
Design and Implementation of a Secure Linux
Device Encryption Architecture

Ahmad-Reza Sadeghi (sadeghi@crypto.rub.de)
Michael Scheibel (m.scheibel@sirrix.com) *

Christian Stüble (stueble@acm.org)
Marcel Winandy (winandy@crypto.rub.de)

© 2006 Horst Görtz Institute for IT-Security
Ruhr-University Bochum
Universitätsstr. 150, 44780 Bochum, Germany

 * Sirrix Security Technologies AG
Zentrum für IT-Sicherheit
Lise-Meitner-Allee 4, 44801 Bochum, Germany

This paper is provided under the terms of the Creative Common
“NoDerivs-NonCommercial 1.0” License. The work is protected by
copyright and/or other applicable law. Any use of the work other than
as authorized under this license is prohibited.

The EMSCB Security Architecture is used as a trustworthy basis for the
implementation of secure distributed applications. In this paper we introduce
the prototype for a device encryption system based on the EMSCB security
kernel. The goal is to provide a strongly isolated hard-disk encryption for Linux,
where the secret key information and all related security-critical operations are
not under the control of Linux, but under control of an EMSCB application
protected and isolated from Linux. We describe the architecture and the
prototype implementation of the device encryption system.

Introduction

Today, increasingly more sensitive data is stored on private and business
devices such as PC's, Laptops and PDAs. The security critical data include
business plans, authorization secrets, and email correspondence. In case the
device is stolen or lost this data may be compromised.

An approved security mechanism to mitigate this risk is to encrypt the data.
There exist several software-based encryption systems. Some of them are
shipped together with the operating system. One example is Linux and its
dm_crypt, which allows different encryption algorithms to plug in and use them
for encrypting file systems.

Unfortunately, most software-based hard-disk encryption products suffer from
insecure storage and usage capabilities for security-critical cryptographic keys
and operations. The underlying operating systems (OS) that control all data
storage mechanisms, i.e. hard-disk, memory, USB, I/O etc., cannot prevent
other (potentially malicious) applications from gaining access to the critical key
data. This can be seen by the huge number of exploits and continuous security

mailto:sadeghi@crypto.rub.de
mailto:winandy@crypto.rub.de
mailto:stueble@acm.org
mailto:m.scheibel@sirrix.com

updates. The reasons are due to various conceptual weaknesses of common
computing platforms, in particular due to the monolithic OS kernel architecture
and thus increased complexity. This concerns Windows-based operating
systems as well as Linux-based ones. A large part of the operating system and
supporting processes are executed in a privileged mode, the so called kernel
mode, which allows them to directly access the hardware and all other software
processes. User applications are usually executed in a non-privileged mode,
the so called user mode. Thus, the risk of security weaknesses is higher
because of the huge amount of code executed in privileged mode. If such a
process can be exploited it is possible to gain access to all kernel data,
including the encryption keys used for the hard-disk encryption. An attacker
may read out the encryption key from kernel memory or simply deactivate the
encryption system by exploiting a common security hole. Runtime protections
such as access control and user authentication may be easily circumvented by
booting an alternate operating system. Furthermore, an untrusted system
administrator usually has full access to all system resources including the
cryptographic keys of the users. Countermeasures such as mandatory role-
based access control (e.g. SELinux) protect this information from a "root spy"
but are much too complicated to maintain and evaluate [1].

We propose a solution to this problem by providing a security architecture that
allows secure, reliable and user-friendly device encryption. The security
architecture strongly isolates the secret key information and all related
security-critical operations from the Linux operating system. This is similar to a
hardware based solution but far more cost-effective. Moreover, the architecture
is capable of using Trusted Computing (TC) functionalities (based on [2]) to
protect the cryptographic keys and to assure software integrity during the
booting process of the system.

Threats and Security Requirements

We identified the following threats a device encryption system must deal with:
An adversary may try to eavesdrop the cryptographic key used for
encryption/decryption. He may try to violate security requirements by
maliciously manipulating the system. Moreover, he may try to violate the
integrity of the cryptographic keys.

An adversary may try to eavesdrop the user authentication information. He
may try to deceive users by a platform providing a faked user interface. Again,
he may try to maliciously manipulate the system to gain the authentication
information.

