
Studienarbeit

Secure Task Migration and
Interprocess Communication in
Reconfigurable, Distributed,

Embedded Systems

by

Thomas Schneider
Matrikel-Nr.: 2105703

Supervision:
Dipl.-Ing. Dirk Koch

Prof. Dr.-Ing. Jürgen Teich

July 10, 2007

This document was produced with the typesetting system LATEX2e.

Contents

1 Introduction 1
1.1 Security Objectives of a ReCoNet . 2
1.2 Attacks and Countermeasures on FPGAs 3

2 Cryptographic Fundamentals 7
2.1 Random Numbers . 7

2.1.1 Random Bit Generators (RBG) 8
2.1.2 Pseudo-Random Bit Generators (PRBG) 8

2.2 Cryptographic Hash Functions . 9
2.2.1 Modification Detection Codes (MDC) 10
2.2.2 Secure Hash Algorithm SHA-256 10
2.2.3 Message Authentication Codes (MAC) 11
2.2.4 Hash-MAC (HMAC) . 12

2.3 Symmetric Cryptography . 13
2.3.1 Advanced Encryption Standard (AES) 14

2.4 Asymmetric Cryptography . 15
2.4.1 Asymmetric Ciphers - RSA . 16
2.4.2 Digital Signatures . 17
2.4.3 Certificates . 20
2.4.4 Authenticated Key Exchange . 20

3 Conceptual Design of a Security Architecture for a ReCoNet 25
3.1 Security Prerequisites for the System . 25
3.2 Security Architecture for the ReCoNet 26

3.2.1 Hardware Modules . 27
Secret-Key Storage . 27
Tamper-Resistant Configuration 27

3.2.2 Software Modules . 28
Crypto Core . 28
Root Certificate . 28

3.3 Digital Rights and Certificates . 28
3.3.1 Encoding of Digital Rights . 29
3.3.2 Certificates . 29

Certified Nodes . 29
Signed Tasks . 30
Manufacturers . 30

iii

Contents

3.3.3 Verification of Certificates . 31
3.4 Secure Task Migration . 32
3.5 Practical Examples for Digital Rights 33

3.5.1 Classes of Hardware Requirements 33
3.5.2 Reliability Level . 34

3.6 Secure Interprocess Communication . 35

4 Implementation and Integration of the Security Layer into the ReCoNet 37
4.1 Hardware Modules . 37

4.1.1 True Random Number Generator (TRNG) 37
4.1.2 Secret Key Storage . 38
4.1.3 SHA-256 . 38

4.2 Software Modules . 39
4.2.1 Crypto Core . 39
4.2.2 Certificates and Digital Rights 40
4.2.3 Authenticated Key Exchange . 40
4.2.4 Secure Interprocess Communication 41
4.2.5 Secure Task Migration . 42
4.2.6 Total Costs of the Implemented RECONETS Security Layer . . . 42

5 Outlook 45

6 Conclusion 47

Bibliography 49

Appendix A Documentation and Demonstration 55
A.1 Host Tools . 55

A.1.1 create manufacturer . 55
A.1.2 create node . 55
A.1.3 create task . 56
A.1.4 sexp . 57
A.1.5 check run . 57
A.1.6 check manufacturer . 58
A.1.7 check node . 58
A.1.8 check task . 58
A.1.9 extract certs.sh . 59
A.1.10 install certs.sh . 59
A.1.11 extract keys.sh . 59
A.1.12 install keys.sh . 59

A.2 Example . 60
A.2.1 Manufacturer Certificates . 60
A.2.2 Node Certificates . 62
A.2.3 Task Signatures . 64

iv

Contents

A.2.4 Allowed Binding between Nodes and Tasks 65
A.2.5 Prepare and run Demonstrator 65

A.3 Demonstrator Traces . 67
A.3.1 Trace of Node ”Alice” . 68
A.3.2 Trace of Node ”Bob” . 75

Appendix B Lists and Index 81
List of Tables . 82
List of Figures . 84
List of Abbreviations . 86
Index . 90

v

vi

Acknowledgements

First and foremost I would like to thank my thesis supervisor, Dipl.-Ing. Dirk Koch, who
has shown a large and consistent interest in my project from the beginning to the end. Nu-
merous scientific discussions and his deep knowledge in reconfigurable computing and
hardware programming languages have greatly improved this work.

I wish to express my sincere gratitude to Prof. Dr.-Ing. Jürgen Teich, Head of the Depart-
ment of Hardware-Software-Co-Design, University of Erlangen-Nuremberg, Germany
for waking my interest in reconfigurable computing with his excellent lectures I attended
during my studies and giving me the opportunity to write my thesis at his department.

Thanks a lot for the extensive support from the staffs of the Department of Hardware-
Software-Co-Design, especially to Dipl.-Phys. Andreas Bininda for his substantial tool
support and Dipl.-Ing. Thilo Streichert for his feedback on the embedded operating sys-
tem.

My warm thanks are due to my father, Dr.-Ing. Klaus Schneider, for his continuous sup-
port including borrowing books, printing tons of papers, and most of all many fruitful
conversations during the last years.

Last but not least I would like to thank my roommate Korbinian Riedhammer, my brother
Matthias Schneider, and Thomas Holleczek for many helpful remarks on the manuscript.

vii

viii

Studienarbeit:
“Secure Task Migration and Interprocess Communication in

Reconfigurable, Distributed, Embedded Systems”

Student: Thomas Schneider
Supervision: Dirk Koch and Prof. Jürgen Teich

Fundamentals: Nowadays, embedded systems like automotive applications consist
more and more of FPGA (Field Programmable Gate Array) based ECUs.
Such FPGAs support to configure just parts of its logic and interconnect resources at run-
time without any interference with the rest of the system. This process is called “partial
runtime reconfiguration”. Due to the progress in silicon industry, it is possible to integrate
complete systems on a single FPGA-chip (SoC).
In the project RECONETS [HKT04, KSD+06, SKHT06] we examine design methodolo-
gies for such embedded systems made upon small networks of hardware reconfigurable
nodes and connections. RECONETS presents a novel framework for increasing fault-
tolerance and flexibility by separating functionality from the structure. Based on FPGAs
in combination with a CPU, tasks implemented in hardware or software can migrate from
one node to another in case of a node defect.

Description: In order to allow secure task migration, tasks must be digitally signed,
e.g., signed by an authorized software or hardware manufacturer. This ensures that a RE-
CONET can recognize if a hardware or software task is unauthorized or manipulated such
that only trustworthy tasks will be executed. This enables a secure update functionality
of both hardware and software in the field, e.g., via UMTS or WLAN. In addition, cer-
tified nodes, e.g., certified by an authorized hardware manufacturer, guarantee that tasks
migrate only to trustworthy nodes. So, no malicious attack can exchange or add a node to
a RECONET. Furthermore, digital rights ensure that each node can only execute specific
groups of tasks. This allows to set security levels, in order to restrict some critical func-
tionality. For example, it may be possible to restrict safety critical tasks to more reliable
nodes in a RECONET.
Beside the authentication of tasks and nodes, the communication must ensure integrity
(no changes) and authenticity (secure assignment to a sender) of messages, for example
by message authentication code algorithms (MAC).
The goal of this assignment is the conceptual design and implementation of a secure
layer for the communication and the task migration in a RECONET. Whenever useful,
the work should utilize FPGA facilities. This may include instruction set extensions as
well as static or dynamic reconfigurable hardware accelerators. In detail, the following
problems have to be solved:

• Concepts for a secure task migration based on digitally signed tasks, certified
nodes, and digital rights for the task execution on specific nodes. This includes the
circumstance that tasks as well as shadow tasks may migrate inside the network.

ix

• Concepts for a secure interprocess communication in a RECONET based on mes-
sage authentication codes.

• Implementation and verification of the concepts on a prototype system consisting of
ESM [BMA+05] platforms in combination with the softcore-CPU NIOS II [Alt06].

• Integration of the secure layer into the RECONET infrastructure based on the op-
erating system MicroC/OS-II.

• Quantitative evaluation of the achieved security with respect to the cost (hardware
and software).

• Writing the report and documentation.

Beside the assignment, Mr. Schneider is expected to write a detailed documentation of all
design files. This includes an installation manual and a description of the test System. It
is assumed that Mr. Schneider is familiar with programming in C/C++ and VHDL prior
to the start of his work.

x

1 Introduction

Reconfigurable, distributed, embedded systems are a synergy of specialized
embedded systems, reliable distributed systems, and flexibile reconfigurable

systems like automotive, avionic or body-area networks that consist of communicating
nodes specialized for certain purposes. The reliability and flexibility of these applications
can be massively enhanced by introducing reconfigurability on node level as well as on
network level.

In the research project RECONETS run by the University of Erlangen-Nuremberg - De-
partment of Computer Science - Hardware-Software-Co-Design, the aspects of fault-
tolerance, availability and flexibility of reconfigurable, distributed, embedded
systems are being investigated [ReC]. Based on Field-Programmable Gate Arrays (FP-
GAs) in combination with a CPU, tasks implemented in hardware or software can migrate
from one node to another in case of a node defect. If not enough hardware/software re-
sources are available functionality can change its implementation style at runtime, i.e. a
task can either run in hardware or software respectively.

Currently, the concepts of dynamic HW/SW partitioning, shadow tasks, HW/SW morph-
ing, HW/SW migration, and HW/SW checkpointing increase reliability of the RE-
CONETS in case of failure of links or nodes.

This thesis investigates how to extend the RECONETS to be able to detect and prevent
intentional attacks on the system like adding untrusted nodes to the network, modifying
messages (man-in-the middle), changing hard-/software stored in a single node (viruses,
trojan horses), or executing untrusted software in the system.

The thesis is structured as follows:

Section 1.1 summarizes the investigated security objectives of a ReCoNet.
Section 1.2 shows what kinds of attacks on FPGAs are known and how to prevent them.
Chapter 2 introduces the basic concepts of cryptography used within this thesis.
Chapter 3 describes the developed security architecture for the RECONETS.
Chapter 4 explains its integration into the existing RECONETS infrastructure.
Chapter 5 gives an outlook on further work. Chapter 6 is a summary of the work presented
in this thesis.

1

1 Introduction

1.1 Security Objectives of a ReCoNet

In order to use a ReCoNet in a security critical environment like a car or an airplane
additional requirements on integrity1 and authenticity2 have to be fulfilled as shown in
Fig. 1.1.

Figure 1.1: Aspects of integrity and authenticity in a ReCoNet:
a) Integrity and authenticity of HW- and SW-modules
b) Integrity and authenticity of messages
c) Authenticity of nodes
d) Update in field
e) Restrict binding of tasks to nodes

In the following these security objectives and possible attacks on the system are ex-
plained.

a) Integrity and authenticity of HW- and SW-modules

An attacker should not be able to alter hardware- or software-modules in the memory of
the nodes (integrity) and also not be able to add untrusted modules like viruses to the
system (authenticity).

b) Integrity and authenticity of messages

Messages exchanged between the nodes must not be alterable (integrity) and have to
originate definitively from the node that claims to have sent the message (authenticity).
Any modifications of messages are detected.

1Integrity ensures that accidental or intentional modifications of data are detected.
2Authenticity allows an unambiguous mapping from data to its initiator.

2

1.2 Attacks and Countermeasures on FPGAs

c) Authenticity of nodes

An attacker must neither be able to connect untrusted nodes to the network nor to clone or
replace an existing node (red node in Fig. 1.1). Each node of the ReCoNet must identify
itself to the other nodes in order to guarantee that it is a trusted node that is allowed to
take part in the ReCoNet.

d) Update in field

Hard- and software modules can be updated offline via a data medium connected to the
ReCoNet or online over a public network like the internet in a trustworthy way. The
modules can originate from different trusted manufacturers that are allowed to produce
specific kinds of modules only. An attacker can neither modify the modules during sub-
mission nor update the systems with untrusted, malicious software.

e) Restrict binding of tasks to nodes

Hard- or software-tasks can be restricted to run only on dedicated nodes by digital rights.
Different restrictions of a ReCoNet are covered like shown in Fig. 1.1:
The ”Video Encoder” can only run on node N2 as this node has direct access to the con-
nected camera. (connected periphery)
The task ”Drive-by-wire” is allowed to run on nodes N1 and N4 only as these nodes have
less periphery connected and therefore are more reliable as the frequency of interrupts
for the CPU might be lower. (reliability)
The task ”Navigation” is allowed to run on every node of the ReCoNet.

1.2 Attacks and Countermeasures on FPGAs

Each node of a ReCoNet is a reconfigurable, FPGA-based system for which known at-
tacks and effective countermeasures against them have been summarized in [WGP03].
The security architecture of the ReCoNet defined in this thesis is based on these protec-
tions of single nodes. In [WGP03] the authors categorize known attacks on FPGAs into
the following categories and explain different countermeasures:

• Blackbox Attacks: ”The attacker inputs all possible combinations, while saving the
corresponding outputs. The intruder is then able to extract the inner logic of the
FPGA, with the help of the Karnaugh map or algorithms that simplify the resulting
tables.” This is practically only feasible on very small FPGAs as the complexity of
this attack grows exponentially with the size of the FPGA: In each possible state
the attacker would have to input all possible inputs to extract the inner logic of the
circuit.

3

1 Introduction

• Readback Attacks: ”Readback is a feature that is provided for most FPGA families.
This feature allows to read a configuration out of the FPGA for easy debugging.”
Most FPGA manufacturers provide readback-lock bits to disable this feature. To
ensure that nobody can turn off the readback-lock bits by fault injection the FPGA
has to be embedded into a secure environment, where the whole configuration is
deleted or the FPGA is destroyed if an electromagnetic interference, heating or
glitches in power-supply were detected.

• Cloning of SRAM FPGAs: ”The configuration data is stored externally in non-
volatile memory (e.g., PROM) and is transmitted to the FPGA at power up in order
to configure the FPGA. An attacker could easily eavesdrop the transmission and get
the configuration file.” Today’s FPGAs provide support for encrypted bitstreams.
The bitstream is symmetrically encrypted before storing it in external non-volatile
memory and decrypt it on-chip on configuration. The symmetric key is stored on-
chip - either in battery backed volatile memory (like in Xilinx Virtex-II using 112
bit 3-DES [AT]) or in one-time programmable non-volatile memory (like in Altera
Stratix II using 128 bit AES [Alt]).

• Reverse-Engineering of Bitstreams: In order to get the design of proprietary algo-
rithms or the secret-keys, one has to reverse-engineer the bitstream. The condition
to launch the attack is not only that the attacker has to get the bitstream, but fur-
thermore the bitstream must not be encrypted.

• Physical Attacks: ”The aim of a physical attack is to investigate the chip design in
order to get information about proprietary algorithms or to determine the secret-
keys by probing points inside the chip. Hence, this attack targets parts of the
FPGA, which are not available through the normal I/O pins. This can potentially be
achieved through visual inspections and by using tools such as optical microscopes
and mechanical probes. However, FPGAs are becoming so complex that only with
advanced methods, such as Focused Ion Beam (FIB) systems, one can launch such
an attack.” In [WGP03] the authors analyzed the effort needed to physically attack
FPGAs based on SRAM, Anti-fuse and FLASH technology.

• Side-Channel Attacks: ”Any physical implementation of a cryptographic system
might provide a side channel that leaks unwanted information. Examples for side
channels include in particular: power consumption, timing behavior, and electro-
magnetic radiation.” While Simple Power Analysis (SPA) attacks are feasible on
FPGAs Differential Power Analysis (DPA) would be harder to implement on an
FPGA than on an ASIC as the power consumption of interconnects (60%) is much
higher than that of clocking (14%), logic (16%), and others (10%). The numbers
in brackets are estimates for a XILINX Virtex-II FPGA as reported in [WGP03].
”The methods [to prevent side-channel attacks] can generally be divided into soft-
ware and hardware countermeasures, with the majority of proposals dealing with
software countermeasures. ”Software” countermeasures refer primarily to algo-
rithmic changes, such as masking of secret-keys with random values, which are

4

1.2 Attacks and Countermeasures on FPGAs

also applicable to implementations in custom hardware or FPGA. Hardware coun-
termeasures often deal either with some form of power trace smoothing or with
transistor-level changes of the logic. Neither seem to be easily applicable to FP-
GAs without support from the manufacturers. However, some proposals such as
duplicated architectures might work on todays FPGAs.” Also measurements to de-
tect tampering attempts like glitches in power-supply, heating or jitter in the system
clock could prevent special side-channel attacks.

5

1 Introduction

6

2 Cryptographic Fundamentals

This chapter shortly presents the essential cryptographic algorithms and protocols used
in this thesis. These and further information can be found in [MVO96, Sch96].

The Kerckhov Principle [Ker83] states that the security of any crypto-system should only
depend on the secrecy and unpredictability of secret keys whereas the used algorithms
should be public. This allows everybody to examine the level of security of the proposed
security system.

Table 2.1 shows the notations throughout this thesis.

Notation Meaning Section
Ap Public-key of user A
As Secret-key of user A
KAB Symmetric key K shared between A and B.
K[I] Symmetric encipherment of information I using the symmetric-key K. 2.3
Ap[I] Asymmetric encipherment of information I using the public-key of A. 2.4.1
As[I] Asymmetric encipherment of information I using the secret-key of A. 2.4.1
K{I} Information I symmetrically signed with K. 2.2.3
A{I} Information I asymmetrically signed with As. 2.4.2

Table 2.1: Notation for keys, encryptions and signatures

2.1 Random Numbers

The security of many cryptographic systems depends on the unpredictability of random
numbers used for:

• Key generation1

• Initialization vectors for modes of operation for symmetric block ciphers (2.3.1)

• Nonces (numbers used once) in cryptographic protocols (2.4.4)

1The Kerckhov principle requires the randomness (unpredictability) of keys as described before.

7

2 Cryptographic Fundamentals

A random bit generator (RBG) is a device or an algorithm which outputs a sequence of
statistically independent and unbiased2 binary digits.

A random number generator (RNG) produces uniformly distributed numbers in the in-
terval [0,N]. It can be constructed out of a RBG by successively taking dlog2 Ne bits of
its output and discarding all numbers that are greater than N.

