
AUTHOR C
OPY

Journal of Computer Security 21 (2013) 283–315 283
DOI 10.3233/JCS-130464
IOS Press

A systematic approach to practically efficient general
two-party secure function evaluation protocols
and their modular design

Vladimir Kolesnikov a, Ahmad-Reza Sadeghi b and Thomas Schneider c,∗

a Alcatel-Lucent Bell Laboratories, Murray Hill, NJ, USA
E-mail: kolesnikov@research.bell-labs.com
b System Security Lab, Fraunhofer SIT, Intel Collaborative Research Institute for Secure Computing,
Technische Universität Darmstadt, Darmstadt, Germany
E-mail: ahmad.sadeghi@trust.cased.de
c Engineering Cryptographic Protocols Group, Technische Universität Darmstadt, Darmstadt, Germany
E-mail: thomas.schneider@ec-spride.de

General two-party Secure Function Evaluation (SFE) allows mutually distrusting parties to correctly
compute any function on their private input data, without revealing the inputs. Two-party SFE can benefit
almost any client-server interaction where privacy is required, such as privacy-preserving credit checking,
medical classification, or face recognition. Today, SFE is a subject of immense amount of research in a
variety of directions and is not easy to navigate.

In this article, we systematize the most practically important works of the vast research knowledge on
general SFE. We argue that in many cases the most efficient SFE protocols are obtained by combining
several basic techniques, e.g., garbled circuits and (additively) homomorphic encryption.

As a valuable methodological contribution, we present a framework in which today’s most efficient
techniques for general SFE can be viewed as building blocks with well-defined interfaces that can be easily
combined into a complete efficient solution. Further, our approach naturally allows automated protocol
generation (compilation) and has been implemented partially in the TASTY framework.

In summary, we provide a comprehensive guide in state-of-the-art SFE, with the additional goal of ex-
tracting, systematizing and unifying the most relevant and promising general SFE techniques. Our target
audience are graduate students wishing to enter the SFE field and advanced engineers seeking to develop
SFE solutions. We hope our guide paints a high-level picture of the field, including most common ap-
proaches and their trade-offs and gives precise and numerous pointers to formal treatment of its specific
aspects.

Keywords: Framework, protocol design, privacy-preserving protocols, homomorphic encryption, garbled
functions

*Corresponding author: Thomas Schneider, Engineering Cryptographic Protocols Group, Technische
Universität Darmstadt, Mornewegstr. 30, 64293 Darmstadt, Germany. E-mail: thomas.schneider@
ec-spride.de.

0926-227X/13/$27.50 © 2013 – IOS Press and the authors. All rights reserved

AUTHOR C
OPY

284 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

1. Introduction

The concept of two-party Secure Function Evaluation (SFE) was introduced in
1982 by Yao [121]. The idea is to let two mutually mistrusting parties compute an
arbitrary function on their private inputs without revealing any information about
their inputs beyond the output of the function. Since then, this concept has been an
appealing research subject in crypto and security communities, with many exciting
results.

Although a large number of security-critical applications (e.g., electronic auctions
and voting, data classification, remote diagnostics, etc.) with sophisticated privacy
and security requirements can benefit from SFE, its real-world deployment was be-
lieved to be very limited and expensive for a relatively long time. Fortunately, the
cost of SFE has been dramatically reduced in the recent years thanks to many al-
gorithmic improvements and automatic tools, as well as faster computing platforms
and communication networks. Of course, SFE is only a part of the broad and vi-
brant field of cryptography, which includes addressing issues such as encryption and
authentication, securing communication against third parties, etc.

1.1. Scope of this paper

In this paper we survey and systematize the current state of the art of practically
efficient general secure two-party computation. In particular, we do not discuss in
detail currently practically inefficient techniques, such as fully homomorphic en-
cryption (we elaborate on its practicality in Section 4.1.2), nor do we cover spe-
cialized techniques applicable only to small classes of functions. We concentrate on
techniques of the semi-honest model, to limit the scope of the exposition. For well-
roundness, we do discuss the definitions and occasionally mention some approaches
in other models; we stress that this is not at all comprehensive. We refer to [54] for
an excellent presentation of different adversary models, generic, and specific tech-
niques for efficient secure two-party computation. Moreover, as a methodological
contribution, we present a framework which allows to modularly combine the re-
quired techniques with well-defined interfaces to obtain highly efficient protocols
suitable for practical applications. We build our presentation in the style of a tutorial,
and aim for the paper to be both a reference on practically efficient SFE for experts,
and an understandable area guide for non-experts in secure computation.

1.2. Efficient SFE techniques

For several years, two different approaches for secure two-party computation have
co-existed. One approach is based on homomorphic encryption (HE). Here one party
sends its encrypted inputs to the other party, who then computes the intended func-
tion under encryption using the homomorphic properties of the cryptosystem, and
sends back the encrypted result. Popular examples are the additively homomorphic

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 285

cryptosystems of Paillier [101] and Damgård–Jurik [29], and the recent fully homo-
morphic schemes [44,113,116]. (We elaborate on the practicality of fully homomor-
phic schemes in Section 4.1.2). Alternatively, SFE can be done using garbled func-
tions (GF), a generalization of Yao’s garbled circuits (GC) [122] which also covers
the conceptually similar garbled OBDDs of [79], that works as follows: one party
(constructor) “encrypts” (or garbles) the function (using symmetric keys), the other
party (evaluator) obliviously obtains the keys corresponding to both parties’ inputs
and the garbled function, and is able to decrypt the corresponding output value.

Both approaches have their respective advantages and disadvantages. GF requires
to transfer the garbled function (communication complexity is at least linear in the
size of the function) but allows to pre-compute almost all expensive operations result-
ing in a low latency of the online phase, whereas most HE schemes require relatively
expensive public-key operations but can result in a smaller overall communication
complexity.

For a particular primitive, one of the techniques is usually more suitable than the
other. For example, for comparison or maximum selection, GF [75,97] is better than
HE [26–28], whereas multiplication often benefits from using HE. Therefore, sim-
ply switching from one approach for secure computation to the other can result in
substantial performance improvements. For instance, for privacy-preserving DNA
matching based on secure evaluation of finite automatons, GC-based [36] is more
efficient than HE-based [114]. In many protocols, a mixture of both HE and GF
results in the most efficient protocol where HE is used for linear transformations (in-
volving additions and multiplications) and GF is used for the non-linear part of the
computation, e.g., in [5,9,106].

We also note that GCs are gaining popularity as a versatile tool whose applicability
goes beyond the “simple” SFE [43,72,107]. Many published works (e.g., [50,107])
do not give concrete GC instantiations or constructions for how to hide the topol-
ogy of the evaluated function (for which efficient universal circuit constructions are
needed). This is, of course, expected, since they build on the existing GC founda-
tions. We summarize today’s most efficient constructions for garbled circuits and
universal circuits in Section 4.3 of our paper.

We note that recently there has been interest [23,99] in the GMW [49] SFE com-
plier for Boolean circuits. [99] significantly improves the state of the art for malicious
computation, but this protocol is slightly less efficient than GCs in the semi-honest
setting [23]. In addition, the GMW compiler runs in the number of rounds linear in
the depth of the computed circuit. We mention, but do not discuss the GMW ap-
proach in detail in this work.

It is not our goal to give concrete performance numbers for specific approaches.
Firstly, many approaches are not implemented; in cases where implementation exists,
it is often of proof-of-concept quality, and is not fully representative for an optimized
solution implementing the same algorithm. Hence, we measure performance, as is
typical in cryptography, in the number of executions of basic primitives and number
of rounds. Nevertheless, to give a flavor of performance of the garbled circuit, we

AUTHOR C
OPY

286 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

note that a recent implementation takes approximately 10 µs per gate on a standard
PC [56].

1.3. Composition and performance of efficient SFE techniques

Going one step further, we would like to benefit from the use of the most efficient
primitive for the respective sub-task even if they are based on different paradigms.
Indeed, secure and efficient composition of sub-protocols based on HE and GF can
result in performance improvements as shown for several privacy-preserving appli-
cations (see, e.g., [5,17,19,106]). In these protocols, HE is often used for performing
computations that involve many multiplications, e.g., for computing the Euclidean
distance, while GF is used for computing non-linear operations, e.g., computing the
minimum.

One of the goals of this work is the design and presentation of a unifying
framework (Section 5), which allows for the above compositions in a modular
way. The need for and the usefulness of this framework is illustrated by its recent
(partial) implementation, “Tool for Automating Secure Two-Part Y Computations”
(TASTY) [55]. TASTY allows a programmer to provide a high-level description of
the computation to be performed on encrypted data in a domain-specific language,
and automatically transforms this description into efficient protocols based on HE,
GC, and arbitrary combinations of both. TASTY allows to compare the performance
of different protocols with each other. For example, it may help determine (and quan-
tify!) that GC-based multiplication has a more efficient online phase than HE-based
multiplication for � � 16 bit values [55].

1.4. Applications of SFE

There is a large body of literature on SFE applications, in particular those
with strong privacy requirements such as Privacy-Preserving Genomic Computa-
tion [36,69,72,114], Remote Diagnostics [17], Graph Algorithms [18], Data Mining
[83,86], Credit Checking [39], Medical Diagnostics [5], Face Recognition [35,106],
or Policy Checking [37,38,40], just to name a few. These applications are based on
either HE or GF or a combination of both as explained before. Recently, verifiable
outsourcing of computations for cloud-computing applications has been proposed,
based on evaluating GCs under fully HE [43]. Existence of a variety of SFE com-
pilers, coming from both academic, e.g., [55,91,93], and industrial research, e.g.,
[12,111], further proves significant interest in the SFE technology.

Moreover, we note that secure two-party protocols can often be naturally extended
to secure multi-party protocols. Examples include secure mobile agents which can
be based on HE [108] and GC [22], as well as privacy-preserving auction systems
based on GC [97] or HE [26]. However, in this work, we do not address the issues
of multi-party computation with more than two players. We mention, however, that
the practical aspects of secure multi-party computation are also a vibrant field, e.g.,
[8,10–12,23,30,31,63,82]. We note that in-depth conceptual and, where possible,
performance comparison of two- and multi-party computation is an open problem.

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 287

1.5. Outline of the presentation

We start our discussion in Section 2 with a few of the most popular function rep-
resentations and point out their relative advantages in terms of possibility of efficient
secure evaluation. We note that it is possible to “mix-and-match” the representations
in the construction of protocols. Then, in Section 3, we briefly discuss various no-
tions of security and their relationship. In Section 4, we describe today’s practically
efficient SFE constructions for each of the function representations we consider. We
handle the actual details of the composition, namely the techniques to convert en-
crypted intermediate values between the protocols in Section 5 for semi-honest play-
ers, a model which suits many client-server applications.

2. Function representations

Given the function to be securely computed, the first decision we face is the choice
of the “programming language” for describing the function. It turns out that this de-
cision has a major impact on the efficiency of the final solution. Further, it is not
feasible to describe the optimal choice strategy as finding minimal function repre-
sentations is hard [14,70].

The following standard representations for functions are particularly useful for
SFE: Boolean circuits (cf. Fig. 1(a)), arithmetic circuits (cf. Fig. 1(b)), and ordered
binary decision diagrams (OBDD) (cf. Fig. 1(c)).

In this section, we give their detailed descriptions and provide guidelines regard-
ing efficiency choices. We stress that the cost of implementing SFE protocols varies
greatly among the function representations. For example, the GC technique for SFE
of Boolean circuits is much more efficient than techniques for evaluating arithmetic
circuits (e.g., using HE). However, some functions are represented much more com-
pactly as an arithmetic circuit. As another example, some functions (e.g., decision

Fig. 1. Function representations.

AUTHOR C
OPY

288 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

strategies) are most compactly represented as OBDDs, while others (e.g., multipli-
cation), require exponentially large OBDDs.

In this work (specifically, Sections 4 and 5), we explain and advocate a hybrid
approach, where function blocks can be evaluated using different techniques, and
their encrypted intermediate results then glued together.