Finally, an adversary may gain access to the encrypted data, e.g., on a stolen
device, and try to mount offline attacks, i.e., trying to decrypt the data by
exploiting weaknesses of the cryptographic algorithm used for encryption.

The main objective of a device encryption system is to protect the
confidentiality of data resulting in the following requirements:

● User authentication: Only authorized users should be able to access

sensitive data, i.e., authorization is required at start-up time of the
system. The authorization should withstand long-term attacks in case of
system theft or loss. Moreover, an authorized user should be able to
change her authorization data.

● System integrity: The encryption system must not be deactivated or
tampered with, i.e., the integrity of the encryption system should be
protected at runtime and checked at boot time. This requirement pertains
to the user interface as well, i.e., the user must be able to trust the input
path to the encryption system when entering his authorization data.

● Confidentiality of encryption keys: The encryption key should be
protected from being read out by unauthorized users or programs.

● Strength of cryptographic algorithms: The key generation algorithm
should comply with current requirements. The encryption algorithm
should be an approved standard. Its operation mode and the key length
should provide reasonable security. Besides, the algorithm should be able
to be securely updated to meet future requirements.

Related Work

The are a number of software device encryption systems available today.
However, most of them either do not offer essential security properties such as
isolation (of the encryption keys and operations from the operating system), or
they are not open source and not being subject of public analysis.

Commercial Products

Examples of commercial software device encryption systems available at the
market are [3],[4],[5],[6]. These products offer variety of features1. In this
context some products already use the interfaces to a Trusted Platform Module
(TPM) to bind encryption keys to hardware and/or software components and for
secure random number generation (partially).

A further product is Microsoft's “Secure Startup - Full Volume Encryption” which
will be integrated into the upcoming client version release of Microsoft's
Windows Operating System (“Windows Vista”) [4]. This encryption feature
encrypts the entire Windows volume and uses a Trusted Platform Module (TPM)
1.2 to bind the encryption key to the boot stack, thus ensuring that system files
have not been tampered with while the system was offline. However, it does
not use TPM authentication mechanisms but relies on conventional OS
authentication after the system integrity has been verified.

1 such as AES encryption, centralized user administration and policy enforcement, key
recovery mechanisms, pre-boot authentication, multi-user support for sharing resources,
etc.

Enforcer Project

The Enforcer [7],[1],[8] is a Linux Security Module (LSM) that binds the
cryptographic key for an encrypted file system to long-lived system
components, such as the Linux kernel, the boot stack, the Enforcer LSM, and
the public key of a so-called “security admin”. The security admin issues and
digitally signs a list of file hashes. This security configuration is used by the
Enforcer LSM to check the integrity of the applications before execution.

The Enforcer even provides a mechanism to guarantee the freshness of a
security configuration. To verify the integrity of the long-lived components the
Enforcer enhances the LILO boot loader with TPM support. However, the
encryption key information is still located within the Linux kernel since the
Enforcer LSM itself is executed in the Linux kernel. Thus, a isolation of
encryption keys and operations from the operating system is not supported.

Device Mapper Crypt Target

The Device Mapper is a Linux 2.6 kernel feature that allows to create a virtual
block device whose sectors are mapped to sectors on a physical block device,
e.g. a hard-disk or USB device. Available mapping types include encryption.
Thus data written to the virtual device is transparently encrypted and passed
on to the physical device (and vice versa). The crypt target (dm_crypt) uses the
Linux 2.6 Cryptographic API which provides state-of-the-art symmetric ciphers
and hash computation algorithms such as AES and SHA-256.

However, since the crypt target is a kernel feature, the encryption keys and
operations are located within the kernel and there is no isolation from the
operating system. Furthermore, there are no measures for checking the system
integrity before execution.

The EMSCB Project

The European Multilaterally Secure Computing Base (EMSCB) project aims at
developing a trustworthy computing platform, based on open standards and
open source, that solves many security problems of conventional platforms [9].
The platform deploys

● hardware functionalities provided by Trusted Computing,

● a security kernel, and

● an efficient migration of existing operating systems.

The EMSCB platform allows, in the sense of multilateral security, the
enforcement of security policies of different parties, i.e., end-users as well as
industry. This is a vital property required for secure execution of a variety of
distributed applications. Consequently, the platform enables the realization of
various innovative business models, also in the area of Digital Rights

Management, while averting the potential risks of Trusted Computing platforms
concerning privacy issues. The source code of the EMSCB platform will be
published under an open-source license, e.g., the GPL. The platform can be
freely used as basis for application development.