2.1.1 Random Bit Generators (RBG)

(True) random bit generators ((T)RBG) are based on truly random events that are unpre-
dictable.
Hardware-based random bit generators exploit the randomness of physical effects that
are quantum mechanically unpredictable. Methods which can be implemented on a chip
include:

• Thermal noise from a semiconductor diode or resistor

• The frequency instability of a free running oscillator

• The amount a metal insulator semiconductor capacitor is charged during a fixed
period of time

Software-based random bit generators are mostly based on a combination of:

• the system clock

• user input and elapsed time between input events

• operating system values like system load and network statistics

In [MVO96, chapter 5.4] several statistical tests to measure the quality of randomness of
PRBGs are presented.

2.1.2 Pseudo-Random Bit Generators (PRBG)

A pseudo-random bit generator (PRBG) is a deterministic3 algorithm that takes a truly
random bit sequence of length k (seed) as input and outputs a sequence of length l � k
that ”appears” to be random.

Standardized PRBGs are the ANSI X.9.17 PRBG (based on 3-DES [Nat99]) or the FIPS
186 PRBG (based on SHA-1 or DES) described in [MVO96, chapter 5.3].

2’0’ and ’1’ occur with same probability.
3Given the same initial seed, the generator will always produce the same output sequence.

8

2.2 Cryptographic Hash Functions

A cryptographically secure pseudo-random bit generator (CSPRBG) is a PRBG that
passes the next-bit test: There is no polynomial-time algorithm that can predict the
(m + 1)st bit of the output sequence on input of the first m bits with a probability sig-
nificantly greater than 0.5.

Examples for CSPRBGs are [MVO96, §5.5]:

• Blum-Blum-Shub-PRBG (BBS-PRBG) based on the intractability of the integer
factorization problem: xi = x2

i−1 mod N, where N = pq and p, q are two secret
large primes both congruent 3 modulo 4.

• RSA-PRBG based on the intractability of the RSA problem: xi = xe
i−1 mod N,

where N = pq and p, q are two secret large primes and e a RSA encryption expo-
nent.

The cryptographically secure pseudo-random bit sequence is (zi) = ((xi) mod 2).

2.2 Cryptographic Hash Functions

A hash function is a function h̄ that fulfills these properties:

1. compression - h̄ maps an input x of arbitrary length to an output h̄(x) of fixed length.

2. ease of computation - given h̄ and an input x, h̄(x) is easy to compute4.

A cryptographic hash function h - also known as cryptographic checksum is a hash func-
tion h̄ with the following additional properties:

3. preimage resistance - for essentially all pre-specified outputs y, it is computation-
ally infeasible5 to find a pre-image x such that h(x) = y. In other terms - h can not
be inverted practically.

4. 2nd-preimage resistance - it is computationally infeasible to find a second preimage
that has the same hash value as a given input, i.e. given x find x′ 6= x : h(x) = h(x′).

5. collision resistance - it is computationally infeasible to find any two distinct inputs
x,x′ that hash to the same output, i.e. h(x) = h(x′).

Collision resistance is the strongest property of all:

2nd-preimage resistance ⇐ collision resistance ⇒6 preimage resistance

Given any hash-function of bitlength n the following brute-force attacks exist [Sch96]:

4computable in polynomial time
5not computable in polynomial time
6For cryptographic hash functions where compression factor ≥ 2, i.e. #dom(h)≥ 2 ·#codom(h).

9

2 Cryptographic Fundamentals

• 2nd-preimage attack: a 2nd-preimage for a given value can be found in approxi-
mately 0.5 ·2n = 2n−1 operations by hashing random values.

• collision attack (birthday-attack): a collision can be found in approximately
1.2 ·

√
2n = 1.2 ·2n/2 operations by hashing random values and searching for a du-

plicate.
This attack is the reason why the cryptographic hash function used in a crypto
system must have about twice the size of the used symmetric cipher for equal com-
putational security of both cryptographic primitives. Thus the security layer for the
RECONETS uses a 256 bit cryptographic hash function (SHA-256) and a 128 bit
symmetric encryption algorithm (AES-128) that are described later in this chapter.

2.2.1 Modification Detection Codes (MDC)

A modification detection code (MDC) H(M) is a collision resistant cryptographic hash
function h used to ensure the integrity of a message M (detect modifications). In con-
trast to error detection codes (EDC) like CRC-Checksums (cyclic redundancy check) it is
however computationally infeasible to find a message that hashes to a given value (preim-
age resistance of h). The cryptographic hash value of a message M, H(M) is called its
message digest (MD).

Examples for MDCs are MD5, SHA-1 and the SHA-2 family of hash-functions (Secure
Hash Algorithm). [Bar]

As proposed in [RRS06] MD5 and SHA-1 should no longer be used as attacks on both
are known: MD5 because of its too short bit-length of 128 bit where a collision can be
found in 264 operations and SHA-1 because of an attack published in Feb 2005 which
reduces the effort to find a collision from 280 down to 269 operations.
”While NIST continues to recommend a transition from SHA-1 to the approved SHA-
2 family of hash functions (SHA-224, SHA-256, SHA-384, and SHA-512), NIST has
also decided that it would be prudent in the long-term to develop one or more hash
functions through a public competition, similar to the development process for AES.”
[Nat07, Sch07]

The security layer for the RECONETS implemented in this thesis uses SHA-256 which
is thought to be practically collision resistant by now. [RRS06]

2.2.2 Secure Hash Algorithm SHA-256

SHA-256 is a collision resistant cryptographic hash function designed and standardized
by the National Institute of Standards and Technology (NIST) [Nat02]. It hashes a mes-
sage M, having a length of l bits, 0 ≤ l < 264 to a 256-bit message digest. First the
message is padded to a length which is a multiple of 512 bit. After that, each 512-bit

10

2.2 Cryptographic Hash Functions

block of the message is processed iteratively in 64 rounds starting from a fixed initializa-
tion vector (IV) with a length of 256-bit.

Figure 2.1: Structure of SHA-256 round i: The eight 32-bit state registers A . . . H are
updated by the round function f that depends on the round constant Ki and the
next data block to hash Wi.

Fig. 2.1 shows how the eight 32-bit working registers (A. . . H) containing the 256-bit
hash value and initially the fixed initialization vector (A0. . . H0) are updated in each of
the 64 rounds. The non-linear function f has the old values of the working registers
(Ai−1. . . Hi−1), a round-dependent constant Ki and the data derived from the currently
hashed block Wi as inputs and computes the new values of the working registers (Ai. . . Hi).
f consists of multiple cyclic shifts, boolean functions (xor, and, not) and modular addi-
tions of its input values. (A0. . . H0), f , Ki and Wi are specified in [Nat02].

2.2.3 Message Authentication Codes (MAC)

A message authentication code (MAC) or symmetric signature is a keyed hash function
H(K,M) that has two inputs: the data to be hashed (M) and a secret-key (K). A MAC
for M can be computed or verified if and only if K is known. Besides the two properties
of hash functions compression and ease of computation a MAC holds this additional
property:

3. computation-resistance - given zero or more text-MAC pairs (Mi,H(K,Mi)), it is
computationally infeasible to compute any text-MAC pair (M,H(K,M)) for any
new input M /∈

⋃
i

Mi.

11

2 Cryptographic Fundamentals

A MAC can be used to ensure both the authenticity (correct sender) and the integrity (no
modification) of a message:

Figure 2.2: Symmetric-Signature (from [IMGc]): The sender signs the message symmet-
rically (MAC) with the shared secret key. The recipient verifies the signature
with the same key to detect any modification of the message.

The sender Alice wants to send a message M to the recipient Bob. On receipt, Bob
wants to ensure that M was not modified (integrity) and really originated from Alice
(authenticity) as shown in Fig. 2.2:

1. Alice and Bob share a common secret-key KAB known only to them.7

2. Alice computes the MAC m of the message M using KAB: m = H(KAB,M) and
sends (M,m) to Bob.
KAB{M} := (M,m) = (M,H(KAB,M)) denotes such a message M which is sym-
metrically signed with KAB.

3. Bob receives (M̂, m̂), computes X = H(KAB,M̂) and compares X to m̂. If they are
identical, he can be sure, that M originates from Alice and was not modified, as
only Alice knows KAB and is able to compute the right MAC of M (computation-
resistance).

2.2.4 Hash-MAC (HMAC)

Any MDC H(M) (like SHA-256) can be used to construct a MAC H(K,M) with key K
and message M with the following scheme [KBC97]:

H(K,M) = H((K⊕opad)|H((K⊕ ipad)|M))

7How two parties can securely agree on such a common secret-key will be explained in 2.4.4.

12

2.3 Symmetric Cryptography

where ⊕ denotes the bitwise XOR, | the concatenation of two bitstrings, B the block
length of H in bytes (e.g. 512/8 = 64 for SHA-256 which hashes blocks of 512 bit),
opad (outer padding) = 0x5C repeated B times, ipad (inner padding) = 0x36 repeated B
times. K should have the same length as the block length B.

2.3 Symmetric Cryptography

A symmetric-key cipher is a pair of complementary functions (K[M],K−1[C]), where
K[M] is the encryption function, K−1[C] the decryption function, K the symmetric-key,
M the plaintext message and C = K[M] the encrypted ciphertext. (Fig. 2.3)
The two functions K[M] and K−1[C] are complementary:

K−1[K[M]] = M

As described in [MVO96, chapter 7] a symmetric-key cipher has to be resistant against
several attacks. In general it must be computationally infeasible neither to reconstruct
parts of the plaintext M from the ciphertext C (partial break) nor to reconstruct the key K
out of many ciphertexts Ci (total break).
These properties guarantee confidentiality of encrypted messages.

Figure 2.3: Symmetric-Key Cipher (from [IMGb]): The sender encrypts the plaintext with
the shared secret key and transmits the encrypted ciphertext. The recipient
decrypts the ciphertext with the same key to get back the plaintext.

Examples for symmetric-key ciphers are block-ciphers like Triple-DES, IDEA, Twofish,
Serpent or AES (Rijndael), and stream-ciphers like RC4. [Fut00]

As AES is standardized and the most widely used symmetric cipher with a reasonable
key length it will be used as the symmetric encryption algorithm for the security layer of
the RECONETS.

13

2 Cryptographic Fundamentals

2.3.1 Advanced Encryption Standard (AES)

AES was standardized by the National Institute of Standards and Technology (NIST) as
FIPS 197 [Nat01] in 2001 after a 5-year standardization process as successor of DES.
The algorithm developed by Joan Daemen and Vincent Rijmen was chosen out of 15
proposed AES candidates. It works on 128-bit Blocks and uses keys of size 128, 192 or
256 bits.
The data to be encrypted is written into a 4x4 matrix of bytes which is then transformed in
10, 12 or 14 rounds depending on the key size. Each round is a substitution-permutation
network (SPN) consisting of these four steps shown in Fig. 2.4:

1. AddRoundKey: a round-key derived from the key is XOR-ed to the elements of the
matrix

2. SubBytes: each element of the matrix is substituted by a fixed 8-bit to 8-bit lookup
table (S-Box)

3. ShiftRows: the rows are rotated by a fixed offset:
a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

⇒

a0,0 a0,1 a0,2 a0,3
a1,1 a1,2 a1,3 a1,0
a2,2 a2,3 a2,0 a2,1
a3,3 a3,0 a3,1 a3,2

4. MixColumns: the columns are mixed by a linear transformation:

b∗,0
b∗,1
b∗,2
b∗,3

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

a∗,0
a∗,1
a∗,2
a∗,3

Decryption inverts these operations in reverse order.

AES is a so called block cipher that enciphers blocks of a fixed length of 128-bit. A mode
of operation describes, how a block cipher can be used to encipher longer messages by
chaining single blocks. Possible modes are ECB , CBC , CFB , OFB and CTR described
in [MVO96, chapter 7]. All modes (except ECB) require a pseudo-random initialization
vector (IV) to avoid that two identical plaintexts are encrypted to the same ciphertext.

There are some theoretical attacks on AES based on its algebraic structure that might be
used to break AES in the future [Sch02], however they are impracticable by now.

The main disadvantage of symmetric cryptography is that two parties wishing to commu-
nicate confidentially or to ensure authenticity and integrity of messages have to agree on
a common secret-key in advance (key-distribution problem). Asymmetric cryptography
solves this problem.

14

2.4 Asymmetric Cryptography

Figure 2.4: Round transformations of AES (from [IMGa]): The 512 bit message block is
written into a 4x4 matrix of 32 bit values and the transformations AddRound-
Key, SubBytes, ShiftRows and MixColumns are applied to it in each round.

2.4 Asymmetric Cryptography

Asymmetric cryptography allows two parties to communicate securely without having a
shared common secret (e.g. a key for a symmetric cipher) before. It was invented in the
early 1970s by James H. Ellis, Clifford Cocks, and Malcolm J. Williamson of the British
Government Communications Headquarters (GCHQ). [Ell70, Coc73, Wil74] It is based
on pairs of asymmetric keys - a public-key Kp and a secret-key Ks also called private-key.
As in symmetric ciphers, an asymmetric cipher consists of two complementary functions
for encryption Kp[M] and decryption Ks[C]:

Ks[Kp[M]] = M

It must also be computationally infeasible to neither gain information about parts of the
message M out of its ciphertext C = Kp[M] and Kp, nor to reconstruct Ks out of multiple
ciphertexts Ci and Kp.
The drawback of asymmetric-key algorithms is, that they are much slower than symmetric-
key algorithms and need longer keys. Thus hybrid crypto systems [Den04] working with
temporary-keys are widely used. At the beginning of a session, an asymmetric algorithm
is used to exchange a symmetric temporary-key between the two parties wishing to com-
municate. This is used afterwards to encrypt messages with a much faster symmetric-key

15

2 Cryptographic Fundamentals

Figure 2.5: Asymmetric-Key Cipher (from [IMGb]): The sender encrypts the plaintext
with the recipient’s public key and sends the encrypted ciphertext. The recip-
ient decrypts the ciphertext with his private key. Two different, corresponding
keys are used: a public key for encryption and a private key for decryption.

algorithm like AES to guarantee confidentiality or with a MAC to guarantee integrity and
authenticity of messages.

2.4.1 Asymmetric Ciphers - RSA

Asymmetric ciphers are based on hard mathematical problems like discrete logarithms in
special groups (ElGamal, Elliptic Curve Cryptography (ECC)) or factorization of large
integers (RSA) for which no efficient algorithms are known by now [MVO96].
The upcoming techniques based on elliptic curves provide a shorter key-length and faster
execution time than the classical approaches. [Ros98]

RSA was invented in 1977 by Ronald L. Rivest, Adi Shamir and Leonard Adleman
[RSA78]. As it is currently the most widely used public-key crypto system this thesis
will also use this algorithm for asymmetric cryptography.
RSA is standardized in PKCS-1 (Public Key Cryptography Standard) [RSA02].

Each participant A generates an individual asymmetric-key pair (Ap,As):

1. choose two large primes p,q at random

2. compute N = p ·q, φ(N) = (p−1) · (q−1). 8

8φ is Euler’s totient function.

16

2.4 Asymmetric Cryptography

3. choose a public exponent 1 < e < φ(N), with gcd(e,φ(N)) = 1. 9

4. compute d = e−1 mod φ(N) with the Extended Euclidean Algorithm

5. As := (d,N), Ap := (e,N).

A publishes Ap and keeps As secret.

If Bob wants to encrypt a message M for Alice, he does the following:

1. get A’s public-key Ap = (e,N)10

2. transform M into chunks Mi with |Mi|< N

3. encrypt Mi with the A’s public-key to Ci = Ap[Mi] := Me
i mod N

4. send Ci to A.

When Alice receives Ci, she can decrypt the message with her secret-key As = (d,N):

1. decrypt Mi = As[Ci] := Cd
i mod N

2. transform chunks Mi back to message M

RSA is a correct asymmetric encryption scheme as it satisfies:

As[Ap[Mi]] = (Me
i mod N)d mod N = Med

i mod N ≡M1 mod φ(N)
i mod N = Mi (2.1)

The security of RSA depends on the unfeasibility to factor N into its prime factors p and q.
RSA Security organizes the RSA Factoring Challenge where the largest factorized RSA
modulus by 2006 is RSA-640, a 640-bit number [RSA]. RSA and the NIST recommend
to use a modulus of 1024 or better 2048-bits to guarantee long-term security [RDS02].
The security layer for the RECONETS uses asymmetric 1024 bit keys.

2.4.2 Digital Signatures

Digital signatures or asymmetric signature are the asymmetric counterpart to the sym-
metric MACs. They also guarantee message integrity and authenticity but without prior
agreement on a common secret-key.

The basic setting is the same as in the symmetric case however with two different keys as
shown in Fig. 2.6.
There are several schemes for digital signatures like DSA, its counterpart ECDSA based
on elliptic curves, ElGamal signatures or RSA signatures.

17

2 Cryptographic Fundamentals

Figure 2.6: Asymmetric-Signature (from [IMGc]): The sender signs the message asym-
metrically with his private key. The recipient verifies the signature with the
sender’s public key to detect the sender and any modification of the message.
Two different, corresponding keys are used: a private key for signing and a
public key for verifying.

In the following RSA digital signatures that are used in our implementation are described:

Alice signs a message M as follows (Fig. 2.7):

• create a message digest m of M using a MDC H(M): m = H(M).

• sign the message digest with her secret-key As = (d,N):
S = As[m] = md mod N.

• the signed message consists of the message along with the signature (M,S).
A{M} := (M,S) = (M,As[H(M)]) denotes such a message M that is asymmetri-
cally signed by A.

Bob receives the signed message (M̂, Ŝ) from A and verifies the signature as follows (Fig.
2.8):

• get A’s public-key Ap = (e,N)10.

• compute the message digest of M̂: m̂ = H(M̂)

• verify the signature with A’s public-key: X = Ap[Ŝ] = Ŝe mod N.

9The greatest common divisor can be computed efficiently with the Euclidean algorithm.
10and verify that the public-key really belongs to Alice e.g. by checking certificates as described in sub-

section 2.4.3.

18

2.4 Asymmetric Cryptography

Figure 2.7: Creation of a digital signature (from [IMGd]): The document is hashed, the
small hash digest is encrypted with the private key of the signer and attached
to the document as signature. The public certificate ensures the correct map-
ping between the signer’s name and his public key to verify the signature.

