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1Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{hans.loehr, ahmad.sadeghi, marcel.winandy}@trust.rub.de

2Sirrix AG, Bochum, Germany
stueble@sirrix.com

3Bundesamt für Sicherheit in der Informationstechnik (BSI), Bonn, Germany
marion.weber@bsi.bund.de

Abstract. This paper presents a Common Criteria protection profile
for high assurance security kernels (HASK-PP) based on the results and
experiences of several (international) projects on design and implementa-
tion of trustworthy platforms. Our HASK-PP was motivated by the fact
that currently no protection profile is available that appropriately covers
trusted computing features such as trusted boot, sealing, and trusted
channels (secure channels with inherent attestation).
In particular, we show how trusted computing features are modeled in
the HASK protection profile without depending on any concrete imple-
mentation for these features. Instead, this is left to the definition of the
security targets of a an IT product which claims conformance to the
HASK-PP. Our HASK protection profile was evaluated and certified at
evaluation assurance level five (EAL5) by the German Federal Office for
Information Security (BSI).

1 Introduction

Industrial and governmental IT applications pose a high degree of assurance on
the security of the deployed IT products. Consequently, appropriate evaluation
means are desired to verify product claims. In this context, Common Criteria
standards [1] are established methodologies to provide assurance that the pro-
cess of specification, implementation and evaluation of an IT security product
has been conducted in an appropriate, rigorous and standard manner. In partic-
ular, protection profiles (PP) define a set of requirements for a specific class of
products that must be fulfilled by any product that is certified as compliant to
the profile.

For secure operating systems, a small number of protection profiles exist.
However, until recently, the existing protection profiles either model only spe-
cific aspects such as access control models, or they define the operating system



on a very low level. In particular, these protection profiles do not consider im-
portant security aspects that can be realized by the emerging trusted computing
technology such as secure booting, trusted channels, or data binding.

For example, the Trusted Computing Group (TCG), an industrial initiative
aiming at the realization of trusted computing, has specified security exten-
sions for commodity computing platforms. The core TCG specification is the
Trusted Platform Module (TPM) [2], currently implemented as cost-effective,
tamper-evident hardware security module embedded in computer mainboards.
It allows a platform to provide evidence of its integrity, cryptographically bind
data to previously taken integrity measurements, and protect cryptographic keys
in shielded hardware. Based on these functionalities, a secure operating system
can realize more advanced protection for applications and more reliable evidence
of its trustworthiness to external entities like remote parties.

Using a TPM to realize the mentioned security properties is only one option.
Alternative solutions are possible based on other hardware security modules like
secure coprocessors [3,4] or smartcards. Hence, to enable the certification of se-
cure systems providing these security properties on an abstraction level allowing
end-users to compare security products, a new protection profile incorporating
trusted computing becomes necessary.

Contribution. In this paper, we present a Common Criteria protection pro-
file for high assurance security kernels (HASK-PP) [5], based on experience es-
tablished over several years during the design and development of security ker-
nels in projects such as EMSCB [6], OpenTC [7], and SINA [8]. Moreover, we
discuss certain aspects of this protection profile and explain the background of
decisions made during the development. The HASK-PP incorporates a number
of novelties, compared to existing protection profiles:

– Secure and authenticated boot abstraction (trusted boot)1

– User data binding (trusted storage)
– Secure channels with evidence on integrity of endpoints (trusted channels)
– Minimal core security requirements
– High flexibility for implementation

Although one important input to the PP development was trusted comput-
ing technology, a strong requirement of the PP development was to keep it
implementation-independent. Moreover, a key driver was to minimize the core
security requirements, particularly regarding user management and auditing.
Only minimal requirements were defined in order to also allow products that
do not have (multiple) users or do not need extensive auditing (e.g., embedded
devices). The definition of additional security requirements is intentionally left
to the specification of security targets of concrete products. All together, this
allows a wide range of platforms such as servers, desktop systems, and embedded
devices, which can be evaluated according to the HASK protection profile.

1 We explain the differences between secure and authenticated boot in Section 4.1. In
general we use the term trusted boot as an abstraction for both.



The protection profile was evaluated and certified at evaluation assurance
level five (EAL5) by the German Federal Office for Information Security (BSI).