The EMSCB project is partly funded by the German Federal Ministry of
Economics and Technology. Project partners include several universities and
industry organizations. This consortium is lead by Ruhr-University Bochum
(Applied Data Security Group)1.

Basic System Architecture

One main design goal of EMSCB is the realization of a minimal and therefore
manageable, stable and evaluable security kernel for conventional hardware
platforms such as PCs, servers, embedded systems, and mobile devices like
PDAs and smartphones. This requirement is fulfilled by extracting security-
critical operations and data and integrate them into the security kernel [10].
The basic architecture is shown in Figure 1.

The security kernel is composed of a Resource Management Layer, which runs
on top of the hardware, and a Trusted Software Layer. The hardware may
provide Trusted Computing functionality, e.g., based on TPM. The main task of
the Resource Management is the provision of an abstract interface of the
underlying hardware resources like interrupts, memory and hard-disk drives.
Moreover, this layer allows to share these resources and can realize access
control enforcement on the object types known to this layer. This layer can be
implemented using a microkernel (e.g. [11]) or a hypervisor virtualization (e.g.
[12]) approach.

The Trusted Software Layer combines the services provided by the hardware
layer and the resource management. It extends the interfaces of the underlying
services with security properties and ensures isolation of the applications
executed on top of this layer.

On top of the Trusted Software Layer, security-critical and non-critical
applications are executed in parallel. Legacy operating systems can be
executed as isolated applications on top of the Trusted Software Layer to

1 http://www.prosec.rub.de

Figure 1: Basic system architecture

Se
cu

rit
y

Cr
itic

al
Ap

pl
ica

tio
n

Security Kernel

Trusted Computing SupportHardware

Application Layer

Trusted Software Layer

Resource Management Layer

Legacy
Operating
System

App App

Legacy
Operating
System

App App

Co
nf

ig
ur

at
io

n

http://www.prosec.rub.de/

provide end-users a common user interface and a backward-compatible
application binary interface (ABI) and allows application providers to reuse
existing non-critical applications and components.

Secure Linux Device Encryption

The secure Linux device encryption system is called “Turaya-Crypt” and is
based on the microkernel-based EMSCB security kernel. The Linux operating
system is executed as a separate EMSCB application. This allows an
architecture where the key critical information of a device encryption system is
stored and handled in a special EMSCB service outside of Linux. This special
service is the HDD-Encrypter as shown in Figure 2.

All key critical information is handled by this service, that itself is fully
independent from Linux. After a successful authentication process against the
HDD-Encrypter, a Linux function that handles the device encryption just sends
the plain text to the HDD-Encrypter service and receives the cipher text
afterwards and vice versa without having access to the secret key information.
We use the dm_crypt interface of Linux so that the device mapper support can
be used transparently within Linux.

The authentication process simply authenticates a qualified user, i.e. the data
owner, and then provides access to the data to all applications of the
respective user. The authentication is performed by providing a password,
which is then used to derive an encryption key. Without the correct password
the correct encryption key will not be accessible and hence confidentiality is
preserved.

We use AES as a fast symmetric encryption algorithm in our implementation.
We derive the key from a given password using a cryptographic hash function.

Turaya-Crypt can be run in three operational modes:

● Single-user mode (without Trusted GUI)

● Single-user mode (with Trusted GUI)

● Multi-user mode (with Trusted GUI)

Figure 2: Architecture of the secure device encryption

Microkernel / Hypervisor

Linux
dm_crypt HDDEncrypter

Trusted
Storage

Trusted
GUI

Resource Management
Layer

Trusted Software
Layer

EMSCB Security Kernel

Hardware LayerHardware TPM

Application Layer

In single-user mode all encrypted devices are encrypted with one single key,
which is derived from the single user's password. In multi-user mode every
encrypted device has its own individual encryption key. The user's password is
used to derive another encryption key, which is used to encrypt/decrypt the
encryption key of the device. This allows multiple users to share a common
encrypted device but having not to share a common password.