Figure 2.8: Verification of a digital signature (from [IMGd]): The signature is decrypted
with the public key of the signer and compared to the hash digest of the doc-
ument.

• if m̂ = X , he accepts the signature and knows, that the message M really originates
from A and has not been altered.

RSA is a correct signature algorithm as it satisfies11:

Ap[As[m]] = (md mod N)e mod N = mde mod N ≡ m1 mod φ(N) mod N = m (2.2)

11Note that this is the same as formula 2.4.1 with exchanged public and private keys.

19

2 Cryptographic Fundamentals

2.4.3 Certificates

For asymmetric cryptography it is essential to know that a public-key really belongs to
a specific participant and was not published by an attacker who pretends to be someone
else (man in the middle attack).

A Certificate binds a public-key to an identity (person, organization or IT system).
A Certificate Authority (CA) issues a certificate CA〈〈A〉〉 to A which guarantees that the
CA has verified the correct binding between the public-key Ap of A and its identity:

CA〈〈A〉〉 := CA{UCA,UA,Ap}

where UCA is the unique name of the CA, UA the unique name of A and Ap the public-key
of A.
A certificate can be compared to a passport that binds a picture (public-key) to a person
(identity) and can only be issued by a Passport Service (CA) that guarantees the cor-
rect binding by being the only institution to issue correct passports (signatures with CA’s
secret-key).

In X.509 the format of certificates is standardized by the International Telecommunica-
tion Union (ITO-T) [ITU05].

A CA can also issue a certificate to another CA so that certificate hierarchies or certifi-
cate trees can be set up. The root CA of a certificate tree has a self-signed root certificate
(CA0 in Fig 2.9).

To verify a certificate in a certificate tree the certificate tree is climbed up and each certifi-
cate up to the root certificate is verified. If one trusts the root certificate (the public-keys
of trusted root certificates are compiled into an application for example) and all certifi-
cates in the verified certificate chain are valid, the leaf certificate is valid, too.
To verify the certificate of B in Fig. 2.9, one verifies these certificates in the given order:
CA0.1.2〈〈B〉〉,CA0.1〈〈CA0.1.2〉〉,CA0〈〈CA0.1〉〉,CA0〈〈CA0〉〉

Each participant wanting others to be able to verify his certificate stores all certificates
from his certificate up to the root certificate and hands them out on request.

2.4.4 Authenticated Key Exchange

In an authenticated key exchange protocol two parties authenticate each other (to ensure
that each party really communicates with the intended other party and not with an at-
tacker who pretends to be the intended party) and exchange a common secret key.

In a challenge-response protocol B authenticates to A by signing a nonce received from A
with his secret-key Bs and sending the signature back to A. This is used in the following

20

2.4 Asymmetric Cryptography

Figure 2.9: Certificate tree with CA0 as root: A hierarchic certificate hierarchy can be
built by signing sub certificates. A certificate authority (e.g. CA0.1) signs the
certificate of a sub certificate authority (e.g. CA0.1.1.2).

protocols.

A nonce (number used once) is a non-repeating number, which is used to detect replay
attacks12 in cryptographic protocols. To ensure that it is used only once, it should be a
strictly increasing sequence, time dependent and/or contain enough pseudo-random bits
to ensure a probabilistically insignificant chance of repeating a previously used value.

Two parties can authenticate each other and exchange a common symmetric-key by using
two runs of a challenge-response protocol and an asymmetric cipher like in the three-way
authentication protocol also called three-way handshake specified in [ITU05, 18.2.2.3].

The total number of public-key operations needed for authentication and the exchange of
one key using this scheme is 8: A signs twice, verifies once and encrypts once whereas B
verifies twice, signs once, and decrypts once.

For the RECONETS security layer a faster but equally computational secure three-way au-

12an attacker records a message and replays it later

21

2 Cryptographic Fundamentals

thenticated key exchange protocol is implemented where the number of expensive public-
key operations is reduced to 6: A signs twice and encrypts once whereas B verifies twice
and decrypts once:

Figure 2.10: Fast three-way authenticated key exchange protocol:
1) generate nonce rA and session key
2) send asymmetrically signed nonce and encrypted session key
3) verify signature, decrypt session key and generate nonce rB
4) send symmetrically signed nonces
5) verify signature and nonce rA
6) send asymmetrically signed nonce
7) verify signature and nonce rB

Alice and Bob want to authenticate each other and exchange a common secret-key to
symmetrically sign messages KAB with the fast three-way authenticated key exchange
protocol shown in Fig. 2.10:

1. A computes:

• get B’s certificate and all certificates needed to verify it (if she doesn’t already
have them, she asks B for them), verifies them and extracts B’s public-key Bp
out of B’s certificate.

• generates a random nonce rA

• generates a session key KAB = (EAB,MAB) consisting of a random symmetric
encryption key EAB and a random symmetric MAC key MAB.

2. A sends the following message to B:

CA,A{rA,B,Bp[KAB]}

where CA is A’s certificate and all certificates that B needs to verify this.

3. B computes:

22

2.4 Asymmetric Cryptography

• verifies A’s certificate using CA and extracts Ap out of it

• checks that B itself is the intended recipient

• verifies A’s signature

• optionally, checks that rA has not been replayed

• decrypts Bp[KAB] with his secret-key: KAB = Bs[Bp[KAB]]

• generates a random nonce rB

4. B sends the following message to A:

MAB{rB,A,rA}

5. A computes:

• checks that A itself is the intended recipient

• verifies B’s signature

• optionally, checks that rB has not been replayed

• checks that the received rA is identical to the rA sent before

6. A sends the following message to B:

A{rB,B}

7. B computes:

• checks that B itself is the intended recipient

• verifies A’s signature

• checks that the received rB is identical to the rB sent before

The Internet Key Exchange protocol (IKE) [HC98] is used in Virtual Private Networks
(VPN) as a standard for authenticated key exchange.
It works in two phases: The first phase authenticates the two parties to each other by
a three-way authentication protocol and exchanges a common session key for further
agreement on temporary-keys. The second phase is periodically scheduled and exchanges
temporary-keys for encryption and integrity of the communication by using the session
key which was exchanged in the first phase.

23

2 Cryptographic Fundamentals

24

3 Conceptual Design of a Security
Architecture for a ReCoNet

In order to achieve the security objectives of a ReCoNet as secure task-migration and
interprocess communication described in section 1.1, a security architecture has to be de-
signed. As the protection of a single, reconfigurable, embedded system has already been
investigated before (see section 1.2), the security architecture for a ReCoNet focusses
on the security requirements of a ReCoNet as a distributed system. The security re-
quirements for a single reconfigurable, embedded system are formalized in four security
prerequisites. All these prerequisites can be achieved with today’s FPGAs as described
below.

3.1 Security Prerequisites for the System

These four prerequisites of the reconfigurable, embedded system are assumed:

Pre1 Secret-Key storage: A small secret can be stored confidentially, non-cloneably and
tamper-resistantly in the system.

Pre2 Tamper-resistant configuration: The system can detect modifications of a hardware
module on startup.

Pre3 Secure Hardware: During operation confidentiality and integrity of the hardware
are ensured.

Pre4 Secure Memory: During operation confidentiality and integrity of the memory are
ensured.

How these prerequisites can be provided by SRAM-based FPGAs supporting bitstream
encryption1 is described in the following. Both FPGA families that are currently used in
the RECONETS project support bitstream encryption: Xilinx Virtex-II provides bitstream
encryption with 112 bit 3-DES and Altera with 128 bit AES.

Systems with SRAM-based FPGAs contain on-chip and external memory for data and
configuration data with different levels of trust (Fig. 3.1). An attacker can easily read
and modify the contents of untrusted components external to the FPGA chip but not of
trusted components inside the FPGA.

1as described in ”Cloning of SRAM FPGAs” in section 1.2

25

3 Conceptual Design of a Security Architecture for a ReCoNet

Figure 3.1: Trust model of SRAM-based FPGA boards: External data memory (volatile
and non-volatile) and external configuration memory (non-volatile) are un-
trusted components as an attacker can tap into the connection wires (red).
The FPGA and on-chip memory are trusted (green).

• If the bitstream is encrypted1, an attacker has no chance to tap the configuration
during transmission from the external configuration memory to the FPGA. In ad-
dition, this prevents a reverse engineering of the circuit or any kind of bitstream
manipulation. Based on this, Pre1 and Pre2 can be provided.

• In the following it is assumed that an attacker can neither observe nor modify the
hardware in the FPGA chip after configuration (trusted component): blackbox ,
readback , physical and side-channel attacks can be prevented by using counter-
measures as described in section 1.2. This provides Pre3.

• All on-chip memory is secure memory as postulated in Pre4. Additionally, external
memory can be used as secure memory by signing and encrypting data as described
in [SCG+03].

3.2 Security Architecture for the ReCoNet

In order to provide the security objectives described in the beginning of this thesis (Sec-
tion 1.1), a security architecture for the ReCoNet is designed. The security architecture is
based on the previously described security prerequisites and is partitioned into the hard-
and software modules shown in (Fig. 3.2):

26

3.2 Security Architecture for the ReCoNet

Figure 3.2: Security Architecture for the ReCoNet partitioned into Software (Crypto Core
providing cryptographic algorithms, Root certificate to verify digital signa-
tures) and Hardware (Secret-key storage, True Random Number Generator
(TRNG) for random numbers that are i.e. needed in cryptographic protocols,
and a module to verify the symmetric signatures of software modules (SHA-
256))

3.2.1 Hardware Modules

Secret-Key Storage

Each node has an individual asymmetric RSA secret-key to identify itself to the rest of
the system in a challenge-response protocol (see 2.4.4). Each attacker who learns the
secret-key can identify himself as the node whose key was stolen. So the secret-key must
be tied to the hardware of the node in a confidential and uncloneable way (Pre1) and must
not leave the node.
In addition each node stores an individual HMAC secret-key in the Secret-key storage
module (see next subsection).

Tamper-Resistant Configuration

These two modules are stored as a tamper-resistant configuration (Pre2):

• A hash module for SHA-256 together with a corresponding HMAC- and a symmet-
ric signature generation/verification module can be implemented completely in
hardware to verify the symmetric signature of security relevant software modules
on system startup by using the HMAC secret-key stored in the secret-key storage
module.

27

3 Conceptual Design of a Security Architecture for a ReCoNet

• As cryptographic protocols and the padding for asymmetric ciphers (see next sub-
section) need random numbers, a true random-number generator (TRNG) has
been implemented in hardware which seeds the pseudo random-number genera-
tor (PRNG) running in software.

3.2.2 Software Modules

Security relevant modules consisting of Crypto Core, Root certificate and other secu-
rity relevant software (e.g. operating system kernel, protocol stack, task resolution) are
symmetrically signed with the HMAC secret-key stored in the secret-key storage before
loading in the system’s non-volatile external data memory (FLASH). On power-up, the
security relevant modules are transfered from non-volatile memory into secure memory
and thereafter the symmetric signature is verified by the verification module implemented
in hardware. Only if the signature is valid, the security relevant modules were not tam-
pered and the system continues booting.

Crypto Core

The Crypto Core provides cryptographic primitives like RSA, SHA-256, asymmetric sig-
nature generation/verification, AES for symmetric encryption and a PRNG (Pseudo Ran-
dom Number Generator) in software and is stored in a tamper-resistant way by symmet-
rically signing it as described before.
The PRNG ensures that the produced random numbers ”look” randomly distributed even
if the underlying TRNG (True Random Number Generator) is not perfect and the PRNG
is much faster than the TRNG. By combining a PRNG and a TRNG only very few true
random numbers are needed.

Root Certificate

The root certificate is the root of the certification hierarchy and is required for verification
of certificates as described in 2.4.3. Everybody is allowed to read it (as it only contains
a public key and some information about the issuer of the root certificate) but it must be
ensured, that the root certificate stored in a node cannot be replaced by an attacker. Thus,
the root certificate is stored tamper-resistantly.

3.3 Digital Rights and Certificates

The following section describes how digital rights (DR) based on Certificates can be
added to the ReCoNet in order to guarantee that each node can only execute special trust-
worthy tasks.

Each node is allowed to run special kinds of tasks only. What tasks a node is allowed
to run might depend on its connected periphery (e.g. specific sensors or actors), the re-
liability of its hardware (a node with a high probability of failure won’t be allowed to

28

3.3 Digital Rights and Certificates

run critical tasks like steer-by-wire), its performance, cost, and more application-specific
factors.

3.3.1 Encoding of Digital Rights

Digital rights determine if a task T is allowed to run on a node N. They should be en-
coded in a generic way to allow arbitrary complex levels of digital rights.

The following scheme encodes digital rights D in conjunctive normal form (CNF) con-
sisting of N clauses Ci that contain Li literals Vi, j:

D(N) =
N∧

i=1

Li∨
j=1

Vi, j (3.1)

Each digital right D consists of N digital right vectors (DRV) Vi with Li bits where the
j-th bit represents the literal Vi, j of the corresponding clause.

In order to check whether digital right D1 is a subset of D2 (D1 v D2), D1 must have
at least as many digital right vectors as D2, each digital right vector must have the same
length and the 1-bits of D1 must be a subset or equal to the 1-bits of D2:

D1 v D2 ⇔ (D1.N ≥ D2.N)∧ (∀1≤i≤D2.N(D1.Li = D2.Li)∧ (D1.Vi & D2.Vi 6= 0)) (3.2)

Thus, a digital right can be narrowed by adding more clauses (add additional conditions)
or switching off some bits in existing clauses (narrow existing conditions).

Practical examples for the encoding of digital rights will be shown in section 3.5.

3.3.2 Certificates

Certificates bind public-keys and digital rights to nodes, tasks and manufacturers. Each
certificate contains a unique ID to determine its predecessors in the certification hierarchy
as described in 2.4.3 and a name that identifies the owner of the certificate.

Certified Nodes

The permissions (digital rights) of a certified node specify which groups of tasks the node
is allowed to execute. On production of a node, the hardware manufacturer generates an
asymmetric-key pair (e.g. a RSA key pair as described in 2.4.1) for each node and stores
the generated secret-key in the node as described in 3.1. He creates a node certificate
containing the generated public-key (PubKey), the node’s permissions and the serial-
number (S/N) of the node by signing it with the manufacturer’s secret-key (Fig. 3.3).
The node certificate is public and will be stored in the node, too.

29

3 Conceptual Design of a Security Architecture for a ReCoNet

Figure 3.3: Certified Node

Signed Tasks

Security critical tasks that can migrate through the ReCoNet are called signed tasks. A
software manufacturer that has developed, verified and tested a security critical task,
attaches the needed requirements (digital rights) of the task to it and signs them along
with its binary with the manufacturer’s secret-key (Fig. 3.4).

Figure 3.4: Signed Task

Manufacturers

Each manufacturer holds besides his secret-key (SecKey) a certificate that binds the cor-
responding PubKey to the manufacturer’s name and specifies, what permissions (digital
rights) the manufacturer has, i.e. what kinds of digital rights for certified nodes/signed
tasks the manufacturer is allowed to grant (Fig. 3.5).

Each manufacturer M can delegate a subset of his permissions to sub-manufacturers S
by issuing certificates to them. This creates a certification hierarchy of manufacturers as
described in 2.4.3.

30

3.3 Digital Rights and Certificates

Figure 3.5: Certificate Hierarchy

A sub-manufacturer S must have a subset of the permissions of its issuer M:

S.permissionsvM.permissions (3.3)

A manufacturer M can only certify nodes N with:

N.permissionsvM.permissions (3.4)

A manufacturer M can only sign tasks T with:

T.requirementsvM.permissions (3.5)

3.3.3 Verification of Certificates

The function checkNodeCert(checkTaskSig) verifies the certificate(signature) of a
certified node (signed task):

• The certificate (signature) of the node (task) and equation 3.4 (3.5) are checked.

• Afterwards the software verifies the chain of manufacturers’ certificates to the root
certificate that is implicitly trusted by all participants of the ReCoNet. Besides
verifying the manufacturers’ signatures in the certificates it must be checked, that
the digital rights of each sub-manufacturer S don’t exceed the permissions of its
issuer M (equation 3.3).

On power-up of a node, the node does a self-check (checkSelf) of its certificate and its
stored secret-key to ensure, that the certificate is valid, not modified (checkNodeCert)
and matches the secret-key (checkKey).

These certificates are the basis for a secure task migration.

31

3 Conceptual Design of a Security Architecture for a ReCoNet

3.4 Secure Task Migration

A task T is allowed to run on a node N only if the following conditions hold:

1. The requirements t of T must match the permissions n of N:
Each of their Digital Right Vectors must have at least one common bit.

match(t,n)⇔ (t.N ≤ n.N)∧ (∀1≤i≤t.N(t.Li = n.Li)∧ (t.Vi & n.Vi 6= 0)) (3.6)

2. T ’s signature must be valid.

3. N’s certificate must be valid.

4. The certificates of N and T must have a common predecessor P in the certification
hierarchy that has a certificate with exactly t.N Digital Right Vectors. This ensures
semantic integrity of N’s and T ’s Digital Right Vectors.

Before a task T is started on node N, the node checks whether T is allowed to run on N.
The verification of the task’s signature also ensures that the task was not modified during
submission - neither incidentally by a bit-failure nor intentionally by an attacker.

Before a node A migrates a task T to another node B of the ReCoNet A performs these
actions:

1. retrieve B’s certificate 2

2. authenticate B by a three-way handshake (2.4.4) 2

3. check whether B is allowed to run T .

A will migrate T to B only if B was authenticated correctly and is allowed to run T .

This scheme also allows the secure update in-field of the system:

• In an offline-update scenario, a signed task is deployed to a node of the ReCoNet
by a data medium3. Each node of the ReCoNet can verify the authenticity and
integrity of the signed task as described in chapter 3.3.3.

