of the architecture, point out several design
weaknesses and also demonstrate some simple attacks. Their concerns have been con-
firmed when systematic design flaws where found in IPsec operation modes that use
ESP without integrity protection[21, 22]. In addition, concerns about information leak-
age due to traffic analysis led to the advanced TFC scheme introduced in [23]. This
criticism from the academic community found only limited recognition in the IETF,
with the result that insecure configurations are still part of the standard and thus also
still in operation. Based on these works and our own review of the latest revision of the
IPsec standards and implementations, we identify the following security issues in the
current specifications.

/P1/ Encryption-only ESP While previous attacks on ESP encryption without au-
thentication or with AH-based authentication have been blamed on implementa-
tions, [22] shows that it is indeed a flaw in the standard to allow encrypted traffic to
be unauthenticated or make use of other layers to authenticate the traffic.

/P2/ Traffic Flow Confidentiality To prevent information leakage via traffic flow
analysis, the authors of [23] propose a combination of payload padding, injection
of dummy packets and recombination of payloads. But although the problem is
acknowledged, only a small subset of the proposed traffic obfuscation mechanisms
was standardized in the latest version of ESP. In addition, even these simplified TFC
measures are not yet implemented in commodity operating systems like Linux and
OpenBSD.

/P3/ Manual Keying Manual keying poses a serious security threat. It provides no
forward or backward secrecy and enables attacks through observation of ciphertext
block collisions. IPsec however demands explicit support for manual keying for
IPsec packet processing [15], even though any secure key provisioning could be
adapted to use the automated keying interface. As a result, popular IPsec instruction
guides4 tend to discuss manual keying in great detail and it must be assumed that
such configurations are in widespread use.

/P4/ Pre-Shared Key (PSK) Authentication The IKEv2 specification [4] describes
authentication based on pre-shared keys, a feature that is also much appreciated
in IPsec configuration guides5 and likely in broad use. As also pointed out in the
specification, PSK authentication is only secure when keys with high entropy are
used. However, although such an assumption does typically not hold when keys are
chosen or transmitted by humans, the specification requires ("MUST") PSK support
for scenarios where the initiator uses a shared key and the responder uses public-key
authentication, clearly a scheme that addresses password-based user authentication.
The specification also fails to mention any rate limit behavior to counter brute force
attacks on short PSKs.

/P5/ Pseudo User Authentication The IKEv2 authentication mechanisms themselves
are not aware of the type of entity that provides authentication data. The two most

4 http://www.ipsec-howto.org/
5 http://wiki.bsdforen.de/howto/ipsec-vpn



common authentication mechanisms, public-key authentication based on X.509
certificates (PKIX) [24] and pre-shared keys, are both often used to authenticate
users. However, none of the major IKEv2 implementations currently support "di-
rect" user authentication. Instead, the shared key or secret key is typically stored on
the local disk, in files that are assumed to be accessible only to the platform admin-
istrator. Authentication secrets are thus actually used as tokens, allowing simple
attacks like theft or use of the access in absence of the user.

/P6/ Complexity The complexity of IPsec and particularly IKEv1 has often been
subject to criticism, for example in [20] and [25]. Subsequent versions of the archi-
tecture and particularly IKE include some improvements. However, the complexity
of the IPsec architecture and IKEv1 still leads to insecure deployments and even
incompatibilities in the key exchange. This complexity is not necessary however. It
was noted in [20] already that transport mode is a subset of tunnel mode and that
security features provided AH can by large be replaced by a corresponding config-
uration and application of the ESP protocol. The IKEv2 is much more simple in
design than IKEv1, but still has considerable complexity, e.g. in the SA negotiation
payloads and the general payload design (wire format). Simpler key negotiation
schemes like SKIP [26] and JFK [19] have been proposed, but not accepted for the
standard.

/P7/ Miscellaneous Issues Both versions of IKE employ hash-cookies, simple chal-
lenges to efficiently filter spoofed initialization requests, thus mitigating DoS at-
tacks [27]. More advanced protection against DoS is possible by forcing initiators
to invest computation resources, but such proposals have been discarded by the
IETF due to unclear patent encumbrance6. Also, since timeout lengths, retransmis-
sion counts and session keep-alive behavior for UDP packet transfer in IKE is not
specified, it is trivial to fingerprint IKE servers by observing such behavior [28].

