
Garbled Circuits for Leakage-Resilience:
Hardware Implementation and Evaluation of

One-Time Programs!

Kimmo Järvinen1, Vladimir Kolesnikov2,
Ahmad-Reza Sadeghi3, and Thomas Schneider3

1 Dep. of Information and Comp. Science, Aalto University, Finland
kimmo.jarvinen@tkk.fi!!

2 Alcatel-Lucent Bell Laboratories, Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com

3 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de!!!

Abstract. The power of side-channel leakage attacks on cryptographic
implementations is evident. Today’s practical defenses are typically
attack-specific countermeasures against certain classes of side-channel
attacks. The demand for a more general solution has given rise to the
recent theoretical research that aims to build provably leakage-resilient
cryptography. This direction is, however, very new and still largely lacks
practitioners’ evaluation with regard to both efficiency and practical se-
curity. A recent approach, One-Time Programs (OTPs), proposes using
Yao’s Garbled Circuit (GC) and very simple tamper-proof hardware to
securely implement oblivious transfer, to guarantee leakage resilience.

Our main contributions are (i) a generic architecture for using GC/
OTP modularly, and (ii) hardware implementation and efficiency anal-
ysis of GC/OTP evaluation. We implemented two FPGA-based proto-
types: a system-on-a-programmable-chip with access to hardware crypto
accelerator (suitable for smartcards and future smartphones), and a
stand-alone hardware implementation (suitable for ASIC design). We
chose AES as a representative complex function for implementation and
measurements. As a result of this work, we are able to understand, eval-
uate and improve the practicality of employing GC/OTP as a leakage-
resistance approach.

1 Introduction

Side-channels and protection. For over a decade, we saw the power and ele-
gance of side-channel attacks on a variety of cryptographic implementations and
devices. These attacks refute the assumption of “black-box” execution of cryp-
tographic algorithms, allow the adversary to obtain (unintended) internal state

! This is a short version of the paper. The full version is available [7].
!! Supported by EU FP7 project CACE.

!!! Supported by EU FP7 projects CACE and UNIQUE, and ECRYPT II.

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 383–397, 2010.
c© International Association for Cryptologic Research 2010

384 K. Järvinen et al.

information, such as secret keys, and consequently cause catastrophic failures of
the systems. Often the attacks are on the device in attacker’s possession, and
exploit physical side-channels such as power consumption or emitted radiation.
Hence, from the hardware perspective, security has been viewed as more than
the algorithmic soundness in the black-box execution model (see, e.g., [28]).

Today’s practical countermeasures typically address known vulnerabilities,
and thus target not all, but specific classes of side-channel attacks. The desire
for a complete solution motivated the recent burst of theoretical research in
leakage-resilient cryptography, the area that aims to define security models and
frameworks that capture leakage aspects of computation or/and memory. Infor-
mation leakage is typically modeled by allowing the adversary learn (partial)
memory or execution states. The exact information given to the adversary is
specified by the (adversarily chosen) leakage function. Then, the assumption on
the function (today, usually the bound on the output length) directly translates
into a physical assumption on the underlying device and the adversary. Proving
security against such an adversary implies security in the real-world with the
real device, subject to corresponding assumption (see [17] for a survey on this
strand of research). We note that many of the results of this new line of re-
search (i.e., leakage assumptions and leakage-resilient constructions), although
clearly stated, have not yet been evaluated by practitioners and side-channel
community.1

Secure Function Evaluation in hardware and leakage-resilience. Effi-
cient Secure Function Evaluation (SFE) in an untrusted environment is a long-
standing objective of modern cryptography. Informally, the goal of two-party
SFE is to let two mutually mistrusting (polynomially-bounded) parties compute
an arbitrary function on their private inputs without revealing any information
about the inputs, beyond the output of the function. SFE has a variety of ap-
plications, particularly in settings with strong security and privacy demands.
Deployment of SFE was very limited and believed expensive until recent im-
provements in algorithms, code generation, computing platforms and networks.

As advocated in numerous prior works [13,10,18,8], Garbled Circuit (GC) [29]
is often the most efficient (and thus viable) SFE technique in the two-party
setting. As we argue in the full version [7], the emerging fully homomorphic
encryption schemes [3] are unlikely to approach the efficiency of GC.

Because of the execution flow of the GC solution (one party can non-inter-
actively evaluate the function once the inputs have been fixed), the security
guarantees of SFE are well-suited to prevent all side-channel leakage. Indeed,
even GC evaluation in the open reveals no information other than the output.
Clearly, it is safe to let the adversary see (as it turns out, even to modify) the
entire GC evaluation process. The inputs-related stage of GC can also be made
non-interactive with appropriate hardware such as Trusted Platform Modules
(TPM) [6]. Goldwasser et al. [4] observed that very simple hardware is suffi-
cient, one that, hopefully, can be manufactured tamper-resistant at low cost.
1 Indeed, ongoing work of [21] investigates the practical applicability and usability of

theoretical leakage models and the constructions proven secure therein.

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 385

They propose to use One-Time Programs (OTP), a combination of GC and
above hardware, for leakage-resilient computation. Indeed, one of our goals is to
evaluate today’s performance of OTP in hardware.