• In an online-update scenario, an update server wants to deliver a signed task con-
fidentially to a node of the ReCoNet via a public network like the internet:
First the update server and the node authenticate each other and exchange a sym-
metric session key K by an authenticated key exchange as described in chapter
2.4.4. The update server does not necessarily need a certificate that the node can
verify - if he has none, the three-way handshake is replaced by a two-way hand-
shake where only the node signs a nonce. After that, the server encrypts the signed
task symmetrically with K and sends it to the node. This decrypts the task with
K and verifies the task’s authenticity and integrity by checking the task’s signature
(checkTask).

2if not already done before
3e.g. USB Stick or Compact Flash Card

32

3.5 Practical Examples for Digital Rights

3.5 Practical Examples for Digital Rights

The proposed scheme for digital rights can be used to express many conditions as digital
rights. Some examples that appear often in practical contexts are shown in the following
subsections. Every concept uses just one DRV and they can be combined by composing
the corresponding DRVs to a digital right D. All conditions of D must be fulfilled.

3.5.1 Classes of Hardware Requirements

A task might require special hardware of one type. Different types ti (1≤ i≤ n) of related
hardware are grouped together to a class C =

⋃n
i=1 ti.

The corresponding DRV V = v1v2 . . .vnvn+1 where vi = 1 (1 ≤ i ≤ n) means that a node
provides ti respectively a task requires ti. vn+1 is used to ignore this hardware class as
follows:

All nodes have a DRV V with vi (1 ≤ i ≤ n) set corresponding to their hardware equip-
ment and vn+1 = 1.
A node that provides none of the hardware in that class has V = 0n1.

A task that requires any of the types has a DRV V with vi (1 ≤ i ≤ n) set corresponding
to the hardware he can use and vn+1 = 0.
A task that does not require any of the hardware has V = 1n1.

As an example let the class C be cameras, t1 is a black-and-white camera and t2 is a color
camera. Task T0 requires any camera, T1 requires camera t1, T2 camera t2 and T3 does not
require any camera at all. Node N0 provides no camera, N1 camera t1 only, N2 camera t2
only and N3 both cameras.

N.V &T.V → can run? N0 : 001 N1 : 101 N2 : 011 N3 : 111
no camera camera t1 camera t2 both cameras

T0 : 110 000→ no 100→ yes 010→ yes 110→ yes
require any camera
T1 : 100 000→ no 100→ yes 000→ no 100→ yes
require camera t1
T2 : 010 000→ no 000→ no 010→ yes 010→ yes
require camera t2
T3 : 111 001→ yes 101→ yes 011→ yes 111→ yes
ignore camera

Table 3.1: DRV example - Classes of Hardware Requirements: A task can only run on a
node, if the hardware requirements are fulfilled, i.e. the AND of their corre-
sponding digital right vectors (DRV) is not zero.

33

3 Conceptual Design of a Security Architecture for a ReCoNet

Table 3.1 shows the corresponding DRVs of the tasks and whether they are allowed to
run on the given nodes.

A hardware manufacturer that is allowed to produce nodes that provide specific hardware
types has a DRV V with the corresponding vi (1 ≤ i ≤ n) set to 1 and vn+1 = 1. If he
is only allowed to produce nodes that do not provide any hardware of this class, he has
V = 0n1.

If the tasks of a software manufacturer must use any special hardware, he gets vi (1≤ i≤
n) set accordingly and vn+1 = 0. If the software manufacturer is allowed to sign tasks that
ignore the class, he gets V = 1n1.

3.5.2 Reliability Level

Tasks might depend on a certain level of reliability of the hardware. For example the task
that controls the airbag in an automobile must only be run on very reliable hardware. If
there are n levels of reliability with 1 being the lowest and n being the highest level of
reliability the DRV is composed as described in table 3.2:

Description DRV clause V Example
A manufacturer M that is allowed to create nodes or tasks 1K0n−K 111110
up to reliability level K (1≤ K ≤ n) has the permissions
M can allow a sub-manufacturer M′ to create nodes or tasks 1K′

0n−K′
111100

of a smaller reliability level K′ ≤ K by issuing a
manufacturer certificate with permissions
A node N with a reliability level of k that is issued by M′ 1k0n−k 111000
(1≤ k ≤ K′) has the permissions
A task T that depends on a reliability level of at most k′ 0k′−110n−k′

010000
and is signed by manufacturer M′ (1≤ k′ ≤ K′) is allowed
to run on N if k′ ≤ k. It has the requirements
T is allowed to run on N as T.V &N.V 6= 0 0k′−110n−k′

010000

Table 3.2: DRV example - Reliability Level: A thermometer code is used to encode dif-
ferent levels of reliability into a digital right vector (DRV).

34

3.6 Secure Interprocess Communication

3.6 Secure Interprocess Communication

To allow secure interprocess communication, the existing communication stack of the
RECONETS [KSD+06] is transparently extended with a security-layer similar to IPsec
[DH03].

After two nodes A and B have exchanged a symmetric session key KAB with an authen-
ticated key exchange protocol (2.4.4) they can symmetrically sign messages M with a
HMAC (2.2.4) to ensure their integrity and authenticity: KAB{M} is sent from A to B.

The RECONETS communication architecture for intertask communication as described
in [Dit05, Chapter 3] is designed according to the OSI layer model [Zim80] and consists
of several layers that are shown in Fig. 3.6 and described in Table 3.3.

Figure 3.6: Security extensions of the RECONETS protocol stack: AN2N signs and ver-
ifies messages symmetrically (extended), CRYPT exchanges a symmetrical
signature key (completely implemented) and ATRP verifies the matching be-
tween node certificates and task signatures (basic functionality implemented).
The remaining protocol layers are unchanged.

35

3 Conceptual Design of a Security Architecture for a ReCoNet

Layer Description
CP (Cell Protocol) Transfer data cells of fixed size between adjacent nodes.
[Dit05, 3.3]
MCP (Multi Cell Protocol) Transfer packets of variable size between adjacent nodes.
[Dit05, 3.6]
N2N (Node To Node Protocol) Transfer messages of variable size between two nodes
[Dit05, 3.7] including an acknowledge mechanism to resend

defect packets (reliable transport protocol).
ROUTE (Route Protocol) Synchronize routing tables used in Dijkstra’s algorithm
[Dit05, 3.8] to determine routes.
TRP (Task Resolution Protocol) Determine mapping of tasks to nodes and task migration.
[Dit05, 3.9]
T2T (Task To Task Protocol) Send messages between tasks independent on which node
[Dit05, 3.10] it is currently executed (inter process communication).

Table 3.3: Layers of the RECONETS communication architecture

This communication architecture can be extended with the required security aspects as
shown in Table 3.4:

Layer Description
CRYPT Protocol for authenticated key exchange between two nodes
(Crypto Protocol) as described in section 2.4.4.
AN2N Extension of the N2N protocol to sign and verify all messages
(Authenticated N2N) with the symmetric key exchanged by CRYPT as described in 2.2.3.
ATRP Extension of TRP to verify the task requirements against
(Authenticated TRP) the node permissions before task migration as described in 3.4.

Table 3.4: Modified layers of the secure RECONETS communication architecture

All protocols that are based on the AN2N protocol - particularly T2T for task to task
communication - will transparently be signed and thus protected against intentional mod-
ifications.

36

4 Implementation and Integration of
the Security Layer into the
ReCoNet

This chapter describes how the existing RECONETS demonstrator was extended and how
the hard- and software modules of the security architecture for the ReCoNet described in
Section 3.2 are implemented in detail.

4.1 Hardware Modules

The following Hardware modules were implemented for the current RECONETS hard-
ware architecture consisting of Altera Cyclone EP1C20F400C7 FPGAs and integrated
into the existing Altera Quartus II Project.

4.1.1 True Random Number Generator (TRNG)

As the RECONETS will be migrated from Altera to XILINX FPGAs, a generic TRNG is
provided. It is written in VHDL and independent of manufacturer and FPGA families.
In [KG04] the authors describe how to extract true randomness out of the jitter of two free
running oscillators. As free running oscillators they use a circuit that is hard-wired into
one Configurable Logic Block (CLB) of a Xilinx Virtex XCV1000 FPGA. The technique
for extraction of randomness described in [KG04] is generalized to be used on any FPGA
by implementing generic oscillators that do not depend on special assumptions on logic
blocks:

Figure 4.1: Generic oscillator with 5 gates delay: A shift register is used in order to
prevent optimization of the chain of 5 NAND gates.

37

4 Implementation and Integration of the Security Layer into the ReCoNet

As shown in Fig. 4.1 we use a chain of 2-input NAND gates where one input of each
NAND gate is connected to a shift-register. The shift-register initially contains zeroes
and is filled with a one on each clock cycle after reset. This avoids that the chain of in-
verters is optimized away from a synthesis tool. The number of delay gates must be odd
and can be set as a VHDL generic.

Our complete TRNG (crypt trng 0) with a delay of 11 gates needs 182 Logic Cells on the
current RECONETS system. It includes a van Neumann corrector to ensure that the output
of the TRNG is unbiased as described in [KG04]. A van Neumann corrector takes two
successive output bits i2k and i2k+1 of the possibly biased (it might produce more zeroes
as ones or the other way around) TRNG and outputs an unbiased value ok as shown in
Tab. 4.1:

i2k i2k+1 ok
0 0 nothing
0 1 0
1 0 1
1 1 nothing

Table 4.1: Output of a van Neuman corrector: discard successive equal values in order to
unbias the input.

The TRNG is connected to the Nios II-CPU as a memory mapped input that returns a
new 32 bit random number or 0 if the new random number is not yet available.

4.1.2 Secret Key Storage

The secret key storage is implemented as a hardware ROM that contains up to four secret
keys. As the current RECONETS demonstrator consists of four nodes, each node can use
the same version of the secret key storage hardware module. The corresponding secret
key for the node is selected depending of the node ID of the node in software. The secret
key storage (crypt secrom 0) for 4 kByte of secret ROM needs 2648 logic cells for four
keys.
In real scenarios every node must have only one secret-key of course. With a more
compressed data format for the secret key, its storage could be reduced to 0.5 kByte
per node which would result in about 350 logic cells.
The secret key ROM is directly mapped into the memory of the Nios II-CPU (read-only).

4.1.3 SHA-256

The hardware SHA-256 module can be used to verify the symmetric signature of the
crypto core, the root certificate and possibly the whole OS on system startup as described
in 3.2.1. As a proof-of-concept the SHA-256 module was implemented and tested on

38

4.2 Software Modules

the Altera FPGAs of the RECONETS. A synthesis of the module for the Xilinx based
Erlangen Slot Machine (ESM) [BMA+05] resulted in 1668 slices. This module could be
integrated into the new ESM-based RECONETS demonstrator in further works.

4.2 Software Modules

Most of the functionality of the security architecture for the RECONETS is implemented
in software within the crypto core. The software of the RECONETS demonstrator consists
of C and C++ code that runs on a Nios II softcore CPU implemented on the FPGA and
uC/OS-II as the underlying operating system.

4.2.1 Crypto Core

The needed cryptographic standard algorithms for the software crypto core are ported
from Libgcrypt, a standard cryptographic software library [Gnu] and were ported to the
Nios II CPU and uC/OS-II for use in the RECONETS as part of this thesis. A detailed
description of the libgcrypt API can be found in [KS05].
In particular, the following cryptographic primitives whose functionality has already been
introduced in Chapter 2, are now available and tested in the extended RECONETS demon-
strator:

• cryptographic random number generator: Pseudo Random Number Generator -
(PRNG) with RIPEMD-160 as hash function based on the hardware True Random
Number Generator (TRNG) described in sections 4.1.1 and 3.2.2.
API described in [KS05, Chapter 9: Random Numbers].
Random numbers are needed during authenticated key exchange (section 2.4.4) and
for the padding of asymmetric ciphers (see last item).

• cryptographic hash function: SHA-256
API described in [KS05, Chapter 6: Hashing, GCRY MD SHA256].
SHA-256 is described in section 2.2.2 and used as the cryptographic hash function
in digital signatures (section 2.4.2) needed for certificates and task signatures.

• symmetric signatures: HMAC-SHA-256
API described in
[KS05, Chapter 6: Hashing, GCRY MD SHA256 and GCRY MD FLAG HMAC].
HMAC-SHA-256 is described in section 2.2.4 and used for symmetric signatures
of messages (section 3.6).

• symmetric cipher: AES
API described in
[KS05, Chapter 5: Symmetric cryptography, GCRY CIPHER AES128].
AES is described in section 2.3.1 and was ported for further works that might use
symmetric encryption like encrypted messages or a two-phase authenticated key
protocol (section 4.2.3).

39

4 Implementation and Integration of the Security Layer into the ReCoNet

• asymmetric cipher and asymmetric signatures: RSA with PKCS #1 padding
API described in [KS05, Chapter 7: Public Key cryptography (I)].
RSA is described in section 2.4.1 and used for digital signatures (section 2.4.2) in
certificates, task signatures and authenticated key exchange (section 2.4.4). The
authenticated key exchange protocol also uses asymmetric encryption with RSA
(section 2.4.1).
PKCS #1 [RSA02] is a standard that describes how to use RSA for asymmetric
encryption of messages with arbitrary length and in particular how to fill the last
block of a message with random numbers (padding).

4.2.2 Certificates and Digital Rights

Certificates and digital rights are stored as S-expressions (Symbolic expressions), a hu-
man readable data format in which asymmetric keys are stored in libgcrypt ([KS05,
Chapter 10: S-expressions]). Libgcrypt contains functions for creation, manipulation
and extraction of S-expressions (gcry sexp *).
The verification of certificates is implemented as described in section 3.3.3 and contains
a caching mechanism that ensures that each certificate and signature is verified only once
as the underlying digital signature operations are very expensive.
Appendix A.2 contains an example for manufacturer certificates, node certificates and
task signatures.

Tools to create (create *), check (check *), and display (sexp) manufacturer certificates
(*manufacturer) , node certificates (*node) and task signatures (*task) on a UNIX based
host system (i.e. Linux, Solaris, MAC OS) are available as described in Appendix A.1
and the documentation (-help).

4.2.3 Authenticated Key Exchange

After two nodes in the RECONETS have discovered each other (triggered by the routing
protocol ROUTE of the RECONETS protocol stack), they exchange a common symmetric
key with the CRYPT protocol. This protocol implements the fast three-way authenticated
key exchange protocol described in subsection 2.4.4. It currently has only one phase and
uses the exchanged key directly to sign the messages. An example trace of the exchanged
messages is contained in Appendix A.2.

The implemented CRYPT-protocol ensures that if one node fails (i.e. because of a system
reboot) a new key is exchanged when the two nodes discover each other again whereas on
link failures both nodes keep the previously established key to resume as fast as possible.

The protocol can easily be extended to a two-phase key-exchange protocol as described in
subsection 2.4.4 to improve the security of a RECONETS with long up-times (all needed
algorithms are already included in the crypto core):
In the first phase a session key consisting of a 128 bit AES key KAES

AB and a 256 bit

40

4.2 Software Modules

HMAC-SHA-256 key KHMAC
AB is exchanged with the implemented fast authenticated key

exchange protocol.
The periodically scheduled second phase exchanges the temporary key to sign the mes-
sages as follows: A generates a random temporary key, symmetrically encrypts it with
KAES

AB , signs the message with KHMAC
AB symmetrically, and sends this signed and encrypted

key to Bob. Bob verifies the signature with KHMAC
AB and on success decrypts the temporary

key with KAES
AB .

4.2.4 Secure Interprocess Communication

After two nodes have exchanged a common secret key by using the CRYPT-protocol all
messages are signed symmetrically in the modified AN2N-layer. Thus all protocols that
are above the AN2N-protocol (except ROUTE and CRYPT) are secured - including T2T,
the protocol for - now secure - task to task communication.

For every N2N-message the sender computes the symmetric signature value over all fields
in the N2N-header and the N2N-message with the common key in software and appends
it to the N2N-header.
The receiver of a N2N-message verifies the symmetric signature and asks the sender to
resend the packet if it was intentionally modified.

To reach full computational security all 32 bytes of the signature value have to be ap-
pended to the N2N-header which increases the size of each N2N-message dramatically
(the rest of the N2N-header consists of only 10 bytes). If a smaller security level suffices
for the system, only the first N bytes of the signature can be transmitted and verified.
The security parameter N is currently global and is fixed on compile-time (constant
CRYPT SIGBYTES).

The N2N layer also ensures that transmission errors of N2N-messages are detected -
in this case the sender is asked to resend the packet. As transmission errors are more
likely than intentional attacks, the previously included 2 byte CRC checksum is kept
in the header of the N2N-messages as the CRC verification is much cheaper than the
verification of the symmetric signature1:
The sender first computes the symmetric signature of the message as described before,
appends it to the header and then appends the CRC checksum of the whole N2N-message
(including the symmetric signature).
The receiver first verifies the CRC checksum. If it is wrong, a bit failure was detected
and the message has to be resent. Otherwise he verifies the symmetric signature to detect
intentional attacks on the message.

1Note that the symmetric signature would be able to detect transmission errors, too.

41

4 Implementation and Integration of the Security Layer into the ReCoNet

4.2.5 Secure Task Migration

The matching of node certificates and task signatures is implemented as described in sub-
section 3.4 to determine whether a task T can run on a node N: check run(T,N).

On system startup all node certificates and task signatures that are statically compiled
into the system are loaded and verified. Thereafter a matching table is printed that shows
what task can run on a node or its transposition what tasks a node is allowed to execute
(see Appendix A.3).

This matching functionality could easily be integrated into the task resolution protocol
(TRP) to allow only the execution and migration of signed tasks that match to the node
certificate as described in subsection 3.4. This would result in an authenticated task res-
olution protocol (ATRP).

As the current RECONETS demonstrator only allows tasks that are known to the sys-
tem at compile-time the secure off- and online update functionality can currently not be
demonstrated. It could have been added, if the system had an MMU (Memory Manage-
ment Unit) and the operating system would support dynamic loading of processes that
are not known on compile time ([Dit05, Chapter 4]).

4.2.6 Total Costs of the Implemented ReCoNets Security Layer

The costs for the implemented security layer are shown in Table 4.2 and Table 4.3:

HW module absolute size relative size
RECONETS demonstrator (Audio-node) 13195 LUTs 100.0%
including security layer modules
True Random Number Generator 182 LUTs 1.4%
4 kByte secret KEYROM 2648 LUTs 20.1%

Table 4.2: Hardware costs of the RECONETS security layer: The costs for the KEYROM
can be reduced to approximately 331 LUTs (3.0%).

