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Abstract. We describe a privacy-preserving system where a server can
classify an ElectroCardioGram (ECG) signal without learning any infor-
mation about the ECG signal and the client is prevented from gaining
knowledge about the classification algorithm used by the server. The sys-
tem relies on the concept of Linear Branching Programs (LBP) and a
recently proposed cryptographic protocol for secure evaluation of private
LBPs. We study the trade-off between signal representation accuracy
and system complexity both from practical and theoretical perspective.
We show how the overall system complexity can be strongly reduced by
modifying the original ECG classification algorithm. Two alternatives of
the underlying cryptographic protocol are implemented and their corre-
sponding complexities are analyzed to show suitability of our system in
real-life applications for current and future security levels.

1 Introduction

Health-care industry is moving faster than ever towards technologies offering
personalized online self-service, medical error reduction, customer data collec-
tion and more. Such technologies have the potentiality of revolutionizing the way
medical data is managed, stored, delivered and ubiquitously made available to
millions of users. However, respecting the privacy of customers is a central prob-
lem, since privacy concerns may imped the diffusion of new e-health services. In
this paper, we consider a scenario for a remote diagnosis service. This service
offers the analysis of biomedical signals to provide a preliminary diagnosis and is
potentially untrusted. Such a system may either be seen as a stand alone service
or as part of a complete e-health system where the service provider in addition
to offering a repository of personal medical data, allows to remotely process such
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data. In order to preserve the privacy of the users, the server should carry out
its task without getting any knowledge about the private data provided by the
users. At the same time, the service provider may not be willing to disclose the
algorithms it is using to process the signals. In general, one can resort to generic
secure two-party computation (2PC) protocols [Yao86,MNPS04] allowing two
parties to compute the output of a public function f(·) on their respective pri-
vate inputs. At the end of the protocol, the only information obtained by the
parties is the output of the function f(·), but no additional information about
the other party’s input. We consider a variant where the function f(·) is a private
property of the server. While this can be reduced to secure evaluation of a pub-
lic function using universal circuits [KS08b], this generic transformation poses
an enormous overhead on the protocols. In this work, we consider the privacy-
preserving classification of ElectroCardioGram (ECG) signals. Classification of
ECG signals has long been studied by the signal processing community, but not
yet in the context of a privacy-preserving scenario. In our research we consid-
ered the secure implementation of a recently proposed classification algorithm
[ASSK07]. The contribution of our research is fourfold. First, we present an ef-
ficient protocol for privacy-preserving classification of ECG signals resorting to
secure evaluation of Linear Branching Programs (LBP) [BFK+09]. Secure func-
tion evaluation with private functions [SYY99,Pin02,KS08b,SS08] is one way to
realize the above scenarios, when the underlying private algorithms are repre-
sented as circuits. However, as we elaborate in the discussion on related work,
in some applications, such as diagnostics, it is most natural and efficient to rep-
resent the function as a decision graph or a Branching Program (BP). At a high
level, BPs consist of different types of nodes — decision nodes and classification
nodes. Based on the inputs and certain decision parameters such as thresholds
(that are often the result of learning processes), the algorithm branches among
the decision nodes until it reaches the corresponding classification node (which
represents a leaf node in the decision tree). Second, we link the representation
accuracy of the to-be-processed signals (i.e., the number of bits representing the
signals) and hence the complexity of the system, to the classification accuracy.
Third, we show how the overall complexity of the system can be reduced by tai-
loring the ECG classification algorithm to the 2PC scenario. Fourth, we compare
two implementations of the secure protocol with respect to different parameter
sizes and security levels. The rest of the paper is organized as follows. In §2 the
plain version of the ECG classifier is described. In §3 we describe the tool and the
notation used in this work. In §4 the LBP concept and the protocols for secure
evaluation of private LBPs are summarized. §5 is devoted to the description of
the privacy-preserving ECG classification algorithm and the accuracy analysis.
Experimental results are discussed in §6 and some conclusions are drawn in §7.

2 ECG Classification in the Plain Domain

In this section, we describe the architecture of the plain domain version of the
ECG classifier. In our system we are interested in classifying each heart beat
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according to 6 classes: Normal Sinus Rhythm (NSR), Atrial Premature Con-
tractions (APC), Premature Ventricular Contractions (PVC), Ventricular Fib-
rillation (VF), Ventricular Tachycardia (VT) and SupraVentricular Tachycardia
(SVT). The classification algorithm we use is inspired by the work of D. Ge et
al. [ASSK07, chapter 8]. The choice of the algorithm is justified first of all by the
good classification accuracy it ensures, secondly because it fits well the require-
ments of a privacy preserving implementation, finally because of its generality.
As both, AutoRegressive (AR) models and Quadratic Discriminant Functions
(QDF) are often used in automatic medical diagnosis, the protocol described
in this paper may represent the basis for a large number of implementations
addressing a variety of diverse topics in biomedical signal processing.

The overall architecture of the classifier is summarized by the block diagram
in Fig. 1. The input of the system is an ECG chunk corresponding to a single hear
beat, that consequently, is classified as an independent entity. For the extraction
of heart beats the algorithm proposed in [ASSK07] is used. We assume that
the ECG signal is sampled at 250 sample per second and that 300 samples
surrounding each peak are fed to the system: 100 samples preceding the beat peak
and 200 following it. We also assume that the ECG signal has been pre-filtered
by a notch filter removing the noise due to power line interference, electrode
contact noise, motion artifact and base line wander [ASSK07].