Our objectives. Practical efficiency of SFE and leakage-resilient computing is
critical. Indeed, in most settings, the technology can only be adopted if its cost
impact is acceptably low. In this work, we pursue the following two objectives.

First, we aim to mark this (practical efficiency) boundary by considering
hardware-accelerated state-of-the-art GC evaluation, and optimizing it for em-
bedded systems. Implementing SFE (at least partially) in hardware promises
to significantly improve computation speed and reduce power consumption. We
evaluate costs, benefits and trade-offs of hardware support for GC evaluation.

Second, we use our GC hardware-accelerator to implement OTP and evaluate
the efficiency of this provably leakage-resilient protection. The envisioned appli-
cations for OTPs mentioned in [4] are complex functionalities such as one-time
proofs, E-cash, or extreme software protection. We make a first step towards
estimating the costs of such complex OTP applications by implementing OTP
evaluation of the AES function. We chose AES as it is relatively complex and
allows comparison with existing (heuristic) leakage protection.

1.1 Our Contributions and Outline

In line with our objectives stated above, we implement a variant of OTP with
state-of-the-art GC optimizations discussed in §2. As an algorithmic contribu-
tion, we propose an efficiency improvement for OTPs with multiple outputs
in §3.1. Further, we describe a generic architecture for using GC/OTP in a mod-
ular way to protect against arbitrary side-channel attacks in §3.2.

In our implementation, we present a hardware architecture (§4.1) and op-
timizations (§4.2) for efficient evaluation of GC/OTP on memory-constrained
embedded systems. We measure performance of GC/OTP evaluation of AES
on our two FPGA-based implementations in §4.3: a system-on-a-programmable-
chip with access to SHA-256 hardware accelerator (representative for smartcards
and future smartphones) and a stand-alone hardware implementation. With op-
timization, GC evaluation of AES on our implementations requires about 1.3 s
and 0.15 s, respectively. This shows that provable leakage-resilience via GC/OTP
comes at a relatively high cost (but its use might still be justified in high-security
applications): an unprotected implementation of AES in hardware runs in 0.15 µs,
and requires 2.6 times smaller area than OTP-based solution. We note that the
chip area for hardware-accelerated GC/OTP evaluation is independent of the
evaluated function. As AES is a representative complex function, we believe that
our results, in particular our performance measurements, will serve as reference
point for estimating GC/OTP runtimes of a variety of other functions.

1.2 Related Work

Efficient implementations of Garbled Circuits (GC). We believe that
our results are the first hardware implementation of garbled circuits (GC) and

386 K. Järvinen et al.

one-time programs (OTP) evaluation. While several implementations and mea-
surements of GC exist in software, e.g., [13,18], the hardware setting presents
different challenges. Our work allows to compare the approaches and estimate
the resulting performance gain (our hardware implementation is faster than the
software implementation of [18] by a factor of 10-17). Hardware implementation
of GC generation in a cost-effective tamper-proof token with constant memory
was shown in [8]. Our work is complementary, and our hardware accelerator for
GC evaluation can be combined with the token of [8], or software frameworks.

One-Time Programs (OTP). The combination of GC with non-interactive
oblivious transfer in the semi-honest setting was proposed in [6]. For malicious
evaluator, OTP were introduced in [4] using minimal hardware assumptions.
Subsequently, [5] showed how to build non-interactive secure computation uncon-
ditionally secure against malicious parties using tamper-proof hardware tokens.
We extend and implement OTPs in hardware. Our extension is in the compu-
tational model with Random Oracles (RO), secure against malicious evaluator,
and more efficient than the constructions of [4,5].

Protecting AES against side-channel attacks. We summarize current tech-
niques for leakage-protecting AES. We stress that our implementation is provably
leakage-free, but comes at a computational cost which we evaluate in this work.

A large amount of research has been done on countermeasures against side-
channel attacks, e.g., to protect against power analysis attacks [9], the power
consumption needs to be made independent of the underlying secrets by either
randomizing the power consumption or making it constant [14]. Randomizing is
done with masking, i.e., by adding random values. A variety of masking schemes
for both algorithmic and circuit level have been proposed for AES, e.g., [1].
For constant power consumption one can use gates whose power consumption
is independent of input values, e.g., with dynamic differential (dual-rail) logic
(see, e.g., [25]). Countermeasures against power analysis have significant area
overheads ranging from factor 1.5 to 5 [23]. Protecting implementations against
other side-channel attacks or even fault attacks needs additional overhead. For
instance, fault attack countermeasures require error detection techniques such
as proposed in [20]. None of these countermeasures provides complete security.
Indeed, countermeasures providing protection against simpler attacks have been
shown to be useless against more powerful attacks, such as, template attacks [2]
and higher-order differential power analysis [15].

2 Preliminaries

Garbled Circuits (GC). Yao’s GC approach [29] allows sender S with private
input y and receiver R with private input x, to securely evaluate a boolean circuit
C on (x, y) without revealing any information other than the result z = C(x, y)
of the evaluation. We summarize the idea of Yao’s GC protocol next.