SW system absolute size relative size
RECONETS with no crypto support (CRYPT=0) 287 kByte 100%
RECONETS with crypto support (CRYPT=1) 525 kByte 183%

Table 4.3: Software costs of the RECONETS security layer

As described in section 4.1.2 about 0.5 kByte would suffice for the storage of one secret
key on a node. This would decrease the size of the RECONETS demonstrator to approx-
imately 10900 LUTs and the 0.5 kByte KEYROM to approximately 331 LUTs (3.0%).

42

4.2 Software Modules

This would reduce the hardware overhead for the security layer to a negligible amount of
less than 5 % of the complete system.

The large increase in software cost of 83% is mainly caused by additional system func-
tions that are needed by the ported libgcrypt library (like scanf to read in the keys stored
in a text format) and can not be reduced.

A detailed trace including the needed execution time of every operation of the security
layer can be found in Appendix A.3. The system bootup process for two nodes including
a test of all functions of the crypto library (9s), verification of certificates (2s) and one
key-exchange (7s) takes about 18s. The test of the correct functionality of the crypto
library could be omitted which would speed up the boot process to 9s.

43

4 Implementation and Integration of the Security Layer into the ReCoNet

44

5 Outlook

The security architecture for a RECONETS proposed in this thesis can be extended into
many directions and further theses in the area of Security in Reconfigurable, Distributed
Embedded Systems can base on the modules implemented within this thesis:

• Authenticated Task Resolution Protocol ATRP as suggested in 4.2.5:
This protocol could combine the existing rules for task binding of the RECONETS

with the cryptographic aspects of secure task migration presented in this thesis to
support secure on- and offline update scenarios of the RECONETS.

• Extension of the fast authenticated key-exchange protocol as proposed in 4.2.3:
By using two-phases to exchange a session-key and in regular intervals a temporary-
key for the symmetric signature of messages, the long-term security of the ex-
changed session-key is improved as the temporary-key expires and is instantly re-
newed during runtime.

• Secure external memory in FPGAs as assumed in 3.1:
Today’s FPGA have very few internal memory and use cheaper on-board but off-
chip external memory instead. The wires between the FPGA and the SRAM chip
however are subject to data modification or eavesdropping.
Techniques like ”Efficient Memory Integrity Verification and Encryption for Se-
cure Processors” [SCG+03] could be applied to FPGAs to secure external memory
against modification and eavesdropping.

• Verification of symmetric signatures in hardware of the software modules on sys-
tem boot as described in 3.2.2:
On system bootup, a HMAC-SHA-256, implemented completely in hardware,
checks the symmetric signature of the confidential software modules (crypto core,
root certificate, OS) and the CPU is only allowed to start, if this signature is cor-
rect. Afterwards the hardware HMAC-SHA-256 module is no longer needed, as
messages can efficiently signed symmetrically in software. The hardware HMAC-
SHA-256 module can now be displaced by a hardware Montgomery multiplica-
tion module by dynamic reconfiguration of the FPGA. The Montgomery multiplier
would speed up the very computation intensive asymmetric key operations that are
currently implemented in software only and are needed to verify the certificates

45

5 Outlook

and task signatures during the initialization of the crypto core and the following
authenticated key exchanges of the nodes. The functionality of dynamic reconfig-
uration is supported by the XILINX FPGAs that are used in the ESM version of
the RECONETS demonstrator that has been developed during the last months by
Thomas Walther and Dirk Koch [Wal07]. This would be a useful and practical
example for the application of dynamic reconfiguration to speed up system bootup
while keeping the needed FPGA area of the ReCoNet constant.

46

6 Conclusion

This thesis investigates how cryptography can be used to secure a reconfigurable, dis-
tributed, embedded system. In particular a security architecture that allows secure task
migration and secure interprocess communication in a ReCoNet is designed.

The possible intentional attacks against a ReCoNet that have to be prevented are ex-
plained in chapter 1. The intended security objectives of a ReCoNet concern the whole
distributed system of connected reconfigurable, embedded systems. The section on at-
tacks and countermeasures on FPGAs shows what methods already exist to protect a
single FPGA-based reconfigurable, embedded system against known attacks.

These reconfigurable, embedded security measurements are extended to achieve the se-
curity objectives of the distributed, reconfigurable, embedded system. The used cryp-
tographic primitives are described in chapter 2: Many encryption algorithms rely on
cryptographic secure random numbers as a unpredictable source of entropy. For secure
interprocess communication, symmetric ciphers and signatures are needed. Asymmet-
ric ciphers and signatures are the fundamental concepts for certificates and authenticated
key-exchange protocols.

The security architecture for the RECONETS project proposed in chapter 3 partitions the
security layer into hard- and software parts and describes how the security objectives can
be achieved. A general scheme for digital rights is proposed and implemented which
is powerful enough to describe almost any relations between tasks and nodes for secure
task migration in a ReCoNet. Two practical examples for the usage of this scheme are
explained. A manufacturer hierarchy allows each manufacturer to give parts of his per-
missions to sub manufacturers. He issues a sub manufacturer certificate to each which
allows them to produce in his name.

The existing RECONETS demonstrator was extended by implementing most of the mod-
ules of the security architecture as explained in chapter 4. The needed cryptographic
algorithms were taken from a standard cryptographic software library (libgcrypt) which
was ported to the demonstrator system. The implemented true random number generator
is written in generic VHDL to be manufacturer independent and to allow an easy port
to other architectures. Currently, the RECONETS demonstrator supports secure inter-
process communication and has all cryptographic prerequisites for secure task migration
implemented. Finally the costs for the security layer of the RECONETS demonstrator
were shown to be negligible in hardware- but huge in relative software costs (space and
runtime) as the complete functionality is currently implemented in software.

47

6 Conclusion

A proposal for further research in the area of ”Security in Reconfigurable, Distributed
Embedded Systems” is described in chapter 5.

In the appendix, a complete demonstration of the new features of the extended RE-
CONETS demonstrator is provided. The host tools to generate, check, and show certifi-
cates and signatures are documented in A.1. An example for the setup of the demonstrator
in a real scenario is provided in A.2. Finally, the trace of a simple ReCoNet consisting of
two nodes in A.3 demonstrates the implemented, fast authenticated key exchange, certifi-
cate and signature verification, secure interprocess communication, a check of all ported
functions of the cryptographic software library and the needed execution time for each
cryptographic operation.

Within the next years, security aspects in reconfigurable, distributed embedded systems
like those that are already embedded or currently developed for use in automobiles or
aircrafts will play an increasing role. Attacks on these systems - either for personal
advantage like chip-tuning or intentional attacks to bully a rival manufacturer or even
with terroristic background can already be prevented in today’s systems as shown in this
thesis.

48

Bibliography

[Alt] Altera Corporation: Design Security in Stratix II and Stratix II GX
Devices. http://www.altera.com/products/devices/stratix2/

features/security/st2-security.html

[Alt06] Altera Corporation. http://www.altera.com. Version: 2006

[AT] ANIL TELIKEPALLI, Xilinx I.: Is Your FPGA Design Se-
cure? http://www.xilinx.com/publications/xcellonline/xcell

47/xc pdf/xc secure47.pdf

[Bar] BARRETO, Paulo: The Hash Function Lounge. http://paginas.terra.
com.br/informatica/paulobarreto/hflounge.html

[BMA+05] BOBDA, Christophe ; MAJER, Mateusz ; AHMADINIA, Ali ; HALLER,
Thomas ; LINARTH, André ; TEICH, Jürgen: Increasing the Flexibility
in FPGA-Based Reconfigurable Platforms: The Erlangen Slot Machine. In:
IEEE 2005 Conference on Field-Programmable Technology (FPT). Singa-
pore, Dec 2005, 37-42

[Coc73] COCKS, C C.: A Note On ’Non-Secret Encryption’. Government Commu-
nications Headquarters (GCHQ), 1973 http://www.cesg.gov.uk/site/

publications/media/notense.pdf

[Den04] DENT, Alexander: Hybrid Cryptography. http://eprint.iacr.org/

2004/210.pdf. Version: Aug 30 2004

[DH03] DORASWAMY, Naganand ; HARKINS, Dan: IPSec, The New Security Stan-
dard for the Internet, Intranets, and Virtual Private Networks. Second Edi-
tion. Prentice Hall, 2003

[Dit05] DITTRICH, Steffen: Konzeption und Implementierung einer Infrastruktur
für Betriebssystemdienste wie auch deren Analyse und Umsetzung, Lehrstuhl
Hardware-Software-Co-Design, Universität Erlangen-Nürnberg, Diplomar-
beit, Sep 2005

[Ell70] ELLIS, J. H.: The Possibility of Secure Non-Secret Digital Encryption.
Government Communications Headquarters (GCHQ), 1970 http://www.

cesg.gov.uk/site/publications/media/possnse.pdf

49

http://www.altera.com/products/devices/stratix2/features/security/st2-security.html
http://www.altera.com/products/devices/stratix2/features/security/st2-security.html
http://www.altera.com
http://www.xilinx.com/publications/xcellonline/xcell_47/xc_pdf/xc_secure47.pdf
http://www.xilinx.com/publications/xcellonline/xcell_47/xc_pdf/xc_secure47.pdf
http://paginas.terra.com.br/informatica/paulobarreto/hflounge.html
http://paginas.terra.com.br/informatica/paulobarreto/hflounge.html
http://www.cesg.gov.uk/site/publications/media/notense.pdf
http://www.cesg.gov.uk/site/publications/media/notense.pdf
http://eprint.iacr.org/2004/210.pdf
http://eprint.iacr.org/2004/210.pdf
http://www.cesg.gov.uk/site/publications/media/possnse.pdf
http://www.cesg.gov.uk/site/publications/media/possnse.pdf

Bibliography

[Fut00] FUTURE SYSTEMS INC.: Symmetric Ciphers. http://cnscenter.

future.co.kr/crypto/algorithm/block.html. Version: 2000

[Gnu] GnuPG - cryptographic library libgcrypt. http://gnupg.org

[HC98] HARKINS, D. ; CARREL, D.: The Internet Key Exchange (IKE). IETF -
Network Working Group, 1998 http://tools.ietf.org/html/rfc2409

[HKT04] HAUBELT, Ch. ; KOCH, D. ; TEICH, J.: Basic OS Support for Distributed
Reconfigurable Hardware. In: PIMENTEL, A. (ed.) ; VASSILIADIS, S. (ed.):
Computer Systems: Architectures, Modeling, and Simulation Vol. 3133.
Springer, Berlin, July 2004 (Lecture Notes in Computer Science (LNCS)),
p. 30–38

[IMGa] Advanced Encryption Standard. http://en.wikipedia.org/wiki/

Advanced Encryption Standard

[IMGb] Data Confidentiality. http://msdn2.microsoft.com/en-us/library/

aa480570.aspx

[IMGc] Data Origin Authentication. http://msdn2.microsoft.com/en-us/

library/aa480571.aspx

[IMGd] Digital Signatures. http://developer.apple.com/documentation/

Security/Conceptual/Security Overview/Concepts/chapter 3

section 6.html

[ITU05] ITU-T: The Directory: Public-key and attribute certificate frame-
works - X.509. http://www.itu.int/rec/dologin pub.asp?lang=

e&id=T-REC-X.509-200508-I!!PDF-E. Version: Aug 2005

[KBC97] KRAWCZYK, H. ; BELLARE, M. ; CANETTI, R.: HMAC: Keyed-Hashing
for Message Authentication. IETF - Network Working Group, 1997 http:

//tools.ietf.org/html/rfc2104

[Ker83] KERCKHOFF, Auguste: La Cryptographie Militaire. In: Journal
des sciences militaires (1883). http://www.petitcolas.net/fabien/

kerckhoffs/crypto militaire 1.pdf

[KG04] KOHLBRENNER, Paul ; GAJ, Kris: An Embedded True Random Number
Generator for FPGAs. In: FPGA ’04: Proceedings of the 2004 ACM/SIGDA
12th international symposium on Field programmable gate arrays. New
York, NY, USA : ACM Press, 2004. – ISBN 1–58113–829–6, p. 71–78

[KS05] KOCH, Werner ; SCHULTE, Moritz: The Libgcrypt Reference Manual. Ver-
sion 1.2.2, July 2005. http://www.cse.psu.edu/∼cg497c/gcrypt.pdf

50

http://cnscenter.future.co.kr/crypto/algorithm/block.html
http://cnscenter.future.co.kr/crypto/algorithm/block.html
http://gnupg.org
http://tools.ietf.org/html/rfc2409
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://msdn2.microsoft.com/en-us/library/aa480570.aspx
http://msdn2.microsoft.com/en-us/library/aa480570.aspx
http://msdn2.microsoft.com/en-us/library/aa480571.aspx
http://msdn2.microsoft.com/en-us/library/aa480571.aspx
http://developer.apple.com/documentation/Security/Conceptual/Security_Overview/Concepts/chapter_3_section_6.html
http://developer.apple.com/documentation/Security/Conceptual/Security_Overview/Concepts/chapter_3_section_6.html
http://developer.apple.com/documentation/Security/Conceptual/Security_Overview/Concepts/chapter_3_section_6.html
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-200508-I!!PDF-E
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-200508-I!!PDF-E
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://www.petitcolas.net/fabien/kerckhoffs/crypto_militaire_1.pdf
http://www.petitcolas.net/fabien/kerckhoffs/crypto_militaire_1.pdf
http://www.cse.psu.edu/~cg497c/gcrypt.pdf

Bibliography

[KSD+06] KOCH, Dirk ; STREICHERT, Thilo ; DITTRICH, Steffen ; STRENGERT,
Christian ; HAUBELT, Christian ; TEICH, Jürgen: An Operating System
Infrastructure for Fault-Tolerant Reconfigurable Networks. In: Proceedings
of the 19th International Conference on Architecture of Computing Systems
(ARCS 2006), Frankfurt / Main, Germany. Frankfurt, Germany : Springer,
März 2006, p. 202–216

[MVO96] MENEZES, Alfred J. ; VANSTONE, Scott A. ; OORSCHOT, Paul C. V.:
Handbook of Applied Cryptography. Boca Raton, FL, USA : CRC
Press, Inc., 1996 http://www.cacr.math.uwaterloo.ca/hac/. – ISBN
0849385237

[Nat99] NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY: FIPS
46-3 - Data Encryption Standard (DES). http://csrc.nist.gov/

publications/fips/fips46-3/fips46-3.pdf. Version: Oct 1999

[Nat01] NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY: FIPS 197 -
Announcing the Advanced Encryption Standard (AES). http://www.csrc.
nist.gov/publications/fips/fips197/fips-197.pdf. Version: Nov
2001

[Nat02] NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY: FIPS 180-2
- Announcing the Secure Hash Standard. http://csrc.nist.gov/

publications/fips/fips180-2/fips180-2withchangenotice.pdf.
Version: Aug 2002

[Nat07] NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY: Tentative Time-
line of the Development of New Hash Functions. http://www.csrc.nist.
gov/pki/HashWorkshop/AHS Timeline 022307.pdf. Version: Feb 23
2007

[RDS02] ROBERT D. SILVERMAN, RSA L.: Has the RSA algorithm been compro-
mised as a result of Bernstein’s Paper? http://www.rsasecurity.com/

rsalabs/node.asp?id=2007. Version: Apr 2002

[ReC] ReCoNets. http://www12.informatik.uni-erlangen.de/research/

reconets/

[Ros98] ROSING, Michael: Implementing Elliptic Curve Cryptography. Manning
Publications, 1998

[RRS06] RECHBERGER, C. ; RIJMEN, V. ; SKLAVOS, N.: The NIST Cryptographic
Workshop on Hash Functions. In: Security and Privacy Magazine, IEEE
4 (2006), Jan-Feb, Nr. 1, 54-56. http://ieeexplore.ieee.org/iel5/

8013/33481/01588827.pdf

51

http://www.cacr.math.uwaterloo.ca/hac/
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://www.csrc.nist.gov/pki/HashWorkshop/AHS_Timeline_022307.pdf
http://www.csrc.nist.gov/pki/HashWorkshop/AHS_Timeline_022307.pdf
http://www.rsasecurity.com/rsalabs/node.asp?id=2007
http://www.rsasecurity.com/rsalabs/node.asp?id=2007
http://www12.informatik.uni-erlangen.de/research/reconets/
http://www12.informatik.uni-erlangen.de/research/reconets/
http://ieeexplore.ieee.org/iel5/8013/33481/01588827.pdf
http://ieeexplore.ieee.org/iel5/8013/33481/01588827.pdf

Bibliography

[RSA] The RSA Challenge Numbers. http://www.rsasecurity.com/rsalabs/
node.asp?id=2093

[RSA78] RIVEST, R.L. ; SHAMIR, A. ; ADLEMAN, L.: A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications of the
ACM, Vol. 21 (2), pp-120-126. http://theory.lcs.mit.edu/∼rivest/
rsapaper.pdf. Version: 1978

[RSA02] RSA LABORATORIES: PKCS #1 v2.1: RSA Cryptography Standard. RSA
Laboratories, 2002 ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/

pkcs-1v2-1.pdf

[SCG+03] SUH, G. E. ; CLARKE, Dwaine ; GASSEND, Blaise ; DIJK, Marten van ; DE-
VADAS, Srinivas: Efficient Memory Integrity Verification and Encryption for
Secure Processors. In: Proceedings of the 36th International Symposium on
Microarchitecture (2003). http://www.microarch.org/micro36/html/
pdf/suh-EfficMemory.pdf

[Sch96] SCHNEIER, Bruce: Applied Cryptography: Protocols, Algorithms, and
Source Code in C. New York, NY, USA : John Wiley & Sons, Inc., 1996. –
ISBN 0471117099

[Sch02] SCHNEIER, Bruce: Crypto-Gram Newsletter - AES News. http://www.

schneier.com/crypto-gram-0209.html#1. Version: Sep 15, 2002

[Sch07] SCHNEIER, Bruce: Crypto-Gram Newsletter - A New Secure Hash
Standard. http://www.schneier.com/crypto-gram-0702.html#11.
Version: Feb 15, 2007

