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Abstract. Automatic recognition of human faces is becoming increas-
ingly popular in civilian and law enforcement applications that require
reliable recognition of humans. However, the rapid improvement and
widespread deployment of this technology raises strong concerns regard-
ing the violation of individuals’ privacy. A typical application scenario
for privacy-preserving face recognition concerns a client who privately
searches for a specific face image in the face image database of a server.
In this paper we present a privacy-preserving face recognition scheme
that substantially improves over previous work in terms of communication-
and computation efficiency: the most recent proposal of Erkin et al.
(PETS’09) requires O(log M) rounds and computationally expensive op-
erations on homomorphically encrypted data to recognize a face in a
database of M faces. Our improved scheme requires only O(1) rounds
and has a substantially smaller online communication complexity (by a
factor of 15 for each database entry) and less computation complexity.
Our solution is based on known cryptographic building blocks combin-
ing homomorphic encryption with garbled circuits. Our implementation
results show the practicality of our scheme also for large databases (e.g.,
for M = 1000 we need less than 13 seconds and less than 4 MByte online
communication on two 2.4GHz PCs connected via Gigabit Ethernet).
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1 Introduction

In the last decade biometric identification and authentication have increasingly
gained importance for a variety of enterprise, civilian and law enforcement appli-
cations. Examples vary from fingerprinting and iris scanning systems, to voice
and face recognition systems, etc. Many governments have already rolled out
electronic passports [18] and IDs [27] that contain biometric information (e.g.,
image, fingerprints, and iris scan) of their legitimate holders.

In particular it seems that facial recognition systems have become popular
aimed to be installed in surveillance of public places [17], and access and border
control at airports [8] to name some. For some of these use cases one requires
online search with short response times and low amount of online communication.

Moreover, face recognition is ubiquitously used also in online photo albums
such as Google Picasa and social networking platforms such as Facebook which
? Supported by EU FP6 project SPEED, EU FP7 project CACE and ECRYPT II.



have become popular to share photos with family and friends. These platforms
support automatic detection and tagging of faces in uploaded images.1 Addi-
tionally, images can be tagged with the place they were taken.2

The widespread use of such face recognition systems, however, raises also
privacy risks since biometric information can be collected and misused to profile
and track individuals against their will. These issues raise the desire to construct
privacy-preserving face recognition systems [12].

In this paper we concentrate on efficient privacy-preserving face recognition
systems. The typical scenario here is a client-server application where the client
needs to know whether a specific face image is contained in the database of a
server with the following requirements: the client trusts the server to correctly
perform the matching algorithm for the face recognition but without reveal-
ing any useful information to the server about the requested image as well as
about the outcome of the matching algorithm. The server requires privacy of its
database beyond the outcome of the matching algorithm to the client.

In the most recent proposal for privacy-preserving face recognition [12] the
authors use the standard and popular Eigenface [34,33] recognition algorithm
and design a protocol that performs operations on encrypted images by means
of homomorphic encryption schemes, more concretely, Pailler [29,11] as well as a
cryptographic protocol for comparing two Pailler-encrypted values based on the
Damg̊ard, Geisler and Krøig̊ard [9,10] cryptosystem). They demonstrate that
privacy-preserving face recognition is possible in principle and give required
choices of parameter sizes to achieve a good classification rate. However, the
proposed protocol requires O(log N) rounds of online communication as well as
computationally expensive operations on homomorphically encrypted data to
recognize a face in the database of N faces. Due to these restrictions, the pro-
posed protocol cannot be deployed in practical large-scale applications. In this
paper we address this aspect and show that one can do better w.r.t. efficiency.

Basically one can identify two approaches for secure computation: the first
approach is to perform the required operations on encrypted data by means of
homomorphic encryption (see, e.g., [29,11]). The other approach is based on Gar-
bled Circuit (GC) à la Yao [35,22]: the function to be computed is represented
by a garbled circuit i.e., the inputs and the function are encrypted (“garbled”).
Then the client obliviously obtains the keys corresponding to his inputs and
decrypts the garbled function. Homomorphic Encryption requires low commu-
nication complexity but huge round and computation complexity whereas GC
has low online complexity (rounds, communication and computation) but large
offline communication complexity. We present a protocol for privacy-preserving
face recognition based on a hybrid protocol which combines the advantages of
both approaches. A protocol based on GC only is given in the full version [32].