The circuit constructor S creates a garbled circuit C̃ from the circuit C: for
each wire Wi of C, he randomly chooses two garblings w̃0

i , w̃1
i , where w̃j

i is the

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 387

garbled value of Wi’s value j. (Note: w̃j
i does not reveal j.) Further, for each

gate Gi, S creates a garbled table T̃i with the following property: given a set
of garbled values of Gi’s inputs, T̃i allows to recover the garbled value of the
corresponding Gi’s output, but nothing else. S sends these garbled tables, called
garbled circuit C̃, to evaluator (receiver R). Additionally, R (obliviously) obtains
the garbled inputs w̃i corresponding to the inputs of both parties: the garbled
inputs ỹ corresponding to the inputs y of S are sent directly: ỹi = ỹyi

i . For each
of R’s inputs xi, both parties run a 1-out-of-2 Oblivious Transfer (OT) protocol
(e.g., [16]), where S inputs x̃0

i , x̃
1
i and R inputs xi. The OT protocol ensures that

R receives only the garbled value corresponding to his input bit, i.e., x̃i = x̃xi
i ,

while S learns nothing about xi. Now, R evaluates the garbled circuit C̃ on the
garbled inputs to obtain the garbled output z̃ by evaluating C̃ gate by gate, using
the garbled tables T̃i. Finally, R determines the plain value z corresponding to
the obtained garbled output value using an output translation table sent by S.

Yao’s garbled circuit protocol is provably secure ([12]) when both parties are
semi-honest (i.e., follow the protocol but may try to infer information about the
other party’s inputs from the messages seen). We stress that each GC can be
evaluated only once, i.e., a new GC C̃ must be used for each invocation.

Improved Garbled Circuits. We use the improved GC construction of [18],
summarized next. Each garbled value w̃i = 〈ki, πi〉 consists of a t-bit key ki and
a permutation bit πi, where t denotes the symmetric security parameter. XOR
gates are evaluated “for free”, i.e., no garbled table and negligible computation,
by computing the bitwise XOR of their garbled values [10]. For each non-XOR
gate with d inputs the garbled table T̃i consists of 2d − 1 entries of size t+1 bits
each; the evaluation of a garbled non-XOR gate requires one invocation of SHA-
256 [18]. At the high level, the keys ki of the non-XOR gate’s garbled inputs are
used to obtain the corresponding garbled output value by decrypting the garbled
table entry which is indexed by the input permutation bits πi. We present the
detailed description of the construction in the full version [7].

Non-Interactive Garbled Circuits and One-Time Programs. The round
complexity of Yao’s GC protocol is exactly that of the underlying OT protocol.
In [6] the authors suggested to extend the Trusted Platform Module (TPM) [26]
for implementing non-interactive OT, resulting in a non-interactive version of
Yao’s protocol. Subsequently, One-Time Programs (OTP) were introduced in
[4]. This approach considers malicious receivers and can be viewed simply as
Yao’s Garbled Circuit (GC), where the oblivious transfer (OT) function calls
are implemented with One-Time Memory (OTM) tokens. An OTM token Ti

is a simple tamper-proof hardware, which allows a single query of one of the
two stored garbled values x̃0

i , x̃
1
i ([4] suggests using a tamper-proof one-time-

settable bit bi which is set as soon as the OTM is queried). Further, OTM-based
GC execution can be non-interactive, in the sense that the sender can send the
GC and corresponding OTMs to the receiver, who will be able to execute one

388 K. Järvinen et al.

instance of SFE on any input of his choice.2 Finally, GC (and hence also OTP)
is inherently a one-time execution object (generalizable to k-time execution by
repetition).

A subtle issue in this context, noted and addressed in [4], is the following.
Previous GC-based solutions were either in the semi-honest model, or used inter-
action during protocol execution, which precluded the receiver R from choosing
his input adaptively, based on given (and even partially evaluated) garbled cir-
cuit. This possibility of adaptively chosen inputs results in possible real attacks
by a malicious R in the non-interactive setting. The solution of [4] is to mask
(each) output bit zj of the function with a random bit mj , equal to XOR of
(additional) random bits mi,j contributed by each of the input OTMs Ti, i.e.,
mj = m1,j ⊕ m2,j ⊕ . . . and z′j = zj ⊕ mj . The real-world adversary does not
learn the output of the function before he had queried all OTMs with his inputs.

3 Extending and Using One-Time Programs

In §3.1 we present an extension of the OTP construction of [4], which results in
improved performance for multiple outputs. Additionally we make several obser-
vations about uses, security guarantees and applicability of OTP, and present a
generic architecture for using OTPs for leakage-resilient computation in §3.2.

3.1 Extending One-Time Programs

As mentioned in the previous section, the solution in [4] seems to require each
OTM token to additionally store a string of the size of the output. We propose
a practical performance improvement to the technique proposed in [4], which is
beneficial for OTP evaluation of functions with many output bits. In our solution
each OTM token (additionally) stores a random string ri of length of the security
parameter t. Consequently, our construction results in smaller OTMs when the
function to be evaluated has more outputs than the size of the security parameter
t. As a trade off, our security proof utilizes Random Oracles (RO), as we do not
immediately see how to avoid their use and have OTM size independent of the
number of outputs. We discuss RO, its uses and security guarantees in the full
version [7].

