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Abstract—The ever-growing number of cyber attacks from
botnets has made them one of the biggest threats on the Internet.
Thus, it is crucial to study and analyze botnets, to take them
down. For this, an extensive monitoring is a pre-requisite for
preparing a botnet takedown, e.g., via a sinkholing attack.
However, every new monitoring mechanism developed for botnets
is usually tackled by the botmasters by introducing novel anti-
monitoring countermeasures. In this paper, we anticipate these
countermeasures by proposing a set of lightweight techniques
for detecting the presence of crawlers in P2P botnets, called
BoobyTrap. For that, we exploit botnet-specific protocol and de-
sign constraints. We evaluate the performance of our BoobyTrap
mechanism on two real-world botnets: Sality and ZeroAccess.
Our results indicate that we can distinguish many crawlers from
benign bots. In fact, we discovered close to 10 crawler nodes
within our observation period in the Sality botnet and around
120 in the ZeroAccess botnet. In addition, we also describe the
observable characteristics of the detected crawlers and suggest
crawler improvements for enabling monitoring in the presence
of the BoobyTrap mechanism.

I. INTRODUCTION

Nowadays, botnets are one of the biggest threats on
the Internet. They can comprise hundreds of thousands of
infected machines, so-called bots, and can be used for a
variety of malicious activities. For example, they can carry
out Distributed Denial of Service (DDoS) attacks, or they
can be used for proxy-services and spams. Traditional cyber
security countermeasures, e.g., Intrusion Detection Systems
(IDSs) [13], cannot cope with the amount and the distributed
nature of such attacks. In particular, the emergence of botnets
exhibiting highly resilient Peer-to-Peer (P2P) architectures,
renders monitoring and takedown attempts to be more difficult.
Hence, to design and deploy countermeasures against such
botnets, efficient monitoring mechanisms are required.

Botnet monitoring is a first and necessary step to gather
the required knowledge for a potential takedown, which re-
quires enumerating all participating bots. Monitoring can be
conducted via the deployment of sensor nodes [6], by crawling
the botnet [7], or by a combination of both techniques. Sensors
are nodes that follow the botnet protocol and participate in
the botnet overlay to gain knowledge on other bots. Hence, a
sensor allows to enumerate the bots in the botnet but does not
provide insights on the interconnectivity graph of the botnet. In
contrast, crawling is more aggressive and uses graph traversal
techniques to query nodes for their neighborhood connectivity,

i.e., neighbor lists. Hence, this allows the reconstruction of the
connectivity graph of a particular botnet.

The advent of P2P botnets, manifesting in an increasing
number of attacks carried out by them, and their open nature
currently attracts much attention from researchers and law
enforcement agencies. As such, many researchers and organi-
zations are independently monitoring such botnets and specif-
ically conduct botnet crawling. However, what we currently
experience in the botnet area is a classic race of arms. Every
upgrade on the side of research and law enforcement is usually
followed by another upgrade of the botnets by botmasters.
Botnets are a valuable asset to their botmasters, which they
will try to protect by all means. We saw already efforts to
impede monitoring activities with the introduction of restricted
information exchange in botnets like P2P Zeus, Sality or Ze-
roAccess that were answered from research side by improved
monitoring mechanisms [7], [8]. Hence, the next escalation by
the botmasters is only a step ahead and will probably come in
the form of improved blacklisting mechanisms that might be
able to detect the majority of currently used crawlers.

In this paper, we anticipate this next escalation step.
The main contribution of this paper is a crawler detection
mechanism that we call BoobyTrap (BT). It enables bots,
but also sensors, to autonomously detect the presence and
activities of crawlers in P2P botnets. For that, we exploit
botnet-specific protocol and design constraints that are often
violated by crawlers. As a result and just by local observations,
bots (or sensors) can easily blacklist crawlers to impede
monitoring activities. We are aware that our BT mechanism
can be exploited by botmasters. However, we argue that it be
necessary to point out the vulnerabilities of current crawlers
to raise the stakes so that the research community, as well
as law enforcement agencies, are prepared and improve their
monitoring mechanisms accordingly. For that, we also give
recommendations for future crawlers at the end of this paper.

We also provide extensive evaluation results of our BT
mechanism that were deployed on real-world sensor nodes
participating in the Sality and ZeroAccess botnets. Our results
indicate that we can successfully distinguish between crawlers
and bots. Within our observation period, we also successfully
detected a high number of crawlers. In addition, we also
present a brief analysis of the crawlers’ characteristics.