Outline. In Section 2, we introduce goals and design principles of the de-
velopment of this protection profile and discuss related and previous work. We
also briefly introduce the Common Criteria and relevant terminology. Section 3
presents an overview of the high assurance security kernel protection profile
(HASK-PP). We show in Section 4 how trusted computing features are modeled
in the protection profile, in particular trusted boot, trusted storage, and trusted
channels. Finally, we conclude the paper in Section 5 with a brief summary and
an outlook on future work.

2 Toward a Protection Profile for Security Kernels

2.1 Goals and Design Principles

The overall goal of the HASK protection profile was to define evaluation criteria
for security kernels that provide functions for the management and separation
of compartments operating on top of the security kernel. Examples of product
types that may implement these functions are

– Microkernels,
– Virtual machine monitors, and
– Logical partitioning products.

The protection profile was developed based on the experiences with different
security kernels covering certain aspects to be considered by HASK:

– Turaya [9]: A microkernel-based security kernel for desktop and mobile IT
products based on COTS components. An open-source version of the Turaya
security kernel has been developed in the EMSCB [6] project partly funded
by the German Ministry of Economics and Technology.

– OpenTC [7]: A hypervisor-based security kernel for clients and servers, using
trusted computing technology. OpenTC is a research project partly funded
by the European Union.

– SINA [8]: A high-assurance “Secure Inter-Network Architecture” developed
by the German Federal Office for Information Security (BSI).

High-level abstraction of trusted computing features such as remote attes-
tation and binding were among the results of these projects. We derived our
requirements for a protection profile from these insights. In addition to the se-
curity functionality of traditional security kernels (such as access control, audit,
etc.), three important functions must exist in a product claiming compliance
with the HASK protection profile: (1) trusted channel, (2) trusted storage, and
(3) trusted boot.

The first function is the ability to “prove” a “trust status” to a remote
trusted IT product and to verify the correctness of a status submitted by a



remote trusted IT product. This status shows that the product is authentic,
has not been modified, and is “fresh” (i. e. the status information received has
not been replayed from a previous status information potentially intercepted by
an attacker). Based on this information, trusted channels between trusted IT
products can be established.

The second function allows to bind user data to compartments resp. the
security kernel itself (trusted storage). This function can be used to prevent ad-
versaries from bypassing security policies by modification of applications or the
operating system. It was deliberately not the goal to prescribe which method is
used to implement these functions. However, a product compliant to the protec-
tion profile requires hardware, software, or firmware in its environment that is
able to ensure the integrity of the security kernel and its data during start-up.

Hence, the third function provides a trustworthy bootstrap mechanism (trusted
boot), which supports the other two functions in providing evidence that the
product has started in the intended manner. Figure 1 shows the abstract view
of a security kernel and our goals.

Fig. 1. Abstract functionality of a high-assurance security kernel. “Core Security
Functionality” includes separation and access control.

Another important design principle of the HASK-PP was to keep it as mini-
mal as possible to allow a wide range of different realizations, but prevent ’trivial’
realizations that do not provide the intended security property from being able
to claiming compliance. In fact, the tightrope walk between minimalism and ex-
clusion of trivial realizations was one of the most challenging tasks during the
development of this protection profile.

2.2 Common Criteria Basics and Terminology

The Common Criteria (CC) are an international standard that aims at per-
mitting comparability between the results of independent security evaluations
[1]. The CC provide requirements for security functionality of IT products and
assurance measures for the security evaluation of these products. The Com-
mon Criteria Recognition Agreement (CCRA) regulates international recogni-
tion of certificates, and about two dozen countries – including the USA, Canada,
UK, Germany, France, Japan, and many others – are currently members of the
CCRA.



During security assessment, a given product, the target of evaluation (TOE),
is evaluated according to a set of assurance requirements with respect to a secu-
rity target (ST) that defines the security requirements for this TOE. An evalu-
ation assurance level (EAL) is a pre-defined set of assurance requirements. The
CC specify seven levels (from EAL1 to EAL7), where levels with higher numbers
include all requirements from the preceding levels. All hardware, software, and
firmware that is necessary for the security functionality of the TOE is called TOE
security functionality (TSF). The security requirements that have to be fulfilled
by the TSF are called security functional requirements (SFRs). The CC offers
a set of classes of pre-defined SFRs, from which designers of security targets
can choose. SFR classes are grouped according to security functionality like,
e.g., data protection, security management, identification and authentication,
auditing.