1 http://picasa.google.com/features-nametags.html; http://face.com
2 Geotagging can be done either manually or automatically on iPhones using GPS
http://www.saltpepper.net/geotag.



Contribution. We give an efficient and secure privacy-preserving face recogni-
tion protocol based on the Eigenfaces recognition algorithm [34,33] and a combi-
nation of known cryptographic techniques, in particular Homomorphic Encryp-
tion and Garbled Circuits. Our protocol substantially improves over previous
work [12] as it has only a constant number of O(1) rounds and allows to shift
most of the computation and communication into a pre-computation phase. The
remaining online phase is highly efficient and allows for a quick response time
which is especially important in applications such as biometric access control.

Related Work. Privacy-Preserving Face Recognition allows a client to obliv-
iously detect if the image of a face is contained in a database of faces held by
server. We give a detailed summary of previous work on privacy-preserving face
recognition [12] in §3.1. Our protocol has a substantially improved efficiency.

The related problem of Privacy-Preserving Face Detection [3] allows a client
to detect faces on his image using a private classifier held by server without
revealing the face or the classifier to the other party.

In order to preserve privacy, faces can be de-identified such that face recog-
nition software cannot reliably recognize de-identified faces, even though many
facial details are preserved as described in [28].

2 Preliminaries

In this section we summarize our conventions and setting in §2.1 and crypto-
graphic tools used in our constructions in §2.2 (additively homomorphic encryp-
tion (HE), oblivious transfer (OT), and garbled circuits (GC) with free XOR).
A summary of the face recognition algorithm using Eigenfaces is given in §2.3.
Readers familiar with the prerequisites may safely skip to §3.

2.1 Parameters, Notation and Model

We denote symmetric security parameter by t and the asymmetric security pa-
rameter, i.e., bitlength of RSA moduli, by T . Recommended parameters for
short-term security (until 2010) are for example t = 80 and T = 1024, whereas
for long-term security t = 128 and T = 3072 are recommended [16]. The sta-
tistical correctness parameter is denoted with κ 3 and the statistical security
parameter with σ. In practice, one can choose κ = 40 and σ = 80.

We work in the semi-honest model where participants are assumed to be
honest-but-curious (details later in §3). Our improved protocols can be proven
in this model based on existing proofs for the basic building blocks from which
they are composed. We further note that efficient garbled circuits of [21] (and
thus our work) requires the use of random oracles. We could also use correlation-
robust hash functions [19], resulting in slightly more expensive computation of
garbled circuits [31] (see below).
3 The probability that the protocol computes a wrong result (e.g., caused by an over-

flow) is bounded by 2−κ.



2.2 Cryptographic Tools

Homomorphic Encryption (HE). We use a semantically secure additively
homomorphic public-key encryption scheme. In an additively homomorphic cryp-
tosystem, given encryptions JaK and JbK, an encryption Ja+bK can be computed as
Ja + bK = JaKJbK, where all operations are performed in the corresponding plain-
text or ciphertext structure. From this property follows, that multiplication of
an encryption JaK with a constant c can be computed efficiently as Jc · aK = JaKc

(e.g., with the square-and-multiply method).
As instantiation we use the Paillier cryptosystem [29,11] which has plain-

text space ZN and ciphertext space Z∗
N2 , where N is a T -bit RSA modulus.

This scheme is semantically secure under the decisional composite residuosity
assumption (DCRA). For details on the encryption and decryption function we
refer to [11]. The protocol for privacy-preserving face recognition proposed in
[12] additionally uses the additively homomorphic cryptosystem of Damg̊ard,
Geisler and Krøig̊ard (DGK) which reduces the ciphertext space to Z∗

N [9,10].

Oblivious Transfer (OT). For our construction we use parallel 1-out-of-2
Oblivious Transfer for m bitstrings of bitlength `, denoted as OTm

` . It is a two-
party protocol where the server S inputs m pairs of `-bit strings Si =

〈
s0

i , s
1
i

〉
for i = 1, ..,m with s0

i , s
1
i ∈ {0, 1}`. Client C inputs m choice bits bi ∈ {0, 1}. At

the end of the protocol, C learns sbi
i , but nothing about s1−bi

i whereas S learns
nothing about bi. We use OTm

` as a black-box primitive in our constructions. It
can be instantiated efficiently with different protocols [25,1,23,19]. It is possible
to pre-compute all OTs in a setup phase while the online phase consists of 2
messages with Θ(2mt) bits. Additionally, the number of public-key operations
in the setup phase can be reduced to be constant with the extensions of [19].