The remaining of this paper is structured as follows. In



Section II, we describe the general operations of P2P botnets.
Section III provides a comprehensive description of our BT
approaches. In Section IV, we evaluate our approach in a real-
world scenario for two well-known botnets and present our
analysis of the detected crawlers. In Section V we discuss
the related work with a focus on crawlers as well as their
detection in botnet environments. Finally, Section VI concludes
this paper and proposes future work.

II. BOTNET MEMBERSHIP MANAGEMENT MECHANISM

Like traditional P2P networks, P2P-based botnets experi-
ence node churn, i.e., nodes joining and leaving the network at
high frequency. Botnets usually deploy a Membership Manage-
ment (MM) mechanism which ensures that participating bots
remain connected to the botnet overlay to withstand churn.
This mechanism is responsible for ensuring that unresponsive
bots, e.g., offline bots, are removed from a particular bot’s
neighborlist NL and replaced by more responsive ones.

The maintenance of the NL usually follows a periodic MM
maintenance cycle that is botnet-specific and can be in between
1 second to 40 minutes in some botnets. During such a cycle, a
bot would iterate through the entries in its NL and probe each
neighbor with a special message for its responsiveness. Bots
are removed if they are unresponsive for several successive
probing messages or MM-cycles. Bots are also able to request
the NL of their neighbors to increase the size of their own NLs.
Most botnets utilize a dedicated port to listen for incoming
probe messages from other bots, i.e., the server socket, and
either a dedicated or a combination of several dynamic ports
to probe peers in the NL, i.e., the client socket(s).

Newly joined bots announce their presence in the botnet by
an announcement message to notify existing bots to propagate
information of the new node, i.e., when the NL is requested.
In the following, we describe the specific MM of Sality and
ZeroAccess based on our work on reverse engineering the most
recent binaries of the respective botnet.

A. Sality

Each bot in Sality maintains an NL with at maximum
1000 entries and utilizes a membership maintenance interval
of 40 minutes. During this maintenance cycle, a bot probes
all neighbors in its NL using a Hello message. Then, the
entries in the NL are marked either as online or offline based
on their responsiveness. Bots also leverage this process to
retrieve newer configuration updates issued by the botmasters
(if available) by indicating the sequence number of the most
recent update known to them [4]. If a bot receives a Hello
message with an older sequence number, the bot replies the
message by appending the latest update.

Furthermore, if the number of entries in the NL is below
980 at the beginning of a maintenance cycle, a Neighbor List
Request message (NLReq ) is sent to all responsive neighbors.
Bots receiving a NLReq will respond with a Neighbor List Re-
ply (NLRep) message containing information on one randomly
picked bot from its NL, i.e., IP address and Port number, which
was marked as online in the last MM-cycle. The returned entry
is then processed according to Algorithm 1.

First, the bot checks if the current neighbor list is already
full (Line 1) and returns if this is the case. Otherwise the

algorithm proceeds and checks the IP address in the returned
reply (Line 4). If the address is unknown, the returned entry
is added to the NL (Line 9). In case the IP address is already
known, it is checked whether the corresponding port in the
reply matches with the existing entry in the NL (Line 5). If the
ports do not match, the bot additionally checks (Line 6) if the
entry in the NL was marked offline during the last membership
maintenance cycle. Sality allows an existing neighbor, i.e.,
based on the IP address, to rejoin the botnet with a different
port. Nevertheless, an existing entry will only be updated (Line
7) if the existing entry was already marked as offline in the
NL.

Also, take note that a bot in Sality uses a new socket/port
for every request message that needs to be sent. We believe
this design is adopted to prevent researchers from conducting
replay attacks or spoofing replies to manipulate entries in the
NL.

1 if NL.getSize() >= 1000 then
2 return // Neighborlist is full
3 end
4 if entry.IP ∈ NL.getAllIPs() then
5 if NL.getPort(entry.IP ) 6= entry.Port then
6 if NL.getStatus(entry.IP ) == Offline then
7 NL.updatePort(entry.IP, entry.Port)
8 else

// NL not full and IP is unknown.
Add new entry.