To achieve the security requirements, sVPN has to implement measures against the
mentioned problems. Section 6.6 presents measures taken to mitigate /P1/ to /P6/.
/P7/ is not covered in this work however, since any information leaked this way is not
considered sensitive. As already mentioned in 3, DoS protection is not necessarily a
task of the sVPN service and shall be discussed separately in section 6.2.

6 sVPN Design

The IPsec architecture uses secure channels essentially to bind transferred data to cryp-
tographic identities. This mapping is used to enforce a security policy for each trans-
ferred data packet and provides the secure access control and secure channels needed in
sVPN. In this section we describes how the sVPN architecture was designed to comply
with our requirements and how the IPsec issues discussed in 5.1 are resolved.

6.1 IPsec Virtualization

As described in requirement /R1/, sVPN must be able to implement an isolated IPsec
boundary for each "protected" area. For a secure IPsec virtualization as defined in re-

6 http://www.ietf.org/mail-archive/web/ipsec/current/msg02606.html



quirements /S1/ to /S3/, sVPN must also be able to identify endpoints of a requested
channel and locate the corresponding IPsec policy.

We therefore extend the IPsec policy for sVPN with fields for the source and des-
tination identity of local channels. These identities can be arbitrary labels that are pro-
vided to sVPN by other security services. To establish remote channels with other IPsec
gateways it must be possible to unambiguously address and authenticate the destination
of a channel. In particular, a standard IPsec implementation must be able to request a
channel to a specific compartment "protected" by sVPN. To achieve this level of inter-
operability, existing methods for identification and authentication of peers must be used,
which is why sVPN behaves like multiple VPN gateways. It uses separate IP addresses
for identification on the network layer and separate cryptographic identities for unam-
biguous authentication during key exchange. If multiple IPs for a single host are not
available, NAT (Net Address Translation) can be used to map them to a single address.
This limitation is inherent to the IPsec architecture.

6.2 Critical Components

Requirement /R6/ is achieved by aggressively delegating functionality into the un-
trusted "protected" and "unprotected" endpoints of each local channel. This process is
restricted by /R7/, which requires all critical functionality to reside in trusted compo-
nents, i.e. in the security service in the hypervisor environment. Based on our security
requirements, we identify the following functions as critical.

1. The virtualized policy enforcement described in /S1/ requires that identification,
classification and policy matching algorithms are implemented in trusted compo-
nents.

2. /S3/ requires that any component that is connected to multiple local channels that
should remain isolated must be trusted.

3. To meet requirement /S5/, authentication and key exchange via IKEv2 and IPsec
traffic processing must be trusted. Availability of key material is reduced by divid-
ing the trusted sVPN security service into two separate modules, the IKEv2 server
iked and the ipsec traffic processing component. As a result, the bulk traffic pro-
cessing component is isolated from any kind of long-term authentication keys or
key negotiation internals.

4. /S6/ and /S7/ require the complete IKEv2 key negotiation and IKE SA manage-
ment to be trusted, as well as the traffic processing components for ESP encapsu-
lation, TFC padding, replay-protection and lifetime management of sessions and
keys.

Any remaining functionality is not critical and should be provided by other com-
partments. Examples are IP routing, packet fragmentation, hardware drivers and NAT
traversal. Since the protected and unprotected compartments need to function correctly
to establish a connection, DoS protection is only relevant if these are not compromised.
Therefore, this feature can be delegated to untrusted components as well.

The rather generic analysis of critical subcomponents is sufficient since our choices
in interfaces and components are limited by complexity limitation /R7/.