A protection profile (PP) specifies implementation-independent security re-
quirements for a class of TOEs (whereas an ST is implementation-dependent).
An ST for a concrete TOE can claim compliance to a PP; in this case, the com-
pliance to the PP is assessed during security evaluation. Protection profiles are
particularly important to compare different IT products, since they specify a
minimum set of security requirements that must be fulfilled. Of course, the ST
for each product can provide additional security features.

2.3 Related Work

The concept of security kernels was explored some decades ago [10,11,12,13,14].
The basic idea is to implement security-critical functionality, i.e., mediating the
access to resources according to a security policy, (i) separated from other func-
tionality, and (ii) in a ideally small kernel which allows for the verification of
its correctness. The validation and formal verification of security kernels was
analyzed and conducted by several works as well [15,16,17,18].

Separation kernels can be seen as a subclass of security kernels. They have
only limited functionality. Typically, a separation kernel divides the system into
separated partitions running virtual machines. Several commercial companies
develop separation kernels, such as LynuxWorks [19], Green Hills Software [20],
and Wind River Systems [21]. There is also prior work in formal specification
and verification of separation kernels [22,23].

Recently, a protection profile for separation kernels (SKPP) [24] has been
introduced and certified in the US. This protection profile has been designed
for high robustness environments, i.e., it mainly addresses security evaluations
at EAL6 and EAL7. The protection profile itself does not claim conformance
to a specific evaluation assurance level, but specifies assurance requirements
both from EAL6/EAL7, and explicitly defined requirements. Regarding security
functional requirements, on the one hand, the focus of SKPP is restricted to
the security functionality of separation kernels. In contrast to this, HASK-PP
covers a wider range of security functionality, and in particular includes trusted
computing functionality. On the other hand, SKPP includes the hardware in the
TOE and specifies very detailed security requirements. In contrast, the focus



of HASK-PP is more restricted in this sense, since it excludes the hardware
from the TOE and leaves more flexibility for concrete implementations. For a
discussion of SKPP and its development, see e.g., [25,26].

Levin et al. [27] compare security kernel and separation kernel architectures
with regard to multi-level security. Moreover, they introduce least-privilege sep-
aration kernel as a third class of architecture, which supports the security re-
quirements of the SKPP.

In the past, conventional operating systems like various Linux distributions,
Unix variants, and versions of Microsoft Windows have been evaluated accord-
ing to the the Controlled Access Protection Profile (CAPP) [28], the Labeled
Security Protection Profile (LSPP) [29] and the Role-Based Access Control Pro-
tection Profile (RBAC-PP) [30]. However, these protection profiles target lower
evaluation levels2 and only address the limited aspect of access control models.

3 Overview of HASK-PP

In this section we first describe the architecture and functionality of the TOE
(Section 3.1). Then we present an overview of the main components of the pro-
tection profile, namely threats and assumptions (Section 3.2) as well as security
objectives and security functional requirements (Section 3.3). Finally, we discuss
our decision for the evaluation assurance level (Section 3.4).

3.1 Security Kernel Architecture and Functions

The HASK protection profile specifies the security functional and assurance re-
quirements for a class of security kernels that allow executing multiple separated
compartments on a single trusted system. Each compartment can behave like
a single platform separated from each other with the TOE enforcing this sep-
aration and controlling the communication between compartments as well as
with external entities in accordance with a defined policy (an overview is shown
in Fig. 2). Note that the notion of compartments in the protection profile is a
generic concept. A compartment is not necessarily a virtual machine, it can be
any set of processes within a security domain. Any product claiming compli-
ance with this PP must provide the necessary security functionality with a high
degree of assurance to its users.