Our main idea is to insert a “hold off” gate into each output wire Wj which
can only be evaluated once all input OTMs had been queried, thus preventing
malicious R from choosing his input adaptively. It can be implemented by requir-
ing a call to a hash function H (modeled as a Random Oracle) with inputs which
include data from all OTMs. To implement this, we secret-share a random value
r ∈R {0, 1}t over all OTMs for the inputs. That is, OTM Ti additionally stores
a share ri (released to R with x̃i upon the query), where r =

⊕
i

ri. Receiver R

is able to recover r if and only if he queried all OTMs.

2 If needed, the function can be fully hidden by evaluating a universal circuit [27,11,19]
which simulates the function.

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 389

Fig. 1(b) depicts this contruction: Our version of OTM Ti, in addition to
the two OT secrets x̃0

i , x̃
1
i and the tamper-proof bit bi, contains a random share

ri ∈R {0, 1}t which is released together with x̃xi
i once Ti is queried with input bit

xi. The GC is constructed as usual (e.g., as described in §2), with the following
exception. On each output wire Wj with garbled outputs z̃0

j , z̃1
j , we append a one-

input, one-output OT-commit gate Gj , with no garbled table. We set the output
wire secrets of Gj to ẑ0

j = H(z̃0
j ||r), ẑ1

j = H(z̃1
j ||r). To enable R to compute the

wire output non-interactively, GC also specifies that ẑb
j corresponds to b.

We note that a full formal construction is readily obtained from the above
description. Also note that a malicious R is unable to complete the evaluation
of any wire of GC until all the OTMs have been queried, and his input has been
specified in full. Further, he is not able to lie about the result of the computa-
tion, since he can only compute one of the two values z̃0

j , z̃1
j . Demonstration of

knowledge of z̃i
j serves as a proof for the corresponding output value.

Theorem 1. The above protocol is secure against a semi-honest sender S, who
generates the OTM tokens and the garbled circuit, and malicious receiver R, in
the Random Oracle model.

Proof. The proof of Theorem 1 is given in the full version [7]. &'

3.2 Using One-Time Programs for Leakage Protection

Most of today’s countermeasures to side-channel attacks are specific to known
attacks. Protecting hardware implementations (e.g., of AES) usually proceeds as
follows (e.g., see [1]). First, the inputs are hidden, typically by applying a random
mask (this requires trusted operation, and often the corresponding assumption
is introduced). Afterwards, the computation is performed on the masked data.
To allow this, the functionality needs to be adapted (e.g., using amended AES
S-boxes). Finally, the mask is taken off to reveal the output of the computation.

We use a similar approach with similar assumptions (cf. Fig. 1(a)) to provably
protect arbitrary functionalities against all attacks, both known and unknown:

1. The private data x provided by R is masked in a trusted environment MASK.
The masked data x̃ does not reveal any information about the private data,
but still allows to compute on it.

2. The computation on the masked data is performed in an untrusted envi-
ronment where the adversary is able to arbitrarily interfere (passively and
actively) with the computation. To compute on the masked data, the eval-
uation algorithm EVAL needs a specially masked version of the program P̃ .
Additional masked inputs ỹ of S that are independent of R’s inputs can be
provided as well. The result of EVAL is the masked output z̃.

3. Finally, z̃ is unmasked into the plain output z. The procedure UNMASK
allows to verify that z̃ was computed correctly, i.e., no tampering happened
in the EVAL phase in which case UNMASK outputs the failure symbol ⊥.
For correctness of this verification, UNMASK is executed in a trusted envi-
ronment where the adversary can observe but not modify the computation.

390 K. Järvinen et al.

masked input x̃

masked output z̃

output z or fail ⊥

UNMASK

EVAL

input x

MASK

untrusted
environment

trusted
environment

trusted
environment

masked program P̃ ,
masked input ỹ of S

(a) Generic Architecture

xi

x̃i

OTM Ti

x̃0
i , x̃

1
i , bi, ri

ri

x̃

EVAL GC C̃, ỹ

z̃

MASK

EVAL

UNMASK

r =
⊕
i
ri

zj =

0 if H(z̃j ||r) = ẑ0j
1 if H(z̃j ||r) = ẑ1j
⊥ else

(b) Using One-Time Memory

Fig. 1. Evaluating a Functionality Without Leakage

More specifically, the masked program P̃ is a garbled circuit C̃, masked values
x̃, ỹ, z̃ are garbled values and the algorithms MASK, EVAL and UNMASK can
be implemented as described next.

MASK: Masking the input data x of receiver R is performed by mapping each
bit xi to its corresponding garbled value x̃i, i.e., to one of two garblings x̃0

i , x̃
1
i .