Garbled Circuit (GC). Yao’s Garbled Circuit approach [35,22], is the most
efficient method for secure evaluation of a boolean circuit C. We summarize its
ideas in the following. First, server S creates a garbled circuit C̃ with algorithm
CreateGC: for each wire Wi of the circuit, he randomly chooses a complementary
garbled value ŵi =

〈
w̃0

i , w̃1
i

〉
consisting of two secrets, w̃0

i and w̃1
i , where w̃j

i is
the garbled value of Wi’s value j. (Note: w̃j

i does not reveal j.) Further, for each
gate Gi, S creates and sends to client C a garbled table T̃i with the following
property: given a set of garbled values of Gi’s inputs, T̃i allows to recover the
garbled value of the corresponding Gi’s output, and nothing else. Then garbled
values corresponding to C’s inputs xj are (obliviously) transferred to C with a
parallel oblivious transfer protocol OT (see below): S inputs complementary
garbled values W̃j into the protocol; C inputs xj and obtains w̃

xj

j as outputs.
Now, C can evaluate the garbled circuit C̃ with algorithm EvalGC to obtain the
garbled output simply by evaluating the garbled circuit gate by gate, using the
garbled tables T̃i. Finally, C determines the plain values corresponding to the
obtained garbled output values using an output translation table received by S.
Correctness of GC follows from method of construction of garbled tables T̃i.



Implementation Details. For most efficient implementation of the garbled
circuit we use several extensions of Yao’s garbled circuit methodology as sum-
marized in [31]: the “free XOR” trick of [21] allows “free” evaluation of XOR
gates (no communication and negligible computation); for each non-XOR gate
(e.g., AND, OR, ...) we use garbled row reduction [26,31] which allows to omit
the first entry of the garbled tables, i.e., for each non-XOR gate with 2 inputs a
garbled table of Θ(3t) bits is transferred; point-and-permute [24] allows fast GC
evaluation, i.e., evaluation of a 2 input non-XOR gate requires in the random
oracle model one invocation of a suitably chosen cryptographic hash function
such as SHA-256. In the standard model, two invocations are needed [31].

Efficient Circuit Constructions. We use the following efficient circuit building
blocks from [20] operating on `-bit numbers: Subtraction SUB`, Comparison
CMP`, and Multiplexer MUX` circuits of size ` non-XOR gates. Circuits can be
automatically generated from a high-level description with the compiler of [30].

2.3 Face Recognition using Eigenfaces

A well-known algorithms for face recognition is the so-called Eigenfaces algo-
rithm introduced in [34,33]. This algorithm achieves reasonable classification
rates of approximately 96% [12] and is simple enough to be implemented as
privacy-preserving protocol (cf. §3). The Eigenfaces algorithm transforms face
images into their characteristic feature vectors in a low-dimensional vector space
(face space), whose basis consists of Eigenfaces. The Eigenfaces are determined
through Principal Component Analysis (PCA) from a set of training images;
every face is represented as a vector in the face space by projecting the face
image onto the subspace spanned by the Eigenfaces. Recognition is done by first
projecting the face image into the face space and afterwards locating the closest
feature vector. For details on the enrollment process we refer to [12] and original
papers on Eigenfaces [34,33]. In the following we briefly summarize the recog-
nition process of the Eigenfaces algorithm. A pseudocode description and the
naming conventions and sizes of parameters are given in Appendix §A.

Inputs and Outputs: The algorithm obtains as input the query face image Γ
represented as a pixel image with N pixels. Additionally, the algorithm obtains
the parameters determined in the enrollment phase as inputs: the average face Ψ
which is the mean of all training images, the Eigenfaces u1, .., uK which span the
K-dimensional face space, the projected faces Ω1, .., ΩM being the projections of
the M faces in the database into the face space, and the threshold value τ . The
output r of the recognition algorithm is the index of that face in the database
which is closest to the query face Γ or the special symbol ⊥ if no match was
found, i.e., all faces have a larger distance than the threshold τ .