We now discuss several major function representations used in SFE, and note their
respective advantages, trade-offs, and use aspects.

2.1. Boolean circuits

Boolean circuits are a classical representation of functions in engineering and
computer science.

A Boolean circuit with u inputs, v outputs and k gates is a directed acyclic graph
(DAG) with |V | = u+ v+ k vertices (nodes) and |E| edges. Each node corresponds
to either a gate, an input, or an output. The edges are called wires. For simplicity,
the input- and output nodes are often omitted in the graphical representation of a
Boolean circuit as shown in Fig. 1. For a more detailed definition see [118].

A d-input gate G computes a d-ary Boolean function g : {0, 1}d → {0, 1}. Typical
gates are XOR (⊕), XNOR (=), AND (∧), OR (∨); gates are often specified by their
function table, which contains 2d entries.

Gates of a Boolean circuit can be evaluated in any order, as long as all of the cur-
rent gate inputs are available. This property is ensured by sorting (and evaluating) the
gates topologically, which can be done efficiently in O(|V |+ |E|) [25], pp. 549–552.
The topologic order of a Boolean circuit indexes the gates with labels G1, . . . ,Gk
and ensures that the ith gate Gi has no inputs that are outputs of a successive gate
Gj>i. In complexity theory, a circuit with such a topologic order is called a straight-
line program [2]. Given the values of the inputs, the output of the Boolean circuit can
be evaluated by evaluating the gates one-by-one in topologic order. A valid topologic
order for the example Boolean circuit in Fig. 1(a) would be ∧,⊕,∨,=. The topologic
order is not necessarily unique, e.g., ⊕,∧,=,∨ would be possible as well.

2.1.1. Automatic generation
Boolean circuits can be automatically generated from a high-level specification of

the function. A prominent example is the well-established Fairplay compiler [8,93].
Fairplay’s Secure Function Description Language (SFDL) resembles a simplified
version of a hardware description language, such as VHDL (Very high speed inte-
grated circuit Hardware Description Language), and supports types, variables, func-
tions, Boolean operators (∧,∨,⊕, . . .), arithmetic operators (+,−, ∗, /), compari-
son (<,�,=, . . .), and control structures like if-then-else or for-loops with constant
range (cf. [93], Appendix A, for a detailed description of the syntax and semantics of
SFDL). Fairplay also includes a GUI that assists the programmer in creating SFDL
programs with graphical code templates. The Fairplay compiler automatically trans-
forms the functionality described as SFDL program into the corresponding Boolean

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 289

circuit. Other candidates for automatic generation of Boolean circuits are the lan-
guages and tools provided by [55,102]. As shown in [55,95], Boolean circuits can be
generated with a low memory footprint.

2.2. Arithmetic circuits

Arithmetic circuits often offer a more compact function representation than
Boolean circuits.

An arithmetic circuit over a ring R and the set of variables x1, . . . ,xn is a directed
acyclic graph (DAG). Figure 1(b) illustrates an example. Each node with in-degree
zero is called an input gate labeled by either a variable xi or an element in R. Ev-
ery other node is called a gate and labeled by either + or × denoting addition or
multiplication in R.

Any Boolean circuit can be expressed as an arithmetic circuit over R = Z2. How-
ever, if we use R = Zm for sufficiently large modulus m, the arithmetic circuit
can be much smaller than its corresponding Boolean circuit, as integer addition and
multiplication can be expressed as single operations in Zm.

2.2.1. Number representation
We note that arithmetic circuits can simulate computations on both positive and

negative integers by mapping them into elements of Zm as follows. Zero and positive
values are mapped to the elements 0, 1, 2, . . . whereas negative values are mapped to
m − 1,m − 2, As with all fixed precision arithmetics, overflows or underflows
must be avoided.

2.3. Ordered binary decision diagrams

Another possibility to represent Boolean functions are Ordered Binary Decision
Diagrams (OBDDs) introduced by Bryant [20].

A binary decision diagram (BDD) is a rooted, directed acyclic graph (DAG)
which consists of decision nodes and two terminal nodes called 0-terminal and 1-
terminal. Each decision node is labeled by a Boolean decision variable and has
two child nodes, called low child and high child. The edge from a node to a low
(high) child represents an assignment of the variable to 0 (1). An ordered binary
decision diagram (OBDD) is a BDD in which the decision variables appear in the
same order on all paths from the root node to a terminal node. Given an assignment
〈x1 ← b1, . . . ,xn ← bn〉 to the variables x1, . . . ,xn, the value of the Boolean func-
tion f (b1, . . . , bn) can be found by starting at the root and following the path where
the edges on the path are labeled with b1, . . . , bn.

2.3.1. Example
Figure 1(c) shows the OBDD for the function f (x1,x2,x3,x4) = (x1 = x2) ∧

(x3 = x4) of four variables x1, x2, x3, x4 with the total ordering x1 < x2 < x3 <
x4. Consider the assignment 〈x1 ← 1,x2 ← 1,x3 ← 0,x4 ← 0〉. In the OBDD

AUTHOR C
OPY

290 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

shown in Fig. 1(c), if we start at the root and follow the edges corresponding to the
assignment, we end up at the 1-terminal which implies that f (1, 1, 0, 0) = 1. Note
that OBDDs are sensitive to variable ordering, e.g., with the ordering x1 < x3 <
x2 < x4 the OBDD for f would have 11 nodes.

2.3.2. Generalizations
Multiple OBDDs can be used to represent a function g with multiple outputs. If

g’s outputs can be encoded by k Boolean variables, then g can be represented by k
OBDDs where the ith OBDD computes the ith output bit. Further generalizations
of OBDDs can be obtained by having multiple terminal nodes (called classification
nodes) and more general branching conditions. In a Branching Program as defined
in [17], Section 4.1, the child node is determined depending on the comparison of
the �-bit input variable xαi with a decision node specific threshold ti. In Linear
Branching Programs as defined in [5] the branching condition is the comparison of
the scalar product between the input vector x of n �-bit values and a decision node
specific coefficient vector ai with a decision node specific threshold ti.

2.3.3. Efficiency
Although some functions require in the worst case an OBDD of size exponential

in the number of inputs (e.g., multiplication [21,120]), many functions encountered
in typical applications (e.g., addition or comparison) have a reasonably small OBDD
representation [20]. Even though finding an optimal variable ordering for OBDDs is
NP-complete [14], in many practical cases OBDDs can be minimized to a reasonable
size. Algorithms to improve the variable ordering of OBDDs are Rudell’s sifting
algorithm [104], the window permutation algorithm [41], genetic algorithms [33,81],
or algorithms based on simulated annealing [13]. Nevertheless, some functions have
a lower bound for the size of the smallest OBDD representation which is exponential.
For example �-bit integer multiplication has an exponential size OBDD [21,120]
but requires only one multiplication gate in an arithmetic circuit over a sufficiently
large ring. Multiplication within a Boolean circuit has complexity O(�2) using school
method or O(�log2 3) using Karatsuba multiplication [71] (indeed, for garbled circuits
the latter is more efficient already for � � 20 [55]).

3. SFE: Security notions, parameters, notation, and intuition

In the following we describe the security notions (Section 3.1), parameters, and
notations (Section 3.2) we use and give the general concept of computation under
encryption (Section 3.3).

3.1. Security notions

In this section, we give the intuition of the security notions we use. Due to their
size and complexity, we do not include the standard definitions here. However, we

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 291

present at the high-level the security guarantees provided by these definitions, as
well as the intuition behind the simulation-based definitional approach. We refer the
reader to standard sources for formal definitions and further discussion, e.g., [48,86].
The definitions model semi-honest, covert and malicious behavior.

The strongest and most general (and, perhaps, the most natural) notion is the ma-
licious adversary. Such attacker is allowed to arbitrarily deviate from the prescribed
protocol, aiming to learn private inputs of the parties and/or to influence the outcome
of the computation. Not surprisingly, protection against such attacks is relatively ex-
pensive, as we discuss later in Section 4.2.3.

A somewhat weaker covert adversary is similar to malicious, but with the restric-
tion that they must avoid being caught cheating. That is, a protocol in which an active
attacker may gain advantage may still be considered secure if attacks are discovered
with certain fixed probability (e.g., 1/2). It is reasonable to assume that in many so-
cial, political, and business scenarios the consequences of being caught outweigh the
gain from cheating; we believe covert adversaries is the right way to model the be-
havior of players in many interactions of interest. At the same time, protocols secure
against covert adversaries are substantially more efficient than those secure against
malicious players, e.g., as summarized in Section 4.2.3.

Finally, we consider the semi-honest adversary, one who does not deviate from
the protocol, but aims to learn the output of the computation. At first, it may appear
contrived and trivial. Consideration of semi-honest adversaries, however, is impor-
tant in many typical practical settings. Firstly, even externally unobservable cheating,
such as poor random number generation, manipulations under encryption, etc., can
be uncovered by an audit or reported by a conscientious insider, and cause negative
publicity. Therefore, especially if the gain from cheating is low, it is often reasonable
to assume that a well-established organization will exactly follow the protocol (and
thus can be modeled as semi-honest). Further, even if players are trusted to be fully
honest, it is sometimes desired to ensure that the transcript of the interaction reveals
no information. This is because in many cases, it is not clear how to reliably delete
the transcript due to lack of control of the underlying computing infrastructure (net-
work caching, virtual memory, etc.). Running an SFE protocol ensures that player’s
input cannot be subsequently revealed even by forensic analysis.

At the same time, designing semi-honest-secure SFE protocols is far from trivial,
and is in fact an important basic step in designing protocols secure against covert and
malicious adversaries (cf. Section 4.2.3).

3.1.1. Hybrid security
It is often the case that players are not equal in their capabilities, trustworthiness,

and motivation. This is true especially often in the client-server scenarios. For exam-
ple, it may be reasonable to assume that the bank will not deviate from the protocol
(act semi-honestly), but similar assumption cannot be made on bank clients, who
may be much more willing to take the risks of committing fraud.

This can be naturally reflected in protocol design and the guarantees given by the
protocol. This is because security definitions already separately state security against

AUTHOR C
OPY

292 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

player A and player B. When proposing a protocol, the security claim may be in the
form “Protocol Π is secure against malicious A and semi-honest B”. The proof of se-
curity then involves two different definitions, and simulator constructions would also
be correspondingly different. The benefit of this hybrid approach is the possibility to
design significantly more efficient protocols. For example, the garbled circuit proto-
col (in which players take the roles of constructor or evaluator of garbled circuits)
is almost free to secure against malicious evaluator, and much more expensive to
secure against malicious constructor (details later in Section 4.2.3). Thus, GC-based
protocols are good candidates for settings with corresponding trust relationships.

3.1.2. Simulatable security
Formal definitions of security of SFE are detailed (pages long) and subtle. Here

we discuss the basic technical ideas of the simulatability and the ideal/real paradigm
which are the core of the standard definitions. We do not discuss less standard mod-
els, such as fairness, which is reviewed e.g., in [54], Section 1.1.

Intuitively, a protocol transcript (i.e., the sequence of messages exchanged be-
tween the parties) does not leak player’s input, if an indistinguishable (i.e., similar-
looking) transcript can be constructed without any knowledge of the input. (We note
that the two transcripts, real and simulated, must look the same to a powerful distin-
guisher who, in particular, knows the inputs.) It is now intuitive that if the protocol
leaks some information on the inputs, there will exist a distinguisher who simply
extracts this information from the transcript and compares it with the player’s input.
Since the simulated transcript was constructed without the knowledge of the input,
the distinguisher will be able to distinguish it from the real one, and such protocol
will be insecure by definition. Further, the proof of security for players A and B in
the protocol Π consists of constructing such simulators SimA, SimB , and proving
that their output is indistinguishable from the real transcript of the protocol.