6.3 Usability

We address our usability requirements /R2/ and /R3/ by providing a more abstract
VPN service instead of a universal IPsec implementation. This allows us to ignore spe-
cial use cases of IPsec and make additional assumptions about the user’s intentions. As a
result, we can ignore the IPsec transport mode as well as AH encapsulation and enforce
secure usage of ESP encapsulation. This reduces the complexity of our key negotiation
and traffic processing components and facilitates the design of a usable configuration
interface. We solve the deployment issue mentioned in /R2/ and /S4/ by leveraging
trusted storage, a basic trusted computing service that allows secure transport and stor-
age of information by sealing data to known-good system states. [29]

6.4 Compatibility

As described in /R4/ and /R5/, sVPN is required to provide basic interoperability with
other IPsec-based VPNs. We implement this by staying compatible with certain oper-
ation modes of IPsec, namely authenticated ESP encryption in tunnel mode, and by
providing a IKEv2 implementation that is sufficiently compatible with standard imple-
mentations to negotiate this particular configuration. We leverage the flexibility of the
IKEv2 negotiation to activate additional non-standard features if supported by the peer.
A more detailed discussion of interoperability issues follows in section 8.

6.5 Remote Users

Since VPN access for remote users is one of the main use cases of VPN technology,
requirement /R4/ implies support for this scenario in sVPN. Apart from direct user
authentication required by /S6/, IP configuration of the remote "protected" compart-
ment is also desirable in this use case. For sVPN, we currently rely on higher level
protocols like the Layer 2 Tunneling Protocol (L2TP, see [30]) to provide dynamic IP
configuration.7

For direct user authentication, we aim to leverage trusted user I/O paths of the oper-
ating system to protect the user’s login credentials when unsealing the IPsec authenti-
cation key from trusted storage. The actual authentication keys are always asymmetric
and either imported from an existing PKI or automatically generated by the configura-
tion frontend, which also provides secure deployment. For more complex authentication
mechanisms, remote attestation of the peer’s TCB will allow to delegate critical func-
tionality to other security services which then vouch for successful authentication of the
correct user.

6.6 IPsec Hardening

Section 5.1 discussed several issues in IPsec that need to be resolved to meet our re-
quirements for sVPN. Unfortunately, the manipulation of IPsec internals is limited by

7 Native IKEv2 support through IKE configuration payloads and traffic selector narrowing is
still under investigation. Although simpler in design, these would also add non-critical func-
tionality to the security service.



our compatibility requirements /R4/ and /R5/, with the result that our IKEv2 imple-
mentation still suffers from high complexity when compared to our processing compo-
nent. Nevertheless, our modifications address all identified problems except for finger-
printing and DoS, which we declared minor.

/M1/ ESP protection To prevent attacks based on /P1/, sVPN enforces ESP encap-
sulation with encrypted authentication for all traffic that is labeled PROTECT in the
security policy. Weak ciphers are not supported.

/M2/ Advanced TFC To mitigate /P2/, ESP processing supports Traffic Flow Con-
fidentiality (TFC) padding as specified in [4] as well as advanced TFC features
described in [23]. Both are negotiated if supported by the peer or enforced by pol-
icy.

/M3/ Manual Keying and PSKs To prevent weak keys and exploitable key manage-
ment as mentioned in /P3/ and /P4/, our processing component exposes only a
low-level interface for automated configuration of keys and policies. To resolve
problems with weak PSKs, PSK authentication is not supported in sVPN.

/M4/ User Authentication As described in 6.5, sVPN authenticates users either through
direct user authentication or by leveraging other security services and trusted stor-
age. We expect these mechanisms to supersede the often weak and complex authen-
tication schemes provided by EAP or PSK and to discourage the behavior described
in /P5/.

/M5/ Reduced Complexity To mitigate the complexity issues described in /P6/, trans-
port mode and AH protection are not supported in sVPN. It implements only the
minimal set of functionalities of the IKEv2 specification, which additionally was
stripped of authentication in X.509 certificate-based public key infrastructures (PKIX).
Instead, sVPN currently authenticates peers based on raw RSA keys and key fin-
gerprint whitelists. Leveraging remote attestation, sVPN may also delegate authen-
tication to trusted remote security services.

7 Implementation

We implemented a prototype as a proof-of-concept, to identify interoperability issues
and to estimate complexity of the solution. It encompasses the two critical sVPN com-
ponents ipsec and iked as well as simple adapters named tun2ipc and udp2ipc for con-
nectivity with userspace compartments.