Recognition Algorithm: The recognition algorithm consists of three phases:

1. Projection: First, the average face Ψ is subtracted from the face Γ and the
result is projected into the K-dimensional face space using the Eigenfaces
u1, .., uK . The result is the projected K-dimensional face Ω̄.



2. Distance: Now, the square of the Euclidean distance Di between the projected
K-dimensional face Ω̄ and all projected K-dimensional faces in the database
Ωi, i = 1, ..,M , is computed.

3. Minimum: Finally, the minimum distance Dmin is selected. If Dmin is smaller
than threshold τ , the index of the minimum value, i.e., the identifier imin of
the match found, is returned to C as result r = imin. Otherwise, the image
was not found and the special symbol r = ⊥ is returned.

3 Privacy-Preserving Face Recognition

Privacy-Preserving Face Recognition allows a client to obliviously detect if the
image of a face is contained in a database of faces held by a server. This can
be achieved by securely evaluating a face recognition algorithm within a cryp-
tographic protocol. In the following we concentrate on the Eigenface algorithm
described in §2.3 which was also used in [12]. Our techniques can be extended to
implement different recognition algorithms as discussed in the full version [32].

3.1 Privacy-Preserving Face Recognition using Eigenfaces

The inputs and outputs of the Eigenfaces algorithm are distributed between
client C and server S as shown in Fig. 1(a). Both parties want to hide their
inputs from the other party during the protocol run, i.e., C does not want to
reveal for which face she is searching while S does not want to reveal the faces
in his database or the details of the applied transformation into the face space
(including Eigenfaces which might reveal critical information about faces in DB).

In the semi-honest model we are working in, parties are assumed to follow
the protocol but try to learn additional information from the protocol trace
beyond what can be derived from the inputs and outputs of the algorithm when
used as a black-box. In particular this requires that all internal results of the
Eigenfaces algorithm, including the values passed between the different phases
Ω̄ and D1, .., DM , are “hidden” from both parties. For practical applications it
is sufficient to assume that both parties are computationally bounded, i.e., no
polynomial-time adversary can derive information from “hidden” values.

For implementing the privacy-preserving Eigenfaces algorithm and “hiding”
the intermediate values, different techniques can be used as listed in Fig. 1(b).

To the best of our knowledge, the only previous work on privacy-preserving
face recognition [12] uses homomorphic encryption (HE) to implement the Eigen-
faces algorithm in a privacy-preserving way, i.e., computations are performed on
homomorphically encrypted data and the intermediate values are homomorphi-
cally encrypted (denoted as J·K). We summarize this protocol in §3.2.

Our Hybrid protocol presented in §4.1 substantially improves the efficiency of
this protocol by implementing the Projection and Distance phase using homomor-
phic encryption and the Minimum phase with a garbled circuit. An alternative
protocol which is entirely based on garbled circuits and hides intermediate val-
ues as garbled values (denoted as ·̃) is presented in the full version [32]. Our
improvements over previous work are summarized in §5.
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Fig. 1. Privacy-Preserving Face Recognition using Eigenfaces

3.2 Previous Work: Privacy-Preserving Face Recognition using HE

In [12], the authors describe describe a protocol for privacy-preserving face recog-
nition which implements the Eigenfaces recognition algorithm of §2.3 on homo-
morphically encrypted data. Their protocol is secure in the semi-honest model,
i.e., players are honest-but-curious [12, Appendix A].

Projection. First, C and S jointly compute the projection of the face image Γ
into the eigenspace spanned by the Eigenfaces u1, .., uK as follows: C generates
a secret/public key pair of a homomorphic encryption scheme (cf. §2.2) and
encrypts the face Γ as JΓ K = (JΓ1K, .., JΓN K). C sends the encrypted face JΓ K
along with the public key to S. Using the homomorphic properties, S projects the
encrypted face into the low-dimensional face space and obtains the encryption
of the projected face JΩ̄K = (Jω̄1K, .., Jω̄KK) by computing for i = 1, ..,K: Jω̄iK =
J−

∑N
j=1 ui,jΨjK ·

∏N
j=1JΓjKui,j . The first factor can already be computed in the

pre-computation phase.