The above intuition is sufficient for the formalization of the semi-honest model.
However, in the presence of actively cheating players (who can substitute their input,
among other things), this does not quite work, as it is not even clear if the players in-
deed evaluate the intended function. Thus, the following extension of the simulation
paradigm was introduced. We now define an ideal world, where players have very
limited cheating powers (they are allowed to abort, substitute their local inputs, and
output what they wish), and rely on a trusted party to provide them with the resulting
output of the computation over a perfectly secure channel. We say that a real-world
protocol Π is secure if for any real-world attacker there is a corresponding ideal-
world attacker that can do “the same harm”. Since the ideal world clearly limits the
attack powers, the same limit would apply to the real world. This is formalized by
the ability to simulate the real-world transcript (i.e., to generate an indistinguishable
transcript) by the ideal-world simulator.

The formal definitions for the semi-honest and malicious player security can be
found in [48].

The formalization of the covert adversaries is similar to that of the malicious; the
difference is in the definition of the ideal world, where ideal world adversaries are

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 293

given the option to cheat, but are caught (i.e., their opponent is notified) with certain
fixed probability. Other aspects of definition remain the same; because of simulata-
bility properties and the general approach of the ideal-real paradigm, a secure real-
world covert adversary also may choose to cheat, but will be caught by the honest
player with the specified probability. The formal definitions for covert security (three
variations) were proposed in [4].

We note that SFE protocols will guarantee security for the honestly behaving
player who may be engaging with the cheating adversary. If both players are de-
viating from the protocol, definitions provide no guarantees.

3.2. Parameters and notation

We denote the symmetric security parameter by t and the asymmetric security
parameter, e.g., bitlength of RSA moduli, by T . From 2011 on, NIST recommends
at least t = 112 and T = 2048. For detailed recommendations on the choice of
security parameters we refer to [47]. The statistical security parameter is denoted by
σ and can be set to σ = 80 or σ = 40 depending on the application. The bitlength of
x is written |x|.

In the following, we refer to the two SFE participants as client C and server S . Our
naming choice is mainly influenced by the asymmetry in the SFE protocols, which
fits into the client-server model. We stress that, while in most of the real-life two-
party SFE scenarios the corresponding client-server relationship in fact exists in the
evaluated function, we do not limit ourself to this setting.

3.3. Computation under encryption

Before presenting the protocols in the next section, we find it instructive to present
the following simple insight: each of the SFE techniques we consider can be viewed
as evaluation under encryption with hints.

Evaluation under encryption is very complicated in its generality. In fact, only
recently the first promising candidate was proposed – an encryption scheme that
allows to perform an arbitrary number of both multiplications and additions on the
plaintext [44] (more details later in Section 4.1.2). We stress that this and similar
schemes are currently prohibitively expensive, and are not likely to be considered for
practice at least in the near and medium term (see Section 4.1 for more discussion).
In comparison, we propose extremely efficient solutions to a much simpler problem,
where the computed function is fixed. Now, for example, the first player can send his
encrypted input and additional function-specific “hints” to assist the second player
with evaluation under encryption. This assistance can also be interactive. We further
simplify our work by considering only elementary operations, e.g., Boolean gates,
and show how to compose their evaluation in a secure way.

AUTHOR C
OPY

294 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

4. SFE of circuits and OBDDs in the semi-honest model

To reduce complexity, functions can be decomposed into several sub-functions
(blocks). Each of these blocks can be represented in its own way, e.g., a multipli-
cation block can be represented as an arithmetic circuit, a comparison block as a
Boolean circuit, and a specific decision tree as an OBDD.

In this section, we present the SFE protocols for the three representations of inter-
est with semi-honest adversaries.

It is our goal to be able to arbitrarily compose the three protocols. This, in particu-
lar, means that the encrypted output of one protocol will be fed as input into another.
To preserve a common interface and simplify the presentation, we will extract and
describe separately the core – computation under encryption – of each protocol (done
in this section). For completeness, we also discuss here the simple issue of how to
appropriately encrypt the inputs and decrypt the outputs. We will discuss the issues
of composition of the protocols, such as conversions of encryptions, in Section 5.
Overall, the protocol structure will look as follows: (i) encrypt the plaintext inputs,
(ii) perform the computation under encryption (which may include a composition of
encrypted computations) and (iii) decrypt the output values.

4.1. Homomorphic encryption: SFE of arithmetic circuits

In this section, we describe semantically secure homomorphic encryption schemes
and how they can be used for secure evaluation of arithmetic circuits. Let
(Gen, Enc, Dec) be an encryption scheme with plaintext space P and ciphertext
space C. We write [[m]] for Enc(m, r).

4.1.1. Additively homomorphic cryptosystems
An additively homomorphic encryption scheme allows addition under encryption

as follows. It defines an operation + on plaintexts and a corresponding operation �
on ciphertexts, satisfying ∀x, y ∈ P : [[x]] � [[y]] = [[x + y]]. This naturally allows
for multiplication with a plaintext constant a using repeated doubling and adding:
∀a ∈ N,x ∈ P : a[[x]] = [[ax]].

Popular instantiations for additively homomorphic encryption schemes are sum-
marized in Table 1, The Paillier cryptosystem [101] provides a T -bit plaintext space,
where T is the size of the RSA modulus N , and is sufficient for most applications.
The Damgård–Jurik cryptosystem [29] is a generalization of the Paillier cryptosys-
tem which provides a large plaintext space of size sT -bit for arbitrary s � 1.
The cryptosystems of Damgård–Geisler–Krøigaard (DGK) [26–28] and lifted EC-
ElGamal [34] (implemented over an elliptic curve group G with prime order p) have
smaller ciphertexts, but are restricted to a small plaintext space Zu (respectively a
small subset of the plaintext space Zp) as decryption requires to solve a discrete log.

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 295

Table 1

Additively homomorphic encryption schemes

Scheme P C Enc(m, r)

Paillier [101] ZN Z
∗
N2 gmrN mod N2

Damgård–Jurik [29] ZNs Z
∗
Ns+1 gmrN

s
mod Ns+1

DGK [26–28] Zu Z
∗
N gmhr mod N

Lifted EC-ElGamal [34] Zp G2 (gr , gmhr)

Notes: N – RSA modulus, s � 1, u – small prime, p – large prime.

4.1.2. Fully homomorphic cryptosystems
For completeness, we mention that some cryptosystems allow both addition and

multiplication under encryption. For this, a separate operation × for multiplication
of plaintexts and a corresponding operation � on ciphertexts is defined satisfying
∀x, y ∈ P : [[x]] � [[y]] = [[x × y]]. Cryptosystems with such a property are called
fully homomorphic.

Until recently, it was widely believed that such cryptosystems do not exist. Sev-
eral works provided partial solutions: [15,46] allow for an arbitrary number of ad-
ditions and one multiplication, and ciphertexts of [3,109] grow exponentially in the
number of multiplications. While one-multiplication schemes are relatively efficient,
their use is limited due to their inherent restriction. Recent schemes [44,113,116] are
fully homomorphic. However, the size of ciphertexts and computational cost of ele-
mentary steps in fully homomorphic schemes are dramatically larger than those of
additively homomorphic schemes.

Recently, the first working implementation of fully homomorphic encryption was
presented [45]. Its performance for reasonable security parameters is in the order of
Gigabytes of communication and minutes of computation on high-end IBM System
x3500 servers. Other recent implementation results of [113] show that even for very
small parameters where the multiplicative depth of the evaluated circuit is bounded
by d = 2, i.e., up to two multiplications, encrypting a single bit takes 386 ms on a
2.4 GHz Intel Core2 (6600) CPU. At the same time, there are applications where it is
sufficient to perform only a few multiplications under encryption. For this purpose,
so called “somewhat homomorphic encryption schemes”, the schemes from which
fully homomorphic encryption schemes are bootstrapped, can be used [32,80].

Significant effort is underway in the research community to improve perfor-
mance of FHE. For example, the US Defense Advanced Research Projects Agency
(DARPA) currently funds the PROgramming Computation on EncryptEd Data
(PROCEED) project, which aims at making fully homomorphic encryption and se-
cure multi-party computations more practical. At the same time, it seems unlikely
that fully homomorphic encryption would very soon approach the efficiency of cur-
rent public-key encryption schemes. Intuitively, this is because a fully homomorphic
cryptosystem must provide the same strong security guarantees, while, at the same
time, possessing extra algebraic structure to allow for homomorphic operations. The
extra structure weakens security, and countermeasures (costing performance) are

AUTHOR C
OPY

296 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

necessary. Further, the main benefit and distinction of fully homomorphic encryp-
tion is the non-interactivity of computation, which is not a critical goal in our dis-
cussion. In this work, we do not rely on, but could use, (currently expensive) fully or
somewhat homomorphic schemes.

4.1.3. Computing on encrypted data
Homomorphic encryption is a natural choice to evaluate arithmetic circuits via

computation on encrypted data, as follows. The client C generates a key pair for a
homomorphic cryptosystem and sends his inputs encrypted under the public key to
the server S together with the public key. With a fully homomorphic scheme, S can
simply evaluate the arithmetic circuit by computing on the encrypted data and send
back the (encrypted) result to C, who then decrypts it to obtain the output. If the
homomorphic encryption scheme only supports addition, one round of interaction
between C and S is needed to evaluate each multiplication gate (or a layer of mul-
tiplication gates) as described later in Section 4.1.5. Today, the interactive approach
results in much faster SFE protocols than using fully homomorphic schemes. (The
latter, however, allows non-interactive evaluation of private functions by S; this can
be done efficiently without fully HE, but with interaction, using universal circuits as
shown in Section 4.3.3.)

4.1.4. Packing
Often it is known from the structure of the protocol that the size of an element

|xi| is substantially smaller than the plaintext space P of the homomorphic encryp-
tion scheme. This allows for optimization of many HE-based protocols by packing
together multiple ciphertexts (each encrypting a small value) into one before or after
additive blinding and sending the single ciphertext from S to C instead. This substan-
tially decreases the message size and the number of decryptions performed by C. The
computational overhead for S is small as packing the ciphertexts [[x1]], . . . , [[xn]]
into one ciphertext [[X]] = [[xn|| · · · || x1]] costs at most one full-range modular
exponentiation by using Horner’s scheme: [[X]] = [[xn]]; for i = (n − 1), . . . , 1:
[[X]] = 2|xi+1|[[X]] � [[xi]].1

4.1.5. Homomorphic values and conversions
We mention a few relatively simple issues and optimizations with encrypting the

input, and decrypting the output of the homomorphic computation. Describing these
procedures completes (at a high level) the description of SFE of arithmetic circuits.

The interface for SFE protocols based on homomorphic encryption are homomor-
phic values, i.e., homomorphic encryptions held by S encrypted under the public key
of C (see Fig. 3 in Section 5). These homomorphic values can be converted from or
to plaintext values as described next.

1Note that S cannot decrypt and concatenate the ciphertexts as he does not know the corresponding
public key.

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 297

Plain value to homomorphic value for inputs. To convert a plain �-bit value x, i.e.,
|x| = �, into a homomorphic value [[x]], x is simply encrypted under C’s public key.
If x belongs to C, [[x]] is sent to S .

Homomorphic value to plain value for outputs. To convert a homomorphic value
into a plain value for C, S sends the homomorphic value to C who decrypts and
obtains the plain value. If only S should learn the plain value corresponding to a ho-
momorphic �-bit value [[x]], S additively blinds the homomorphic value by choosing
a random mask r ∈R {0, 1}�+σ , where σ is the statistical security parameter, and
computing [[x̄]] = [[x]] � [[r]]. S sends this blinded value to C who decrypts and
sends back x̄ to S . Finally, S computes x = x̄ − r. Packing can be used to improve
efficiency of parallel output conversions.

Multiplication of homomorphic values. To multiply two homomorphic �-bit values
[[x]] and [[y]] held by S the following standard protocol requires one single round
of interaction with C: S randomly chooses rx, ry ∈R {0, 1}�+σ , where σ is the
statistical security parameter, computes the blinded values [[x̄]] = [[x + rx]], [[ȳ]] =
[[y + ry]] and sends these to C. C decrypts, multiplies and sends back [[z]] = [[x̄ȳ]].
S obtains [[xy]] by computing [[xy]] = [[z]] � (−rx)[[y]] � (−ry)[[x]] � [[−rxry]].
Efficiency of parallel multiplications can be improved by packing multiple blinded
ciphertexts together instead of sending them to C separately.