This can be provided externally (e.g., by interaction with a party on the net-
work). We concentrate on on-board non-interactive masking which requires cer-
tain hardware assumptions (see below). The following can be directly used as a
(non-interactive) MASK procedure:

– OTMs [4]: For small functionalities, we favor the very cheap One-Time Mem-
ory (OTM), as this seems to carry the weakest assumptions (cf. §2). However,
as OTMs can be used only once, a fresh OTM must be provided for each
input bit of the evaluated functionality. For practical applications, OTMs
(together with their garbled circuits) could be implemented for example on
tamper-proof USB tokens for easy distribution.

– TPM [6]: Trusted Platform Modules (TPM) are low-cost tamper-proof cryp-
tographic chips embedded in many of today’s PCs [26]. TPM masking based
on the non-interactive Oblivious Transfer (OT) protocol of [6] requires the
(slightly extended) TPM to perform asymmetric cryptographic operations
in form of a count-limited private key whose number of usages is restricted
by the TPM chip. An interactive protocol allows re-initialization for future
non-interactive OTs instead of shipping new hardware.

– Smartcard: In our preferred solution for larger functionalities, masking could
be performed by a tamper-proof smartcard. The smartcard would keep a
secure monotonic counter to ensure a single query per input bit. Another
advantage of this approach is that the same smartcard can be used to gener-
ate GC as well, thus eliminating GC transfer over the network as done in [8].
Further, the smartcard can be naturally used for multiple OTP evaluations.

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 391

For non-interactive masking, the hardware that masks the inputs must be trusted
and the entire input must be specified before anything about the output z is
revealed to prevent adaptive input selection as discussed in §2 and §3.1.

EVAL: The main technical contribution of this paper, the implementation of
EVAL (of the masked program P̃ on masked inputs x̃ and ỹ) in embedded
systems is presented in detail in §4. Here we note that P̃ and ỹ (masked input of
S) can be generated offline by the semi-honest sender S and provided to EVAL
by convenient means (e.g., via a data network or a storage medium). This is the
scenario advocated in [4]; one of its advantages is that generation of P̃ does not
leak to EVAL. Alternatively, P̃ and ỹ could be generated “on-the-fly” using a
cheap simple constant-memory stateless and tamper-proof token as shown in [8].
We reiterate that the masked program P̃ can be evaluated exactly once.

UNMASK: Finally, the masked output z̃ is checked for correctness and non-
interactively decoded by R into the plain output z as follows (cf. §3.1 and
Fig. 1(b)). For each output wire, the masked program P̃ specifies the corre-
spondence ẑj → zj in form of the two valid hash values ẑ0

j and ẑ1
j . Even if EVAL

is executed in a completely untrusted environment (e.g., processed on untrusted
HW), its correct execution can be verified efficiently: when H(z̃j ||r) is neither ẑ0

j

nor ẑ1
j the garbled output z̃j is invalid and UNMASK outputs the failure symbol

⊥. The reason for this verifiability property of GC is that a valid garbled output
z̃j can only be obtained by correctly evaluating the GC but cannot be guessed.

4 Efficient Evaluation of Garbled Circuits in Hardware

In this section we describe how GCs (and hence also OTPs) can be efficiently
evaluated on embedded systems and memory-constrained devices. We first de-
scribe the HW architecture in §4.1. Then we present important compile-time
optimizations and show their effectiveness in §4.2. Finally, we discuss technical
details of our prototype implementation and timings in §4.3.

We stress that our designs and optimizations are generic. However, for con-
creteness and for meaningful comparison (e.g., with prior SW SFE of AES [18]),
we take SFE of the AES function as our example for timings and other mea-
surements. For AES evaluation, sender S provides AES key k as input y, and
receiver R provides a plaintext block m as input x. R obtains the ciphertext c
as output z, where c = AES(k, m). Recall, during GC evaluation (EVAL), both
key and message are masked (garbled) and hence cannot be leaked.

4.1 Architecture for Evaluating Garbled Circuits in Hardware

We describe our architecture for efficient evaluation of GC on memory-constrai-
ned devices, i.e., having a small amount of slow memory only.

To minimize overhead, we choose key length t = 127; with a permutation bit,
garbled values are thus 128 bits long (cf. §2). In the following we assume that

392 K. Järvinen et al.

Eval Gate

Garbled
Tables

OUTI/O

(1
or

2)
of

3XOR AC

EVAL A/B/C
EVAL AB/AC/BC

M
em

or
y
(m

em
)

STORE C

LOAD A

LOAD B

STORE A

STORE B

XOR A

XOR B

XOR C Reg C

Reg B

Reg A

XOR AB

XOR BC

x̃, ỹ

z̃
SHA-256

Fig. 2. Architecture for GC Evaluation (EVAL) on Memory-Constrained Devices

memory cells and registers store 128 bit garbled values. This can be mapped to
standard hardware architectures by using multiple elements in parallel.

Fig. 2 shows a conceptual high-level overview of our architecture described
next. At the high-level, EVAL, the process of evaluating GC, on our architecture
consists of the following steps (cf. §3.2). First, the garbled input values x̃, ỹ are
stored in memory using the I/O interface. Then, GC gates are evaluated, using
registers A, B, and C to cache the garbled inputs and outputs of a single garbled
gate. Finally, garbled output value z̃ is output over the I/O interface.