The ECG classifier considered here relies on a rather general technique based
on AR models for ECG description and a subsequent QDF classifier. Specifically,
each ECG chunk is modeled by means of a 4-th order AR model. The AR
model coefficients can be estimated in several ways; in our system we used a
method based upon the Yule-Walker equations [BJR76]. Once the AR model
has been computed, five features4 are extracted, yielding the following vector
f = (α1, α2, α3, α4, ne)

T . The first four features are the coefficients of the AR
model and ne is the number of samples for which the amplitude of the estimation
error |εn| exceeds a threshold defined as th = 0.25 maxn (|εn|). To perform a QDF
classification as a linear operation, the classifier does not operate directly on f .
Instead a composite feature vector fc is computed containing the features in f ,
their square values and their cross products, namely:

fc = (1, f1, . . . , f5, f
2
1 , . . . , f

2
5 , f1f2, . . . f4f5)T = (f c1 , . . . f

c
21)T .

The vector fc represents the input of the QDF block in Fig. 1. The QDF block
projects fc onto 6 directions βi, obtaining a 6-long vector y, that represents
the input of the final classification step: y = Bfc, where B is a matrix whose
rows are the vectors βi. The matrix B contains part of the knowledge embedded

4 In [ASSK07, chapter 8] 6 features are used, however our experiments have shown
that by using 5 features we obtain the same classification accuracy with a lower
complexity.
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Fig. 2. Binary classification tree for ECG classification

within the classification system, and is computed by relying on a set of training
ECGs (see [ASSK07] for the details). For the final classification, the signs of the
values yi are extracted and used to actually classify the ECG, by means of the
binary classification tree given in Fig. 2.

3 Preliminaries

In our protocols we combine several standard cryptographic tools (additively ho-
momorphic encryption, oblivious transfer, and garbled circuits) which we sum-
marize in §3.1. Readers familiar with these tools can safely skip §3.1 and continue
reading our notational conventions in §3.2.

We denote the symmetric security parameter with t and the asymmetric
security parameter with T . Recommended parameters for short-term security
are for example t = 80 and T = 1248 [GQ09].

3.1 Cryptographic Tools

Homomorphic Encryption (HE). We use a semantically secure additively
homomorphic public-key encryption scheme. In an additively homomorphic cryp-
tosystem, given encryptions JaK and JbK, an encryption Ja+bK can be computed as
Ja+ bK = JaKJbK, where all operations are performed in the corresponding plain-
text or ciphertext structure. From this property follows, that multiplication of
an encryption JaK with a constant c can be computed efficiently as Jc · aK = JaKc
(e.g., with the square-and-multiply method). As instantiation we use the Paillier
cryptosystem [Pai99,DJ01] which has plaintext space ZN and ciphertext space
Z∗N2 , where N is a T -bit RSA modulus. This scheme is semantically secure un-
der the decisional composite residuosity assumption (DCRA). For details on the
encryption and decryption function we refer to [DJ01].
Parallel Oblivious Transfer (OT). Parallel 1-out-of-2 Oblivious Transfer for
m bitstrings of bitlength `, denoted as OTm`, is a two-party protocol as shown
in Fig. 3. SS inputs m pairs of `-bit strings Si =

〈
s0i , s

1
i

〉
; i = 1, ..,m; s0i , s

1
i ∈

{0, 1}`. C inputs m choice bits bi ∈ {0, 1}. At the end of the protocol, C learns
sbii , but nothing about s1−bii whereas SS learns nothing about bi. We use OTm`
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Fig. 3. OTm` - Parallel Oblivious Transfer

as a black-box primitive in our constructions. It can be instantiated efficiently
with different protocols [NP01,AIR01,Lip03,IKNP03]. For example the proto-
col of [NP01] implemented over a suitably chosen elliptic curve has asymptotic
communication complexity m(4t+2r) and is secure against malicious C and semi-
honest SS in the random oracle model. The protocol of [AIR01] implemented
over a suitably chosen elliptic curve has asymptotic communication complexity
m(12t) and is secure against malicious C and semi-honest SS in the standard
model. Extensions of [IKNP03] can be used to reduce the number of computa-
tionally expensive public-key operations to be independent of m. We omit the
parameters m or ` if they are clear from the context.
Garbled Circuit (GC). Yao’s Garbled Circuit approach [Yao86], excellently
presented in [LP04], is the most efficient method for secure evaluation of a
boolean circuit C. We summarize its ideas in the following. First, the circuit
constructor (server SS), creates a garbled circuit C̃ with algorithm CreateGC:
for each wire Wi of the circuit, he randomly chooses a complementary garbled
value W̃i =

〈
w̃0
i , w̃

1
i

〉
consisting of two secrets, w̃0

i and w̃1
i , where w̃ji is the gar-

bled value of Wi’s value j. (Note: w̃ji does not reveal j.) Further, for each gate

Gi, SS creates and sends to the evaluator (client C) a garbled table T̃i with

the following property: given a set of garbled values of Gi’s inputs, T̃i allows to
recover the garbled value of the corresponding Gi’s output, and nothing else.
Then garbled values corresponding to C’s inputs xj are (obliviously) transferred
to C with a parallel oblivious transfer protocol OT: SS inputs complementary
garbled values W̃j into the protocol; C inputs xj and obtains w̃

xj

j as outputs.

Now, C can evaluate the garbled circuit C̃ with algorithm EvalGC to obtain the
garbled output simply by evaluating the garbled circuit gate by gate, using the
garbled tables T̃i. Correctness of GC follows from method of construction of gar-
bled tables T̃i. As in [BPSW07] we use the GC protocol as a conditional oblivious
transfer protocol where we do not provide a translation from the garbled output
values to their plain values to C, i.e., C obtains one of two garbled values which
can be used as key in subsequent protocols but does not know to which value
this key corresponds.
Implementation Details. A point-and-permute technique can be used to speed
up the implementation of the GC protocol [MNPS04]: The garbled values w̃i =
〈ki, πi〉 consist of a symmetric key ki ∈ {0, 1}t and πi ∈ {0, 1} is a random per-
mutation bit. The permutation bit πi is used to select the right table entry for
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decryption with the key ki. Extensions of [KS08a] to “free XOR” gates can be
used to further improve performance of GC.