To control the communication of external entities with compartments as well
as the communication between compartments, the TSF manages a set of commu-
nication objects that can be assigned to compartments. Communication objects
are (on hypervisor-based security kernels) an abstraction for virtual network con-
nections between virtual machines or external networks, and (on microkernel-
based security kernels) an abstraction for interprocess-communication between
compartmentalized (groups of) processes. Those communication objects allow
2 While the PPs themselves are certified according to EAL2 and 3, recent evaluations

of operating systems according to these profiles achieved EAL4+. However, they are
still far from reaching EAL5.



the TSF to control which external entities and other compartments a compart-
ment can communicate with and how this communication is protected. Protec-
tion of communication is defined by security attributes assigned to communica-
tion objects. Those attributes can define characteristics of the communication
link like the set of external entities one can communicate with using this com-
munication object, the kind of protection for the communicated data requested
from the TSF when using the communication object (integrity protection, con-
fidentiality protection, authentication of the communication peer).

In addition to the communication objects, the TOE also manages storage
containers of persistent or volatile storage. Those may be whole disks, disk
partitions, disk sectors, etc. where the technology to implement those containers
(magnetic disks, flash disks, memory disks etc.) is not relevant for the protection
profile.

The security kernel has the following (abstract) set of functions:

– Management of compartments (creation, deletion, starting, changing at-
tributes)

– Management of objects, which are at least containers and communication ob-
jects (creation, deletion, changing attributes, defining and managing access
control policies)

– Management of resources, which are at least processor time and memory
(assignment to compartments, setting resource limits, controlling resource
limits)

– Generation and verification of information that reliably shows the integrity
of the security kernel, a compartment managed by the security kernel, or
specific data. We call such information evidence of integrity.

Fig. 2. TOE architecture. Dark gray colored parts implement the TSF.



A security kernel that is compliant to the protection profile needs to imple-
ment both mandatory and discretionary access control (MAC/DAC). The DAC
policy must at least allow to specify “access” and “no access”, and the MAC
policy must at least allow separating two compartments from each other such
that no information flow between them is possible.

The security kernel (based on hardware functionality required by assump-
tions in the PP) must be able to protect its integrity, the integrity of compart-
ments, and the integrity of storage containers during runtime. Integrity of the
security kernel is obviously required to guarantee the proper operation of the
TSF. Integrity of compartments is required for trusted communication channels
(see below). Integrity of storage containers is required to prevent unauthorized
modification of data when this container is mounted to a compartment.

In a similar way, the system must be able to protect the confidentiality of
the security kernel, the confidentiality of compartments, and the confidentiality
of storage containers.

Furthermore, the security kernel must be able to provide trusted channels
between compartments or between compartments and external entities. For a
trusted channel, the security kernel has to ensure that the communication link
provides integrity and confidentiality protection of the data transferred over the
channel, and the identification and authentication of the communication partners
must be ensured.

3.2 Threats and Assumptions

The main threats against the TOE include unauthorized access to objects or
unauthorized information flow between subjects. Additionally, we considered
threats that target to manipulate the TSF or TSF data, including replaying of
an older state, e.g., a backup, or influencing the TSF to generate false evidence of
the integrity of the TSF or its data. This also includes threats against the TOE
environment, e.g., manipulation by installing malicious devices drivers accessing
critical hardware functions, or external entities trying to access confidential TSF
or user data by starting the TOE outside its intended operational environment.

To address the threats, we stated corresponding security objectives for the
TOE and its environment. The latter is important because a security kernel in
software alone cannot guarantee or verify its integrity without the assistance of
security hardware functionality. In order to be implementation-independent,
we did not include security functional requirements for the hardware. Instead,
we stated assumptions on the operational environment in being able to

– support the TOE in producing evidence of the integrity of the TSF code and
data during the boot process (A.INTEGRITY SUPPORT);

– allow the TOE to store information such that it cannot be accessed by the
TOE where the configuration has been manipulated in an unauthorized way
(A.BIND3);

3 In TCG terminology, the TPM sealing function can provide such a feature. Other
implementations may be based on, e.g., secure coprocessors [3].



– provide a function the TOE trusts that is able to generate evidence of the in-
tegrity of a remote trusted IT product only if it is correct (A.REMOTE TRUST).

The assumptions A.INTEGRITY SUPPORT and A.REMOTE TRUST are needed to
show the status of integrity at load-time of the TOE. Combined with the in-
tegrity protection features of the TSF during runtime, one can derive the in-
tegrity status of the running TOE and compartments executed on the TOE.