Turaya was chosen as the operating system environment. It is open source and im-
plements the PERSEUS security framework based on the L4/Fiasco microkernel and
microkernel environment of the DROPS project [31, 32]. With L4Linux, a paravirtu-
alized version of the Linux kernel, L4/Fiasco is also able run Linux systems as guest
VMs. Access control for inter-process communication (IPC) and secure identification
of compartments through the compartment manager is not yet implemented in Turaya.
Our prototype currently simulates this functionality through a local name registration
service.
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Fig. 2. Detailed architecture of sVPN. A single platform acts as a VPN gateway with two physical
network interfaces. The "protected" compartment routes plaintext traffic between the LAN and
sVPN. The "unprotected" compartment is responsible for routing the secured data streams into
the WAN.

7.1 sVPN Architecture

Figure 2 provides a more detailed view of the sVPN architecture. It shows a platform
with two virtualized L4Linux compartments running on top of the Fiasco hypervisor
and its environment. The two critical sVPN components reside in the hypervisor envi-
ronment, next to other security services like trusted storage and the randservice random
number generator. The two L4Linux compartments have established a local channel
through the ipsec module and each also connect to a physical network interface. By
configuring the sVPN security policy such that one compartment is in the "protected"
and one in the "unprotected" area, the platform is transformed into a VPN gateway,
processing traffic between its two interfaces.

Traffic Processing The tun2ipc adapters establish a local point-to-point IP connection
between the "protected" and "unprotected" compartments. The connection is set up by
connecting to the ipsec module and requesting a forwarding to the destination compart-
ment. The adapters then translate between the socket interface expected by the Linux
userspace and the ip2ipc IPC interface of the sVPN service. The ipsec module accepts
the local connection request only if corresponding policy entries exist in the SPD. In
that case, a dedicated filter thread is spawned to handles the actual traffic processing for
this channel. The filter thread then finalizes the local ip2ipc connection by establishing
the second part to the actual destination of the channel. Once the connection is estab-
lished, each thread is responsible for enforcing the locally relevant subset of the security
policy. Interface and implementation are further simplified by making all ip2ipc chan-
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interface. The iked component creates a ConState structure for each handshake attempt and main-
tains a list of active SPIs.

nels unidirectional. The destination tun2ipc adapter is responsible for establishing the
ip2ipc connection in the other direction, provoking another filter thread to be spawned
with corresponding subset of SPD and SAD.

To identify relevant subsets of SPD and SAD, each SPD entry in sVPN also contains
two labels identifying source and destination of the ip2ipc channel they apply to, and
each SAD entry is linked to an SPD entry. With the relevant parts of SPD, SAD and
a unidirectional channel, traffic processing is straight forward. The filter threads have
to enforce one of the policy targets (DISCARD, BYPASS, PROTECT) on all traffic they
receive, which is trivial to achieve for the first two targets. If PROTECT is specified or an
encapsulated package is encountered, the packet must be de- or encapsulated with ESP.
All required information for ESP processing is contained in the SAD entries available
to the thread. If the required SAD entry is not available, the packet is discarded. In case
of encapsulation, missing SAD entries additionally trigger a request to the iked module
to establish the required SAs. In case of decapsulation, the frames are once more parsed
and matched against the SPD to check if the protected environment is allowed to receive
this packet. At this point, the SPD would typically specify BYPASS or DISCARD as the
target, but re-encapsulation with a different SA is also possible.

Successfully processed IP frames are forwarded to the adapter of the destination
compartment. An ip2ipc adapter or its environment may implement additional uncritical
pre- and post-processing of received traffic, like IP (de-)fragmentation, NAT or band-
width management. Our prototypes simply forward all IP frames between the ip2ipc
channel and the L4Linux socket interface.

Key and Protocol Negotiation The key negotiation component iked is a simplified
IKEv2 implementation. On startup, it retrieves SPD and long-term authentication keys
from trusted storage and establishes the local policy and udp2ipc connections to the
ipsec and udp2ipc components. The udp2ipc adapter essentially provides a UDP socket
to iked, allowing it to send and receive IKEv2 UDP traffic. As can be seen in figure
3, the possible calls for ip2ipc and udp2ipc are very similar, the main difference is
that udp2ipc attaches to a UDP socket and that the incoming IPC connection comes



from the same iked thread. Like the ip2ipc adapter, it may implement uncritical traffic
transformations like defragmentation or even handle IKEv2 protocol features like DoS
protection cookies and NAT traversal support. The policy interface between ipsec and
iked is used preliminary by iked to initialize the ipsec SPD at startup and manage the
ipsec SAD at runtime. The ipsec component only uses it to request a refresh for expired
or not yet negotiated SAD entries. Both ends are also able to submit a reset command
in case database inconsistencies are detected, e.g. when one component was manually
restarted.