3.2 Notation

Number Representation. In the following, a (signed) `-bit integer x` is repre-
sented as one bit for the sign, sign(x`), and `−1 bits for the magnitude, abs(x`),
i.e., −2`−1 < x` < +2`−1. This allows sign-magnitude representation of numbers
in a circuit, i.e., one bit for the sign and `− 1 bits for the magnitude. For homo-
morphic encryptions we use ring representation, i.e., x` with 2` ≤ N is mapped

into an element of the plaintext group ZN using m(x`) =

{
x`, if x` ≥ 0

N + x`, if x` < 0
.

Homomophic Encryption. Gen(1T ) denotes the key generation algorithm of
the Paillier cryptosystem [Pai99,DJ01] which, on input the asymmetric security
parameter T , outputs secret key skC and public key pkC = N to C, where N is
a T -bit RSA modulus. Jx`K denotes the encryption of an `-bit message x` ∈ ZN
(we assume ` < T ) with public key pkC .
Garbled Objects. Objects overlined with a tilde symbol denote garbled ob-
jects: Intuitively, C cannot infer the real value i from a garbled value w̃i, but can
use garbled values to evaluate a garbled circuit C̃ or a garbled LBP L̃. Capital
letters W̃ denote complementary garbled values consisting of two garbled values〈
w̃0, w̃1

〉
for which we use the corresponding small letters. We group together

multiple garbled values to a garbled `-bit value w̃` (small, bold letter) which
consists of ` garbled values w̃1, . . . , w̃`. Analogously, a complementary garbled

`-bit value W̃` (capital, bold letter) consists of ` complementary garbled values

W̃1, . . . , W̃`.

4 Secure Evaluation of Private LBPs

After formally defining Linear Branching Programs (LBP) in §4.1, we present
two protocols for secure evaluation of private LBPs. We decompose our protocols
into different building blocks similar to the protocol of [BPSW07] and show how
to instantiate them more efficiently than in [BPSW07].

The protocols for secure evaluation of private LBPs are executed between a
server SS in possession of a private LBP, and a client C in possession of data,
called attribute vector. Let z be the number of nodes in the LBP, and n be
the number of attributes in the attribute vector. As in most practical scenarios
n is significantly larger than z, the protocol of [BPSW07] is optimized for this
case. In particular, the size of our securely transformed LBP depends linearly on
z but is independent of n. In contrast to [BPSW07], our solutions do not reveal
the total number z of nodes of the LBP, but only its number of decision nodes
d for efficiency improvements. In particular, the size of our securely transformed
LBP depends linearly on d which is smaller than z by up to a factor of two.

A security analysis of the LBP protocol with detailed proofs in the semi-
honest model and extensions to the malicious model together with a discussion
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on (how to prevent) learning the private LBP with so-called oracle attacks can
be found in the full version of [BFK+09], together with a detailed complexity
analysis.

4.1 Linear Branching Programs (LBP)

First, we formally define the notion of linear branching programs. We do so by
generalizing the BP definition used in [BPSW07]. We note that BPs – and hence
also LBPs – generalize binary classification or decision trees and Ordered Binary
Decision Diagrams (OBDDs) used in [KJGB06,Sch08].

Definition 1 (Linear Branching Program (LBP)). Let x` = x`1, .., x
`
n be

the attribute vector of signed `-bit integer values. A binary Linear Branch-
ing Program (LBP) L is a triple 〈{P1, .., Pz},Left ,Right〉. The first element
is a set of z nodes consisting of d decision nodes P1, .., Pd followed by z − d
classification nodes Pd+1, .., Pz.
Decision nodes Pi, 1 ≤ i ≤ d are the internal nodes of the LBP. Each Pi :=〈
a`i , t

`′
i

〉
is a pair, where a`i =

〈
a`i,1, .., a

`
i,n

〉
is the linear combination vec-

tor consisting of n signed `-bit integer values and t`
′
i is the signed `′-bit integer

threshold value with which a`i ◦ x` =
∑n
j=1 a

`
i,jx

`
j is compared in this node.

Left(i) is the index of the next node if a`i ◦ x` ≤ t`′i ; Right(i) is the index of the

next node if a`i ◦x` > t`
′
i . Functions Left() and Right() are such that the resulting

directed graph is acyclic.
Classification nodes Pj := 〈cj〉, d < j ≤ z are the leaf nodes of the LBP consist-
ing of a single classification label cj each.

To evaluate the LBP L on attribute vector x`, start with the first decision
node P1. If a`1 ◦ x` ≤ t`

′
1 , move to node Left(1), else to Right(1). Repeat this

process recursively (with corresponding a`i and t`
′
i ), until reaching one of the

classification nodes and obtaining the classification c = L(x`).
In the general case of LBPs, the bit-length `′ of the threshold values t`

′
i has

to be chosen according to the maximum value of linear combinations:

abs(a`i ◦ x`) = abs(

n∑

j=1

a`i,jx
`
j) ≤

n∑

j=1

22(`−1) = n22(`−1)

⇒ `′ = 1 + dlog2(n22(`−1))e = 2`+ dlog2 ne − 1. (1)

As noted above, LBPs can be seen as a generalization of previous represen-
tations:
Branching Programs (BP) as used in [BPSW07] are a special case of LBPs.
In a BP, in each decision node Pi the αi-th input x`αi

is compared with the

threshold value t`
′
i , where αi ∈ {0, .., n} is a private index. In this case, the

linear combination vector a`i of the LBP decision node degrades to a selection
vector ai = 〈ai,1, .., ai,n〉, with exactly one entry ai,αi

= 1 and all other entries

ai,j 6=αi
= 0. The bit-length of the threshold values t`

′
i is set to `′ = `.
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Fig. 4. Secure Evaluation of Private Linear Branching Programs - Structural
Overview

Ordered Binary Decision Diagrams (OBDD) as used in [KJGB06,Sch08]
are a special case of BPs with bit inputs (` = 1) and exactly two classification
nodes (Pz−1 = 〈0〉 and Pz = 〈1〉).