Distance. After Projection, C and S jointly compute the encryption of the Eu-
clidean distances between the projected face JΩ̄K and all projected faces Ω1, .., ΩM

in the database held by S. This is done by computing for i = 1, ..,M : JDiK =
J||Ωi − Ω̄||2K = JS1,iK · JS2,iK · JS3K, where JS1,iK = J

∑K
j=1 ω2

i,jK =
∏K

j=1Jω
2
i,jK

and JS2,iK = J
∑K

j=1(−2ωi,jω̄j)K =
∏K

j=1Jω̄jK−2ωi,j can be computed by S from
JΩ̄K without interaction with C. To obtain JS3K = J

∑K
j=1 ω̄2

j K from JΩ̄K, the
following protocol is suggested in [12]: For j = 1, ..,K: S chooses rj ∈R Zn,
computes JxjK = Jω̄j + rjK = Jω̄jK · JrjK and sends JxjK to C. C decrypts
JxjK, computes JS′

3K = J
∑K

j=1 x2
jK, and sends JS′

3K to S. S finally computes
JS3K = JS′

3K · J−
∑K

j=1 r2
j K ·

∏K
j=1Jω̄jK−2rj .



Minimum. As last step, C and S jointly compute the minimum value D from
JD1K, .., JDM K and its index Id. If the minimum value D is smaller than the
threshold value τ known by S, then C obtains the result Id. To achieve this, [12]
suggests the following protocol: Choose the minimum value and index from the
list of encrypted value and id pairs (JD0 = τK, JId0 = ⊥K), (JDiK, JIdiK)M

i=1. For
this, they apply a straight-forward recursive algorithm for minimum selection
based on a sub-protocol which compares two encrypted distances and returns
a re-randomized encryption of the minimum and its index to S. For this sub-
protocol, an optimized version of the homomorphic encryption-based comparison
protocol of Damg̊ard, Geisler and Krøigaard (DGK) [9,10] is used.

Complexity of Minimum protocol (cf. Table 1). The Minimum protocol of [12]
requires a logarithmic number of 6dlog2(M + 1)e + 1 moves. Overall, 8M Pail-
lier ciphertexts and 2`′M DGK ciphertexts are sent in the online phase, where
`′ = 50 is the length of the squared distances D1, .., DM among which the mini-
mum is selected (cf. Table 3 in Appendix §A). This results in a communication
complexity of (16+2`′)MT bits. The asymptotic online computation complexity
is dominated by approximately 2M Paillier decryptions and `′M DGK decryp-
tions for C and the same number of exponentiations for S.

4 Our Protocols for Privacy-Preserving Face Recognition

In the following we present our Hybrid protocol which improves over the protocol
of [12] (cf. §3.2) and is better suited for larger database sizes. An alternative
protocol based on garbled circuits only is given in the full version [32].

4.1 Privacy-Preserving Face Recognition using Hybrid of HE + GC

Our hybrid protocol for privacy-preserving face recognition improves over the
protocol in [12] by replacing the Minimum protocol with a more efficient protocol
based on garbled circuits. Additionally, the Distance protocol proposed in [12]
can be slightly improved by packing together the messages sent from server S to
client C into a single ciphertext as detailed in the full version [32]. We concentrate
on the core improvements of the Minimum protocol in the following.

Hybrid Minimum Protocol

The most efficient protocols for secure comparison in the setting with two compu-
tationally bounded parties is still based on Yao’s garbled circuit (GC) approach
[35,26,20] as briefly explained in §2.2. This also includes the natural generaliza-
tion to selecting the minimum value and index of multiple values. As shown in
[20], these GC based protocols clearly outperform comparison protocols based on
homomorphic encryption [13,6,14,9,10]. In the following we show how the proto-
cols of [20] can be adopted to yield a highly efficient, constant round Minimum
protocol for our Hybrid privacy-preserving face recognition protocol.



Overview. The high-level structure of our improved Minimum protocol is shown
in Fig. 3(a) in Appendix §B and consists of several building-blocks: the sub-
protocol ParallelConvert converts the homomorphically encrypted distances held
by server S, JD1K, .., JDM K, into their corresponding garbled values D̃1, .., D̃M

output to client C (details below). These garbled values are used to evaluate
a garbled circuit C̃Minimum which computes the Minimum phase of Algorithm 1
in Appendix §A (details on how the underlying circuit CMinimum is constructed
below). The garbled circuit C̃Minimum can be created already in the setup phase
using algorithm CreateGC and sent to C before the online phase starts. The
garbled values τ̃ which correspond to server’s threshold value τ are selected
by S (Select) and transferred to C as well (either in the setup phase or in the
online phase depending on how often the database changes). Finally, C evaluates
C̃Minimum on the garbled values τ̃ , D̃1, .., D̃M and obtains the correct output r.