9 NL.add(entry)
10 end

Algorithm 1: ProcessNLRep(entry)

B. ZeroAccess

Bots in ZeroAccess maintain three types of NLs. The
primary list consists of a maximum of 256 entries and the
other two consist of more than 16 million entries each. Figure
1 depicts the sequence of messages exchanged between a
BotX and BotY in a MM-cycle. ZeroAccess’s membership
maintenance is carried out every 256 second in which it
sequentially probes one entry from the primary list every 1
second with a getL message. Bots that successfully respond
to the getL message are placed at the top of the primary NL.
The position of a bot in the list indicates how recently it has
responded to a probe message compared to other bots in the
list. Bots need to respond to each of the probe messages with a
retL message that includes the most recent 16 entries, i.e, first
16, from the primary NL along with information of plugins
[4] that are available to be downloaded from it. These plugins
contain additional features for the bots, e.g., Bitcoin mining or
ad-clicking.

As depicted in Figure 1, a responsive neighbor BotY is
also expected to send a getL+ message to the server port of
the probing bot, i.e., BotX . This exchange is used to determine
if BotX is publicly reachable by other bots. If this exchange
is successful, BotX is placed at the top of BotY ’s NL. Note
that ZeroAccess has only two types of messages: getL and retL,
both with a parameter flag which has the default value of zero,
i.e., flag = 0. Meanwhile, the getL+ and retL+ messages are
both of the same packet structure but with a different flag value,
i.e., flag = 1. The specific behavior of a bot receiving a getL
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Fig. 1. Message exchange for BotX probing BotY in ZeroAccess.

or getL+ message is depicted in Algorithm 2. After receiving
a request, a reply is always sent to the sender (Line 3) with
the flag copied from the received request message (Line 2). As
such, if a bot received a getL message with flag = 0, it replies
with a retL message and additionally sends an additional getL
message with the flag = 1, i.e., getL+.

1 // Reply to all received requests
2 rep← createRetL(msg.getF lag())
3 send(sender, rep) // Send a retL to sender
4 if msg.getF lag() == 0 then
5 // Send a getL+
6 send(sender, createGetL(flag = 1))
7 end

Algorithm 2: Process GetL(sender,msg)

It is also worth noting that UDP hole punching can be
performed in this botnet as reported by Rossow et al. [11].
Due to space constraints, we briefly describe them in the
following. UDP hole punching can be performed in this botnet
by continuously sending valid requests, e.g., getL or getL+
messages, to the client socket of a BotX in addition to the retL
and retL+ messages. The additional requests will be processed
by the bots as though they were received from the server
socket. As such, once a communication channel is established
from bots behind NAT-like devices, it is possible to keep
communicating to them by sending valid requests periodically.

III. BOOBYTRAP

In this section, we first summarize our system design and
our assumptions, before we introduce our generic crawler
detection mechanism called BT. As this mechanism needs to
be specifically tailored for each botnet, we provide tailored BT
nodes for the Sality and ZeroAccess botnet as examples.

A. System Design & Assumptions

A BT node is essentially a sensor node that is enriched
with additional detection mechanisms or ’traps’ to identify
misbehaving nodes that are contacting it in an autonomous
manner. All communication with the BT node is logged in a
relational database for future reference along with additional
metadata, i.e., timestamp, payload, source IP, and source
port. Compared to conventional sensors, BT nodes can have
additional functionalities such as responding to NL requests
with valid replies and (re)sending valid probe messages to the
sender of a request message. In addition, BT nodes can also
listen for incoming connections or messages on a secondary
port (if applicable), as it is needed for one of the traps (cf.

Section III-C). Take note that BT nodes only return non-
bot entries, i.e., other sensor nodes, to avoid participating in
the botnet’s maintenance activities due to legal constraints.
Therefore, BT-enhanced sensor nodes do not participate in any
activities that may, directly or indirectly, aid the botnet in any
manner.

The BT detection mechanisms leverage upon the following
assumptions of crawlers that are derived from our observations
in real-world botnets and requirements from a legal perspec-
tive.

1) Crawlers greedily attempt to discover/contact all on-
line bots as much as possible by aggressively abusing
the botnet’s protocol to request NL.

2) Crawlers are not able to distinguish BT nodes from
normal bot, without first interacting with them.

3) Crawlers do not aid the botnet in any manner, e.g.,
returning valid neighbors or updates.

B. Detection Classes

The main idea of BT is to identify misbehaving nodes, i.e.,
crawlers, by distinguishing their behavior from benign bots by
violations of the respective botnet’s MM protocol. These be-
haviors can be categorized according to the following classes:
Defiance, Abuse, and Avoidance, that are easily adaptable to
any P2P botnets. These classes are described in detailed in the
following.