In multi-user mode it is necessary to define keys and user accounts. If users
want to have access to certain encrypted devices their access rights to these
resources, i.e., the cryptographic keys, must be specified. Thus, there is a need
for user management, which is handled by Turaya-Crypt as well.

Note, that all key creation and management is handled outside of Linux. Linux
does not see any difference whether Turaya-Crypt runs in single-user or multi-
user mode. This is due to the usage of the dm_crypt interface of Linux. Within
Linux, encrypted devices or partitions are created and used as normal as it
would be when using the device mapper crypt target directly.

Trusted GUI

When using the Trusted GUI, Linux runs in an extra window. The password and
administration dialogs for accessing the device encryption keys or changing the
configuration are displayed in a separated dialog box. On the one hand, the
user can recognize that the password or administration dialog does not belong
to any potentially malicious application inside the Linux operating system
(trusted path to application). On the other hand, Linux is not able to access or
manipulate these dialogs, either. Figure 3 shows a screenshot.

For our prototype implementation we used a special GUI system [13] that
provides a virtual framebuffer to the Linux system. Linux applications draw

Figure 3: Screenshot of the multi-user mode with Trusted GUI showing
the configuration management dialog and Linux in a separate window.

their graphical user interface elements within this framebuffer. Security-critical
applications, like the configuration management console of Turaya-Crypt, have
separated GUI windows that are isolated from the Linux system. Currently, this
system is going to be improved to provide a secure GUI, e.g. [14].

In single-user mode we do not need a special trusted GUI since the bootloader
will already ask for the password that is used for key derivation. The bootloader
will automatically pass the password to the HDD-Encrypter service. After the
system is booted there is no need to ask for the password again. All devices will
be encrypted/decrypted with the key derived from the given password. Thus,
Linux can be executed in full-screen mode in this case.

Trusted Computing Support

Our proposed system is able to bind device encryption keys to a user
authorization secret, hardware components or the trusted software modules.
Binding to hardware and/or software components requires a trusted hardware
component. Our architecture deploys TPM sealing functionalities for this
purpose. However, the architecture is not restricted to using the TPM and can
offer the corresponding interfaces of any other hardware platform.

The TPM uses on-chip registers (Platform Configuration Registers, PCRs) to
securely store measurements (i.e., hash values) of hardware and software
components. The TPM sealing command subsequently binds data to these
PCRs. The resulting binary data is then stored persistently.

For our application certain PCRs should reflect the integrity of the trusted
components. This can be achieved as follows:

1. A TPM-aware (trusted) BIOS measures the MBR (Mater Boot Record)
before execution.

2. The bootloader measures each boot stage before execution.

3. The bootloader is completely loaded. The PCRs now reflect the integrity
of the boot process (authenticated boot).

4. The trusted software components are digitally signed. The bootloader
checks their signatures before execution. The corresponding public key is
hard-coded into the bootloader. If a signature check fails the PCR values
are invalidated and the user is requested for interaction (secure boot).

The alternation of authenticated and secure boot allows secure updating of
system components without “resealing” of secrets [1],[8].

We use TrustedGRUB1 as bootloader, which implements the boot mechanism as
described.

The Trusted Storage component within the Trusted Software Layer is

1 http://www.prosec.rub.de/trusted_grub.html

http://www.prosec.rub.de/trusted_grub.html

responsible for securely and persistently storing the cryptographic keys and
user authorization information needed for the device encryption. Therefore, we
make use of Trusted Computing functionality to bind the data to a certain
platform configuration. That means, the cryptographic keys and the
configuration data will only be accessible when the system is in a certain
configuration, i.e., running on the defined hardware platform and not being
modified in an unauthorized way.

Linux Integration

Currently we use Linux 2.6 as a legacy OS in a modified version that is able to
run on a microkernel. It is binary-compatible with the normal Linux kernel and
can be used with any PC-based Linux distribution.

To encrypt all data transferred to a physical block device, e.g., a hard disk
partition, a virtual block device is created and mapped to this physical device.
Whenever the Linux file system driver writes a data block to the virtual device,
the block is passed to a wrapper cipher algorithm integrated into the Linux
Cryptographic API. We reused the Linux device mapper with dm_crypt target
for this redirection.