ParallelConvert protocol. An efficient ParallelConvert protocol is given in [20]
which we summarize in the following (see [20] and [4] for a detailed descrip-
tion): S blinds the homomorphically encrypted `′-bit values JDiK, i = 1, ..,M
with a randomly chosen additive T -bit mask Ri ∈R Zn and sends the blinded
values JDi + RiK to C who can decrypt. Then, C and S jointly run a garbled
circuit protocol in order to obliviously take off the mask Ri with a subtraction
circuit. For improved efficiency, multiple values JDiK can be packed together
into a single ciphertext before blinding. To avoid an overflow when adding the
T -bit random mask, the most significant κ bits are left as correctness margin,
where κ is a statistical correctness parameter (e.g., κ = 40). This allows to pack

M ′ = bT−κ
`′ c values into one ciphertext resulting in m = d M

M ′ e packed Paillier
ciphertexts for the M values. The ParallelConvert protocol consists of 3 moves.

Circuit CMinimum which computes the required functionality of the Minimum
protocol is shown in Fig. 3(b) in Appendix §B: First, the minimum value Dmin =
min(D1, .., DM ) and the corresponding index imin ∈ {1, ..,M} are computed
with the MIN circuit. The MIN circuit is similar to the circuit evaluated in a
first-price auction where the highest bid and the index of the highest bidder
is selected [26]. An efficient construction of this circuit has size |MIN| ∼ 2`′M
non-XOR gates [20]. Afterwards, the minimum value Dmin is compared with the
threshold value τ using a comparison circuit CMP. The output c of the CMP
circuit is 1 if Dmin ≤ τ and 0 otherwise. Depending on c, the multiplexer MUX
chooses either the minimum index imin if c = 1 as output or the special symbol ⊥
otherwise (e.g., ⊥ = 0). The circuit has size |CMinimum| ∼ 2`′M non-XOR gates.

Complexity. The complexity of our improved Minimum protocol and the one
proposed in [12] is given in Table 1. For the computation complexity the table
contains only the dominant costs: the number of Paillier and Damg̊ard-Geisler-
Krøig̊ard (DGK) decryptions (Dec) and exponentiations (Exp) as well as the
number of evaluations of a cryptographic hash function (Hash).



Table 1. Complexity of Minimum Protocols with Parameters M : # faces in database,
`′: bitlength of values D1, .., DM , t: symmetric security parameter, T : asymmetric se-
curity parameter, κ: statistical correctness parameter, m ∼ `′

T−κ
M .

HE §3.2 [12] Hybrid §4.1

Round Complexity 6dlog(M + 1)e+ 1 moves 3 moves

Asymptotic Communication Complexity [bits]

online (2`′ + 16)MT 2`′Mt + 2mT

offline OT`′M
t + 9`′Mt

Asymptotic Computation Complexity

C online ≈ 2M DecPaillier + `′M DecDGK m DecPaillier + 3`′M Hash

S online ≈ 2M ExpPaillier + `′M ExpDGK m ExpPaillier

Our improved Minimum protocol requires a constant number of 3 moves for
the ParallelConvert protocol (τ̃ can be sent with the last message). The online
communication complexity is determined by the ParallelConvert protocol for con-
verting M values of bitlength `′, i.e., m Paillier ciphertexts and the online part
of the OT`′M

t protocol which is asymptotically 2`′Mt + 2mT bits (cf. §2.2).
The online computation complexity requires S to pack the m ciphertexts (corre-
sponds to m exponentiations) and C to decrypt them. After the OT protocol, C
needs to evaluate a garbled circuit consisting of approximately 3`′M non-XOR
gates (`′M to subtract the random masks in the ParallelConvert protocol and
2`′M for CMinimum) which requires to invoke a cryptographic hash function (e.g.,
SHA-256) the same number of times. The offline communication consists of the
OT`′M

t protocol and transferring the GC (3t bits per non-XOR gate, cf. §2.2).

Improvements (cf. Table 1). Most notably, the round complexity of our improved
Minimum protocol is independent of the size M of the database.