4.2. Garbled functions: SFE of Boolean circuits and OBDDs

Efficient techniques for evaluating Boolean circuits and OBDDs are quite simi-
lar; in fact the underlying idea is the same. In this section we will present the main
idea and a complete high-level treatment of the two protocols. We then present the
corresponding details for SFE of Boolean circuits in Section 4.3 and OBDDs in Sec-
tion 4.4.

The idea for SFE, going back to Yao [122], is to evaluate the function, step by
basic step, under encryption. Yao’s approach, which considered Boolean circuits, is
to encrypt (or garble) each wire with a symmetric encryption scheme. In contrast to
homomorphic encryption (cf. Section 4.1), the encryptions/garblings here cannot be
operated on without additional help. We will explain in detail how to operate under
encryption on the basic function steps in Sections 4.3 and 4.4.

We now proceed to describe at the high level Yao’s technique, and present the state
of the art in the crypto primitives the method relies on. Following Yao’s terminology,
we talk about garbled functions, as the generalization of garbled (Boolean) circuits
and garbled OBDDs.

To securely evaluate a function f , the constructor (server S) creates a garbled
function ˜f from f (a detailed description on how this is done is given later in Sec-
tion 4.3 for Boolean circuits and Section 4.4 for OBDDs). In ˜f , the garbled values
of each wire Wi are two (random-looking) secrets w̃0

i , w̃1
i that correspond to the val-

AUTHOR C
OPY

298 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

ues 0 or 1. We note that a garbled value w̃j
i does not reveal its corresponding plain

value j. S sends ˜f to evaluator (client C) and C additionally obtains both players’
garbled input values x̃1, . . . , x̃u from S in an oblivious way (this requires further
interaction as described later in Section 4.2.1). C uses the garbled function and the
garbled input values to obliviously compute the corresponding garbled output values
(z̃1, . . . , z̃v) = ˜f (x̃1, . . . , x̃u). We emphasize that during the step-by-step encrypted
evaluation, all intermediate results are garbled values and hence do not reveal any ad-
ditional information. (We give details on evaluating ˜f later in Section 4.3 for Boolean
circuits and Section 4.4 for OBDDs.) Finally, the garbled output values z̃j are trans-
lated into their corresponding plaintext values zj (cf. Section 4.2.1).

We stress that a garbled function ˜f cannot be re-used, and each secure evaluation
requires construction and transfer of a new garbled function. While this can be done
in a pre-computation phase (see also discussion in Section 4.3.1), the costs are not
amortized by this pre-computation. A formal treatment of the properties achieved by
garbled functions was given recently in [7].

4.2.1. Garbled values and conversions
For garbled functions, conversions between plaintext values and encryptions in-

volve a number of subtleties and tricks. Recall, we first convert both players’ plain
inputs into their corresponding garbled values (encrypt inputs), then evaluate the
garbled function (evaluate under encryption), and finally convert the garbled outputs
back into plain values (decrypt result).

The interface for SFE protocols based on garbled functions are garbled values
(see Fig. 3 in Section 5). A garbled Boolean value x̃i represents a bit xi. Each gar-
bled Boolean value x̃i = 〈ki,πi〉 consists of a key ki ∈ {0, 1}t, where t is the
symmetric security parameter, and a permutation bit πi ∈ {0, 1}. The garbled value
x̃i is assigned to one of the two corresponding garbled values x̃0

i = 〈k0
i ,π0

i 〉 or
x̃1
i = 〈k1

i ,π1
i 〉 with π1

i = 1 − π0
i . The permutation bit πi allows efficient evaluation

of the garbled function using the so-called point-and-permute technique [97] (we
give more details in Section 4.3.1). Of course, a garbled �-bit value can be viewed as
a vector of � garbled Boolean values.

We show how to convert a plain value into its corresponding garbled value and
back next.

Garbled value to plain value for outputs. To convert a garbled value x̃i = 〈ki,πi〉
into its corresponding plain value xi for evaluator C, constructor S reveals the output
permutation bit π0

i which was used during construction of the garbled wire and C
obtains xi = πi ⊕ π0

i .
If the garbled value x̃i should be converted into a plain value for constructor S ,

evaluator C simply sends x̃i (or πi) to S who obtains the plain value by decrypt-
ing it, e.g., compare with x̃0

i and x̃1
i . We note that malicious C cannot cheat in this

conversion as he only knows either x̃0
i or x̃1

i , but is unlikely to guess the other one.

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 299

Plain value to garbled value for inputs. To translate a plain value xi held by S
into a garbled value x̃i for C, S sends the corresponding garbled value x̃0

i or x̃1
i to C

depending on the value of xi.
To convert a plain value xi held by C into a garbled value x̃i for C, both parties

execute an oblivious transfer (OT) protocol where C inputs xi, S inputs x̃0
i and x̃1

i ,
and the output to C is x̃i = x̃0

i if xi = 0 or x̃1
i otherwise. In the following we describe

how OT can be implemented efficiently in practice.

4.2.2. Oblivious transfer
Parallel 1-out-of-2 Oblivious Transfer (OT) of n t′-bit strings (where t′ = t + 1

is the length of garbled values for symmetric security parameter t), denoted as OTn
t′ ,

is a two-party protocol run between a chooser (client C) and a sender (server S) as
shown in Fig. 2: For i = 1, . . . ,n, S inputs pairs of t′-bit strings s0

i , s1
i ∈ {0, 1}t

′

and C inputs choice bits bi ∈ {0, 1}. At the end of the protocol, C learns the chosen
strings sbii but nothing about the other strings s1−bi

i , whereas S learns nothing about
C’s choices bi. As described above, OT is used to convert plain values of C into
corresponding garbled values.

Efficient OT protocols. OTn
t′ can be instantiated efficiently with different proto-

cols [1,89,96]. We refer to [54], Chapter 7, for a detailed description of practically
efficient OT protocols. For example the protocol of [1] implemented over a suit-
ably chosen elliptic curve using point compression has communication complexity
n(6(2t + 1)) + (2t + 1) ∼ 12nt bits and is secure against malicious C and semi-
honest S in the standard model (based on the Decisional Diffie–Hellman assumption)
as described in [75]. Similarly, the protocol of [96] has communication complexity
n(2(2t+ 1)+ 2t′) ∼ 6nt bits and is secure against malicious C and semi-honest S in
the random oracle model (based on the Diffie–Hellman assumption). Both protocols
require O(n) scalar point multiplications and two messages (C → S → C).

Extending OT efficiently. The extensions of [60] can be used to reduce the number
of computationally expensive public-key operations of OTn

t′ to be independent of n.

(This is the reason for our choice of notation OTn
t′ instead of n × OTt

′
.) The trans-

formation for semi-honest C reduces OTn
t′ to OTt

t and a small additional overhead:
one additional message, 2n(t′ + t) bits additional communication, and O(n) invoca-
tions of a correlation robust hash function such as SHA-256 (2n for S and n for C)
which is substantially cheaper than O(n) asymmetric operations. A brief summary

Fig. 2. Parallel oblivious transfer.

AUTHOR C
OPY

300 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

of the OT extension construction of [60] optimized for pre-computations is given
in [58], Appendix. Constructions for OT extension with security against malicious
adversaries are given in [53,60,98,99].

In some computation-sensitive applications, the technique of [60] provides a crit-
ical performance improvement by getting rid of expensive public-key operations.
We strongly recommend using it for functions with many/large inputs, possibly in
conjunction with the following pre-computations.

Pre-computing OT. All computationally expensive operations for OT can be shifted
into a setup phase by pre-computing OT [6]: In the setup phase the parallel OT proto-
col is run on randomly chosen values. Then, in the online phase, C uses its randomly
chosen values ri to mask his private inputs bi, and sends them to S . S replies with
encryptions of his private inputs sji using his random values mj

i from the setup phase.
Which input of S is masked with which random value is determined by C’s message.
Finally, C can use the masks mi he received from the OT protocol in the setup phase
to decrypt the correct output values sbii .

More precisely, the setup phase works as follows: for i = 1, . . . ,n, C chooses
random bits ri ∈R {0, 1} and S chooses random masks m0

i ,m1
i ∈R {0, 1}t

′
. Both

parties run a OTn
t′ protocol on these randomly chosen values, where S inputs the

pairs 〈m0
i ,m1

i 〉 and C inputs ri and obtains the masks mi = mri
i as output. In the

online phase, for each i = 1, . . . ,n, C masks its input bits bi with ri as b̄i = bi ⊕ ri
and sends these masked bits to S . S responds with the masked pair of t′-bit strings
〈s̄0

i , s̄1
i 〉 = 〈m0

i ⊕ s0
i ,m1

i ⊕ s1
i 〉 if b̄i = 0 or 〈s̄0

i , s̄1
i 〉 = 〈m0

i ⊕ s1
i ,m1

i ⊕ s0
i 〉 otherwise.

C obtains 〈s̄0
i , s̄1

i 〉 and decrypts sbii = s̄rii ⊕mi. Overall, the online phase consists of
two messages of size n bits and 2nt′ bits, respectively, and negligible computation
(XOR of bitstrings).

4.2.3. Covert and malicious adversaries
SFE protocols based on garbled functions can be easily protected against covert

or malicious client C, by using an OT protocol with corresponding security.
Standard SFE protocols with garbled functions which additionally protect against

covert [4,51] or malicious [84] server S rely on the following cut-and-choose tech-
nique: S creates multiple garbled functions ˜fi, deterministically derived from ran-
dom seeds si, and commits to each, e.g., by sending ˜fi or Hash(˜fi) to C. In the
covert case, C asks S to open all but one garbled function I by revealing the corre-
sponding si�=I . For all opened functions, C computes ˜fi and checks that they match
the commitments. The malicious case is similar, but C asks S to open 3/5 of the func-
tions [112], evaluates the remaining ones and chooses the majority of their results.
Additionally, it must be guaranteed that S’s input into OT is consistent with the GCs
as pointed out in [74], e.g., using committed, committing, or cut-and-choose OT [87].
The practical performance of cut-and-choose-based GC protocols was investigated
experimentally in [88,103]: Secure evaluation of the AES functionality (Boolean cir-
cuit with 33, 880 gates) between two Intel Core2 Duos running at 3.0 GHz, with 4 GB

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 301

of RAM connected by gigabit ethernet takes approximately 0.5 MB data transfer and
7 s for semi-honest, 8.7 MB/1 min for covert, and 400 MB/19 min for malicious
adversaries [103]. In fact, an optimized implementation that uses the combination
of OT optimizations of Section 4.2.2 allows to reduce the online time for secure
evaluation of AES in the semi-honest case from 5 s to 0.5 s as shown in [55]. Fur-
ther optimizations can be achieved by streaming (cf. Section 4.3.1). The most recent
implementation result on cut-and-choose-based GC protocols [78] exploits massive
parallelism in a grid computing infrastructure and reports secure evaluation of AES
with security against malicious adversaries in 1.1 s using 256 machines on each side.

For completeness, note that cut-and-choose may be avoided with some SFE
schemes, e.g., [64], which use zero-knowledge proofs of correctness of the circuit
construction, and operate on committed inputs [42]. An alternative approach is the
soldering approach taken in [100]. However, the elementary steps of these proto-
cols involve public-key operations for each gate. Hence, as estimated by [103], such
malicious-secure protocols often require substantially more computation than gar-
bled functions/cut-and-choose-based protocols.

We further note that there are yet other approaches to malicious security, e.g.,
the IPS compiler [62] that compiles a secure multi-party computation protocol into
a two-party SFE protocol. Optimizations and a concrete efficiency analysis of this
protocol are given in [82].