[SKHT06] STREICHERT, Thilo ; KOCH, Dirk ; HAUBELT, Christian ; TEICH, Jürgen:
Modeling and Design of Fault-Tolerant and Self-Adaptive Reconfigurable
Networked Embedded Systems. In: EURASIP Journal on Embedded Sys-
tems (2006)

[Wal07] WALTHER, Thomas: Concept and Implementation of an FPGA-Platform In-
dependent Softcore RISC-CPU. Lehrstuhl Hardware-Software-Co-Design,
Universität Erlangen-Nürnberg, Master’s Thesis, 2007

[WGP03] WOLLINGER, Thomas ; GUAJARDO, Jorge ; PAAR, Christof: Cryptography
on FPGAs: State of the Art Implementations and Attacks. In: ACM
Special Issue Security and Embedded Systems (2003), March. http:

//www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/

wollingeretal acmtransembeddedsysfpgacryptooverview final.

pdf

[Wil74] WILLIAMSON, M H.: Non-secret encryption using a finite field. Govern-
ment Communications Headquarters (GCHQ), 1974 http://www.cesg.

gov.uk/site/publications/media/secenc.pdf

52

http://www.rsasecurity.com/rsalabs/node.asp?id=2093
http://www.rsasecurity.com/rsalabs/node.asp?id=2093
http://theory.lcs.mit.edu/~rivest/rsapaper.pdf
http://theory.lcs.mit.edu/~rivest/rsapaper.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://www.microarch.org/micro36/html/pdf/suh-EfficMemory.pdf
http://www.microarch.org/micro36/html/pdf/suh-EfficMemory.pdf
http://www.schneier.com/crypto-gram-0209.html#1
http://www.schneier.com/crypto-gram-0209.html#1
http://www.schneier.com/crypto-gram-0702.html#11
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/wollingeretal_acmtransembeddedsysfpgacryptooverview_final.pdf
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/wollingeretal_acmtransembeddedsysfpgacryptooverview_final.pdf
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/wollingeretal_acmtransembeddedsysfpgacryptooverview_final.pdf
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/wollingeretal_acmtransembeddedsysfpgacryptooverview_final.pdf
http://www.cesg.gov.uk/site/publications/media/secenc.pdf
http://www.cesg.gov.uk/site/publications/media/secenc.pdf

Bibliography

[Zim80] ZIMMERMANN, Hubert: OSI Reference Model - The ISO Model of Archi-
tecture of Open Systems Interconnection. In: IEEE Transactions on Com-
munications Vol. 28, 1980, 425 - 432

53

Bibliography

54

A Documentation and
Demonstration

A.1 Host Tools

The following tools can be used to create, check or show (sexp) certificates and signa-
tures on a host computer running Linux, UNIX, OS X or an equivalent OS. This data
can be extract-ed and install-ed into the extended RECONETS demonstrator’s hard- and
software.

A.1.1 create manufacturer

SYNTAX: create_manufacturer {-m MANID} {-n NAME} {-d RIGHTFILE}

{-M MANCERTDIR} {-K MANKEYDIR}

{-q} {-h | -help}

Issues certificate for a manufacturer.

-m MANID: Id of the new manufacturer. (ask otherwise) -

e.g. 0 or 0.1

-n NAME: Name of the new manufacturer. (ask otherwise) -

e.g. "Manufacturer 12"

-d RIGHTFILE: File containing digital rights for the certificate to issue.

(ask otherwise)

-M MANCERTDIR: Directory containing manufacturers’ certificates.

(Default: "data/MCERTS")

-K MANKEYDIR: Directory containing manufacturers’ private-keys.

(Default: "data/MKEYS")

-q: Be quiet.

-h | -help: show this help

A.1.2 create node

SYNTAX: create_node {-i NODEID} {-i NAME} {-d RIGHTFILE} {-c MANCERTDIR}

{-k MANKEYDIR} {-C NODECERTDIR} {-K NODEKEYDIR}

{-q} {-h | -help}

55

A Documentation and Demonstration

Issues certificate for a node.

-i NODEID: Id of the node. (ask otherwise) - e.g. 0 or 0.1

-n NAME: Name of the node. (ask otherwise) - e.g. "Root Manufacturer"

-d RIGHTFILE: File containing digital rights for the node certificate

to issue. (ask otherwise)

-c MANCERTDIR: Directory containing manufacturers’ certificates.

(Default: "data/MCERTS")

-k MANKEYDIR: Directory containing manufacturers’ private-keys.

(Default: "data/MKEYS")

-C NODECERTDIR: Directory containing nodes’ certificates.

(Default: "data/NCERTS")

-K NODEKEYDIR: Directory containing nodes’ private-keys.

(Default: "data/NKEYS")

-q: Be quiet.

-h | -help: show this help

A.1.3 create task

SYNTAX: create_task -b BINARYFILE {-t TASKID} {-n NAME} {-d RIGHTFILE}

{-M MANCERTDIR} {-K MANKEYDIR} {-T TASKSIGDIR}

{-q} {-h | -help}

Signs a task.

-b BINARYFILE: Binary of task to sign. (must be given)

-t TASKID: Id of the task. (ask otherwise) - e.g. 0.1 or 0.1.3

-n NAME: Name of the task. (ask otherwise) -

e.g. "Drive-by-wire controller"

-d RIGHTFILE: File containing digital rights for the task signature

to issue. (ask otherwise)

-M MANCERTDIR: Directory containing manufacturers’ certificates.

(Default: "data/MCERTS")

-K MANKEYDIR: Directory containing manufacturers’ private-keys.

(Default: "data/MKEYS")

-T TASKSIGDIR: Directory containing tasks’ signatures.

(Default: "data/TSIGS")

-q: Be quiet.

-h | -help: show this help

56

A.1 Host Tools

A.1.4 sexp

sexp can be used to show certificates or keys in CRY PT/host/data/ in a human readable
format (-a).

The program ‘sexp’ reads, parses, and prints out S-expressions.

INPUT:

Input is normally taken from stdin, but this can be changed:

-i filename -- takes input from file instead.

-p -- prompts user for console input

Input is normally parsed, but this can be changed:

-s -- treat input up to EOF as a single string

CONTROL LOOP:

The main routine typically reads one S-expression, prints it out

again, and stops. This may be modified:

-x -- execute main loop repeatedly until EOF

OUTPUT:

Output is normally written to stdout, but this can be changed:

-o filename -- write output to file instead

The output format is normally canonical, but this can be changed:

-a -- write output in advanced transport format

-b -- write output in base-64 output format

-c -- write output in canonical format

-l -- suppress linefeeds after output

More than one output format can be requested at once.

There is normally a line-width of 75 on output, but:

-w width -- changes line width to specified width.

(0 implies no line-width constraint)

The default switches are: -p -a -b -c -x

Typical usage: cat certificate-file | sexp -a -x

A.1.5 check run

SYNTAX: check_run {-t TASKID} {-n NODEID} {-T TASKSIGDIR}

{-N NODECERTDIR} {-q} {-h | -help}

Check whether task TASKID can run on node NODEID.

-t TASKID: Id of the task to check - e.g. 0.1 or 0.2.1

(if omitted: all tasks in TASKSIGDIR)

-n NODEID: Id of the node to check - e.g. 0.2 or 0.1.3

(if omitted: all nodes in NODECERTDIR)

-T TASKSIGDIR: Directory containing tasks’ signatures.

(Default: "data/TSIGS")

-N NODE: Directory containing nodes’ certificates.

57

A Documentation and Demonstration

(Default: "data/NCERTS")

-q: Be quiet.

-h | -help: show this help

A.1.6 check manufacturer

SYNTAX: check_manufacturer (-m MANID | -a) {-M MANCERTDIR}

{-q} {-h | -help}

Checks certificate of a manufacturer.

-m MANID: Id of the manufacturer to check - e.g. 0 or 0.1

-a: check all manufacturers’ certificates in MANCERTDIR

-M MANCERTDIR: Directory containing manufacturers’ certificates.

(Default: "data/MCERTS")

-q: Be quiet.

-h | -help: show this help

A.1.7 check node

SYNTAX: check_node (-n NODEID | -a) {-M MANCERTDIR} {-N NODECERTDIR}

{-q} {-h | -help}

Check certificate of a node.

-n NODEID: Id of the node to check - e.g. 0.1 or 0.2.1

-a: check all nodes’ certificates in NODECERTDIR

-M MANCERTDIR: Directory containing manufacturers’ certificates.

(Default: "data/MCERTS")

-N NODECERTDIR: Directory containing nodes’ certificates.

(Default: "data/NCERTS")

-q: Be quiet.

-h | -help: show this help

A.1.8 check task

SYNTAX: check_task (-t TASKID | -a) {-M MANCERTDIR} {-T TASKSIGDIR}

{-q} {-h | -help}

Check signature of a task.

58

A.1 Host Tools

-t TASKID: Id of the task to check - e.g. 0.1 or 0.2.1

-a: check all tasks’ certificates in TASKSIGDIR

-M MANCERTDIR: Directory containing manufacturers’ certificates.

(Default: "data/MCERTS")

-T TASKSIGDIR: Directory containing tasks’ signatures.

(Default: "data/TSIGS")

-q: Be quiet.

-h | -help: show this help

A.1.9 extract certs.sh

Export manufacturer certificates, node certificates and task signatures from data/ into
include/certs.h.

A.1.10 install certs.sh

Install include/certs.h in U300. Recompile U300 afterwards.

A.1.11 extract keys.sh

Extract secret keys from data/NKEY S to allkeys and generate SECROM in
crypt secrom rom.vhd.

A.1.12 install keys.sh

Install crypt secrom rom.vhd in ../../EPLD audio/v0.0/. Re-synthesize hardware af-
terwards.

59

A Documentation and Demonstration

A.2 Example

This is an example for a complete setup of the extended RECONETS demonstrator de-
scribing how to use the previously described host tools, the digital right examples and all
used data formats in a real context of a RECONET.

The following commands must be entered in a Linux-, UNIX-, Solaris-, MAC OS- or
equivalent shell.

A.2.1 Manufacturer Certificates

In our example we have six manufacturers with different permissions in the following
hierarchy:

• Manufacturer 0 is the root manufacturer.

– Manufacturer 0.1 is allowed to build high reliable nodes with no camera con-
nected.

– Manufacturer 0.2 is allowed to build low reliable nodes with any camera con-
nected.

– Manufacturer 0.3 is allowed to create software of any reliability level with
any camera support.

∗ Manufacturer 0.3.1 is allowed to build low reliable software with needed
color camera support.

∗ Manufacturer 0.3.2 is allowed to build high reliable software with any
camera support.

We design the DRs as described in Section 3.5:

• The first DRV encodes the reliability (2 levels).

• The second DRV encodes the connected camera type:
t1=b/w camera, t2=color camera

We first clean all data (certificates and signatures):

> cd CRYPT/host/data; make clean; cd ../../../

Then we create the corresponding manufacturer certificates:

> cd CRYPT/host

> echo "(digitalrights #11# #0111#)" > R;

> ./bin/create_manufacturer -m 0 -n "Root Manufacturer" -d R -q;

> echo "(digitalrights #11# #0001#)" > R;

> ./bin/create_manufacturer -m 0.1 -n "HW Manufacturer 0.1" -d R -q;

> echo "(digitalrights #10# #0111#)" > R;

60

A.2 Example

> ./bin/create_manufacturer -m 0.2 -n "HW Manufacturer 0.2" -d R -q;

> echo "(digitalrights #11# #0111#)" > R;

> ./bin/create_manufacturer -m 0.3 -n "SW Manufacturer 0.3" -d R -q;

> echo "(digitalrights #10# #0010#)" > R;

> ./bin/create_manufacturer -m 0.3.1 -n "SW Manufacturer 0.3.1" -d R -q;

> echo "(digitalrights #11# #0111#)" > R;

> ./bin/create_manufacturer -m 0.3.2 -n "SW Manufacturer 0.3.2" -d R -q;

> rm R;

Have a look at the certificate of Manufacturer 0.3.1 (rsa public-key and sig-val values will
differ!):

> ./bin/sexp -i data/MCERTS/0.3.1 -a

(manufacturer

(signature

(signed

(id ID_0.3.1)

(name "SW Manufacturer 0.3.1")

(digitalrights #10# #0010#)

(public-key

(rsa

(n

#00D0ADB2558F5E5A6197ABEDBDE83FC6A3ADA411E020BA6F664BD146707BC46

F24398EB63E049CAED99E3CE6B6BC0D7B50F2A59CA8CFD4B42277435346086DA

A9A3B74568FA35532A9472BC1A5F6D86565EE2AC6EF6DE5372A53A14B6CE999B

501189A1D3A9579F8AA1F5B053E0E55F0872AB4B6A76584E75E229CAACD89B86

26F#)

(e #010001#))))

(sig-val

(rsa

(s

#74F0C185CFB9DDA20F556D1DD6623BA5A2912E8A75C50CD1A688FD5CADE6CA6E

FA3ECE7323286986B10E64730D93CBFE35EACBFFAA0CF54D6B6A21F4D5E23519F

1CA64E16CA95ACF03F1F7AC17A7DE24E6112EC565AE0BA3AE311FF07DCACFBB95

09B9112ADAAA6DBAB076E829DB30508F44326F8CBEA7ECD52BCC2F72896E72#)

))))

The corresponding secret key is (rsa private-key values will differ!):

> ./bin/sexp -i data/MKEYS/0.3.1 -a

(private-key

(rsa

(n

#00D0ADB2558F5E5A6197ABEDBDE83FC6A3ADA411E020BA6F664BD146707BC46F24

398EB63E049CAED99E3CE6B6BC0D7B50F2A59CA8CFD4B42277435346086DAA9A3B7

61

A Documentation and Demonstration

4568FA35532A9472BC1A5F6D86565EE2AC6EF6DE5372A53A14B6CE999B501189A1D

3A9579F8AA1F5B053E0E55F0872AB4B6A76584E75E229CAACD89B8626F#)

(e #010001#)

(d

#60D0AD63D7B3C13FF4F3CDC5A54A6D78C3D75279C7056828B03544366C9D9AA8D6

515948D5AFF1C9420A6449D45E76DF7BEC0D0E1EFA42A698E971E9948078BCE5B68

79E8B0D4E242D3CAFC6C690768DD576CAAF394758543754A0298C45EB71E5ABCBB2

7122FC63958EAB281D1E1966B3C3C578AB6DA572ED727A596609789D#)

(p

#00D842DCB91D520A2E2DD838EE3D157A49665778683D3D391A693C30F04E5ADFC7

489A1C81EFEBB180A35A6CAE4ED32F147899F06C5721F7BA71DEF8E545514013#)

(q

#00F7062347C813D3C15A3DF57A2E2255FFC3DD30A5A4D0D048E06810200360E244

EBCCB763AEB332889ABE7E0F050432850FC0432D4FE9BAC5C7198FE907B637B5#)

(u

#70FEC442BCFFF1DC8A5665B5E2C7AD0CBB1353ED8759914EB05789E6F9FF5F6246

4CB1AC0727610F37FD93E95E92ECE3EF0EF126AE69F658A684F44AA27D4EDA#)))

A.2.2 Node Certificates

We take two nodes with different hardware support:

• Node 0.1.1 (Alice) - a high reliable node from Manufacturer 0.1 with no camera

• Node 0.2.1 (Bob) - a low reliable node from Manufacturer 0.2 with a b/w camera
connected

Let’s create the corresponding node certificates:

> echo "(digitalrights #11# #0001#)" > R;

> ./bin/create_node -i 0.1.1 -n "Alice" -d R -q;

> echo "(digitalrights #10# #0101#)" > R;

> ./bin/create_node -i 0.2.1 -n "Bob" -d R -q;

> rm R;

The node certificate of Node 0.2.1 can be shown by (rsa public-key and sig-val values
will differ!):

> ./bin/sexp -i data/NCERTS/0.2.1 -a

(node

(signature

(signed

(id ID_0.2.1)

(name Bob)

(digitalrights #10# #0101#)

(public-key

62

A.2 Example

(rsa

(n

#00E97135BE65D4669A4F9EE8A535C9EA2D8E286A57B3819A5EF9159B041AEF6

3F37E8B58CCBBF42FC730A647EEBC55AEE1069F85C3722900EEF35E74F7CF74F

FB14647864A6271BFE194539498D996DFA765FFEC34B4B95E072281C809EB20A

E20691B20E025ECD2928A203904635116FBADE31E8F1311362B2929E056172D7

07F#)

(e #010001#))))

(sig-val

(rsa

(s

#0083C1B50BB647919CD025F268F7E9BA4329A9941197D6BBA77400BBC5490773

08F38BD563B863D0B6971FCF3CA830D03B343FF97761E1E0F4ED19AEE870D44FA

89DC4F9842D3C7028E0D0D19D68D7B94FC2810E439E87A2AEBE87D2B1127F6D2E

F55B77D803148DCF22633FECEB4B7B2DB4C729F6B9CEA43979EF6ABD101F40C9#

)))))

The corresponding key is (rsa private-key values will differ!):

> ./bin/sexp -i data/NKEYS/0.2.1 -a

(private-key

(rsa

(n

#00E97135BE65D4669A4F9EE8A535C9EA2D8E286A57B3819A5EF9159B041AEF63F3

7E8B58CCBBF42FC730A647EEBC55AEE1069F85C3722900EEF35E74F7CF74FFB1464

7864A6271BFE194539498D996DFA765FFEC34B4B95E072281C809EB20AE20691B20

E025ECD2928A203904635116FBADE31E8F1311362B2929E056172D707F#)

(e #010001#)

(d

#2B8A3D836B1BC01D54EF6725F54FD93930F411CD94C1FE086BBDDF615722C24A36

9687F3FBB4723ADD348E63154687ED199EA444CD649F7371F9F2A80BCE1F2856A18

B23C737B2F3E4BE138BA6B22240F450E1EF00FB645AD614AEA052845DC39FF5664D

57571AE8874639C7A5B99E924ED67C9EC32FD8C84A5898746C3C3701#)

(p

#00EE0CAB40E637699CF1022E18573A5E40FC5150A6558F058327B4B163A9275B29

5C2B95FED221FA0FC61EFD3EA1D14D3165514C22176BEF473DCBB170A6EFF701#)

(q

#00FB0B9A18812BC472DDBAB7D1E6717881FE5F47A0DDCD116080CE64A1B0676003

4C346E0EA54346584F50688A974DAA3034AD8533E29DBA3E31521FC0FE40E77F#)

(u

#380BFBF8C5942EA21ACC845AF78B3D2A2C9D78663211A8F35FA5D8B51070F7D639

BCE0388028273FA148D26507E5D4DF0DAAAC394B8A1F21BADDB1179BE7BB1A#)))

63

A Documentation and Demonstration

A.2.3 Task Signatures

Suppose we have these tasks:

• Signed by Manufacturer 0.3:

– Task 0.3.1: high reliable task with no camera needed

– Signed by Manufacturer 0.3.1:

∗ Task 0.3.1.1: low reliable task with color camera needed

– Signed by Manufacturer 0.3.2:

∗ Task 0.3.2.1: low reliable task with b/w camera needed
∗ Task 0.3.2.2: low reliable task with any camera needed

We now create the task signatures with dummy binaries in Bi (replace them with real
binaries of the corresponding task).