The online communication complexity of our protocol is smaller by a factor
of approximately T/t, e.g., 1024/80 ≈ 13 for short-term security and 38 for
long-term security (see §5.1 for details).

The online computation complexity of our protocol is substantially lower,
as the number of Paillier operations is reduced by a factor of approximately
2M/m = 2M ′ = 2(T−κ)

`′ , e.g., 2(1024−40)
50 ≈ 40 for short-term security and 121

for long-term security. GC evaluation (which requires one invocation of SHA-256
per gate) is computationally less expensive than the modular arithmetics needed
for the DGK public-key cryptosystem used in [12] (see §5.2 for details).

5 Complexity Improvements

In the following we compare our improved protocol with the protocol of [12]:
communication- and round complexity in §5.1 and computation complexity in
§5.2. We consider different recommended sizes of security parameters for short-,
medium-, and long-term security [16] (cf. Appendix §C for parameter sizes).



5.1 Round Complexity and Asymptotic Communication Complexity

HE vs. Hybrid (Table 2). Our Hybrid protocol substantially improves the
performance of the HE protocol proposed in [12]: the round complexity is re-
duced from logarithmic in the size of the database M down to a small constant of
6 moves. The online communication complexity of the Minimum protocol (§4.1)
is reduced to only 6.6% of the previous solution for short-term security. For
medium- and long-term security the savings are even better. Our improvements
of the Distance protocol (in full version [32]) down to 23% for short-term secu-
rity are negligible w.r.t. the overall communication complexity as it has small
communication complexity (few KBytes) independent of the database size M .

Table 2. Round- and Communication Complexity – HE vs. Hybrid. M : size of DB.

Protocol HE §3.2 [12] Hybrid §4.1 (Improvement)

Round Complexity [moves] 6dlog(M + 1)e+ 4 6 (O(log M) → O(1))

Security Level Short Medium Long Short Medium Long

Asymptotic Communication Complexity (online)

Projection [MB] 2.5 5.0 7.5 2.5 5.0 7.5
Distance [kB] 3.2 6.5 9.8 0.75 (23%) 1.0 (15%) 1.5 (15%)
Minimum [kB per face in DB] 15 29 44 0.99 (6.6%) 1.4 (4.8%) 1.6 (3.6%)

5.2 Online Computation Complexity

Hybrid protocol (§4.1). We have implemented the Hybrid protocol for privacy-
preserving face recognition described in §4.1 in Python to quantify its online
computation complexity. Although interpreted Python code runs substantially
slower than compiled code we chose it for platform independence. We perform
performance measurements on two standard PCs (AMD Athlon64 X2 5000+
(2.6GHz), 2 Cores, 4 GB Memory running on Gentoo Linux x86 64) communi-
cating via TCP/IP6 over a Gigabit Ethernet connection. Both machines were
clocked to 2.4GHz via CPU frequency scaling to make the performance compa-
rable to [12]. The implementation is running in the cPython-2.6 interpreter and
uses gmpy module (version 1.04) to access GNU GMP library (version 4.3.1).

In comparison, the protocol in [12] was implemented in C++ using the GNU
GMP library (version 4.2.4) and executed on a single PC (2.4 GHz AMD Opteron
with dual-core processor and 4 GB RAM under Linux) as two threads. This im-
plementation neglects latencies of communication stack and network which could
result in non-negligible slow-downs due to their logarithmic round complexity.

Although our implementation is closer to a real-world setting and uses a
substantially slower programming language, it still outperforms that of [12] es-
pecially for larger database sizes due to our algorithmic protocol improvements
of the Minimum protocol as shown in Fig. 2(a). Surprisingly, our implemen-
tation is about 30% faster than the C++ implementation of [12] even in the



homomorphic encryption-based parts of the protocol (Projection and Distance).
Presumably this is due to faster multiplication in GMP version 4.3.

In contrast to the HE-based protocol of [12], our protocol scales well with
increasing security level as shown in Fig. 2(b), as symmetric security parameter
t increases much slower than its asymmetric equivalent T (cf. Appendix §C).