A recent very efficient approach for security against malicious adversaries is de-
scribed in [99]. Their protocol combines the GMW protocol [49] with OT extensions
similar to those summarized in Section 4.2.2. For big enough circuits, their approach
can evaluate more than 20,000 gates per second, or takes 3 s for performing 27 secure
evaluations of AES in parallel.

We mention, but do not discuss in detail the approach of [94], where the authors
define and construct very efficient protocols secure against malicious players at the
cost of leaking one bit of information. This notion of security is weaker than ma-
licious security and incomparable to covert. As demonstrated in [57], this protocol
can be implemented with only a slight overhead over the semi-honest version of the
SFE protocol using two threads on each side.

4.3. Garbled circuits: SFE of Boolean circuits

We now turn to presenting the Boolean-circuit-specific details for SFE of garbled
functions as introduced in [122] and excellently presented in [85]. Recall, in Sec-
tion 4.2 we left out the method of step-by-step creation of the garbled function ˜f and
its evaluation given the garblings of the input wires. In the following we describe
how the garbled circuit is constructed and evaluated.

To construct the garbled circuit ˜C for a given Boolean circuit C, constructor S
assigns to each wire Wi of the circuit two random-looking garbled values w̃0

i , w̃1
i –

encryptions of 0 and 1 on that wire. We now show how to perform a basic step –
to evaluate a gate Gi under encryption. That is, given two garblings (one for each

AUTHOR C
OPY

302 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

of the two inputs of the gate), we need to obtain the garbling of the output wire
consistently with the gate function. Here the constructor S gives help to the evaluator
C in the form of a garbled table ˜Ti with the following property: given a set of garbled
values of Gi’s inputs, ˜Ti allows to recover the garbled value of the corresponding
Gi’s output, but nothing else. This is easily done as follows. There are only four
possible input combinations (and their garblings). The garbled table will consist of
four entries, each of which is an encryption under a pair of input wire garblings of
the corresponding output garbling. Clearly, this allows the evaluator to compute Gi

under encryption, and it can be shown that ˜Ti does not leak any information [85].
This method is composable s.t. the entire Boolean circuit can be evaluated gate-

by-gate. This technique also applies to gates with more than two inputs, but the size
of garbled tables grows exponentially in the number of gate inputs.

The above is a simple description of Yao’s technique. Today, a number of opti-
mizations exist, which we survey next (but do not discuss in detail).

4.3.1. Efficient garbled circuit constructions
A summary of several constructions for garbled circuits is shown in Table 2. In

the following we concentrate on the currently most efficient technique for garbled
circuits, Garbled Row Reduced Free XOR (GRRFX) of [103], which combines free
XOR gates of [76] with garbled row reduction of [97]. This technique requires less
communication than the secret-sharing based technique of [103] as soon as more
than 33% of the circuit’s gates are XOR gates. This is achieved in almost all cases
when applying the optimization techniques of [103] (see below). However, it can be
proven secure only under a slightly stronger assumption than the standard model.

The GRRFX technique of [103] allows “free” evaluation of XOR gates from [76],
i.e., a garbled XOR gate has no garbled table (no communication) and its evalua-
tion consists of XOR-ing its garbled input values to obtain the garbled output value
(negligible computation).

The other gates, referred to as non-XOR gates, are evaluated with a combination
of the point-and-permute technique and the garbled row reduction technique of [97],
i.e., each d-input non-XOR gate requires a garbled table of size (2d−1)t+(2d−1) bit,
where t is the symmetric security parameter. Creating this garbled table in the pre-
computation phase requires 2d invocations of a suitably chosen cryptographic hash

Table 2

Size of efficient GC techniques per garbled d-input gate

GC technique Size of garbled tables Free XOR

[bits] [76]

Point-and-permute [97] 2dt+ 2d yes

Garbled row reduction [97] (2d − 1)t+ (2d − 1) yes

Secret-sharing [103] (2d − 2)t+ 2d no

Note: t – symmetric security parameter.

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 303

function such as SHA-256 in the random oracle model.2 Later, for evaluation of a
garbled d-input non-XOR gate, the evaluator needs only 1 invocation of the hash
function as the correct entry to decrypt is determined by the permutation bits of the
gate’s input wires. Indeed, all known efficient GC constructions listed in Table 2
require exactly this number of hash invocations.

Circuit optimizations. As the costs of GC constructions for creating and transfer-
ring garbled tables grow exponentially in d, it is beneficial to optimize the circuit
such that gates have small degree d while exploiting free XOR gates as much as pos-
sible. [88] propose to encode circuit components with d inputs consisting of multiple
2-input gates by a single d-input gate. Afterwards, when XOR gates are “free”, these
d-input gates are decomposed into 2-input gates while minimizing the number of
non-XOR gates [103].

Hardware-based SFE. We note that the transfer of garbled tables can be avoided
entirely when server S can send to client C a tamper-proof hardware token that gen-
erates the garbled circuit on behalf of S . The token needs to compute only symmetric
key primitives, processes the gates one-by-one using a constant amount of memory,
and does not need to be trusted by C [67]. Another direction for improving SFE
protocols is to use a cryptographic coprocessor for costly operations [59,68]. Us-
ing trusted hardware also allows to implement OT non-interactively, called one-time
programs in combination with GC [50,52,68].

Pre-computation vs. streaming. We note that most GC-based SFE implementations
(e.g., [55,88,93,97,103]) follow the compilation paradigm, in which the circuit is first
compiled from a high-level description and then optimized for size (see above). Al-
though this approach requires storage linear in the size of the circuit, it is beneficial
when the function is fixed and the compilation (and possibly GC creation) can be
done in a pre-computation phase. When pre-computation is not feasible (e.g., in sce-
narios where parties make ad-hoc decisions when and what to compute securely), it
is also possible to generate the circuit and its garbling with constant storage/memory:
Firstly, the circuit can be compiled on-the-fly using a constant amount of memory as
implemented in [55] (see discussion in the full version of [55]). Further, this stream
of gates can be directly combined with the constant-memory GC creation technique
of [67], and the garbled tables can be streamed directly over the network to the eval-
uator who evaluates them on-the-fly [56,68]. Finally, OT can be extended on-the-fly
as mentioned in [60], s.t. only a constant (in the security parameter) number of pub-
lic key operations is needed for an arbitrary (and unknown in advance) number of
OTs. We note, however, that some circuits cannot be streamed as their evaluation
requires memory linear in the circuit size [66]. The recently proposed VMCrypt li-
brary [92] as well as [56] specifically aim to maximize GC streaming. The currently
fastest implementation of garbled circuits in the semi-honest setting is implemented
in Java and takes approximately 10 µs per gate [56]. Instead of compiling the entire
function into a circuit first, these libraries generate sub-circuits on-the-fly. The tech-

2In fact, it is sufficient to model the hash function as circular 2-correlation robust [24].

AUTHOR C
OPY

304 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

Table 3

Efficient circuit constructions for �-bit values (optimized for free XOR)

Functionality #non-XOR 2-input gates

Addition [16] �

Subtraction, comparison [75] �

Multiplexer [76] �

Minimum/maximum value + indexa of n �-bit values [75] 2�(n− 1) + (n+ 1)

Permute n bits [76,119] n logn− n+ 1

Select v from u � v bits [76,77] u+3v
2 log v + u− 2v + 1

Textbook multiplication [75] 2�2 − �

Fast multiplication [55] 9�1.6 − 13�− 34
aWhen only the minimum/maximum value needs to be computed but not the index, the circuit size is
2�(n− 1) as described in [58].

niques described above as well as the “use cheapest SFE block” approach advocated
in our work can be also used with their architectures, resulting in corresponding per-
formance improvements.

4.3.2. Efficient circuit constructions with free XOR
As XOR gates can be evaluated “for free”, the circuits to be evaluated can be opti-

mized so that the number of non-XOR gates is minimized as described above. These
tricks can improve many basic functions, some of which are summarized in Table 3.
For example, addition, subtraction and comparison have cheap circuit representa-
tions (linear in the size of the inputs). Also selecting the minimum or maximum value
of n values together with its index (the function evaluated in a first-price auction [97])
has linear overhead. Permuting (without duplicates) or selecting (with duplicates) n
bits grows like O(n logn) and hence is feasible as well. In contrast, multiplication
has a relatively expensive circuit representation. Fast multiplication [71] with com-
plexity O(�1.6) is more efficient than O(�2) textbook multiplication for � � 20 [55].

4.3.3. Private circuits
In some applications the evaluated function is known by one party only and should

be kept secret from the other party. This can be achieved by securely evaluating
a Universal Circuit (UC) which can be programmed to simulate any circuit C and
hence entirely hides C (besides the number of inputs, number of gates, and number of
outputs). Efficient UC constructions to simulate circuits consisting of k 2-input gates
are given in [77,115]. Generalized UCs of [105] can simulate circuits consisting
of d-input gates. Which UC construction is favorable depends on the size of the
simulated functionality: Small circuits can be simulated with the UC construction of
[105] with overhead O(k2) gates, medium-size circuits benefit from the construction
of [77] with overhead O(k log2 k) gates, and for very large circuits the construction
of [115] with overhead O(k log k) gates is most efficient. Explicit sizes and a detailed
analysis of the break-even points between these constructions are given in [105]. The

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 305

recent proposal of [73] avoids the super-linear complexity of UCs, but requires O(k)
public-key operations.

While UCs entirely hide the structure of the evaluated functionality f , it is some-
times sufficient to hide f only within a class of topologically equivalent functionali-
ties F ; this is called secure evaluation of a semi-private function f ∈ F . The circuits
for many standard functionalities are topologically equivalent and differ only in the
specific function tables, e.g., comparison (<,>,=, . . .) or addition/subtraction. It is
possible to directly evaluate the circuit and avoid the overhead of UC for semi-private
functions as GC constructions of [93,97] completely hide the type of the gates from
evaluator C [37–40,102].

4.4. Garbled OBDDs: SFE of OBDDs

OBDDs can be evaluated securely in a way analogous to garbled circuits, as first
described in [79]. We base our presentation on the natural extension of [79] de-
scribed in [110], Section 3.4.1, and [5], which also offers a (slight) performance im-
provement. Alternative approaches [61,90] based on homomorphic encryption have
smaller communication overhead, but put more computational load on S (public-key
operations instead of symmetric operations for each decision node).

We now turn to presenting the OBDD-specific details for SFE of garbled func-
tions. Recall, in Section 4.2 we left out the method of step-by-step creation of the
garbled function ˜f and its evaluation given the garblings of the input wires. In the
following we describe how the garbled OBDD is constructed and evaluated. We note
that the technique is somewhat similar to that of GCs described in Section 4.3.

4.4.1. Create garbled OBDD
In the pre-computation phase, S generates a garbled version ˜O of the OBDD O.

For this, the OBDD is first extended with dummy nodes to ensure that each eval-
uation path traverses the same number of variables in the same order resulting in
evaluation paths of equal length. Further, OBDD nodes are randomly permuted to
prevent leaking information from the sequence of steps taken by the evaluator (the
start node P1 remains the first node in ˜O). Then, each decision node Pi, labeled
with Boolean variable xj , is converted into a garbled node ˜Pi in ˜O, as follows. A
randomly chosen key Δi ∈R {0, 1}t is associated with each node Pi. Node’s infor-
mation (pointers to the two successor nodes, and their encryption keys) is encrypted
with the node’s key Δi. To preserve security, we ensure that Δi is only revealed to
the evaluator, if this node is reached by executing on the parties’ inputs. Process-
ing/evaluating an OBDD node is simply following the pointer to one of the two child
nodes, depending on the input. Since we must prevent the evaluator from following
both successor nodes, we additionally encrypt left (resp. right) successor information
with the garbling of the 0-value (resp. 1-value) of Pi’s decision variable xj .