> echo "binary1code" > B1; echo "(digitalrights #01# #0111#)" > R;

> ./bin/create_task -b B1 -t 0.3.1 -n "Task 1" -d R -q;

> echo "binary2code" > B2; echo "(digitalrights #10# #0010#)" > R;

> ./bin/create_task -b B2 -t 0.3.1.1 -n "Task 2" -d R -q;

> echo "binary3code" > B3; echo "(digitalrights #10# #0100#)" > R;

> ./bin/create_task -b B3 -t 0.3.2.1 -n "Task 3" -d R -q;

> echo "binary4code" > B4; echo "(digitalrights #10# #0110#)" > R;

> ./bin/create_task -b B4 -t 0.3.2.2 -n "Task 4" -d R -q;

> rm R; rm B1 B2 B3 B4;

We look at the signature for Task 0.3.2.2 (rsa sig-val value will differ!):

> ./bin/sexp -i data/TSIGS/0.3.2.2 -a

(task

(signature

(signed

(id ID_0.3.2.2)

(name "Task 3")

(digitalrights #10# #0110#)

(len #000000000000000C#)

(hash #23621EFEF48705C4BEA28D90451A455307A21DB70906E466E413B0C9405D

3544#))

(sig-val

(rsa

(s

#0096DEC5048EC63E2590B696A0597B511609B565E897FC5398A25E28B4254D21

997692099B6596F3891828CD24580BA6E39FFF7049B52129847F67919AE244E72

E5C6C2A79A0DB1B2673770DC1AFED6B375F7CBDDF873ED0D76CFA232967BB86D5

A62EAA0E2F698B985FC39C1AABAA8F349A050ED514C49A0246B38CF1CCA60A0F#

)))))

64

A.2 Example

A.2.4 Allowed Binding between Nodes and Tasks

We can examine which task is allowed to run on which node:

> ./bin/check_run -q

Task 0.3.1 is allowed to run on nodes:

0.1.1: YES

0.2.1: NO

Task 0.3.1.1 is allowed to run on nodes:

0.1.1: NO

0.2.1: NO

Task 0.3.2.1 is allowed to run on nodes:

0.1.1: NO

0.2.1: YES

Task 0.3.2.2 is allowed to run on nodes:

0.1.1: NO

0.2.1: YES

A.2.5 Prepare and run Demonstrator

Next we extract and install the secret node keys into the hardware:

> ./bin/extract_keys.sh

Hex to VHDL ROM converter by Daniel Wallner. Version 0244

Reading binary file

Keys written to crypt_secrom_rom.vhd

> ./bin/install_keys.sh

Installing secret keys

Please synthesize hardware now.

Afterwards we synthesize the hardware in Quartus and load it on the two connected
FPGA nodes.

We extract the certificates and task signatures into the software branch U300 of the RE-
CONETS demonstrator:

> ./bin/extract_certs.sh

> ./bin/install_certs.sh

Installing certs

Please make U300 now and U400 now.

Afterwards we make U300 and U400 in the Altera Nios2-Command-Shell and download
the software on both nodes:

65

A Documentation and Demonstration

[SOPC Builder] cd PATH_TO_SWPROJECT/U300/V0.0/; make clean; make; make

[SOPC Builder] cd PATH_TO_SWPROJECT/U400/V0.0/; make

[SOPC Builder] nios2-download U400.elf

-- Plug JTAG connector to other Altera Board now --

[SOPC Builder] nios2-download U400.elf

Finally we start our test system and see, that the allowed task assignment is correctly
verified on system boot.

• Node 1 (Alice): connected via COM1, nad=0x42

• Node 2 (Bob) : connected via COM2, nad=0x43

Start two nios-run consoles in two Altera Nios2-Command-Shells to view the nodes’ de-
bugging outputs:

Alice:

[SOPC Builder] nr -t -p COM1

Bob:

[SOPC Builder] nr -t -p COM2

After the two start buttons on both nodes are pressed a runtime trace like the one in the
following section will appear in the two consoles.

66

A.3 Demonstrator Traces

A.3 Demonstrator Traces

The following traces show the initialization of the crypto layer on system startup of two
connected RECONETS nodes, the fast authenticated key-exchange and signed messages
exchanged between them.

• Alice: nad 42 (0x29) with node certificate 0.1.1

• Bob: nad 41 (0x2A) with node certificate 0.2.1

The following traces of Alice respectively Bob consist of these phases whose beginnings
are marked in the traces:

- - 1 - - Every node checks whether all ported functions of libgcrypt work correctly (run-
time ∼ 9s).

- - 2 - - All manufacturer and node certificates and task signatures are verified and the se-
cret key of the node is loaded. The possible bindings between tasks and nodes are
determined. (∼ 2s)

- - 3 - - The Task Resolution Protocol is initialized and the ROUTE protocol starts to es-
tablish routes.

- - 4 - - When the route between the two connected nodes is set up, the CRYPT protocol
authenticates the nodes to each other and exchanges a secret key (∼ 7s). All mes-
sages sent before the completion of the key exchange are not signed symmetrically
(”Unsigned”). The signature of incoming packets is not verified (”Unverified.”)

- - 5 - - After the key exchange, Alice ”pings” Bob. The every outgoing message (the ping
message as well as its reply) is ”Signed” and the signature of all incoming messages
is verified (”Signature verification: OK.”). Signing and verifying a ping message
needs < 4ms each.

- - 6 - - Finally Bob ”pings” Alice. The messages are also signed and verified correctly
with the previously exchanged symmetric key.

The time measurements have a resolution of the system clock’s frequency of
1

50MHz = 20ns.

67

A Documentation and Demonstration

A.3.1 Trace of Node ”Alice”

nios-run: Entering terminal mode over COM1 at 115200 bps

nios-run: Terminal mode (Control-C exits)

type ’help’ for help

7Segment opened correctly

Inf12_NET opened correctly

Initializing CRYPT layer:

-- 1 --

Testing libgcrypt...

Checking SECMEM

Checking TRNG

Checking AES

AES-128:

Time for encrypting one AES Block: 2770 us

Time for decrypting one AES Block: 893 us

AES-192:

Time for encrypting one AES Block: 768 us

Time for decrypting one AES Block: 974 us

AES-256:

Time for encrypting one AES Block: 592 us

Time for decrypting one AES Block: 1033 us

Checking SHA

Time for hashing 3 bytes: 790 us

Time for hashing 56 bytes: 1119 us

Time for hashing 1000000 bytes: 1608077 us

Checking HMAC

Time for HMAC of 8 bytes: 2436 us

Time for HMAC of 28 bytes: 2472 us

Time for HMAC of 50 bytes: 2355 us

Time for HMAC of 50 bytes: 2524 us

Time for HMAC of 20 bytes: 2527 us

Time for HMAC of 54 bytes: 3375 us

Time for HMAC of 152 bytes: 3628 us

Checking Random

Checking Pubkey

Checking RSA sign/verify

Time to create one signature: 1996889 us

Time to verify one signature: 66848 us

Time to create one signature: 2771 us

Time to create one signature: 3925 us

Time to create one signature: 1404446 us

68

A.3 Demonstrator Traces

Time to verify one signature: 66706 us

Time to create one signature: 1403462 us

Time to verify one signature: 66771 us

Time to create one signature: 2798 us

Time to create one signature: 3817 us

Checking RSA enc/dec

Time for asymetric encryption: 72412 us

Time for asymetric decryption: 2201369 us

Test libgcrypt successful.

Time for test_libgcrypt(): 9203565 us

-- 2 --

Loading manufacturer cert 0: OK.

Time to check manufacturer certificate: 73875 us

Loading manufacturer cert 0.1: OK.

Time to check manufacturer certificate: 72447 us

Loading manufacturer cert 0.2: OK.

Time to check manufacturer certificate: 72304 us

Loading manufacturer cert 0.3: OK.

Time to check manufacturer certificate: 72505 us

Loading manufacturer cert 0.3.1: OK.

Time to check manufacturer certificate: 72485 us

Loading manufacturer cert 0.3.2: OK.

Time to check manufacturer certificate: 72605 us

Loading node cert 0.1.1: OK.

Time to check node certificate: 216039 us

Loading node cert 0.2.1: OK.

Time to check node certificate: 216840 us

Loading task signature 0.3.1: OK.

Time to check task signature: 142149 us

Loading task signature 0.3.1.1: OK.

Time to check task signature: 213979 us

Loading task signature 0.3.2.1: OK.

Time to check task signature: 218423 us

Loading task signature 0.3.2.2: OK.

Time to check task signature: 215165 us

Assigning secret key 1 to nad 42.

corresponding nodecert id is 0.1.1

These tasks are allowed to run on nodes:

Node 0.1.1: 0.3.1

Node 0.2.1: 0.3.1.1, 0.3.2.2

These nodes are allowed to execute tasks:

Task 0.3.1: 0.1.1, 0.2.1

Task 0.3.1.1:

Task 0.3.2.1: 0.2.1

69

A Documentation and Demonstration

Task 0.3.2.2: 0.2.1

Time for crypt_init(): 2018133 us

Time for complete crypto initialization: 11223606 us

crypt start

-- 3 --

PortUp(00000004)

send LINK @2

2a -> 2 (1) |82| Unsigned

TRP:Neighbour(2):Write:SET 1@2A

2a -> 2 (2) |50| Unsigned

TRP:Neighbour(2):Write:SET 2@2A

2a -> 2 (2) |50| Unsigned

TRP:Neighbour(2):Write:SET 3@2A

2a -> 2 (2) |50| Unsigned

ack for 003FFE4C/1 to 29/2

2a <- 29 @2 (1) |82| Unverified.

CNode::ROUTE_Read(*, 02, 29) 1

LINK @2 from 29

link up: 2a <-> 29

send MATRIX @2

2a -> 2 (1) |174| Unsigned

-- 4 --

Asking 29 for new key.

A_newrequest

2a->29 MessageNo=0

[open]

[data="newrequest"]

[close]

2a -> 29 (10) |58| Unsigned

ack for 003FFB8C/2 to 29/2

2a <- 29 @2 (2) |50| Unverified.

ack for 0040060C/2 to 29/2

2a <- 29 @2 (2) |50| Unverified.

ack for 003FF88C/2 to 29/2

2a <- 29 @2 (2) |50| Unverified.

ack for 003FDF8C from 29

(0) acked

ack for 003FF48C/1 to 29/2

2a <- 29 @2 (1) |174| Unverified.

CNode::ROUTE_Read(*, 02, 29) 2

MATRIX @2 from 29

2a <- 29 @42 (10) |55| Unverified.

70

A.3 Demonstrator Traces

A0

B_id: 0.2.1

A_nonce = 9a40a85c346cf346

Key = c6db132be20bfd82d272d3b29538a22ccd915db9066b2dd947edd5a2bae1cea3

B_id: 0.2.1

2a->29 MessageNo=0

[open]

[data="signature"]

[open]

[data="signed"]

[open]

[open]

[data="rA"]

[data="\x9a@\xa8\4l\xf3F"]

[close]

[open]

[data="A"]

[data="0.1.1"]

[close]

[open]

[data="B"]

[data="0.2.1"]

[close]

[open]

[data="key-enc"]

[data="(7:enc-val(3:rsa(1:a128:r\xb18\xe7jW\x82\x11F8\x94F\xf0

u\xf8\xda$y\x8f\x94\x09\n\xd3N\xf9\xa4}\x9eh\x06\xf2\xdfY\x9

4\xd3\xed[u\xcb\x1dN_\x07\xd9\xf0x\x1b\x901\x09\xda\xcf\x93f

\xbd\xba\xe6\x9b\xcf\xe2\xf7\x8a\xd4\x1e\x09-c\x02\x1f\xc3\x

ce\x98\xc1\xeeB \xfd4\xde\xcb\xcbt’p7\x19h\xc1\xe2v\x9c \x0f

eT\xdf\xe6\xf7\xd4\xd70\xab\xc6\x84\x17\xa6\xaa\0ft#*\x9eYh\

xbf#\xe2<i‘\x88\xda:,\x8d=)))"]

[close]

[close]

[close]

[data="\0"]

[open]

[data="sig-val"]

[open]

[data="rsa"]

[open]

[data="s"]

[data="C\xcb\xb8\x01rN$\xd8\x16\xc8?\xae\x8b]\xe1\xb7\xb3\x14p

TLC5\xe6\x88vsO\x061\xee,h\xd0,L\xd0s\xea\xa4\xd11\xecC\x8bF

71

A Documentation and Demonstration

\x03\xbd\xf8J\xec\x0f\x1ee.J\x17\xee\x99t+\xa5\xa0Fj\xda\xce

\xeb\x9f\xcb\xf5O\xf7T\x1aZ\xefzO)\xe87\x07\xb2\xb2V\xfa\x0f

\x07\xb4!\x11i\xf8\x88i\x22\xa2\x99v\x981$\x90\v}\xa45\x13@\

x9d\xf7~\n[f\x9eK\xe5U*\xc4\xb7\xea\xe4\xd3\xfde"]

[close]

[close]

[close]

[data="\0"]

[close]

2a -> 29 (10) |439| Unsigned

Node processing time: 2228917 us

ack for 003FFCCC from 29

(1) acked

ack for 004004CC from 29

(2) acked

ack for 003FFFCC from 29

(3) acked

ack for 0040098C from 29

(4) acked

ack for 003FFC0C/2 to 29/2

2a <- 29 @2 (2) |50| Unverified.

ack for 003FF7CC/2 to 29/2

2a <- 29 @2 (2) |50| Unverified.

ack for 003FD54C/2 to 29/2

2a <- 29 @2 (2) |50| Unverified.

ack for 003FFC0C/2 to 29/2

2a <- 29 @2 (2) |50| Unverified.

ack for 003FF7CC/2 to 29/2

2a <- 29 @2 (2) |50| Unverified.

ack for 003FD54C/2 to 29/2

2a <- 29 @2 (2) |50| Unverified.

ack for 003FFC0C/2 to 29/2

2a <- 29 @2 (2) |50| Unverified.

ack for 003FF7CC/2 to 29/2

2a <- 29 @2 (2) |50| Unverified.

ack for 003FD54C/2 to 29/2

2a <- 29 @2 (2) |50| Unverified.

2a <- 29 @42 (10) |96| Unverified.

A1

[open]

[data="signed"]

[open]

72

A.3 Demonstrator Traces

[open]

[data="B"]

[data="0.2.1"]

[close]

[open]

[data="rB"]

[data="\xf3\xb7\x12\xb8\x8fky$"]

[close]

[close]

[close]

2a->29 MessageNo=1

[open]

[data="signature"]

[open]

[data="signed"]

[open]

[open]

[data="B"]

[data="0.2.1"]

[close]

[open]

[data="rB"]

[data="\xf3\xb7\x12\xb8\x8fky$"]

[close]

[close]

[close]

[data="\0"]

[open]

[data="sig-val"]

[open]

[data="rsa"]

[open]

[data="s"]

[data="O\xe5\xd4\x8b&0\x04v\xf0)^\xb5\xe2h\x7f\xbc\xc5w\xa7X\x

18Z$\x84\x1bC4\xb9\xd1\xd0\n\xb1- 5\xa0\xca\x91\x22hWh\x87\x

c3\x84r^\xebc\xaa$B\xce\xcdspL\x9dB\xfb\x86\xe4\x06p\x17\xfa

\xf0\x82H\x87\x06\xf9N\xebAY\xda\x86\nm\x84\xb7\xe7\x9f\xa6-

O\xb1\xc7\x12\x93+\xdd\x88\xa7\x87\x1c\xaf:\xbd\xae3l\xcb\x9

0k\b~0\xd2Ejb\xb8\x13\xfa\xe7\xeb\x14Q\xe7\xc4\xa1\0O\xdfS\x

d1"]

[close]

[close]

[close]

[data="\0"]

73

A Documentation and Demonstration

[close]

2a -> 29 (10) |257| Unsigned

Authenticated key exchange with 29 successful.

Total time since CRYPT initialization: 18139359 us

Total time since start of Key initialization: 6896754 us

Node processing time: 2157245 us

-- 5 --

> ping 2A 1

Request Ping to node 2A, 1 times

ping(1/1) 2A...

29 -> 2a (7) |44| Signed

Time to sign a packet of length 44: 2992 us

ack for 004013F0 from 2A

(0) acked

ack for 004037B0/8 to 2A/29

29 <- 2a @41 (8) |44| Signature verification: OK.

Time to verify a packet of length 44: 3676 us

ping(1/1) ok from 2A

ping 2A: 1 of 1 ok

-- 6 --

ack for 00401270/7 to 2A/29

29 <- 2a @41 (7) |44| Signature verification: OK.

Time to verify a packet of length 44: 3409 us

PingReq from 2a. Sending reply.

29 -> 2a (8) |44| Signed

Time to sign a packet of length 44: 3005 us

ack for 004029F0 from 2A

(0) acked

nios-run: exiting.