As IPsec key negotiation does not require high throughput, iked is implemented
as a simple single-threaded application. SA negotiation requests from ipsec or remote
IKEv2 servers trigger a simple IKEv2 negotiation and that negotiates authenticated en-
cryption with tunnel mode ESP encapsulation and the strongest available cipher suite.
Features like NAT detection, DoS protection, endpoint configuration or renegotiation
of SAs are not supported. If desired, these should be implement in the untrusted com-
partments. On success, the resulting SAs pair is uploaded to the ipsec SAD, possibly
replacing previous instances for that SPD entry.

7.2 Complexity

We estimate the complexity of the prototype by counting lines of source code (LoC)
with SLOCCount8, which excludes comments from the measurements. As it is cus-
tom, our measurements do not include external libraries and cryptographic primitives.
However, the two critical components do not make use of use any complex libraries
and the cryptographic primitives are comparatively easy to verify. Although the Mikro-
SINA project did not document how LoC were measured, their reports for the Viaduct
component do not substantially deviate from our own measurement of it with SLOC-
Count (3,575 LoC). Our prototype has a total code-complexity of 5,187 LoC includ-
ing adapter components. The critical subcomponents iked and ipsec have a complexity
of only 2,919 and 839 LoC, respectively, plus 917 LoC for common SPD and SAD
management. Although our prototype still misses some important features, the differ-
ence to standard IPsec implementations is impressive. The Mikro-SINA adaption of the
isakmpd IKEv1 server in [12] has an estimated 22,800 critical LoC if unnecessary com-
ponents were to be removed. We counted 46,600 and 30,800 LoC for the IKEv1 and
IKEv2 implementations of the strongSwan project, plus 30,000 lines of IKE specific
libraries. Our ipsec module is significantly less complex than the Mikro-SINA Viaduct
(839+917 vs. 3,575 LoC), since we exclude transport mode and AH encapsulation. For
comparison, a sample of obviously IPsec related files in Linux 2.6.269 results in a sim-
ilar figure of about 3,500 LoC.

7.3 Current Status

Our prototype successfully establishes ESP tunnels with a standard IPsec implementa-
tion and the strongSwan IKEv2 server. The connection was established with PSK au-
thentication however, since raw public key authentication is not yet implemented in iked

8 SLOCCount by David A. Wheeler: http://www.dwheeler.com/sloccount/
9 include/net/{ip.h,ah.h,esp.h,xfrm.h,ipcomp.h} net/ipv4/{esp4.c,ah4.c,xfrm4*,ipcomp.c}



and strongSwan. The negotiated SAs for IKEv2 and ESP use AES-128, SHA-1 and the
standard Diffie-Hellman groups from [4]. The current implementation still misses some
necessary functionality like timeout handling and public key authentication for iked and
advanced TFC for ipsec. Still, we do not expect their complexity to rise anywhere near
the size of standard implementations.

8 Interoperability Issues

The IPsec modifications /M1/ to /M5/ and the untypical compartmentalized architecture
potentially result in interoperability problems with standard IPsec implementations. As
will be seen in this section however, most modifications are simply a matter of appro-
priate configuration of the IPsec peer. We shall also discuss some optional features like
IPComp and NAT detection that conflict with our compartmentalized design approach.

IPsec Modifications To reduce implementation complexity and improve security, sec-
tion 6.6 specified modifications to the IPsec implementation in sVPN. As described
below however, most of these modifications are only a question of correct configuration
so that interoperation with standard IPsec implementations is still possible.

/M1/ Authenticated Encryption and Primitives Employed cryptographic algorithms
and their combination are by design negotiated during key exchange and subject to
SPD configuration. Standard IPsec implementations tend to include as many strong
and required suites as possible, increasing the chance to find a common cipher suite.