As memory access is expensive (cf. §4.3) we optimize code to re-use values
already in registers. Our instructions are one-address, i.e., each instruction con-
sists of an operator and up to one memory address. Each of our instructions
has length 32 bits: 5 bits to encode one of 18 instructions (described next) and
27 bits to encode an address in memory.

LOAD/STORE: Registers can be loaded from memory using instructions
LOAD A and LOAD B. Register C cannot be loaded as it will hold the out-
put of evaluated non-XOR gates (see below). Values in registers can be stored
back into memory using STORE A, STORE B, and STORE C respectively.

XOR: We evaluate XOR gates [10] as follows. XOR A addr computes A ← A⊕
mem[addr]. Similarly, the other one-operand XOR operations (XOR1) XOR B
and XOR C xor the value from memory with the value in the respective register.
To compute XOR gates where both inputs are already in registers (XOR2),
the instruction XOR AB computes A ← A ⊕ B. Similarly, XOR AC computes
A ← A ⊕ C and XOR BC computes B ← B ⊕ C.

EVAL: Non-XOR gates [18] are evaluated with the Eval Gate block that con-
tains a hardware accelerator for SHA-256 (cf. §2 for details). The garbled inputs
are in one (EVAL1) or two registers (EVAL2), and the result is stored in register
C. The respective instructions for 1-input gates are EVAL A, EVAL B, EVAL C
and for 2-input gates EVAL AB, EVAL AC, EVAL BC. The required garbled
table entry is read from memory.

I/O: The garbled inputs are always stored at the first |x|+|y| memory addresses.
The garbled outputs are obtained from memory with OUT instructions.

The full version [7] shows the sequence of instructions for an example circuit.

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 393

4.2 Compile-Time Optimizations for Memory-Constrained Devices

In this section, we summarize compile-time optimizations to improve perfor-
mance of GC evaluation (EVAL) on our hardware architecture. We aim to reduce
the size of GC (by minimizing the number of non-XOR gates), the size of the
program (number of instructions), the number of memory accesses and memory
size for storing intermediate garbled values. For concreteness, we use AES as rep-
resentative functionality for the optimizations and performance measurements,
but our techniques are generic.

Baseline [18]) Our baseline is the AES circuit/code of [18], already optimized
for a small number of non-XOR gates. Their circuit consists of 11, 286 two-input
non-XOR gates; thus, its GC has size ≈ 529 kByte. Without considering any
caching strategies, this results in 113, 054 instructions, hence the program size is
113, 054 ·32 bit ≈ 442 kByte, and the total amount of memory needed for EVAL
is 34, 136 · 128 bit ≈ 533 kByte.

We summarize our best optimization next and refer for a detailed description
and intermediate optimization steps to the full version [7].

Optimized) First, we replace XNOR gates with an XOR gates and propa-
gate the inverted output into the successor gates. For AES, this optimization
results in the elimination of 4, 086 XNOR gates and reduces the size of AES GC
to ≈ 338 kByte (improvement of 36%). Additionally, we re-use values already
in registers to reduce the number of LOADs. Values in registers are saved to
memory only if needed later. Finally, we randomly consider several orders of
evaluation, and select the most efficient one for EVAL.

Result. Using our optimizations we were able to substantially decrease the
memory footprint of EVAL. As shown in Table 1, our optimized circuit strongly
improves over the circuit of [18] as follows. The size of the AES program P
is only 73, 583 · 32 bit ≈ 287 kByte (improvement of 34.9%). The amount of
intermediate memory is 17, 315 · 128 bit ≈ 271 kByte (improvement of 49.3%)
and the number of memory accesses (read and write) is reduced by ≈ 35%.

Table 1. Optimized AES Circuits (Sizes in kB)

Garbled Circuit C̃ Program P Memory for GC Evaluation
Circuit non-XOR 1-input XOR Size Instr. Size Read Write Entries Size

Baseline [18] 11,286 0 22,594 529 113,054 442 67,760 33,880 34,136 533
Optimized 7,200 40 26,680 338 73,583 287 42,853 22,650 17,315 271

4.3 Implementation

We have designed two prototype implementations of the architecture of §4.1 –
one for a System-on-a-Programmable-Chip with a hardware accelerator for SHA
(reflecting smartcard and future smartphone architectures) and another for a
stand-alone unit (reflecting a custom-made GC accelerator in hardware). Both
prototype implementations are evaluated on an Altera/Terasic DE1 FPGA board

394 K. Järvinen et al.

SDRAM

SRAM

NIOS II
Processor

FPGA

I/O

SHA-256

(a) System-on-a-Programmable-Chip

SDRAM Control SHA-256

FPGA

I/O

Regs

(b) Stand-Alone Unit

Fig. 3. Architectures for Hardware-Assisted GC Evaluation

comprising an Altera Cyclone II EP2C20F484C7 FPGA and 512kB SRAM and
8MB SDRAM running at 50 MHz (cf. full version [7] for details on our prototype
environment) and are functionally equivalent: they take the same inputs (pro-
gram P , garbled circuit C̃, and garbled inputs x̃, ỹ) and return the same garbled
outputs z̃; the only differences are the methods used in the implementation. The
interfaces (I/Os in Fig. 3) allow the host to write to and read from the SDRAM.
In the beginning, the host writes the inputs to the SDRAM and, in the end, the
outputs are written into specific addresses from which the host retrieves them.