4.2 Protocol Overview

We start with a high-level overview of our protocol for secure evaluation of pri-
vate linear branching programs. We then fill in the technical details and outline
the differences and improvements of our protocol over previous work in the fol-
lowing sections.

Our protocol SecureEvalPrivateLBP, its main building blocks, and the data
and communication flows are shown in Fig. 4. The client C receives an attribute
vector x` = {x`1, . . . , x`n} as input, and the server SS receives a linear branching
program L. Upon completion of the protocol, C outputs the classification label
c = L(x`), and SS learns nothing. Of course, both C and SS wish to keep their
inputs private. Protocol SecureEvalPrivateLBP is naturally decomposed into the
following three phases (cf. Fig. 4).
CreateGarbledLBP. SS creates a garbled version of the LBP L. This is done
similarly to the garbled-circuit-based previous approaches [BPSW07,KJGB06].
The idea is to randomly permute the LBP, encrypt the pointers on the left and
right successor, and garble the nodes, so that the evaluator is unable to devi-
ate from the evaluation path defined by his input. The novelty of our solution
is that each node transition is based on the oblivious comparison of a linear
combination of inputs with a node-specific threshold. Thus, CreateGarbledLBP
additionally processes (and modifies) these values and passes them to the next
phase. CreateGarbledLBP can be entirely precomputed by SS.
ObliviousLinearSelect. In this phase, C obliviously obtains the garbled values
w̃1, .., w̃d which correspond to the outcome of the comparisons of the linear com-
bination of the attribute vector with the threshold for each garbled node. These
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garbled values will then be used to evaluate the garbled LBP in the next phase.
Making analogy to Yao’s garbled circuit (GC), this phase is the equivalent of
the GC evaluator receiving the wire secrets corresponding to his inputs. In our
protocol, this stage is more complicated, since the secrets are transferred based
on secret conditions.
EvalGarbledLBP. This is equivalent to Yao’s GC evaluation procedure. Here, C
receives the garbled LBP L̃ from SS, and evaluates it. EvalGarbledLBP addition-
ally gets the garbled values w̃1, .., w̃d output by ObliviousLinearSelect as inputs
and outputs the classification label c = L(x`).

4.3 Our Building Blocks

Phase I (offline): CreateGarbledLBP. In this phase, SS generates a gar-

bled version L̃ of the private branching program L. Algorithm CreateGarbledLBP
[BFK+09] converts the nodes Pi of L into garbled nodes P̃î in L̃, as follows. First,
we associate a randomly chosen key ∆i with each node Pi. We use ∆i (with other
keys, see below) for encryption of Pi’s data. Each decision node Pi contains a
pointer to its left successor node Pi0 and one to its right successor node Pi1 .

Garbled P̃i contains encryptions of these pointers and of successors’ respective
keys ∆i0 , ∆i1 . Further, since we want to prevent the LBP evaluator from follow-
ing both successor nodes, we additionally separately encrypt the data needed to
decrypt Pi0 and Pi1 with random keys k0i and k1i respectively. Evaluator later

will receive (one of) kji , depending on his input (see block ObliviousLinearSelect),
which will enable him to decrypt and follow only the corresponding successor
node. The used semantically secure symmetric encryption scheme can be instan-
tiated as Encsk(m) = m ⊕ H(k||s) = Decsk(m), where s is a unique identifier
used once, and H(k||s) is a pseudo-random function (PRF) evaluated on s and
keyed with k, e.g., a cryptographic hash function from the SHA-2 family. In
CreateGarbledLBP, we use the following technical improvement from [KJGB06]:
Instead of encrypting twice (sequentially, with ∆i and kji ), we encrypt successor

Pij ’s data with ∆i ⊕ kji . Each classification node is garbled simply by including
its label directly into the parent’s node (instead of the decryption key ∆i). This
eliminates the need for inclusion of classification nodes in the garbled LBP (and
necessitates adding a bit denoting the type of the successor’s node to the decision
node’s encryption). This technical improvement allows to reduce the size of the
garbled LBP by up to a factor of 2, depending on the number of classification
nodes. Finally, the two successors’ encryptions are randomly permuted. We note
that sometimes the order of nodes in a LBP may leak some information. To avoid
this, in the garbling process we randomly permute the nodes of the LBP (which
results in the corresponding substitutions in the encrypted pointers). The start

node P1 remains the first node in L̃. Additionally, garbled nodes are padded s.t.
they all have the same size. The output of CreateGarbledLBP is L̃ (to be sent to
C), and the randomness used in its construction (to be used by SS in the next
phase).
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Phase II: ObliviousLinearSelect. In this phase, C obliviously obtains the gar-
bled values w̃1, .., w̃d which correspond to the outcome of the comparison of the
linear combination of the attribute vector with the threshold for each garbled
node. These garbled values will then be used to evaluate the garbled LBP L̃ in
the next phase. In ObliviousLinearSelect, C’s input is the private attribute vector
x` = {x`1, . . . , x`n} and SS’s input are the private outputs of CreateGarbledLBP:

complementary garbled values W̃1 =
〈
w̃0

1, w̃
1
1

〉
, .., W̃d =

〈
w̃0
d, w̃

1
d

〉
, permuted lin-

ear combination vectors â`1, .., â
`
d, and permuted threshold values t̂`

′
1 , .., t̂

`′
d . Upon

completion of the protocol, C obtains the garbled values w̃1, .., w̃d, as follows: if
â`i ◦x` > t̂`

′
i , then w̃i = w̃1

i ; else w̃i = w̃0
i . SS learns nothing about C’s inputs. We

note that ObliviousLinearSelect can be viewed as an instance of conditional oblivi-
ous transfer [BK04]. We give two efficient instantiations for ObliviousLinearSelect
in §4.4.