/M2/ Advanced TFC Padding Similarly to the extended TFC, support for advanced
TFC padding can be negotiated during IKEv2 key exchange. It thus does not inter-
fere with standard implementations except when enforced by sVPN policy.

/M3/ Manual Keying and PSK Manual key provisioning and pre-shared key authen-
tication are alternative key distribution models supported by IPsec, along with pub-
lic key authentication and others. sVPN in contrast supports only public key authen-
tication. However, any resulting interoperability problems are an intended trade off
for complexity and security. If desired, it is possible to use alternative key man-
agement systems instead and directly interface with the policy IPC interface of the
ipsec module.

/M4/ No direct User Authentication Although identity types are supported in the IKEv2
protocol, the authentication mechanism is ignorant of the type of entity that is au-
thenticated. However, direct user authentication can obviously not be enforced on
IPsec implementations that do not support remote attestation or direct user authen-
tication. The enhanced user authentication can only be beneficial to the platform
that supports it, possibly decreasing the security of the overall network security.

/M5/ Transport Mode, AH, raw RSA Keys Missing support for transport mode and
the AH protocol should not result in unsolvable interoperability issues since their
use is a matter of policy configuration and negotiated via IKE. The same applies for
raw RSA key authentication, although this authentication mode is less commonly
supported by other IKEv2 implementations.



Automated NAT Traversal IPsec uses UDP encapsulation of ESP payloads for com-
patibility with NAT, adding 8 bytes of overhead per packet to traverse NAT routers[33,
34]. In IKEv2, existence of NAT is automatically detected during SA negotiation and
UDP encapsulation is activated. In sVPN however, udp2ipc abstracts from the UDP
socket interface and currently just provides a channel ID instead of ports and addresses,
relieving iked from any layer 3 protocol handling. Additionally, NAT detection is not a
critical feature and should ideally be implemented in untrusted components.

From a security perspective, the best solution may be to add fake NAT detection pay-
loads into the IKEv2 exchange and thus transform the automated detection into a man-
ual configuration option controlled by the adapters. Alternatively, the udp2ipc adapters
could provide network layer information to iked when establishing a new udp2ipc chan-
nel, thus enabling iked to implement NAT detection.

IP Fragmentation As discussed in section 7 of the specification in [15], the IPsec
architecture has systematic issues with fragmentation. For sVPN, the relevant places
where fragmentation may be encountered are ESP encapsulation and decapsulation,
where header information may be missing for correct policy matching of packets or
authentication of ESP fragments may fail. Additionally, the ip2ipc channel also imposes
a limitation to the size of packets that may have been defragmented to larger frames in
the untrusted compartment.

Our approach is similar to the suggestions in [15]. At startup, our ipsec processing
thread searches their sub-SPD for any entries that require knowledge of higher layer
protocols. If such entries are not encountered, any kind of packet can be parsed accord-
ing to policy. Otherwise, it will drop any fragmented packets and leave defragmentation
to the sending adapter or its environment. For successful decapsulation, the security
service has no choice but to rely on the sending compartment to defragment the ESP
frames. Fragmented frames are dropped based on IP header information, since they will
always fail to authenticate. The behavior is optimized by setting the Don’t Fragment
bit in the IP header of outgoing ESP frames. The Maximum Transmission Unit (MTU)
of the ip2ipc IPC channel is also handled in the adapter components. They must watch
the size of defragmented ESP frames or other payloads and inform the sender on the
limited maximum segment size if required.

IP Compression Traffic compression is usually applied transparently at the link layer,
but data encryption renders compression algorithms ineffective. [35] therefore specifies
an IP compression standard IPComp to supplement IPsec. IPComp compresses IP pay-
loads, inserting itself as a logical protocol layer between the payload and the IP layer
before encryption of the packet. As a non-critical transformation of traffic, it should be
implemented in the tun2ipc adapters. However, IPComp changes the information avail-
able to the packet parser. The protocol type is changed to indicate a compressed payload
and no transport layer information is available without decompression. Therefore, IP-
Comp has to be applied between processing steps in the ipsec component and can not
be delegated to untrusted components.