Of course, for secure operation of the TOE, we assume the environment to

– provide mechanisms for separation of the TSF and other subjects or func-
tionality (A.SEPARATION SUPPORT);

– not contain backdoors (A.HW OK);
– not be able to start the TOE in an insecure way without this being detectable

(A.NO TAMPER); and
– not have subjects allowed to perform administrative functions and misusing

their privileges (A.NO EVIL).

3.3 Security Objectives and Security Functional Requirements

The security objectives address protection of objects on the one hand (access
control to user data, information flow control between compartments, secure
data exchange, management of security attributes, resource limitation to avoid
denial of service), and protection of the TSF itself on the other hand (TSF and
TSF data integrity and confidentiality). Moreover, the TOE must be able to
audit defined potentially security-critical events.

To address the security objectives of the TOE, we defined security functional
requirements, which can be assigned to four groups: (i) core security functionality
(realizing access control, security management, audit, etc.), (ii) trusted storage,
(iii) trusted boot, and (iv) trusted channels. See Figure 3 for an overview (note
that the SFRs in the groups overlap because some SFRs are addressing more
than one objective).

The core security functionality can be divided into four subgroups4. (1) Ac-
cess control and information flow control includes SFRs for data protection, user
identification and authentication, and consistency of TSF data when shared be-
tween TSF and another trusted IT product. (2) Resource limitation: As a mini-
mal requirement we include maximum quotas for memory and processor time in
order to avoid excessive resource consumption. (3) Audit defines that the TOE
must be able to audit the following events at minimum: start/stop of audit func-
tions, modifications of security policy enforced by TOE, rejected attempts to
perform management operations, and integrity violations of TSF or user data.
We did not want to dictate a long list of audit events because some products may
not have such strong audit requirement, but should be covered by the HASK-PP,

4 We introduce the subgroups only as orientation to reflect the objectives in this
paper. The reader can find the exact mapping of SFRs to security objectives in the
protection profile.



too. The actual selection of events to be audited is up to the security target of
a concrete product (and can have even more audit events if necessary).

Finally, (4) security management consists of management of security at-
tributes for subjects and objects, management of TSF data, and management of
security roles. The inclusion of these SFRs in the HASK-PP was originally not
the focus (because we wanted to minimize the requirements), but they were a re-
sult of dependencies between SFRs. For instance, FDP ACF.1 (security attribute
based access control) requires FMT MSA.3 (static attribute initialization).

We discuss the modeling of the objectives trusted storage, trusted boot, and
trusted channel in Section 4.

Fig. 3. Overview of the HASK-PP with logical grouping of the security func-
tional requirements and assumptions. See Appendix A for the complete list of
SFRs with their names (such as “Basic Data Authentication” for FDP DAU.1).

3.4 Security Assurance

The HASK-PP has been developed against the most recent version 3.1 Revi-
sion 2 of the Common Criteria to ensure its usefulness in the future. It is fully



conformant to CC part 3 by selecting the EAL5 package of security assurance
requirements.

EAL5 was chosen as a minimum level of assurance for different reasons: The
architecture of the TOE in HASK-PP addresses systems with exposure to un-
trustworthy and unauthorized entities and with high value of the data stored
and processed by the system. A sufficient level of assurance must be selected to
provide system users with appropriate assurance that the system will be able to
withstand such threats. The TOEs claiming conformance to the HASK-PP are
expected to provide high assurance against the threats assumed in the PP. Ro-
bust and reliable separation of compartments requires a level of assurance that
includes the evaluation of possible covert channels between unrelated compart-
ments. In this context, testing and vulnerability analysis of the whole TSF is
necessary. The whole architecture of a security kernel managing compartments
should be implemented in a lean, modularized fashion as required by the EAL5
assurance level. This means to have well-structured internals, a functional spec-
ification which is at least semi-formal, and a development process that follows
clear implementation standards and defines unambiguous use of development
tools.

EAL5 was also deemed appropriate because it shall provide a platform for
other secure services implemented in compartments managed by the TOE. Since
such services may be certified at assurance levels above EAL4, the underlying
platform must not provide weaker assurance.

EAL5 was deemed to be sufficient as a minimum level because levels above
EAL5 are usually achievable only with extremely high efforts and costs. This
allows security kernels to be evaluated and certified according to HASK-PP
for commercial application scenarios that do not require the highest levels of
assurance. Of course, the security target for any specific product may specify a
higher evaluation level. However, the PP itself was only certified at EAL5.