4.4.2. Evaluate garbled OBDD
It is now easy to see the corresponding OBDD evaluation procedure. C receives the

garbled OBDD ˜O from S , and evaluates it locally on the garbled values x̃1, . . . , x̃n
and obtains the garbled value z̃ that corresponds to the result z = O(x1, . . . ,xn),

AUTHOR C
OPY

306 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

as follows. C traverses the garbled OBDD ˜O by decrypting garbled decision nodes
along the evaluation path starting at ˜P1. At each node ˜Pi, C takes the garbled input
value x̃i = 〈ki,πi〉 together with the node’s key Δi to decrypt the information needed
to continue evaluation of the garbled successor node until the garbled output value z̃
for the corresponding terminal node is obtained.

4.4.3. Implementation observations and optimizations
The employed semantically secure symmetric encryption scheme can be instan-

tiated as Encsk(m) = m ⊕ H(k||s), where s is a unique identifier used once, and
H(k||s) is a pseudo-random function (PRF) evaluated on s and keyed with k, e.g.,
a cryptographic hash function from the SHA-2 family. Additionally the following
technical improvement from [79] can be used: instead of encrypting twice (sequen-
tially, with Δi and k

j
i), the successor Pij ’s data can be encrypted with Δi ⊕ k

j
i . The

terminal nodes are garbled simply by including their corresponding garbled output
value (z̃0 for the 0-terminal or z̃1 for the 1-terminal) into the parent’s node (instead
of the decryption key Δi).

4.4.4. Efficiency
To evaluate the garbled OBDD ˜O, the cryptographic hash function (e.g.,

SHA-256) is invoked once per decision node along the evaluation path.
The garbled OBDD ˜O for an OBDD with d decision nodes (after extension to

evaluation paths of equal length) contains d garbled nodes ˜Pi consisting of two ci-
phertexts of size log d� + t + 1 bits each. The size of ˜O is 2d(log d� + t + 1) ∼
2d(log d+ t) bits. Overall, creation of ˜O requires 2d invocations of a cryptographic
hash function.

4.4.5. Private OBDDs
The garbled OBDD reveals only a small amount of information about the evalu-

ated OBDD to C, namely the total number d of decision nodes. We note that in many
cases this is acceptable. If not, this information can be hidden by appropriate padding
with dummy-nodes.

5. Composition of SFE blocks

We now show how to convert encryptions of intermediate values between the dif-
ferent representations that are used in the three protocols we described. Done se-
curely, this allows arbitrary compositions of the three techniques, and implies signif-
icant improvements to SFE.

We had already described the conversions between the plaintext values and en-
cryptions. These conversions are only applicable for input encryption and output de-
cryption. Intermediate values in the protocol must be converted without ever being
decrypted entirely.

Figure 3 shows the types of conversions that may occur in the composed SFE pro-
tocol. Both parties have plain values as their inputs into the protocol. These plain
values, denoted as x, are first encrypted by converting them into their correspond-

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 307

Fig. 3. Composition of secure function evaluation protocols.

ing encrypted value (garbled value created by S , denoted as x̃, or homomorphic
value encrypted under C’s public key, denoted as [[x]], depending on which opera-
tions should be applied). After encryption the function is securely evaluated on the
encrypted values, which may involve conversion of the encryptions between several
representations. Finally, an encryption of the output is obtained. The encrypted out-
puts are decrypted by converting them into their corresponding plain output values.
In the following we describe how to efficiently convert between the two types of
encryptions.

5.1. Garbled values to homomorphic values

A garbled �-bit value x̃ held by C (usually obtained from evaluating a garbled
function) can be efficiently converted into a homomorphic value held by S by using
additive blinding or bitwise encryption as described next.

5.1.1. Additive blinding
S randomly chooses a random mask r ∈R {0, 1}�+σ , where σ is the statistical

security parameter and �+ σ � |P | to avoid an overflow, and adds the random mask
converted into garbled value r̃ to x̃ using a garbled (� + σ)-bit addition circuit that
computes ˜X with X = x+ r. This value is converted into a plain output value X for
C who homomorphically encrypts this value and sends the result [[X]] to S . Finally,
S takes off the random mask under encryption as [[x]] = [[X]]� (−1)[[r]]. A detailed
description of this conversion protocol is given in [75].

5.1.2. Bitwise encryption
If the bitlength � of x̃ is small, a bitwise approach can be used as well in order

to avoid the garbled addition circuit: C homomorphically encrypts the permutation
bits πi of the garbled Boolean output values x̃i = 〈ki,πi〉 and sends [[πi]] to S .
S flips those encrypted permutation bits for which the permutation bit was set as
π0
i = 1 during creation to [[π′i]] = [[1]] � (−1)[[π′i]] or otherwise [[π′i]] = [[πi]].

Then, S combines these potentially flipped bit encryptions using Horner’s scheme as
[[x]] = [[π′�|| · · · ||π′1]].

5.1.3. Performance comparison
The conversion based on additive blinding requires a garbled addition circuit for

(�+σ)-bit values and the transfer of the garbled value r̃ corresponding to the (�+σ)-

AUTHOR C
OPY

308 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

bit value r, i.e., (� + σ)(t + 1) bits (cf. Section 4.2.1). When using the efficient GC
technique described in Section 4.3.1, this requires in total 4(� + σ)(t + 1) bits sent
from S to C in the pre-computation phase. In the online phase, the garbled circuit is
evaluated and the result is homomorphically encrypted and sent to S (one ciphertext).

The conversion using bitwise encryption requires � homomorphic encryptions and
transfer of � ciphertexts from C to S in the online phase. At least for converting a
single bit, i.e., when � = 1, this technique results in better performance.

5.2. Homomorphic values to garbled values

In the following we describe how to convert a homomorphic �-bit value [[x]] into
a garbled value x̃. This protocol has been widely used to combine homomorphic
encryption with garbled functions, e.g., in [5,17,19,65].

S additively blinds [[x]] with a random pad r ∈R {0, 1}�+σ , where σ is the
statistical security parameter and � + σ � |P | to avoid an overflow, as [[X]] =
[[x]] � [[r]]. S sends the blinded ciphertext [[X]] to C who decrypts and inputs the �
least significant bits of X , χ = X mod 2�, to an �-parallel OT protocol to obtain
the corresponding garbled value χ̃. Then, the mask is taken off within a garbled �-bit
subtraction circuit which gets as inputs χ̃ and ρ̃ converted from ρ = r mod 2� as
input from S . The output obtained by C is x̃ which corresponds to x = X − r =
χ− ρ.3

Again, packing as described in Section 4.1.4 can be used to improve efficiency
of parallel conversions from homomorphic to garbled values by packing multiple
ciphertexts together before additive blinding and sending them to C.

6. Conclusion

We conclude with a summary of past, present, and possible future directions in
practically efficient SFE.

6.1. Where we’ve come from

Although the theoretical foundations of SFE have been laid over two decades ago,
until recently, SFE was seen merely as a theoretical concept. Around ten years ago
first SFE implementations were reported, and new primitives, such as efficient ad-
ditively homomorphic encryption, have been proposed. About five years ago, co-
inciding with the availability of general SFE tools, a variety of privacy-preserving
protocols started appearing in the research area of security, and real-life applications
became within reach. In 2008 came a first major deployment of secure computation –
its use in executing a nation-wide sugar beets auction in Denmark [12].

3Note that as X − r > 0 subtraction of the � least significant bits is sufficient.

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 309

6.2. Where we are

Today, we are on the verge of SFE gaining widespread recognition and use. Even
now, the efficiency of existing protocols allows for business justification of its use
in a number of scenarios. At the same time, both theoretical and applied research in
SFE are experiencing a great surge in anticipation of its success. A variety of SFE
techniques and their prototype implementations already exist, each with its advan-
tages and disadvantages – in this survey we have summarized today’s most efficient
approaches for generic SFE and presented a unified framework in which these can
be arbitrarily combined.

6.3. Where we may be going

With the growth of the web and social networking came the realization of the
value of privacy. Governments are introducing far-reaching restrictions on data col-
lection and use, especially in the personal health domain. SFE is a clear candidate
to help achieve privacy, while enabling a variety of applications. (Of course, no sin-
gle technology, not even powerful primitives such as fully homomorphic encryption,
can be used as a universal solution for private computing. This is due to both impos-
sibility results [117] and the cost barriers raised by some SFE techniques. Instead,
a comprehensive approach would include SFE, secure hardware, hardened code, le-
gal agreements, etc.) With the political and business need in place, the Moore’s-law
performance improvements of hardware and expected algorithmic improvements, it
is clear that SFE’s use will be practically justified in more and more of security- and
privacy-critical applications. In the longer term, fully homomorphic encryption may
become practically efficient, and enable new opportunities.

We hope that our work serves to promote secure computation beyond theoretical
research communities, and helps facilitate its earlier and broader practical use.

Acknowledgments

The authors would like to thank Juan Garay and the anonymous reviewers of the
Journal of Computer Security for their helpful comments. This work was supported
in part by the European Commission through the ICT program under contract 216676
ECRYPT II and 216499 CACE, by the German Federal Ministry of Education and
Research (BMBF) within EC SPRIDE and by the Hessian LOEWE excellence ini-
tiative within CASED.

References

[1] W. Aiello, Y. Ishai and O. Reingold, Priced oblivious transfer: How to sell digital goods, in: Ad-
vances in Cryptology – EUROCRYPT’01, LNCS, Vol. 2045, Springer, 2001, pp. 119–135.

AUTHOR C
OPY

310 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

[2] E. Allender, M.C. Loui and K.W. Regan, Complexity classes, in: Algorithms and Theory of Com-
putation Handbook, M.J. Atallah, ed., CRC Press, 1999, Chapter 27.

[3] F. Armknecht and A.-R. Sadeghi, A new approach for algebraically homomorphic encryption,
Cryptology ePrint Archive, Report 2008/422, 2008, available at: http://eprint.iacr.org/.

[4] Y. Aumann and Y. Lindell, Security against covert adversaries: Efficient protocols for realistic
adversaries, Journal of Cryptology 23(2) (2010), 281–343.

[5] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi and T. Schneider, Secure evalua-
tion of private linear branching programs with medical applications, in: European Symposium on
Research in Computer Security (ESORICS’09), LNCS, Vol. 5789, Springer, 2009, pp. 424–439.

[6] D. Beaver, Precomputing oblivious transfer, in: Advances in Cryptology – CRYPTO’95, LNCS,
Vol. 963, Springer, 1995, pp. 97–109.

[7] M. Bellare, V.T. Hoang and P. Rogaway, Foundations of garbled circuits, in: ACM Computer and
Communications Security (CCS’12), ACM, 2012, pp. 784–796.

[8] A. Ben-David, N. Nisan and B. Pinkas, FairplayMP: a system for secure multi-party computation,
in: ACM Computer and Communications Security (CCS’08), ACM, 2008, pp. 257–266.

[9] M. Blanton and P. Gasti, Secure and efficient protocols for iris and fingerprint identification, in: Eu-
ropean Symposium on Research in Computer Security (ESORICS’11), LNCS, Vol. 6879, Springer,
2011, pp. 190–209.

[10] D. Bogdanov, S. Laur and J. Willemson, Sharemind: A framework for fast privacy-preserving
computations, in: European Symposium on Research in Computer Security (ESORICS’08), LNCS,
Vol. 5283, Springer, 2008, pp. 192–206.

[11] D. Bogdanov, R. Talviste and J. Willemson, Deploying secure multi-party computation for finan-
cial data analysis (short paper), in: Financial Cryptography and Data Security (FC’12), LNCS,
Vol. 7397, Springer, 2012, pp. 57–64.

[12] P. Bogetoft, D.L. Christensen, I. Damgård, M. Geisler, T.P. Jakobsen, M. Krøigaard, J.D. Nielsen,
J.B. Nielsen, K. Nielsen, J. Pagter, M.I. Schwartzbach and T. Toft, Secure multiparty computation
goes live, in: Financial Cryptography and Data Security (FC’09), LNCS, Vol. 5628, Springer,
2009, pp. 325–343.