System-on-a-Programmable-Chip (SOPC). Our first implementation is a
system-on-a-programmable-chip (SOPC) consisting of a processor with access to
a hardware accelerator for SHA-256, which speeds up the most computational
burden of the GC evaluation. This is a representative architecture for next gen-
eration smartphones or smartcards such as the STMicroelectronics ST33F1M
smartcard which includes a 32-bit RISC processor, cryptographic peripherals,
and memory comparable to our prototype system [22].

The architecture of our implementation is shown in Fig. 3(a). It consists of a
NIOS II/e 32-bit softcore RISC processor (the smallest variation of NIOS II), a
custom-made SHA-256 unit, the SRAM, and the SDRAM. The entire process is
run in the NIOS II processor which uses the SHA-256 unit for accelerating gate
evaluations. The SHA-256 unit is connected to the Avalon bus of the NIOS II
as a peripheral component and it computes the hash for a 512-bit message in
66 clock cycles (excluding interfacing delays). The NIOS II program is stored in
SRAM whereas OTP related data is stored in SDRAM.

Stand-Alone Unit. Our second implementation is a stand-alone unit consist-
ing of a custom-made control state machine, registers (A, B, C), a custom-made
SHA-256 unit, and SDRAM. This architecture could be used to design an Appli-
cation Specific IC (ASIC) as high-speed hardware accelerator for GC evaluation.
The architecture is depicted in Fig. 3(b).

When the host has written the inputs to the SDRAM, the stand-alone unit
executes the program. The state machine parses the program and reads/writes
data from/to SDRAM to/from the registers or evaluates the non-XOR gates
using the SHA-256 unit according to the instructions (see §4.1 for details).

Area. The area requirements of our implementations are shown in Table 2. Both
fit into the low-cost Cyclone II FPGA with 18,754 logic cells (LC), each con-
taining a 4-to-1-bit look-up table (LUT) and a flip-flop (FF), and 52 4096-bit

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 395

Table 2. Areas of the Prototypes for GC
Evaluation on an Altera Cyclone II FPGA

Design LC FF M4K

SOPC 7501 4364 22
NIOS II 1104 493 4
SHA-256 2918 2300 8

Stand-Alone Unit 6252 3274 8
SHA-256 3161 2300 8

AES (unprotected) 2418 431 0

Table 3. Timings for Instructions on
Prototypes (clock cycles, average)

Instruction SOPC Stand-Alone Unit

LOAD 291.43 87.63
XOR1 395.30 87.65
XOR2 252.00 1.00
STORE 242.00 27.15
EVAL1 1,282.30 109.95
EVAL2 1,491.68 135.05
OUT 581.48 135.09

embedded memory blocks (M4K). SHA-256 is the largest and most significant
block in both prototypes. Table 2 also shows the area for an iterative imple-
mentation of AES-128 with no countermeasures against side-channel attacks on
the same FPGA. Compared to an unprotected implementation, countermeasures
against power analysis have area overheads ranging from factor of 1.5 to 5 [23]
as discussed in §1.2; therefore, the area overheads of OTP evaluation are com-
parable with other side-channel countermeasures.

Timings. Instructions. The timings of instructions are summarized in Table 3.
They show the average number of clock cycles required to execute an instruction
excluding the latency of fetching the instruction. Gate evaluations are expensive
in the SOPC implementation, although the SHA-256 computations are fast,
because they involve a lot of data movement (to/from the SHA-256 unit and
from the SDRAM) which is expensive. The dominating role of memory reads
and writes is clear in the timings of the stand-alone implementation: the only
instructions that do not require memory operations (XOR2) require only a single
clock cycle and EVAL1 is faster than EVAL2 because it accesses the memory on
average every other time (no access if the permutation bit is zero) compared to
three times out of four (no access if both permutation bits are zeros).

AES. The timings to evaluate the optimized GCs for the AES functionality of
§4.2 on our prototype implementations are given in Table 4. These timings are
for GC evaluation only; i.e, they neglect the time for transferring data to/from
the system because interface timings are highly technology dependent. The SHA-
256 computations take an equal amount of time for both implementations as the
SHA-256 unit is the same. The (major) difference in timings is caused by data
movement, XORs, interface to the SHA-256 unit, etc. The runtimes for both
implementations are dominated by writing and reading the SDRAM; e.g., 84.3%
for the stand-alone unit and our optimized AES circuit. Hence, accelerating
memory access, e.g., with burst reads and writes, is the key for further speedups.