4 Trusted Computing Functionality in HASK-PP

4.1 Modeling Trusted Boot

To be able to provide the “trust status” of the product configuration as required
by the HASK-PP, a trustworthy bootstrap architecture is required to convince
remote parties about this status. One basic concept towards the development
of a trustworthy bootstrap architecture is the so-called chain of trust which has
been introduced by Arbaugh et al. [31]. The core idea is that every component
involved in the boot process measures the integrity of the succeeding one before it
transfers control to it. If the bootstrap process is started by a trusted component
(a trusted root host), it is guaranteed that modifications of components involved
in the boot process can be detected by the preceding component. Since the
relevant product configuration might not be limited to the security kernel itself,
we include requirements for loading and starting compartments in the description
of the trusted boot process.



In this context, it is possible to distinguish two types of trusted boot mecha-
nisms that mainly differ in the way how the measurement results are used:

Definition 1 (Secure Boot). Secure Boot is a security property of a bootstrap
architecture ensuring that only configurations of a certain property can be loaded.
If a modification is detected, the bootstrap process is interrupted.

The term ’property’ used in this definition only identifies a set of configurations,
e.g., a list or a signature key certifying allowed configurations. An example im-
plementation of secure boot, as proposed by Arbaugh et al., is to verify the
integrity of a succeeding component according to a given reference value. If the
verification fails, the boot process is halted or an error function is executed [32].

Definition 2 (Authenticated Boot). Authenticated Boot is a security prop-
erty of a bootstrap architecture ensuring that remote parties can verify properties
of the booted configuration.

We use the term trusted boot to refer to both secure and authenticated boot. In
contrast to secure boot, authenticated boot is not actively influencing the boot
process. An example implementation of authenticated boot, e.g., as proposed
by the TCG, is to securely store measurement results (i.e., hash values) of the
components involved in the boot chain within the Trusted Platform Module
(TPM) and attest the values over an authentic channel.5

Although both concepts are very similar, they fulfill slightly different security
requirements: Secure boot ensures that only valid configurations are loaded.
Local users can therefore assume that the platform is in a trustworthy state
if the bootstrap process finished successfully. Remote parties, however, can in
general not make any assumptions about the loaded platform configuration.
In contrast, authenticated boot allows remote parties to verify the platform’s
configuration. But because any configuration can be loaded, local users can in
general not make any assumptions about the current platform configuration. To
securely verify the current platform configuration, further mechanisms such as
secure hardware tokens or software mechanism are required.

In general, such a trustworthy bootstrap architecture can be realized using
different combinations of technologies and assumptions. Typical examples are
smartcards, the TPM, a tamper-evident device, or the assumption that adver-
saries do not have physical access to the platform.

Since such a bootstrap architecture cannot be realized without assumptions
regarding the IT-environment (i.e., hardware or environmental assumptions), the
HASK-PP models it using the assumptions A.BIND and A.INTEGRITY SUPPORT.
To allow a compliant product to implement authenticated boot, the assumption
A.INTEGRITY SUPPORT only requires that a manipulated security kernel is not
5 Note that neither authenticated boot, nor secure boot can protect the confidential-

ity of information under the assumptions that hold for common PC architectures,
i.e., the adversary has access to the harddisk. The reason is that both bootstrap
architectures do not provide protected storage.



able to generate false evidence of its own integrity. The assumption A.BIND
requires that there must be a possibility for the TSF to store data and code in
such a way that it can be loaded only if the integrity of the TSF is intact. This
allows to implement secure boot.

In the protection profile, several security requirements are related to trusted
boot. Existing security functional requirements (SFRs) from the CC have been
used to require validation of the security kernel and compartments during start-
up. This includes that only secure values for memory and CPU time assigned to
a compartment are accepted, that the TSF runs a suite of self tests when load-
ing a compartment that requires integrity evidence, and that any modifications
between shut down and start-up of the system (e.g., due to manipulations of the
hard disk when the system is shut off) can be detected.