[13] B. Bollig, M. Löbbing and I. Wegener, Simulated annealing to improve variable orderings for
OBDDs, in: IEEE/ACM International Workshop on Logic Synthesis (IWLS’95), 1995.

[14] B. Bollig and I. Wegener, Improving the variable ordering of OBDDs is NP-complete, IEEE Trans-
actions on Computers 45(9) (1996), 993–1002.

[15] D. Boneh, E.-J. Goh and K. Nissim, Evaluating 2-dnf formulas on ciphertexts, in: Theory of Cryp-
tography Conference (TCC’05), LNCS, Vol. 3378, Springer, 2005, pp. 325–341.

[16] J. Boyar, R. Peralta and D. Pochuev, On the multiplicative complexity of Boolean functions over
the basis (∧,⊕, 1), Theoretical Computer Science 235(1) (2000), 43–57.

[17] J. Brickell, D.E. Porter, V. Shmatikov and E. Witchel, Privacy-preserving remote diagnostics, in:
ACM Computer and Communications Security (CCS’07), ACM, 2007, pp. 498–507.

[18] J. Brickell and V. Shmatikov, Privacy-preserving graph algorithms in the semi-honest model, in:
Advances in Cryptology – ASIACRYPT’05, LNCS, Vol. 3788, Springer, 2005, pp. 236–252.

[19] J. Brickell and V. Shmatikov, Privacy-preserving classifier learning, in: Financial Cryptography
and Data Security (FC’09), LNCS, Vol. 5628, Springer, 2009, pp. 128–147.

[20] R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Transactions on
Computers 35(8) (1986), 677–691.

[21] R.E. Bryant, On the complexity of VLSI implementations and graph representations of Boolean
functions with application to integer multiplication, IEEE Transactions on Computers 40(2)
(1991), 205–213.

[22] C. Cachin, J. Camenisch, J. Kilian and J. Müller, One-round secure computation and secure au-
tonomous mobile agents, in: International Colloquium on Automata, Languages and Programming
(ICALP’00), LNCS, Vol. 1853, Springer, 2000, pp. 512–523.

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 311

[23] S.G. Choi, K.-W. Hwang, J. Katz, T. Malkin and D. Rubenstein, Secure multi-party computation
of Boolean circuits with applications to privacy in on-line marketplaces, in: The Cryptographers’
Track at the RSA Conference (CT-RSA), LNCS, Vol. 7178, Springer, 2012, pp. 416–432.

[24] S.G. Choi, J. Katz, R. Kumaresan and H.-S. Zhou, On the security of the “Free-XOR” technique,
in: Theory of Cryptography Conference (TCC’12), LNCS, Vol. 7194, Springer, 2012, pp. 39–53.

[25] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, 2nd edn, The
MIT Press, Cambridge, MA, USA, 2001.

[26] I. Damgård, M. Geisler and M. Krøigaard, Efficient and secure comparison for on-line auctions,
in: Australian Conference on Information Security and Privacy (ACISP’07), LNCS, Vol. 4586,
Springer, 2007, pp. 416–430.

[27] I. Damgård, M. Geisler and M. Krøigaard, A correction to “Efficient and secure comparison for
on-line auctions”, Cryptology ePrint Archive, Report 2008/321, 2008, available at: http://eprint.
iacr.org/.

[28] I. Damgård, M. Geisler and M. Krøigaard, Homomorphic encryption and secure comparison, Jour-
nal of Applied Cryptology 1(1) (2008), 22–31.

[29] I. Damgård and M. Jurik, A generalisation, a simplification and some applications of Pail-
lier’s probabilistic public-key system, in: Public Key Cryptography (PKC’01), LNCS, Vol. 1992,
Springer, 2001, pp. 119–136.

[30] I. Damgård and M. Keller, Secure multiparty AES, in: Financial Cryptography and Data Security
(FC’10), LNCS, Vol. 6052, Springer, 2010, pp. 367–374.

[31] I. Damgård and C. Orlandi, Multiparty computation for dishonest majority: from passive to active
security at low cost, in: Advances in Cryptology – CRYPTO’10, LNCS, Vol. 6223, Springer, 2010,
pp. 558–576.

[32] I. Damgard, V. Pastro, N.P. Smart and S. Zakarias, Multiparty computation from somewhat ho-
momorphic encryption, in: Advances in Cryptology – CRYPTO’12, LNCS, Vol. 7417, 2012,
pp. 643–662.

[33] R. Drechsler, B. Becker and N. Gockel, Genetic algorithm for variable ordering of OBDDs, IEE
Proceedings on Computers and Digital Techniques 143(6) (1996), 364–368.

[34] T. El Gamal, A public key cryptosystem and a signature scheme based on discrete logarithms, in:
Advances in Cryptology – CRYPTO’84, LNCS, Vol. 196, Springer, 1985, pp. 10–18.

[35] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk and T. Toft, Privacy-preserving
face recognition, in: Privacy Enhancing Technologies Symposium (PETS’09), LNCS, Vol. 5672,
Springer, 2009, pp. 235–253.

[36] K.B. Frikken, Practical private DNA string searching and matching through efficient oblivious
automata evaluation, in: Workshop on Database Security (DBSec’09), LNCS, Vol. 5645, Springer,
2009, pp. 81–94.

[37] K.B. Frikken, M.J. Atallah and J. Li, Hidden access control policies with hidden credentials, in:
ACM Workshop on Privacy in the Electronic Society (WPES’04), ACM, 2004, p. 27.

[38] K.B. Frikken, M.J. Atallah and J. Li, Attribute-based access control with hidden policies and hid-
den credentials, IEEE Transactions on Computers 55(10) (2006), 1259–1270.

[39] K.B. Frikken, M.J. Atallah and C. Zhang, Privacy-preserving credit checking, in: Electronic Com-
merce (EC’05), ACM, 2005, pp. 147–154.

[40] K.B. Frikken, J. Li and M.J. Atallah, Trust negotiation with hidden credentials, hidden policies, and
policy cycles, in: Network and Distributed System Security Symposium (NDSS’06), The Internet
Society, 2006.

[41] M. Fujita, Y. Matsunaga and T. Kakuda, On variable ordering of binary decision diagrams
for the application of multi-level logic synthesis, in: European Design Automation Conference
(EURO-DAC’91), IEEE, 1991, pp. 50–54.

[42] J.A. Garay, P. MacKenzie and K. Yang, Efficient and universally composable committed oblivious
transfer and applications, in: Theory of Cryptography Conference (TCC’04), LNCS, Vol. 2951,
Springer, 2004, pp. 297–316.

AUTHOR C
OPY

312 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

[43] R. Gennaro, C. Gentry and B. Parno, Non-interactive verifiable computing: Outsourcing computa-
tion to untrusted workers, in: Advances in Cryptology – CRYPTO’10, LNCS, Vol. 6223, Springer,
2010, pp. 465–482.

[44] C. Gentry, Fully homomorphic encryption using ideal lattices, in: ACM Symposium on Theory of
Computing (STOC’09), ACM, 2009, pp. 169–178.

[45] C. Gentry and S. Halevi, Implementing gentry’s fully-homomorphic encryption scheme, in: Ad-
vances in Cryptology – EUROCRYPT’11, LNCS, Vol. 6632, Springer, 2011, pp. 129–148.

[46] C. Gentry, S. Halevi and V. Vaikuntanathan, A simple BGN-type cryptosystem from LWE, in:
Advances in Cryptology – EUROCRYPT’10, LNCS, Vol. 6110, Springer, 2010, pp. 506–522.

[47] D. Giry and J.-J. Quisquater, Cryptographic key length recommendation, March 2009, available at:
http://keylength.com.

[48] O. Goldreich, Foundations of Cryptography, Basic Applications, Vol. 2, Cambridge Univ. Press,
2004, Draft available at: http://www.wisdom.weizmann.ac.il/∼oded/foc-vol2.html.

[49] O. Goldreich, S. Micali and A. Wigderson, How to play any mental game, in: ACM Symposium on
Theory of Computing (STOC’87), ACM, 1987, pp. 218–229.

[50] S. Goldwasser, Y.T. Kalai and G.N. Rothblum, One-time programs, in: Advances in Cryptology –
CRYPTO’08, LNCS, Vol. 5157, Springer, 2008, pp. 39–56.

[51] V. Goyal, P. Mohassel and A. Smith, Efficient two party and multi party computation against covert
adversaries, in: Advances in Cryptology – EUROCRYPT’08, LNCS, Vol. 4965, Springer, 2008,
pp. 289–306.

[52] V. Gunupudi and S. Tate, Generalized non-interactive oblivious transfer using count-limited objects
with applications to secure mobile agents, in: Financial Cryptography and Data Security (FC’08),
LNCS, Vol. 5143, Springer, 2008, pp. 98–112.

[53] D. Harnik, Y. Ishai, E. Kushilevitz and J.B. Nielsen, OT-combiners via secure computation, in:
Theory of Cryptography Conference (TCC’08), LNCS, Vol. 4948, Springer, 2008, pp. 393–411.

[54] C. Hazay and Y. Lindell, Efficient Secure Two-Party Protocols: Techniques and Constructions,
Springer, New York, NY, USA, 2010.

[55] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider and I. Wehrenberg, TASTY: Tool for Automat-
ing Secure Two-partY computations, in: ACM Computer and Communications Security (CCS’10),
ACM, 2010, pp. 451–462, Full version available at: http://eprint.iacr.org/2010/365.

[56] Y. Huang, D. Evans, J. Katz and L. Malka, Faster secure two-party computation using garbled
circuits, in: USENIX Security Symposium (Security’11), USENIX, 2011, pp. 539–554.

[57] Y. Huang, J. Katz and D. Evans, Quid-pro-quo-tocols: Strengthening semi-honest protocols with
dual execution, in: IEEE Symposium on Security and Privacy (S&P’08), IEEE, 2008, pp. 216–230.

[58] Y. Huang, L. Malka, D. Evans and J. Katz, Efficient privacy-preserving biometric identification,
In: Network and Distributed System Security Symposium (NDSS’11), The Internet Society, 2011.

[59] A. Iliev and S.W. Smith, Small, stupid, and scalable: Secure computing with Faerieplay, in: ACM
Workshop on Scalable Trusted Computing (STC’10), ACM, 2010, pp. 41–51.

[60] Y. Ishai, J. Kilian, K. Nissim and E. Petrank, Extending oblivious transfers efficiently, in: Advances
in Cryptology – CRYPTO’03, LNCS, Vol. 2729, Springer, 2003, pp. 145–161.

[61] Y. Ishai and A. Paskin, Evaluating branching programs on encrypted data, in: Theory of Cryptog-
raphy Conference (TCC’07), LNCS, Vol. 4392, Springer, 2007, pp. 575–594.

[62] Y. Ishai, M. Prabhakaran and A. Sahai, Founding cryptography on oblivious transfer – efficiently,
in: Advances in Cryptology – CRYPTO’08, LNCS, Vol. 5157, Springer, 2008, pp. 572–591.

[63] T.P. Jakobsen, M.X. Makkes and J.D. Nielsen, Efficient implementation of the Orlandi protocol,
in: Applied Cryptography and Network Security (ACNS’10), LNCS, Vol. 6123, Springer, 2010,
pp. 255–272.

[64] S. Jarecki and V. Shmatikov, Efficient two-party secure computation on committed inputs, in: Ad-
vances in Cryptology – EUROCRYPT’07, LNCS, Vol. 4515, Springer, 2007, pp. 97–114.

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 313

[65] A. Jarrous and B. Pinkas, Secure hamming distance based computation and its applications,
in: Applied Cryptography and Network Security (ACNS’09), LNCS, Vol. 5536, Springer, 2009,
pp. 107–124.

[66] K. Järvinen, V. Kolesnikov, A.-R. Sadeghi and T. Schneider, Efficient secure two-party compu-
tation with untrusted hardware tokens, in: Towards Hardware Intrinsic Security: Foundation and
Practice, Information Security and Cryptography, Springer, 2010, pp. 367–386.