74

A.3 Demonstrator Traces

A.3.2 Trace of Node ”Bob”

nios-run: Entering terminal mode over COM2: at 115200 bps

nios-run: Terminal mode (Control-C exits)

type ’help’ for help

7Segment opened correctly

Inf12_NET opened correctly

Initializing CRYPT layer:

-- 1 --

Testing libgcrypt...

Checking SECMEM

Checking TRNG

Checking AES

AES-128:

Time for encrypting one AES Block: 2706 us

Time for decrypting one AES Block: 890 us

AES-192:

Time for encrypting one AES Block: 770 us

Time for decrypting one AES Block: 965 us

AES-256:

Time for encrypting one AES Block: 604 us

Time for decrypting one AES Block: 1039 us

Checking SHA

Time for hashing 3 bytes: 788 us

Time for hashing 56 bytes: 1134 us

Time for hashing 1000000 bytes: 1608203 us

Checking HMAC

Time for HMAC of 8 bytes: 2442 us

Time for HMAC of 28 bytes: 2477 us

Time for HMAC of 50 bytes: 2435 us

Time for HMAC of 50 bytes: 2523 us

Time for HMAC of 20 bytes: 2522 us

Time for HMAC of 54 bytes: 3381 us

Time for HMAC of 152 bytes: 3611 us

Checking Random

Checking Pubkey

Checking RSA sign/verify

Time to create one signature: 1996898 us

Time to verify one signature: 66840 us

Time to create one signature: 2774 us

Time to create one signature: 3947 us

Time to create one signature: 1404489 us

75

A Documentation and Demonstration

Time to verify one signature: 66736 us

Time to create one signature: 1403469 us

Time to verify one signature: 66804 us

Time to create one signature: 2798 us

Time to create one signature: 3812 us

Checking RSA enc/dec

Time for asymetric encryption: 72409 us

Time for asymetric decryption: 2201602 us

Test libgcrypt successful.

Time for test_libgcrypt(): 9203874 us

-- 2 --

Loading manufacturer cert 0: OK.

Time to check manufacturer certificate: 73869 us

Loading manufacturer cert 0.1: OK.

Time to check manufacturer certificate: 72450 us

Loading manufacturer cert 0.2: OK.

Time to check manufacturer certificate: 72524 us

Loading manufacturer cert 0.3: OK.

Time to check manufacturer certificate: 72483 us

Loading manufacturer cert 0.3.1: OK.

Time to check manufacturer certificate: 73213 us

Loading manufacturer cert 0.3.2: OK.

Time to check manufacturer certificate: 73742 us

Loading node cert 0.1.1: OK.

Time to check node certificate: 216027 us

Loading node cert 0.2.1: OK.

Time to check node certificate: 216881 us

Loading task signature 0.3.1: OK.

Time to check task signature: 142193 us

Loading task signature 0.3.1.1: OK.

Time to check task signature: 213999 us

Loading task signature 0.3.2.1: OK.

Time to check task signature: 218448 us

Loading task signature 0.3.2.2: OK.

Time to check task signature: 215168 us

Assigning secret key 2 to nad 41.

corresponding nodecert id is 0.2.1

These tasks are allowed to run on nodes:

Node 0.1.1: 0.3.1

Node 0.2.1: 0.3.2.1, 0.3.2.2

These nodes are allowed to execute tasks:

Task 0.3.1: 0.1.1

Task 0.3.1.1:

Task 0.3.2.1: 0.2.1

76

A.3 Demonstrator Traces

Task 0.3.2.2: 0.2.1

Time for crypt_init(): 2017768 us

Time for complete crypto initialization: 11223512 us

crypt start

-- 3 --

PortUp(00000000)

PortUp(00000004)

send LINK @2

29 -> 2 (1) |82| Unsigned

TRP:Neighbour(2):Write:SET 1@29

29 -> 2 (2) |50| Unsigned

TRP:Neighbour(2):Write:SET 2@29

29 -> 2 (2) |50| Unsigned

TRP:Neighbour(2):Write:SET 3@29

29 -> 2 (2) |50| Unsigned

ack for 003FDF8C/1 to 2A/2

29 <- 2a @2 (1) |82| Unverified.

CNode::ROUTE_Read(*, 02, 2A) 1

LINK @2 from 2A

link up: 29 <-> 2a

send MATRIX @2

29 -> 2 (1) |174| Unsigned

-- 4 --

Initiating keyexchange with 2a.

B0

29->2a MessageNo=0

[open]

[data="B"]

[data="0.2.1"]

[close]

29 -> 2a (10) |55| Unsigned

ack for 003FFCCC/2 to 2A/2

29 <- 2a @2 (2) |50| Unverified.

ack for 004004CC/2 to 2A/2

29 <- 2a @2 (2) |50| Unverified.

ack for 003FFFCC/2 to 2A/2

29 <- 2a @2 (2) |50| Unverified.

ack for 003FFE4C from 2A

(0) acked

ack for 0040098C/1 to 2A/2

29 <- 2a @2 (1) |174| Unverified.

CNode::ROUTE_Read(*, 02, 2A) 2

MATRIX @2 from 2A

77

A Documentation and Demonstration

29 <- 2a @41 (10) |58| Unverified.

B1

Node processing time: 471 us

ack for 003FFB8C from 2A

(1) acked

ack for 0040060C from 2A

(2) acked

ack for 003FF88C from 2A

(3) acked

ack for 003FF48C from 2A

(4) acked

29 -> 2 (2) |50| Unsigned

29 -> 2 (2) |50| Unsigned

29 -> 2 (2) |50| Unsigned

29 <- 2a @41 (10) |439| Unverified.

B1

A_id: 0.1.1

B_id: 0.2.1

Key = c6db132be20bfd82d272d3b29538a22ccd915db9066b2dd947edd5a2bae1cea3

A_nonce = 9a40a85c346cf346

B_nonce = f3b712b88f6b7924

CRYPT: 29->2a Packet 1

c416ff8d08d691e47cf76b0e5e4568609aec49ad31eebdc4756335ebbf69c8259a40a8

5c346cf346f3b712b88f6b7924302e312e3300

29 -> 2a (10) |96| Unsigned

Node processing time: 2489863 us

ack for 003FFC0C from 2A

ack for 003FF7CC from 2A

ack for 003FD54C from 2A

ack for 003FFC0C from 2A

ack for 003FF7CC from 2A

ack for 003FD54C from 2A

ack for 003FFC0C from 2A

ack for 003FF7CC from 2A

ack for 003FD54C from 2A

29 <- 2a @41 (10) |257| Unverified.

B2

[open]

[data="signature"]

78

A.3 Demonstrator Traces

[open]

[data="signed"]

[open]

[open]

[data="B"]

[data="0.2.1"]

[close]

[open]

[data="rB"]

[data="\xf3\xb7\x12\xb8\x8fky$"]

[close]

[close]

[close]

[data="\0"]

[open]

[data="sig-val"]

[open]

[data="rsa"]

[open]

[data="s"]

[data="O\xe5\xd4\x8b&0\x04v\xf0)^\xe2h\x7f\xc5w\xa7\x18Z$\x84\

x1bC4\xb9\xd1\xd0\n\xb1- 5\xa0\xca\x91\x22hWh\x87\xc3\x84r^\

xebc\xaa$B\xce\xcdspL\x9dB\xfb\x86\xe4\x06p\x17\xfa\xf0\x82H

\x87\x06\xf9N\xebAY\xda\x86\nm\x84\xb7\xe7\x9f\xa6-O\xb1\xc7

\x12\x93+\xdd\x88\xa7\x87\x1c\xaf:\xbd\xae3l\xcb\x90k\b~0\xd

2Ejb\xb8\x13\xfa\xe7\xeb\x14Q\xe7\xc4\xa1\0O\xdfS\xd1"]

[close]

[close]

[close]

[data="\0"]

[close]

B_nonce = f3b712b88f6b7924

Authenticated key exchange with 2a successful.

Total time since CRYPT initialization: 18320639 us

Total time since start of Key initialization: 7058272 us

Node processing time: 159215 us

-- 5 --

ack for 004013F0/7 to 29/2A

2a <- 29 @42 (7) |44| Signature verification: OK.

Time to verify a packet of length 44: 3154 us

PingReq from 29. Sending reply.

2a -> 29 (8) |44| Signed

Time to sign a packet of length 44: 3657 us

ack for 004037B0 from 29

79

A Documentation and Demonstration

(0) acked

-- 6 --

> ping 29 1

Request Ping to node 29, 1 times

ping(1/1) 29...

2a -> 29 (7) |44| Signed

Time to sign a packet of length 44: 2836 us

ack for 00401270 from 29

(0) acked

ack for 004029F0/8 to 29/2A

2a <- 29 @42 (8) |44| Signature verification: OK.

Time to verify a packet of length 44: 3745 us

ping(1/1) ok from 29

ping 29: 1 of 1 ok

nios-run: exiting.

80

B Lists and Index

81

B Lists and Index

82

List of Tables

2.1 Notation for keys, encryptions and signatures 7

3.1 DRV example - Classes of Hardware Requirements 33
3.2 DRV example - Reliability Level . 34
3.3 Layers of the RECONETS communication architecture 36
3.4 Modified layers of the secure RECONETS communication architecture . . 36

4.1 Output of a van Neuman corrector . 38
4.2 Hardware costs of the RECONETS security layer 42
4.3 Software costs of the RECONETS security layer 42

83

List of Tables

84

List of Figures

1.1 Aspects of integrity and authenticity in a ReCoNet 2

2.1 Structure of SHA-256 round i . 11
2.2 Symmetric-Signature (from [IMGc]) . 12
2.3 Symmetric-Key Cipher (from [IMGb]) 13
2.4 Round transformations of AES (from [IMGa]) 15
2.5 Asymmetric-Key Cipher (from [IMGb]) 16
2.6 Asymmetric-Signature (from [IMGc]) 18
2.7 Creation of a digital signature (from [IMGd]) 19
2.8 Verification of a digital signature (from [IMGd]) 19
2.9 Certificate tree with CA0 as root . 21
2.10 Fast three-way authenticated key exchange protocol 22

3.1 Trust model of SRAM-based FPGA boards 26
3.2 Security Architecture for the ReCoNet 27
3.3 Certified Node . 30
3.4 Signed Task . 30
3.5 Certificate Hierarchy . 31
3.6 Security extensions of the RECONETS protocol stack 35

4.1 Generic oscillator with 5 gates delay . 37

85

List of Abbreviations

86

List of Abbreviations

3-DES Triple - DES

AES Advanced Encryption Standard

AN2N Authenticated Node To Node Protocol

ANSI American National Standards Institute

API Application Programming Interface

ASIC Application Specific Integrated Circuit

ATRP Authenticated Task Resolution Protocol

CA Certificate Authority

CBC Cipher-Block Chaining mode of symmetric block ciphers

CFB Cipher FeedBack mode of symmetric block ciphers

CLB Configurable Logic Block

CP Cell Protocol

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CRYPT Crypto Protocol

CSPRBG cryptographically secure pseudo-random bit generator

CTR CounTeR mode of symmetric block ciphers

DES Data Encryption Standard

DPA Differential Power Analysis

DR Digital Right - consists of several Digital Right Vectors (DRV) that all have to be
fulfilled

DRV Digital Right Vector

87

List of Abbreviations

DSA Digital Signature Algorithm

ECB Electronic Code Book mode of symmetric block ciphers

ECC Elliptic curve cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EDC Error Detection Codes

ElGamal public-key system based on Diffie-Hellman key agreement and described by
Taher Elgamal in 1984

ESM Erlangen Slot Machine

FIB Focused Ion Beam

FIPS Federal Information Processing Standard of the US Institute of Computer Sciences
and Technology (ICST)

FLASH non-volatile computer memory that can be electrically erased and reprogrammed

FPGA Field Programmable Gate Array

GCHQ Government Communications Headquarters - British intelligence agency

HW Hardware

IDEA International Data Encryption Algorithm

IKE Internet Key Exchange protocol

IPsec Internet Protocol security

IV Initialization Vector

MAC Message Authentication Code

MCP Multi Cell Protocol

MD Message Digest

MD5 Message-Digest algorithm 5 - cryptographic hash function

MDC Modification Detection Code

MMU Memory Management Unit

N2N Node To Node Protocol

NIST National Institute of Standards and Technology

88

List of Abbreviations

OFB Output FeedBack mode of symmetric block ciphers

PKCS Public Key Cryptography Standard

PRBG Pseudo-random bit generator

PROM Programmable read-only memory

RBG Random Bit Generator

ReCoNet Reconfigurable Network consisting of Reconfigurable, Distributed, Embedded
Systems

ReCoNets Research project run by the University of Erlangen-Nuremberg - Department
of Computer Science - Hardware-Software-Co-Design [ReC]

RNG Random Number Generator

ROM Read-Only Memory

ROUTE Route Protocol

RSA public-key system described by Ronald L. Rivest, Adi Shamir and Leonard Adle-
man in 1977

SHA Secure Hash Algorithm - cryptographic hash function

SPA Simple Power Analysis

SPN Substitution permutation network

SRAM Static Random Access Memory

SW Software

T2T Task To Task Protocol

TRBG True Random Bit Generator

TRNG True Random Number Generator

TRP Task Resolution Protocol

USB Universal Serial Bus

VHDL Very High Speed Integrated Circuit Hardware Description Language

89

Index

AES, 3, 13, 27, 42
Asymmetric

∼ Cipher, 16, 17
∼ Cryptography, 16

Attack
Blackbox ∼, 3
Cloning ∼, 3
on Cryptographic Hash Functions, 9
Physical ∼, 4
Readback ∼, 3
Reverse-Engineering ∼, 3
Side-Channel ∼, 4

DPA, 4
SPA, 4

Certificate, 19, 28, 29, 42
∼ Authority (CA), 20
∼ Verification, 30, 42
Manufacturer ∼, 29, 60
Node ∼, 29, 62
Root ∼, 27, 28

Codes
EDC, 10

CRC, 10, 44
MAC, 11

HMAC, 12
MDC, 10

MD5, 10
SHA-1, 10
SHA-2, 10
SHA-256, 10, 27, 41, 42

Crypto Core, 27, 41

DES, 3
DR, 28, 42, 60

DRV, 28
Examples, 31

Classes of Hardware Requirements,
31

Reliability Level, 32

Hash Function, 9
Cryptographic ∼, 9

Attacks on ∼, 9

Initialization Vector, 7, 10, 15

Kerckhov Principle, 7

Nonce, 7, 21–24, 31

Protocol
AN2N, 34, 43
ATRP, 34, 44
Authenticated Key Exchange, 21, 43

Fast ∼, 23
Challenge-Response ∼, 21
CP, 34
CRYPT, 34, 43
MCP, 34
N2N, 34
ROUTE, 34, 43
T2T, 33, 34, 43
TRP, 34

Random Numbers, 7
CSPRBG, 8
PRBG, 8
PRNG, 27, 41
RBG, 7
RNG, 8
TRBG, 8
TRNG, 8, 27, 39, 45

RSA, 17, 27, 42, 61–64

Secure

90

Index

∼ Hardware, 25
∼ Interprocess Communication, 33,

43
∼ Memory, 25
∼ Task Migration, 30, 44, 65

Signature, 18
Task ∼, 29, 64

Symmetric
∼ Cipher, 13
∼ Cryptography, 13

Update in-field, 2, 31
offline, 31
online, 31

91

Index

92

Erklärung

Ich versichere, dass ich die vorliegende wissenschaftliche Arbeit selbstständig verfasst
und keine anderen als die angegebenen Hilfsmittel verwendet habe. Die Stellen der Ar-
beit, die anderen Werken dem Wortlaut oder dem Sinn nach entnommen sind, wurden
unter Angabe der Quelle als Entlehnung deutlich gemacht. Das Gleiche gilt auch für bei-
gegebene Skizzen und Darstellungen. Diese Arbeit hat in gleicher oder ähnlicher Form
meines Wissens nach noch keiner Prüfungsbehörde vorgelegen.

Erlangen,

Thomas Schneider

	Contents
	Introduction
	Security Objectives of a ReCoNet
	Attacks and Countermeasures on FPGAs

	Cryptographic Fundamentals
	Random Numbers
	Random Bit Generators (RBG)
	Pseudo-Random Bit Generators (PRBG)

	Cryptographic Hash Functions
	Modification Detection Codes (MDC)
	Secure Hash Algorithm SHA-256
	Message Authentication Codes (MAC)
	Hash-MAC (HMAC)

	Symmetric Cryptography
	Advanced Encryption Standard (AES)

	Asymmetric Cryptography
	Asymmetric Ciphers - RSA
	Digital Signatures
	Certificates
	Authenticated Key Exchange

	Conceptual Design of a Security Architecture for a ReCoNet
	Security Prerequisites for the System
	Security Architecture for the ReCoNet
	Hardware Modules
	Secret-Key Storage
	Tamper-Resistant Configuration

	Software Modules
	Crypto Core
	Root Certificate

	Digital Rights and Certificates
	Encoding of Digital Rights
	Certificates
	Certified Nodes
	Signed Tasks
	Manufacturers

	Verification of Certificates

	Secure Task Migration
	Practical Examples for Digital Rights
	Classes of Hardware Requirements
	Reliability Level

	Secure Interprocess Communication

	Implementation and Integration of the Security Layer into the ReCoNet
	Hardware Modules
	True Random Number Generator (TRNG)
	Secret Key Storage
	SHA-256

	Software Modules
	Crypto Core
	Certificates and Digital Rights
	Authenticated Key Exchange
	Secure Interprocess Communication
	Secure Task Migration
	Total Costs of the Implemented ReCoNets Security Layer

	Outlook
	Conclusion
	Bibliography
	Appendix Documentation and Demonstration
	Host Tools
	create_manufacturer
	create_node
	create_task
	sexp
	check_run
	check_manufacturer
	check_node
	check_task
	extract_certs.sh
	install_certs.sh
	extract_keys.sh
	install_keys.sh

	Example
	Manufacturer Certificates
	Node Certificates
	Task Signatures
	Allowed Binding between Nodes and Tasks
	Prepare and run Demonstrator

	Demonstrator Traces
	Trace of Node "Alice"
	Trace of Node "Bob"

	Appendix Lists and Index
	List of Tables
	List of Figures
	List of Abbreviations
	Index