Phase III: EvalGarbledLBP. This algorithm additionally gets the garbled val-
ues w̃1, .., w̃d output by ObliviousLinearSelect as inputs and outputs the classi-
fication label c = L(x`). C traverses the garbled LBP L̃ by decrypting garbled

decision nodes along the evaluation path starting at P̃1. At each node P̃î,
5 C

takes the garbled attribute value w̃î = 〈kî, πî〉 together with the node-specific
key ∆î to decrypt the information needed to continue evaluation of the garbled
successor node until the correct classification label c is obtained. It is easy to see
that some information is leaked to C, namely: (i) the total number d of decision

nodes in the program L̃, and (ii) the length of the evaluation path, i.e., the num-
ber of decision nodes that have been evaluated before reaching the classification
node. We note that in many cases this is acceptable. If not, this information can
be hidden using appropriate padding of L. We further note that L̃ cannot be
reused. Each secure evaluation requires construction of a new garbled LBP.

4.4 Oblivious Linear Selection Protocol

We show how to instantiate the ObliviousLinearSelect protocol next.
A straight-forward instantiation can be obtained by evaluating a garbled

circuit whose size depends on the number of attributes n. This construction is
not described here, cause it is an application of the Garbled Circuit. A detailed
description may be found in [BFK+09].

In the following we concentrate on an alternative instantiation based on a hy-
brid combination of homomorphic encryption and garbled circuits which results
in a better communication complexity.

Hybrid Instantiation. In the hybrid instantiation of ObliviousLinearSelect (see
Fig. 5 for an overview), C generates a key-pair for the additively homomorphic

5 We use the permuted index î here to stress that C does not obtain any information
from the order of garbled nodes.
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encryption scheme and sends the public key pkC together with the homomorphi-
cally encrypted attributes Jx`1K, .., Jx`nK to SS. Using the additively homomorphic
property, SS can compute the linear combination of these ciphertexts with the

private coefficients â`i as Jy`′i K := J∑n
j=1 â

`
i,jx

`
jK =

∏n
j=1Jx`jKâ

`
i,j , 1 ≤ i ≤ d. Af-

terwards, the encrypted values Jy`′i K are obliviously compared with the threshold

values t̂`
′
i in the ObliviousParallelCmp protocol. This protocol allows C to oblivi-

ously obtain the garbled values corresponding to the comparison of y`
′
i and t̂`

′
i ,

i.e., w̃0
i if y`

′
i ≤ t̂`

′
i and w̃1

i otherwise. ObliviousParallelCmp ensures that neither

C nor SS learns anything about the plaintexts y`
′
i from which they could deduce

information about the other party’s private function or inputs.

ObliviousParallelCmp protocol (cf. Fig. 6). The idea that is at the basis of the
ObliviousParallelCmp protocol is that SS blinds the encrypted value Jy`′i K in order
to hide the encrypted plaintext from C. To achieve this, SS adds a randomly
chosen value R ∈R ZN 6 under encryption before sending them to C who can
decrypt but does not learn the plain value. Afterwards, a garbled circuit C is
evaluated which obliviously takes off the blinding value R and compares the
result (which corresponds to y`

′
i ) with the threshold value t`

′
i . We improve the

communication complexity of this basic protocol which essentially corresponds
to the protocol of [BPSW07] with the following technical trick:

Packing. Usually, the plaintext space of the homomorphic encryption scheme ZN
is substantially larger than the encrypted values y`

′
i . Hence, multiple encryptions,

say d′, can be packed together into one ciphertext before blinding and sending it
to C. This reduces the communication complexity and the number of decryptions
that need to be performed by C by a factor of d′. For this, the encrypted values
−2`

′−1 < y`
′
i < 2`

′−1 are shifted into the positive range (0, 2`
′
) first by adding

2`
′−1 and afterwards are concatenated by computing JyK = J∑d′

i=1 2`
′(i−1)(y`

′
i +

6 In contrast to [BPSW07], we choose R from the full plaintext space in order to
protect against malicious behavior of C.
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2`
′−1)K =

∏d′

i=1(J2`′−1KJy`′i K)2`
′(i−1)

. The packed ciphertext JyK encrypts a L′ =
d′`′ bit value now.

4.5 Performance Improvements Over Existing Solutions

On the one hand, our protocols for secure evaluation of private LBPs extend
the functionality that can be evaluated securely from OBDDs [KJGB06], pri-
vate OBDDs [Sch08], and private BPs [BPSW07] to the larger class of pri-
vate LBPs. On the other hand, our protocols can be seen as general proto-
cols which simply become improved (more efficient) versions of the protocols
of [KJGB06,Sch08,BPSW07] when instantiated for the respective special case
functionality.

In the following, we summarize the employed techniques. We stress that our
improvements, achieved by combining our new technical tricks and some previ-
ously known techniques, are at the conceptual protocol level and will translate
directly into any implementation, i.e., are independent of implementation details
such as programming languages or hardware used.