Performance Comparison. A software implementation that evaluates the GC/
OTP of the unoptimized AES functionality (Baseline [18]) required 2 seconds
on an Intel Core 2 Duo 3.0GHz with 4GB of RAM [18]. Our optimized circuit
evaluated on the stand-alone unit requires only 144ms for the same operation

396 K. Järvinen et al.

Table 4. Timings for the FPGA-based Prototypes for GC Evaluation

System-on-a-Programmable-Chip Stand-Alone Unit
Clock cycles Timings (ms) Clock cycles Timings (ms)

Circuit SHA Total SHA Total SHA Total SHA Total

Baseline [18] 744,876 94,675,402 14.898 1,893.508 744,876 11,235,118 14.898 224,702
Optimized 477,840 62,629,261 9.557 1,252.585 477,840 7,201,150 9.557 144.023

and, therefore, provides a speedup by a factor of 10.4–17.4 (taking the lack of
precision into account). On the other hand, the unprotected AES implementa-
tion listed in Table 2 encrypts a message block in 10 clock cycles and runs on a
maximum clock frequency of 66MHz resulting in a timing of 0.1515µs; hence,
the GC/OTP evaluation suffers from a timing overhead factor of ≈ 950, 000. For
comparison, the timing overhead of one specific implementation with counter-
measures against differential power analysis was factor of 3.88 [24].

Acknowledgements. We thank anonymous reviewers of CHES’10 for their
helpful comments and co-authors of [18] for the initial AES circuit.

References

1. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

2. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

3. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC’09, pp.
169–178. ACM, New York (2009)

4. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

5. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptogra-
phy on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

6. Gunupudi, V., Tate, S.: Generalized non-interactive oblivious transfer using count-
limited objects with applications to secure mobile agents. In: Tsudik, G. (ed.) FC
2008. LNCS, vol. 5143, pp. 98–112. Springer, Heidelberg (2008)

7. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Garbled circuits for
leakage-resilience: Hardware implementation and evaluation of one-time programs.
Cryptology ePrint Archive, Report 2010/276(2010), http://eprint.iacr.org

8. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Embedded SFE: Of-
floading server and network using hardware tokens. In: Sion, R. (ed.) FC 2010.
LNCS, vol. 6052, pp. 207–221. Springer, Heidelberg (2010)

9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

10. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

http://eprint.iacr.org

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 397

11. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
83–97. Springer, Heidelberg (2008)

12. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation.
Journal of Cryptology 22(2), 161–188 (2009)

13. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-
putation system. In: USENIX Security’04. USENIX Association (2004)

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

15. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

16. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA’01, pp.
448–457. Society for Industrial and Applied Mathematics (2001)

17. Pietrzak, K.: Provable security for physical cryptography. In: WEWORC’09 (2009),
http://homepages.cwi.nl/~pietrzak/publications/Pie09b.pdf

18. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

19. Sadeghi, A.-R., Schneider, T.: Generalized universal circuits for secure evaluation
of private functions with application to data classification. In: ICISC 2008. LNCS,
vol. 5461, pp. 336–353. Springer, Heidelberg (2008)

20. Satoh, A., Sugawara, T., Homma, N., Aoki, T.: High-performance concurrent error
detection scheme for AES hardware. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 100–112. Springer, Heidelberg (2008)

21. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. Cryptology ePrint Archive, Report
2009/341 (2009), http://eprint.iacr.org/

22. STMicroelectronics. Smartcard MCU with 32-bit ARM SecurCore SC300 CPU
and 1.25 Mbytes high-density Flash memory. Data brief (October 2008),
http://www.st.com/stonline/products/literature/bd/15066/st33f1m.pdf

23. Tiri, K.: Side-channel attack pitfalls. In: DAC’07, pp. 15–20. ACM, New York
(2007)

24. Tiri, K., Hwang, D., Hodjat, A., Lai, B.-C., Yang, S., Schaumont, P., Verbauwhede,
I.: Prototype IC with WDDL and differential routing — DPA resistance assessment.
In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 354–365. Springer,
Heidelberg (2005)

25. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: DATE’04, vol. 1, pp. 246–251. IEEE,
Los Alamitos (2004)

26. Trusted Computing Group (TCG). TPM main specification. Technical report,
TCG (May 2009), http://www.trustedcomputinggroup.org

27. Valiant, L.G.: Universal circuits (preliminary report). In: STOC’76, pp. 196–203.
ACM, New York (1976)

28. Weingart, S.H.: Physical security devices for computer subsystems: A survey of
attacks and defences. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 302–317. Springer, Heidelberg (2000)

29. Yao, A.C.: How to generate and exchange secrets. In: FOCS’86, pp. 162–167. IEEE,
Los Alamitos (1986)

http://homepages.cwi.nl/~pietrzak/publications/Pie09b.pdf
http://eprint.iacr.org/
http://www.st.com/stonline/products/literature/bd/15066/st33f1m.pdf
http://www.trustedcomputinggroup.org

	Garbled Circuits for Leakage-Resilience: Hardware Implementation and Evaluation of One-Time Programs
	Introduction
	Our Contributions and Outline
	Related Work

	Preliminaries
	Extending and Using One-Time Programs
	Extending One-Time Programs
	Using One-Time Programs for Leakage Protection

	Efficient Evaluation of Garbled Circuits in Hardware
	Architecture for Evaluating Garbled Circuits in Hardware
	Compile-Time Optimizations for Memory-Constrained Devices
	Implementation