Overall, the implementation results confirm that our Hybrid protocol allows
privacy-preserving face recognition even for large databases.
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(a) HE vs. Hybrid Protocol (Short-Term Security)

Security Level

Client Short Medium Long

Projection 0.49 0.60 0.72
Distance 6.08 16.87 31.73
Minimum 1.86 2.71 4.49
Sum 8.43 20.18 36.95

Server Short Medium Long

Projection 6.58 17.43 32.37
Distance 0.47 1.52 3.03
Minimum 0.06 0.21 0.54
Sum 7.11 19.15 35.94

(b) Hybrid Protocol for M = 320

Fig. 2. Comparison of Timing Complexity in [s]

5.3 Conclusion and Future Work

The methods for constructing efficient protocols for privacy-preserving face recog-
nition presented in this paper can be further improved into various directions.

Algorithmic Improvements for better classification accuracy might be achieved
by using different face recognition algorithms. Fisherfaces [5], which determine
the projection matrix with Linear Discriminant Analysis (LDA), can be used
instead of Eigenfaces. A different distance metric than Euclidean distance could
be used, e.g., Hamming distance or Manhattan distance. The Minimum phase
could be based on meaning or scoring instead of minimum selection.

Further Protocol Improvements could be achieved with a different homomor-
phic encryption scheme that allows both, additions and multiplications [7,2,15]
to avoid the additional communication round for computing Euclidean Distance.

Further Implementation Improvements can be achieved by exploiting paral-
lelism on multi-core architectures or graphics processing units (GPUs).
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on their protocol, and anonymous reviewers of ICISC 2009 for helpful comments.
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A Face Recognition using Eigenfaces: Details

Algorithm 1 shows the pseudocode description of the Eigenfaces algorithm and
Table 3 the naming conventions and sizes of the parameters.

Algorithm 1 Face recognition using Eigenfaces [34,33].
Input face Γ , average face Ψ ; Eigenfaces u1, .., uK ; projected faces Ω1, .., ΩM ; thresh-

old value τ
Output recognition result r ∈ {1, .., M} ∪ ⊥

{Phase 1: Projection}
1: for i = 1 to K do
2: ω̄i = uT

i (Γ − Ψ)
3: end for
4: projected face Ω̄ := (ω̄1, .., ω̄K)

{Phase 2: Distance}
5: for i = 1 to M do
6: compute squared distance Di = ||Ω̄ −Ωi||2 =

PK
j=1(ω̄j − ωi,j)

2

7: end for

{Phase 3: Minimum}
8: compute minimum value Dmin = min{D1, .., DM} and index imin: Dmin = Dimin

9: if Dmin ≤ τ then
10: Return r = imin

11: else
12: Return r = ⊥
13: end if

Parameter Size [12] Description

M number of faces in database
N = 10304 size of a face in pixels
K = 12 number of Eigenfaces

Γ, Ψ ∈ [0, 28 − 1]N face, average face
u1, .., uK ∈ [−27, 27 − 1]N Eigenfaces

Ω̄, Ω1, .., ΩM ∈ [−231, 231 − 1]K projected face, projected faces in database
D1, .., DM ∈ [0, 250 − 1] squared distances between projected images

τ ∈ [0, 250 − 1] threshold value
Table 3. Parameters and Sizes for Privacy-Preserving Face Recognition



B Improved Minimum Protocol: Details

Server S

τ

CreateGC

Select

τ̃

C

C̃D̂1, .., D̂M τ̂

Client C

Minimum

!D1", .., !DM "

ParallelConvert

D̃1, .., D̃M

r

EvalGC

(a) Protocol Structure with C := CMinimum.

⊥ τ

D1 DM

Dminimin

MIN

CMPMUX

r

. . .

. . .

c

(b) Circuit CMinimum

Fig. 3. Improved Minimum Protocol

C Parameter Sizes

We compare the complexity for different recommended sizes of security parame-
ters – short-term (recommended use up to 2010), medium-term (up to 2030) and
long-term security [16]. The sizes for the security parameters and corresponding
parameter sizes for our Hybrid protocol are summarized in Table 4: we use sta-
tistical security parameter σ = 80 and statistical correctness parameter κ = 40.
According to Table 3, the input length for the Distance protocol is ` = 32 and
for the Minimum protocol (§4.1) is `′ = 50.

Table 4. Size of Security Parameters (t: symmetric security parameter, T : asymmetric
security parameter) and Corresponding Parameters for Hybrid Protocol (M ′: # values
packed into one ciphertext before blinding).

Security Level Security Parameters Minimum (§4.1)
t T M ′

Short-Term 80 1024 19
Medium-Term 112 2048 40
Long -Term 128 3072 60