Incorporate classification nodes into decision nodes: In contrast to
previous protocols given in [KJGB06,Sch08,BPSW07], the size of our improved
method for constructing garbled LBPs depends on the number of decision nodes
d only which is smaller than the total number of nodes z, a full classification
tree has z = 2d + 1 nodes. Hence, C cannot infer the number of classification
nodes in our protocols. As additionally the number of attributes for which the
ObliviousLinearSelect protocol needs to be run is reduced from z down to d, the
communication complexity of our hybrid protocol — except sending the en-
crypted attributes (HE) — grows linearly in d instead of z. For full classification
trees this results in an overall improvement by a factor of two. Tiny LBPs: For
tiny LBPs with d ≤ 10 decision nodes, e.g., the privacy-preserving remote di-
agnostics examples for iptables and mpg321 in [BPSW07], or the medical ECG
classification application described in §2, our alternative method for garbled
LBPs results in a substantially smaller communication complexity than existing
solutions. The garbled LBP can be constructed using a single Yao gate with d in-
puts as described next. The garbled LBP L̃ needs to obliviously map the garbled
inputs w̃1, .., w̃d to the corresponding classification label c as explained in §4.2.
This can trivially be implemented with a Yao gate with d inputs which encrypts
for each of the 2d possible input combinations the index of the corresponding
label. As the total number of classification nodes is z − d, their index can be
encoded with dlog(z − d)e bits. As the size of this alternative construction for
garbled LBPs grows exponentially in d, this is feasible for tiny LBPs only. While
– in contrast to the method described in §4.3 – this method reveals the number
of classification nodes and their labels but hides the length of the evaluation
path without need for padding with dummy decision nodes.

Point-and-permute: The protocols of [KJGB06,BPSW07] use the seman-
tically secure encryption scheme with ‘special’ properties of [LP04] where trial-
decryptions of all entries must be performed until the ‘right’ entry was found
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(which can be decided using the special properties). To achieve the special prop-
erties, the ciphertext size is increased by κ (the statistical correctness parameter)
additional bits [LP04]. In contrast to this, our protocols use a point-and-permute
technique as described in §3.1 to directly identify the right entry to decrypt
during evaluation of the GC as well as for the garbled LBP. This reduces the
computation complexity for C as no trial-decryptions need to be performed. Also
a standard semantically secure encryption scheme without padding can be used
in our protocols which results in reduced communication complexity.

Key-offsets: In the protocol of [BPSW07], the garbled circuits are encrypted
symmetrically with a node-specific key. During evaluation, C obtains this key,
decrypts the GC, and evaluates it. In contrast to this, our protocols use node-
specific key-offsets ∆i as described in §4.3 which result in lower computation
complexity for both, SS and C (adapted from [KJGB06]).

Packing: The hybrid ObliviousLinearSelect protocol improves over the proto-
col of [BPSW07] by packing together multiple ciphertexts before sending them
back to C as described in §4.4. This reduces the communication complexity and
the number of public-key decryptions that C needs to perform by a factor of
d′ = T−κ

`′

5 Privacy-Preserving ECG Classification

In this section, we describe how LBP may be used for privacy-preserving classi-
fication of ECG signals. Variables names used in this section are the same used
in [ASSK07, chapter 8] and §2, different from that used in the section §4, where
more generic names are prefered.

Before describing the privacy-preserving ECG classification protocol, we de-
fine the players of the protocol and the data that needs to be protected. A first
requirement is that the server SS, who is running the classification algorithm on
client’s ECG signal, learns neither any information about the ECG signal nor
the final result of the classification. At the same time, the client C should not get
any information about the algorithm used by SS, except for the output of the
classification. The latter point deserves some explanation. We assume that the
general form of the classifier used by SS is known, however the parameters of
the classifier need to be kept secret. By referring to the description given in §2,
the algorithm parameters that SS aims at keeping secret are the matrix B and
the classification tree of Fig. 2. This is a reasonable assumption since the domain
specific knowledge needed to classify the ECGs and the knowledge got from the
training, a knowledge that SS may want to protect, resides in the classification
tree and the matrix B.

In order to introduce the privacy-preserving ECG classification protocol, we
observe that the classification algorithm described in §2 is nothing but an LBP
with fc,` as attribute vector, and 6 nodes Pi =

〈
β`i , 0

〉
, i = 1, .., 6, where fc,` and

β`i are `-bit representations of the feature and projection vectors. In this way,
the general scheme for the privacy-preserving implementation of the classifier
assumes the form given in Fig. 7. All steps until the computation of the composite
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Fig. 7. Privacy-preserving ECG diagnosis

feature vector are performed by C on the plain data. Such a choice does not
compromise the security of the system from the server’s point of view, since
SS is not interested in keeping the structure of the classifier secret, but only
in preventing users from knowing the matrix B and the classification tree. On
the contrary, all the steps from the projection onto the directions βi’s, through
the final classification are carried out securely. Note that with respect to the
overall architecture depicted in Fig. 1, we added a quantization step before the
encryption of the composite feature vector. The need for such a step comes
from the observation that the parameters α1, α2, α3, α4 resulting from the AR
model estimation procedure are usually represented as floating point numbers, a
representation that is not suitable for 2PC protocols which compute on numbers
represented as integers only. For this reason the elements of the composite feature
vector fc are quantized and represented in integer arithmetic for subsequent
processing7. Note that the choice of the quantization step, and consequently the
number of bits used to represent the data (` in the LBP terminology), is crucial
since on one side it determines the complexity of the overall secure protocol and
on the other side it has an impact on the accuracy of the ECG classification.