Most notably, one extended SFR, FDP DAU.3 EXP “controlled data authenti-
cation”, has been defined specifically for the HASK-PP. This requirement states
that the TSF must provide the capability to generate evidence that can be used
as a guarantee of the integrity of objects. Moreover, it allows the security target
of a concrete product to specify conditions under which such evidence is gen-
erated, and subjects must be provided with the ability to verify such evidence.
This extended SFR allows the security kernel to extend the “chain of trust”
(which must be rooted either in hardware or in the operational environment, as
expressed by the assumptions mentioned above) up to individual compartments
started by the security kernel. Furthermore, it is also relevant for other trusted
computing features, such as trusted storage and trusted channels discussed in
the following sections.

HASK-PP requires only that the IT-environment offers a mechanism to check
the integrity of the security kernel either before (e.g., by a tamper-resistant cover)
or during (e.g., with a TPM) loading it. Which alternative is used is left for the
specific implementation to decide.

4.2 Modeling Trusted Storage

A security kernel claiming compliance to the HASK-PP must provide trusted
storage, according to the following definition:

Definition 3. Trusted storage is storage where confidentiality, integrity, and
freshness (i.e., protection against replay attacks) of stored data is provided, and
where the integrity of the TOE accessing the data is ensured (in order to prevent
other software, such as alternative or modified operating systems, from accessing
the data).

To support trusted storage, a security kernel needs special support from the
operational environment, which is reflected in the PP as assumption A.BIND.
This assumption requires that the security kernel can store information in such
a way that it cannot be accessed by a manipulated TOE (or by software with a
different configuration). In concrete systems, A.BIND is usually fulfilled by special
hardware features.



Moreover, the security kernel has to ensure that confidentiality and integrity
of the data are protected both when the system is running, and when it is of-
fline. Furthermore, it must be infeasible for an attacker to modify the system,
or to obtain confidential information from the system in order to get access to
the protected data. Additionally, the security kernel must provide a capabil-
ity to authenticate storage containers, and to verify the integrity of the entity
(e.g., compartment) accessing the data. These requirements are expressed by
SFRs from the Common Criteria classes FDP (user data protection) and FPT
(protection of the TSF), together with the requirement FDP DAU.3 EXP (cf. Sec-
tion 4.1).

Several possibilities exist to implement trusted storage in real systems. One
such possibility is based on a TPM, however, other concepts for trusted comput-
ing, e.g., based on proprietary security modules that are not compliant to the
TCG specifications, might use different approaches to realize trusted storage.

Trusted storage with the TCG specifications. In the terminology of
the TCG, sealing denotes the encryption of data with a key that can only be used
by a specific TPM under strictly defined conditions: During sealing, the user can
specify values for the evidence of integrity that has to be present inside protected
registers of the TPM for decrypting (unsealing) the data. During unsealing,
the TPM checks the content of these registers and refuses to decrypt if the
current evidence deviates from the required values. Sealing provides integrity
and confidentiality of the data, as well as integrity of the TOE. To support
freshness, monotonic counters, another feature of the TPM, can be used.

4.3 Modeling Trusted Channels

The possibility to establish trusted channels has to be provided by any security
kernel claiming compliance to HASK-PP.

Definition 4. A trusted channel is a channel between two entities that provides
integrity, confidentiality, and authenticity of the transmitted data, and ensures
integrity and authenticity of the end points.

Hence, a trusted channel allows the communication partners to receive in-
tegrity (attestation) information from their peers. A trusted channel may either
provide mutual attestation (i.e., integrity measurements of both end points are
transmitted), or only the integrity of one end point is verified. Several solutions
for trusted channels based on the TCG specifications have been proposed in the
literature [33,34,35,36,37].

To keep the protection profile general and implementation-independent, we
need to formulate abstract requirements for the trusted channel, without exclud-
ing any specific realization.

The hardware and environmental assumptions which are required for a trusted
channel are the availability of a mechanism for the TOE to produce evidence of
its own integrity (A.INTEGRITY SUPPORT) and the availability of a mechanism
(that must be trusted by the TOE) providing a similar feature for the remote
entity (A.REMOTE TRUST).



The mandatory functionality of the security kernel to support trusted chan-
nels are required by SFRs from the CC for integrity and confidentiality of user
data and TSF data during transfer, security functional requirements from the CC
for inter-TSF communication, and the component for controlled data authenti-
cation that has been introduced specifically for HASK-PP (FDP DAU.3 EXP).