[67] K. Järvinen, V. Kolesnikov, A.-R. Sadeghi and T. Schneider, Embedded SFE: Offloading server and
network using hardware tokens, in: Financial Cryptography and Data Security (FC’10), LNCS,
Vol. 6052, Springer, 2010, pp. 207–221.

[68] K. Järvinen, V. Kolesnikov, A.-R. Sadeghi and T. Schneider, Garbled circuits for leakage-resilience:
Hardware implementation and evaluation of one-time programs, in: Cryptographic Hardware and
Embedded Systems (CHES’10), LNCS, Vol. 6225, Springer, 2010, pp. 383–397.

[69] S. Jha, L. Kruger and V. Shmatikov, Towards practical privacy for genomic computation, in: IEEE
Symposium on Security and Privacy (S&P’08), IEEE, 2008, pp. 216–230.

[70] V. Kabanets and J. Cai, Circuit minimization problem, in: ACM Symposium on Theory of Comput-
ing (STOC’00), ACM, 2000, pp. 73–79.

[71] A. Karatsuba and Y. Ofman, Multiplication of many-digital numbers by automatic computers,
Proceedings of the SSSR Academy of Sciences, 145 (1962), 293–294.

[72] J. Katz and L. Malka, Secure text processing with applications to private DNA matching, in: ACM
Computer and Communications Security (CCS’10), ACM, 2010, pp. 485–492.

[73] J. Katz and L. Malka, Constant-round private function evaluation with linear complexity, in: Ad-
vances in Cryptology – ASIACRYPT’11, LNCS, Vol. 7073, Springer, 2011, pp. 556–571.

[74] M.S. Kiraz and B. Schoenmakers, A protocol issue for the malicious case of Yao’s garbled circuit
construction, in: 27th Symposium on Information Theory in the Benelux, 2006, pp. 283–290.

[75] V. Kolesnikov, A.-R. Sadeghi and T. Schneider, Improved garbled circuit building blocks and ap-
plications to auctions and computing minima, in: Cryptology and Network Security (CANS’09),
LNCS, Vol. 5888, Springer, 2009, pp. 1–20.

[76] V. Kolesnikov and T. Schneider, Improved garbled circuit: Free XOR gates and applications,
in: International Colloquium on Automata, Languages and Programming (ICALP’00), LNCS,
Vol. 5126, Springer, 2008, pp. 486–498.

[77] V. Kolesnikov and T. Schneider, A practical universal circuit construction and secure evaluation
of private functions, in: Financial Cryptography and Data Security (FC’08), LNCS, Vol. 5143,
Springer, 2008, pp. 83–97.

[78] B. Kreuter, A. Shelat and C.-H. Shen, Towards billion-gate secure computation with malicious
adversaries, in: USENIX Security Symposium (Security’12), USENIX, 2012.

[79] L. Kruger, S. Jha, E.-J. Goh and D. Boneh, Secure function evaluation with ordered binary decision
diagrams, in: ACM Computer and Communications Security (CCS’06), ACM, 2006, pp. 410–420.

[80] K. Lauter, M. Naehrig and V. Vaikuntanathan, Can homomorphic encryption be practical?, in: ACM
Cloud Computing Security Workshop (CCSW’11), ACM, 2011, pp. 113–124.

[81] W. Lenders and C. Baier, Genetic algorithms for the variable ordering problem of binary decision
diagrams, in: Foundations of Genetic Algorithms (FOGA’05), LNCS, Vol. 3469, 2005, pp. 1–20.

[82] Y. Lindell, E. Oxman and B. Pinkas, The IPS compiler: Optimizations, variants and concrete effi-
ciency, in: Advances in Cryptology – CRYPTO’11, LNCS, Vol. 6841, Springer, 2011, pp. 259–276.

[83] Y. Lindell and B. Pinkas, Privacy preserving data mining, Journal of Cryptology 15(3) (2002),
177–206.

[84] Y. Lindell and B. Pinkas, An efficient protocol for secure two-party computation in the presence of
malicious adversaries, in: Advances in Cryptology – EUROCRYPT’07, LNCS, Vol. 4515, Springer,
2007, pp. 52–78.

[85] Y. Lindell and B. Pinkas, A proof of Yao’s protocol for secure two-party computation, Journal of
Cryptology 22(2) (2009), 161–188.

AUTHOR C
OPY

314 V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols

[86] Y. Lindell and B. Pinkas, Secure multiparty computation for privacy-preserving data mining, Jour-
nal of Privacy and Confidentiality 1(1) (2009), 59–98.

[87] Y. Lindell and B. Pinkas, Secure two-party computation via cut-and-choose oblivious transfer, in:
Theory of Cryptography Conference (TCC’11), LNCS, Vol. 6597, Springer, 2011, pp. 329–346.

[88] Y. Lindell, B. Pinkas and N.P. Smart, Implementing two-party computation efficiently with se-
curity against malicious adversaries, in: Security in Communication Networks (SCN’08), LNCS,
Vol. 5229, Springer, 2008, pp. 2–20.

[89] H. Lipmaa, Verifiable homomorphic oblivious transfer and private equality test, in: Advances in
Cryptology – ASIACRYPT’03, LNCS, Vol. 2894, Springer, 2003, pp. 416–433.

[90] H. Lipmaa, Private branching programs: On communication-efficient cryptocomputing, Cryptol-
ogy ePrint Archive, Report 2008/107, 2008, available at: http://eprint.iacr.org/.

[91] P.D. MacKenzie, A. Oprea and M.K. Reiter, Automatic generation of two-party computations, in:
ACM Computer and Communications Security (CCS’03), ACM, 2003, pp. 210–219.

[92] L. Malka, VMCrypt – modular software architecture for scalable secure computation, in: ACM
Computer and Communications Security (CCS’11), ACM, 2011, pp. 715–724.

[93] D. Malkhi, N. Nisan, B. Pinkas and Y. Sella, Fairplay – a secure two-party computation system, in:
USENIX Security Symposium (Security’08), 2004, available at: http://fairplayproject.net.

[94] P. Mohassel and M.K. Franklin, Efficiency tradeoffs for malicious two-party computation, in: Pub-
lic Key Cryptography (PKC’06), LNCS, Vol. 3958, Springer, 2006, pp. 458–473.

[95] B. Mood, L. Letaw and K. Butler, Memory-efficient garbled circuit generation for mobile devices,
in: Financial Cryptography and Data Security (FC’12), LNCS, Springer, 2012.

[96] M. Naor and B. Pinkas. Efficient oblivious transfer protocols, in: ACM-SIAM Symposium On
Discrete Algorithms (SODA’01), ACM Society for Industrial and Applied Mathematics, 2001,
pp. 448–457.

[97] M. Naor, B. Pinkas and R. Sumner, Privacy preserving auctions and mechanism design, in: Elec-
tronic Commerce (EC’99), ACM, 1999, pp. 129–139.

[98] J.B. Nielsen, Extending oblivious transfers efficiently – how to get robustness almost for free,
Cryptology ePrint Archive, Report 2007/215, 2007, available at: http://eprint.iacr.org/.

[99] J.B. Nielsen, P.S. Nordholt, C. Orlandi and S.S. Burra, A new approach to practical active-secure
two-party computation, in: Advances in Cryptology – CRYPTO’12, LNCS, Vol. 7417, Springer,
2012, pp. 681–700.

[100] J.B. Nielsen and C. Orlandi, LEGO for two-party secure computation, in: Theory of Cryptography
Conference (TCC’09), LNCS, Vol. 5444, Springer, 2009, pp. 368–386.

[101] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in: Advances
in Cryptology – EUROCRYPT’99, LNCS, Vol. 1592, Springer, 1999, pp. 223–238.

[102] A. Paus, A.-R. Sadeghi and T. Schneider, Practical secure evaluation of semi-private functions,
in: Applied Cryptography and Network Security (ACNS’09), LNCS, Vol. 5536, Springer, 2009,
pp. 89–106, available at: http://www.trust.rub.de/FairplaySPF.

[103] B. Pinkas, T. Schneider, N.P. Smart and S.C. Williams, Secure two-party computation is practical,
in: Advances in Cryptology – ASIACRYPT’09, LNCS, Vol. 5912, Springer, 2009, pp. 250–267.

[104] R. Rudell, Dynamic variable ordering for ordered binary decision diagrams, in: IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD’93), IEEE, 1993, pp. 42–47.

[105] A.-R. Sadeghi and T. Schneider, Generalized universal circuits for secure evaluation of private
functions with application to data classification, in: International Conference on Information Se-
curity and Cryptology (ICISC’08), LNCS, Vol. 5461, Springer, 2008, pp. 336–353.

[106] A.-R. Sadeghi, T. Schneider and I. Wehrenberg, Efficient privacy-preserving face recognition, in:
International Conference on Information Security and Cryptology (ICISC’09), LNCS, Springer,
2009.

[107] A. Sahai and H. Seyalioglu, Worry-free encryption: functional encryption with public keys, in:
ACM Computer and Communications Security (CCS’10), ACM, 2010, pp. 463–472.

AUTHOR C
OPY

V. Kolesnikov et al. / Practically efficient two-party secure function evaluation protocols 315

[108] T. Sander and C. Tschudin, Protecting mobile agents against malicious hosts, in: Mobile Agents
and Security, LNCS, Vol. 1419, Springer, 1998, pp. 44–60.

[109] T. Sander, A. Young and M. Yung, Non-interactive cryptocomputing for NC1, in: Foundations of
Computer Science (FOCS’99), IEEE, 1999, pp. 554–566.

[110] T. Schneider, Practical secure function evaluation, Master’s thesis, University of Erlangen-
Nuremberg, February 27, 2008, available at: http://thomaschneider.de/papers/S08Thesis.pdf.

[111] A. Schröpfer, F. Kerschbaum and G. Müller, L1 – a programming language for mixed-protocol
secure computation, in: IEEE International Computer Software and Applications Conference
(COMPSAC’11), IEEE, 2011, pp. 298–307.

[112] A. Shelat and C.-H. Shen. Two-output secure computation with malicious adversaries, in: Advances
in Cryptology – EUROCRYPT’11, LNCS, Vol. 6632, Springer, 2011, pp. 386–405.

[113] N.P. Smart and F. Vercauteren, Fully homomorphic encryption with relatively small key and cipher-
text sizes, in: Public Key Cryptography (PKC’10), LNCS, Vol. 6056, Springer, 2010, pp. 420–443.

[114] J.R. Troncoso-Pastoriza, S. Katzenbeisser and M.U. Celik, Privacy preserving error resilient
DNA searching through oblivious automata, in: ACM Computer and Communications Security
(CCS’07), ACM, 2007, pp. 519–528.

[115] L.G. Valiant, Universal circuits (preliminary report), in: ACM Symposium on Theory of Computing
(STOC’76), ACM, 1976, pp. 196–203.

[116] M. van Dijk, C. Gentry, S. Halevi and V. Vaikuntanathan, Fully homomorphic encryption over
the integers, in: Advances in Cryptology – EUROCRYPT’10, LNCS, Vol. 6110, Springer, 2010,
pp. 24–43.

[117] M. van Dijk and A. Juels, On the impossibility of cryptography alone for privacy-preserving cloud
computing, in: USENIX Workshop on Hot Topics in Security (HotSec’10), USENIX, 2010.

[118] H. Vollmer, Introduction to Circuit Complexity: A Uniform Approach, Springer, Secaucus, NJ,
USA, 1999.

[119] A. Waksman, A permutation network, Journal of the ACM 15(1) (1968), 159–163.
[120] P. Woelfel, Bounds on the OBDD-size of integer multiplication via universal hashing, Journal of

Computer and System Sciences 71(4) (2005), 520–534.
[121] A.C. Yao, Protocols for secure computations, in: Foundations of Computer Science (FOCS’82),

IEEE, 1982, pp. 160–164.
[122] A.C. Yao, How to generate and exchange secrets, in: Foundations of Computer Science (FOCS’86),

IEEE, 1986, pp. 162–167.