5.1 Quantization Error Analysis

In this section we estimate the impact that the quantization error introduced
passing from fc to fc,` and from βi to β`i has on the classification accuracy. Such
an analysis will be used to determine the minimum number of bits (`) needed
to represent the attribute vector and the linear combination vectors of the LBP.
The value of ` influences the complexity of the secure classification protocol for
two main reasons. As already outlined in §4, the main ingredients of the protocols
for secure evaluation of private LBPs are garbled circuits and additively homo-
morphic encryption. In the case of garbled circuits, the input of the protocol are
the single bits used to represent fc,` and β`i . It is obvious, then, that the greater
the number of bits, the more complex the resulting protocol will be. With regard

7 In the same way the coefficients of matrix B, representing the combination vectors
of the LBP, are represented as integer numbers.
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to computing on homomorphically encrypted data, we observe that after each
multiplication carried out in the encrypted domain, the number of bits necessary
to represent the output of the multiplication increases (it approximately dou-
bles)8. Since it is not possible to carry out truncations in the encrypted domain,
it is necessary that the size of the ring used by the homomorphic cryptosystem
is large enough to contain the output of the computations without an overflow
which would cause an invalid result. Augmenting the number of bits used to
represent the inputs of the LBP may require to increase the size of the needed
cryptosystem ring which results in an increased protocol complexity.

To start with, we observe that quantization is applied to the composite fea-
ture vector fc, that is used to compute the vector y, through multiplication with
the matrix B. After such a step, only the signs of vector y are retained, hence it
is sufficient to analyze the effect of quantization until the computation of the sign
of y. As to the processing steps carried out by the client prior to quantization,
we assume that all the blocks until QDF are carried out by using a standard
double precision floating point arithmetic. In order to simplify the notation, we
consider only the computation of one coefficient of the vector y. The function to
be computed is a simple inner product: y =

∑
j βjf

c
j where the index i has been

omitted, and βj and f cj are real numbers. The quantized version of the above
relationship can be expressed as follows:

βq,j = ρ1βj + ε1,j = bρ1βje
f cq,j = ρ2f

c
j + ε2,j = bρ2f cj e (2)

where ρ1 and ρ2 are positive integers and ε1,j and ε2,j are the quantization errors
affecting βq,j and f cq,j respectively. By using the above relations it is possible to
evaluate the final error due to quantization:

N−1∑

j=0

(
ρ1βj + ε1,j

)(
ρ2f

c
j + ε2,j

)
=

= ρ1ρ2

(
y +

N−1∑

j=0

βjε2,j
ρ2

+

N−1∑

j=0

f cj ε1,j

ρ1
+

N−1∑

j=0

ε1,jε2,j
ρ1ρ2

︸ ︷︷ ︸
ε

)
(3)

where ε indicates the error on the scalar product once the scaling factor ρ1ρ2 is
canceled out. By letting max(|βj |) = Mb, max(|f cj |) = Mf and by noting that

max(|ε1,j |) = max(|ε2,j |) = 1
2 , we have:

ε ≤ N

2ρ1ρ2

(
ρ1Mb + ρ2Mf +

1

2

)
≤ ε∗ (4)

where ε∗ is a target maximum error that we do not want to exceed. Given
ε∗, choosing the optimum values of ρ1 and ρ2 is equivalent to a constrained

8 The same observation holds for additions, however additions have a negligible effect
with respect to multiplications.
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minimization problem in which the function to be minimized is ρ1ρ2 (since this
is equivalent to minimize the number of bits necessary to represent the output
of the scalar product) and the constraint corresponds to equation (4), that is:

ρ1 ≥
N(2ρ2Mf + 1)

4ρ2ε∗ − 2NMb
. (5)

To ensure that ρ1 is a positive integer, we require 2ρ2ε
∗ − NMb > 0, yielding

the following minimization problem:

min
ρ2>

NMb
2ε∗

ρ2
N(2ρ2Mf + 1)

4ρ2ε∗ − 2NMb
. (6)

By solving (6) we obtain the solutions:

ρ2 =
1

2Mfε∗

(
NMbMf +

√
NMbMf (ε∗ +NMbMf )

)
, (7)

ρ1 =
1

2Mbε∗

(
NMbMf +

√
NMbMf (ε∗ +NMbMf )

)
. (8)

5.2 Speeding up the System

By referring to the analysis in the previous section, we must consider that in our
case N = 21, however the values of Mb and Mf are not known. In fact, the co-
efficients of the AR model and matrix B are not bounded. However, considering
that in practical applications AR model coefficients are rather small (lower than
10 for ECG signals) and observing that the 5-th component of the feature vector
f can be at most 300, hence in fc we surely have a component that is at most
9 ·104. We may then let Mf to be the closest power of 10, i.e., Mf = 105. At the
same time, in our experiments we never observed a matrix B with coefficients
larger than Mb = 105. Finally by examining the data of the ECG MIT Database9

we found that ε∗ = 10−5 ensures a sufficient classification accuracy. By using
these settings the bit size of the values in input turned out to be 56 bit. As to
the ring size for homomorphic encryption we found that the ring size imposed
by security standards, e.g., 1248 bits and more [GQ09], is always sufficient to
accommodate all the intermediate and final results of the computation.

The analysis reported above is mainly based on worst case assumptions. In
practice, we may expect that the number of bits necessary for a good classifi-
cation accuracy is lower than 56. To investigate this aspect, we implemented a
simulator to exactly understand which is the minimum number of bits that can
be used. The results we obtained by running the simulator on the MIT Database
of ECG signals are shown in Fig. 8. This figure shows the accuracy of the sys-
tem as a function of `. As we can see ` = 44 is sufficient to guarantee the same
performance of a non-quantized implementation.