The distinctive feature of end point integrity provided by trusted channels
is expressed by requiring assured identification of the end points in the CC
component FTP ITC.1 (“Inter-TSF trusted channel”). Here, the term assured
identification includes integrity verification.

5 Conclusion

In this paper, we describe the first Common Criteria protection profile for a
secure operating system with support for enhanced security features, as they
are provided by trusted computing technology. The protection profile is general
and abstract, thus covering a wide class of IT products without fixing specific
mechanisms and leaving a maximum of flexibility and freedom for concrete im-
plementations.

We show how trusted computing features like trusted boot, trusted storage,
and trusted channels can be expressed in a generic way by a protection profile,
and we point out the relation to existing concepts like the TCG specifications.
Moreover, we present and explain the motivation behind the protection profile
and important design decisions.

Since the protection profile has been certified, it can be used as a guideline
for the design of real systems by security architects. Proof-of-concept imple-
mentations and other results from projects like EMSCB, OpenTC, and SINA
provide a starting point for developing a security kernel that can be evaluated
and certified according to the HASK-PP.

Acknowledgment

This work has been partially funded by the European Commission as part of
the OpenTC project [7]. We would like to thank Helmut Kurth and Gerald
Krummeck from atsec information security for their invaluable contribution in
writing the protection profile, and the anonymous reviewers for their thoughtful
comments on this paper.

References

1. Common Criteria for Information Technology Security Evaluation. http://www.

commoncriteriaportal.org/thecc.html

2. Trusted Computing Group: TPM Main Specification Version 1.2 rev. 103 (July
2007) https://www.trustedcomputinggroup.org.

3. Smith, S.W., Weingart, S.: Building a high-performance, programmable secure
coprocessor. Computer Networks 31(8) (April 1999) 831–860

http://www.commoncriteriaportal.org/thecc.html
http://www.commoncriteriaportal.org/thecc.html
https://www.trustedcomputinggroup.org


4. Yee, B.S.: Using Secure Coprocessors. PhD thesis, School of Computer Science,
Carnegie Mellon University (May 1994) CMU-CS-94-149.
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A Security Functional Requirements

The security functional requirements of the HASK-PP originate all from Com-
mon Criteria V3.1 Release 2, part 2, with the exception of FDP DAU.3 EXP,
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which is an extended requirement defined in the protection profile. Table 1 sum-
marizes the security functional requirements of HASK-PP.

Table 1: Security functional requirements in HASK-PP

SFR Title
FAU GEN.1 Audit data generation
FAU SEL.1 Security audit event selection
FDP ACC.2 Complete access control
FDP ACF.1 Security attribute based access control
FDP DAU.1 Basic data authentication
FDP DAU.3 EXP Controlled data authentication
FDP ETC.2 Export of user data with security attributes
FDP IFC.2 Complete information flow control
FDP IFF.1 Simple security attributes
FDP ITC.2 Import of user data with security attributes
FDP RIP.2 Full residual information protection
FDP SDI.1 Stored data integrity monitoring
FDP UCT.1 Basic data exchange confidentiality
FDP UIT.1 Data exchange integrity
FIA ATD.1 User attribute definition
FIA UAU.1 Timing of authentication
FIA UID.1 Timing of identification
FIA UID.2 User identification before any action
FMT MOF.1 Management of security functions behavior
FMT MSA.1 Management of security attributes
FMT MSA.2 Secure security attributes
FMT MSA.3 Static attribute initialization
FMT MTD.1(1) Management of TSF data
FMT MTD.1(2) Management of TSF data for communication objects
FMT MTD.2 Management of limits on TSF data
FMT MTD.3 Secure TSF data
FMT REV.1 Revocation
FMT SMF.1 Specification of management functions
FMT SMR.1 Security roles
FPT ITI.1 Inter-TSF detection of modification
FPT ITT.1 Basic internal TSF data transfer
FPT ITT.3 TSF data integrity monitoring
FPT STM.1 Reliable time stamps
FPT TDC.1 Inter-TSF basic TSF data consistency
FPT TST.1 TSF testing
FRU RSA.1 Maximum quotas
FTP ITC.1 Inter-TSF trusted channel
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