1) Defiance: Bots that defy the botnet-specified MM pro-
tocols can be classified as crawlers. Such behavior includes
omitting certain prerequisite actions or mandatory message
exchange(s) before requesting an NL. Moreover, in some
cases, it is also possible to identify a crawler based on its
behavior of greedily contacting all discovered entries, even
when the botnet protocol applies some restriction to entries
that can be chosen as potential neighbors. For example, new
entries that have a matching /20 subnet with existing entries
are ignored by P2P Zeus [2]. As such, if a BT node returns an
entry of another BT node that is from the same /20 subnet,
and if both BT nodes were contacted by an identical bot, this
bot can be classified as a crawler.

2) Abuse: In P2P botnets, bots may request the NLs
of their neighbors to add new neighbors to their own NL.
This ability is necessary to prevent getting isolated from the
botnet overlay. However, crawlers can make use of this NL
exchange mechanism to reconstruct the network topology of
the botnet. Therefore, bots in most recent P2P botnets return
only a small subset of their NL to prevent a crawler from
retrieving the entire NL easily [2]. Moreover, the presence
of churn also encourages crawlers to obtain snapshots of the
botnet as fast as possible to avoid introducing bias in the
monitoring results [7]. Therefore, crawlers typically crawl bots
with higher frequencies [8]. In contrast, bots usually probe
their neighbors only once per MM-cycle, i.e., between 1 sec
to 40 minutes, depending on the botnet in scrutiny. Thus, a
frequency-based detection mechanism can be utilized to detect
crawlers that abuse the NL exchange mechanism. In fact, such
a countermeasure was already implemented by the P2P Zeus
botnet [2].



3) Avoidance: A botnet’ MM protocol specifies the order
of message exchange as well as the structure of the messages.
Hence, nodes that do not respond to responsiveness probing
messages or return useless responses, e.g., empty or invalid,
could be crawlers. This behavior can be due to the design of
most monitoring nodes which is minimalistic and does not aim
at aiding the botnet in its day-to-day operations, i.e., command
dissemination, attack execution, or management of the overlay.
As such, crawlers tend to avoid providing information or
responding to requests that may aid the botnet in a positive
manner. By deliberately sending botnet-specific requests that
should generate a verifiable reply, bots that are refusing to
respond (or ignore the requests) can be classified as crawlers.

C. BoobyTrap for Sality

In the following, three crawler detection mechanisms or
traps are adapted for Sality from the different misbehavior
classes presented in Section III-B. Each trap’s name is prefixed
by an abbreviation of the botnet’s name and the respective
detection class. For Sality, there are two traps in the class
of Defiance, i.e., SD1-IgnoreTrap and SD2-BaitTrap, and one
trap from the class of Abuse, i.e., SA1-BurstTrap. Take note
that a trap can also be setup for this botnet from the class of
Avoidance based on the configuration update mechanism that
leverages upon the Hello message exchange (cf. Section II-A)
to identify nodes that refuse to send the latest update. However,
such a trap for Sality is omitted in this work as it may cause
DDoS on the BT node itself due to the heavy traffic caused
by the attached updates in the responses [10].

1) SD1-IgnoreTrap: The MM protocol of Sality specifies
that a bot utilizes a Hello message to probe the responsiveness
of its neighbors (cf. Section II-A). If the neighbors are respon-
sive, and the probing bot requires additional neighbors, only
then, it sends an additional NLReq message. As such, a NLReq

is always preceded by a Hello message. Crawlers that want to
simplify this process to reduce the communication overhead
for crawling may decide to ignore the Hello message and send
only NLReq messages to the bots. In addition, simplifying the
process also reduces the amount of time needed for the crawler
to produce a snapshot. For each received NL request, the BT
node checks if there has been a preceding Hello message
logged in the database. If the database contains no records for
the Hello message, the respective node is flagged as a crawler.

2) SD2-BaitTrap: Sality ensures that an IP address can
only be present once in a bot’s neighbor list (Line 4, Algorithm
1). When a bot discovers a potential neighbor with the same IP
but different port (Line 6, Algorithm 1), it prefers an existing
and responsive entry, i.e., IP address. This trap exploits this
observation by deliberately responding to all received NLReq

with an entry that points back to the BT node’s secondary port,
i.e., that is also monitored for incoming requests. Legitimate
bots would ignore such a reply, since the initial entry, i.e.,
the entry with the primary port, is still responsive in the NL
from the previous MM-cycle. Since crawlers are often greedy
in obtaining information on the botnet topology, the crawlers
could also probe the secondary port of BT and trigger the
crawler detection mechanism. Take note that this particular
baiting mechanism can also be executed using two (or more)
colluding BT nodes.