9 Security Considerations

Since the ip2ipc and udp2ipc interfaces are semantically similar to those of standard
IPsec implementations and since sVPN essentially implements and enforces the use of
a subset of alternative IPsec mechanisms, one might argue that the security of sVPN
can be reduced to at least that of standard IPsec implementations. In the following we
show informally why sVPN additionally fulfills the stronger requirements described in
3.2.

/S1/ For local IPC channels, identification of the endpoints is an implementation detail
that should be solved by the operating system’s IPC mechanisms. We also extended
the standard SPD entries by two fields to specify source and destination identity
each rule applies to. Even without OS support, this already allows us to imple-
ment secure identification by providing random unique identification labels to the
untrusted compartments at startup time. Requirement /S1/ is thus fulfilled.

/S2/ We fulfill this requirement since we assume that the hypervisor enforces isolation
between all local compartments and channels. It follows directly that any intercon-
nection of compartments is thus be routed through sVPN or other trusted services.

/S3/ This requirement is fulfilled by a correct implementation of the trusted service, i.e.
logically isolated processing of channels in the service. We implemented this by
launching a separate processing thread for each local channel. The threads do not
share any writeable resources; they could even be encapsulated in separate L4 tasks
so that the memory isolation is enforced by the kernel.

/S4/ This requirement is fulfilled since sVPN is designed to retrieve its IPsec policy
and authentication secrets directly from trusted storage. The sealing functionality
of trusted computing systems protects the configuration data using public key cryp-
tography and local attestation of the environment that requests accesses to the data.

/S5/ As discussed in section 6.2, we implement all critical functionality, including all
functionality that requires long-term authentication secrets or session keys, in the
sVPN security service. Keys are only transmitted inside this module or in a lo-
cal isolated channel between sVPN and trusted storage. The interfaces exposed by
sVPN are equivalent to those exposed by standard IPsec implementations. Based
on the security of the IKEv2 and ESP protocols, it follows that no covert channels
exist to retrieve key material. Additionally, we reduced the availability of short- and
long-term keys to the required subcomponents.

/S6/ As a trusted component in the security services layer, our service is able to directly
connect to other trusted security services. These in turn are able to establish physi-
cal presence of a user or to enforce arbitrary authentication schemes. Although not
yet implemented in our prototype, our design thus fulfills /S6/.

/S7/ We hardened our traffic processing based on our review of IPsec security issues in
section 5.1. Additionally, we aim to provide optional advanced protection against
traffic flow analysis (advanced TFC). Except for possibly weak authentication modes,
which we addressed through direct user authentication in section 6.5, there are no
relevant security issues with IKEv2. There are thus no known problems with the
secure channels provided by sVPN.



10 Conclusion

We proposed an adaption of the IPsec architecture for VPNs in trusted computing en-
vironments. In accordance with the PERSEUS security concepts, we isolated critical
functionality into self-contained subcomponents of minimal complexity. We solved sev-
eral security issues of IPsec by reducing the framework to a simple VPN service and
discussed how additional features can be integrated in a compatible fashion.

The result is a high-security VPN service that should provide a high usability. The
architecture solves the conflict of interest between owner and user in the remote user use
case, allowing companies to deploy machines that are highly secure regarding access to
the company VPN and applications, but use flexible compartments to suite the needs of
the employees. Its small code-size and modular design make sVPN an ideal target for
future research on secure channels in trusted environments.

11 Further Work

As noted in section 7.3, our implementation is far from complete. We also postponed
investigation of IKE mobility extensions [36] , resistance against timing-based side-
channel attacks and detailed performance optimizations.

Remote Attestation The Trusted Network Group (TNG) proposes an extensive frame-
work for remote attestation in [37, 38]. However, these specifications seem to add sig-
nificant overhead to sVPN and we question if this level of flexibility is necessary in the
first place.

Roaming Users In context of the remote user use case /U2/, the MOBIKE [36] exten-
sions to IKE and its adaption to the compartmentalized sVPN architecture should be
investigated. Use of TS narrowing and configurations payloads combined with a good
user authentication scheme may eliminate the need for additional higher layer protocols.

Simplified PKI The several PKIX-related standards published by the IETF document
the complexity of this authentication scheme. We currently favor raw RSA keys instead,
but these miss a key hierarchy to support large environments. It is unclear if and how a
compromise can be compatible with standard implementations.
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