9 http://www.physionet.org/physiobank/
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In order to further speed up the system, we tested a version of the ECG
classifier with a reduced number of features. Specifically, we reduced f by elim-
inating the feature ne. In this way, we obtain a 15-coefficient fc. Obviously the
reduction of the feature space gives also a reduction of the accuracy, but this
reduction is quite negligible: our experiments, in fact, indicate that the accuracy
decreases only from 88.57% to 86.30%. On the other hand, as it will be shown in
the next section, by removing one feature we gain a lot from a complexity point
of view. Such a gain is already visible in Fig. 8, where we can see that with the
reduced set of features a value of ` as low as 24 is enough to obtain the same
performance of a non-quantized version of the classifier.

6 Complexity Analysis

To evaluate the communication and computation complexity of the Hybrid and
the GC protocols, we implemented both protocols in C++ using the Miracl li-
brary10. The following tests were run on two PCs with 3 GHz Intel Core Duo
processor and 4GB memory connected via Gigabit Ethernet. The security pa-
rameters in the protocols of [BFK+09] are denoted by T for the bitlength of
the RSA modulus for Paillier encryption [Pai99] in the Hybrid protocol, and
t for the symmetric security parameter which determines the performance of
the GC protocol using an elliptic-curve based oblivious transfer protocol. In
our implementation, we chose these security parameters according to common
recommendations [GQ09] as T = 1248, t = 80 for short-term security (recom-
mended use up to 2010) and T = 2432, t = 112 for medium-term security (up
to 2030). We measured the complexity of both protocol instantiations for the
parameter sizes proposed in §5.2:

In test #1, we represent the features of fc,` with ` = 56 bits, as obtained
from the theoretical estimations.

In test #2, the features are represented with ` = 44 bits, the lower value
obtained from the practical tests.

10 http://www.shamus.ie
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In test #3, we measure how the optimizations of §5.2 increase the efficiency
of the protocols. While test-cases #1 and #2 were run for short-term security
parameters only, in this test case we consider short-term (#3) and medium-term
(#3∗) security.

# Fea- N ` Protocol Communication Computation
tures Type Client [kBytes] Client [s] Server [s]

sent received cpu total cpu total

1 5 21 56
Hybrid 20.7 119.1 2.3 35.4 5.4 34.2

GC 24.1 67435.6 7.2 64.5 17.3 64.7

2 5 21 44
Hybrid 17.7 94.5 2.0 29.0 4.8 27.6

GC 19.0 41573.6 4.7 48.5 11.5 48.8

3 4 15 24
Hybrid 10.9 52.4 1.3 18.7 3.3 16.2

GC 7.4 8788.4 1.3 17.5 3.1 19.2

3∗ 4 15 24
Hybrid 17.6 71.7 6.5 40.5 16.3 30.9

GC 10.2 11984.3 3.0 20.4 4.6 20.8

* medium-term security
Table 1. Performance of protocols for secure ECG classification

Table 1 shows the results obtained from running these tests. Specifically,
the table contains the communication complexity (separated into data sent and
received by the client) and the computation complexity for the client and the
server (separated into CPU time and total time which additionally includes
data transfer and idle times). From these measurements we draw the following
conclusions:

a) Parameter Sizes: The performance of both protocols in test #2 is slightly
better than that of test #1 due to smaller size of `. Reducing the number of
features in test #3 results in substantially improved protocols while the classi-
fication accuracy is only negligibly decreased as discussed in §5.2.

b) Communication Complexity: While the data sent by the client is approx-
imately the same for both protocols (few kBytes), the received data in the GC
protocol (MBytes) is by an order of magnitude larger than in the Hybrid pro-
tocol (kBytes). However, this asymmetric communication complexity of the GC
protocol matches today’s asymmetric network connections (e.g., ADSL or mo-
bile networks), where the upstream is limited, while tens of MBytes can be
downloaded easily. Future research should concentrate on further reducing the
communication complexity of GC.

c) Computation Complexity (short-term security): For the test cases #1 and
#2 the computation complexity of the Hybrid protocol is better by a factor of
three in CPU time and factor two in total time, whereas for the optimized test
case #3 both protocols have approximately the same computation complexity.
Hence, for short-term security, the Hybrid protocol is better than the GC pro-
tocol with respect to computation and communication complexity (see also ’b)’
above).
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d) Computation Complexity (medium-term security): Increasing the security
parameters has a much more dramatic effect on the computation complexity of
the Hybrid protocol than on that of the GC protocol (see test #3 vs. #3∗). This
effect results from the asymmetric security parameter T being almost doubled,
whereas the symmetric security parameter t is only slightly increased. We stress
that this loss in performance of additively homomorphic encryption for realistic
security parameter sizes is often neglected in literature or hidden by choosing
relatively small moduli sizes of T = 1024 bit. For medium-term security, the GC
protocol is substantially better than the Hybrid protocol besides the amount of
data received by the client (see discussion in ’b)’ above).

7 Conclusions

Privacy-preserving processing of medical signals calls for the application of cryp-
tographic two-party computation techniques to medical signals. While in prin-
ciple this is always possible, the development of efficient schemes that minimize
the computation and communication complexity is not trivial, since it requires
a joint design of the signal processing (SP) and cryptographic aspects of the
system. In this paper we have presented an efficient and secure system for
privacy-preserving classification of ECG signals based on a recently proposed
2PC protocol and a careful design of the SP algorithm used to classify the ECG.
In particular, the optimization of the SP part substantially improved the per-
formance of the secure protocols. We experimentally compared two different
implementations of the system, one relying on garbled circuits (GC) and one
on a hybrid combination of the homomorphic Paillier cryptosystem and GCs
(Hybrid). While from communication complexity perspective the Hybrid pro-
tocol is clearly better, the computation complexity of both protocol is similar
for short-term security parameters, whereas for medium-term security the GC
based protocol is preferable.
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