The wrapper cipher transfers the blocks to the HDD-Encrypter service by using
an inter-process communication (IPC) call mechanism of the microkernel. The
HDD-Encrypter encrypts (or decrypts) the block and returns the result back to
the wrapper cipher. Thus the encryption key and associated operations are
completely isolated from the legacy OS.

The wrapper cipher is implemented as a Linux kernel module. This allows us to
reuse the dm_crypt interface and the corresponding Linux commands for
configuring and using encrypted devices, i.e., the cryptsetup command.

While cryptsetup usually requires to specify the encryption algorithm and the
password that is used to derive the encryption key, we use this interface to
specify our wrapper cipher module. As previously mentioned, the password is
entered in a special dialog of the bootloader or the HDD-Encrypter within the
Trusted GUI.

Conclusion and Outlook

We have introduced the EMSCB Security Architecture which is used as a
trustworthy basis for implementation of secure distributed applications. Within
the EMSCB project several application prototypes are being designed and
developed.

In this paper we have introduced the prototype for a device encryption system
based on the EMSCB security kernel. We have shown that it is possible to build
a secure and isolated device encryption system while being interoperable with
a legacy OS and its standard applications.

We are currently completing and improving the implementation with respect to
system integrity protection and TPM integration. Furthermore, we are working
on new improvements of the trusted GUI to provide user-friendly easy-to-use
and secure user interfaces.

References

[1] J. Marchesini, S.W. Smith, O. Wild, A. Barsamian, J. Stabiner, "Open-Source
Applications of TCPA Hardware", 20th Annual Computer Security Applications
Conference (ACSAC 2004), ACM, 2004.

[2] Trusted Computing Group, TPM Main Specification, Version 1.2 rev. 85, Trusted
Computing Group, 2005.

[3] Safeboot N.V., SafeBoot Device Encryption for PC, 2005,
http://www.safeboot.com/products/device-encryption/pc/

[4] Microsoft Corp., Secure Startup - Full Volume Encryption: Technical Overview,
2005, http://www.microsoft.com/whdc/system/platform/pcdesign/secure-
start_tech.mspx

[5] PGP Corporation, PGP Whole Disk Encryption for Enterprises Data Sheet, 2005,
http://download.pgp.com/pdfs/PGP-WDE-Enterprises_DS_050919_F.pdf

[6] Utimaco Safeware, Security for Mobile PCs and Data Media - SafeGuard Easy
Whitepaper, 2005,
http://www.utimaco.com/C12570CF0030C00A/vwContentByKey/W26L6EHK398CC
HEEN

[7] Rich MacDonald, Sean Smith, John Marchesini, Omen Wild, Bear: An Open-Source
Virtual Secure Coprocessor based on TCPA, TR2003-471, Department of
Computer Science, Dartmouth College, 2003.

[8] John Marchesini, Sean W. Smith, Omen Wild, Rich MacDonald, Experimenting with
TCPA/TCG Hardware, Or: How I Learned to Stop Worrying and Love The Bear,
TR2003-476, Department of Computer Science, Dartmouth College, 2003.

[9] EMSCB Project Consortium, The EMSCB project, 2006, http://www.emscb.org

[10] Ahmad-Reza Sadeghi, Christian Stüble, Norbert Pohlmann, "European Multilateral
Secure Computing Base - Open Trusted Computing for You and Me", Datenschutz
und Datensicherheit DuD 28 (9), Verlag Friedrich Vieweg & Sohn, 2004.

[11] Jochen Liedke, "On Microkernel Construction", Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP'95), ACM, 1995.

[12] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, "Xen and the Art of Virtualization", Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP'03), ACM, 2003.

[13] N. Feske, H. Härtig, "Demonstration of DOpE - a Window Server for Real-time and
Embedded Systems", Proceedings of the 24th IEEE Real-Time Systems
Symposium (RTSS 2003), IEEE, 2003.

[14] N. Feske, C. Helmuth, "A Nitpicker's guide to a minimal-complexity secure GUI",
Proceedings of the 21st Annual Computer Security Applications Conference
(ACSAC 2005), ACM, 2005.

	Introduction
	Threats and Security Requirements
	Related Work
	Commercial Products
	Enforcer Project
	Device Mapper Crypt Target

	The EMSCB Project
	Basic System Architecture
	Secure Linux Device Encryption
	Trusted GUI
	Trusted Computing Support
	Linux Integration

	Conclusion and Outlook