3) SA1-BurstTrap: Bots in Sality probe the responsiveness
of their neighbors once every 40 minutes (cf. Section II-A).
In addition, bots can (optionally) request neighbors of their
neighbor by sending a NLReq . As such, this trap keeps track of
a bot’s NL requesting frequency, i.e., based on the IP address
of the requester. If a bot sends several NL request, i.e., > 1,
within a short interval, i.e., < 40 minutes, this behavior triggers
the detection mechanism.

D. BoobyTrap for ZeroAccess

In the following, three crawler detection mechanisms or
traps are adapted for ZeroAccess from the different misbe-
havior classes presented in Section III-B. Each trap’s name
is prefixed by an abbreviation of the botnet’s name and the
respective detection class. Due to the simplicity of ZeroAccess’
design to use only two types of messages and a fixed port for
inter-communication, a trap within the Defiance class is not
feasible to be implemented for this botnet.

1) ZD1-NonComplianceTrap: The MM protocol of Ze-
roAccess as described in Algorithm 2 allows bots to identify
that a getL message was received by checking the flag value
of the received request message (Line 4), i.e., flag == 0.
In reply, bots always send a getL+ message that has its flag
set to 1. However, it is still protocol-compliant if a bot sends
a getL+ message with the flag set to any non-zero integers,
i.e., flag 6= 0. This trap deliberately sends a getL+ with a
modified flag-value, e.g., flag = 3, for every received getL
message. A legitimate bot will answer all received requests
with a retL or retL+ message that has the flag values copied
from the received request messages (Line 2). In addition, due
to the possibility of UDP hole punching in ZeroAccess (c.f.
Section II-B), all legitimate bots (including those behind NAT-
like devices) should respond to any getL+ message received.
Hence, the BT node examines whether the received replies
contain inconsistent or modified flags. Therefore, any crawlers
that are non-compliant to the MM protocol, i.e., not copying
the flag value received in the reply, will be flagged accordingly.

2) ZA1-BurstTrap: Based on our own work of reverse-
engineering the recent variants of ZeroAccess, we found that
a bot would normally contact a particular neighbor at most
three times within a duration of 256 seconds in a MM-cycle.
The only exception is during the initial phase of bootstrapping
into the overlay at which point a bot could contact a bot more
frequently. The general observation is exploited in this trap
which is triggered if any bot attempts to communicate with
the BT node aggressively in quick successions, i.e., more than
three requests within 256 seconds. Similar to SA1-BurstTrap, if
more than three requests are received from a single bot within
a short interval, i.e., < 256 seconds, our detection mechanism
is triggered.

3) ZA2-IgnoreTrap: This particular trap works in combina-
tion with the ZD1-NonComplianceTrap. Crawlers that received
our BT node’s getL+ requests with modified flag values may
(intentionally or unintentionally) decide not to respond to the
message. Considering the fact that UDP hole punching is
exploited, all bots including those behind NAT are expected
to respond to the received requests. Therefore, any node
deliberately refusing to reply can be flagged as a crawler.



IV. EVALUATION

In this section, we describe the details of the used datasets
and explain our experimental setup. Furthermore, we present
the evaluation results for our BT mechanism that were de-
ployed in two existing real-world botnets, i.e., Sality and Ze-
roAccess, at the end of the section by answering the following
research questions:

1) What are the appropriate threshold values to minimize
false positives generated by bots behind NAT and
proxies in frequency-based detection mechanisms?

2) How susceptible are current crawlers against the BT
detection mechanisms?

3) What are the common characteristics exhibited by
existing crawlers in the wild?

A. Data Sets

We implemented the BTs, as described in Section III, on
sensor nodes and deployed them in the Sality Version 3 [4]
and ZeroAccess Network 2 (port 16470) [9] botnets. Each
of our BT nodes was popularized for a period of two weeks
before we conducted measurements for one week in total in
each botnet: Sality (23/09/2015 00:00:00 CET to 29/09/2015
23:59:99 CET) and ZeroAccess (02/10/2015 15:57:55 CET to
09/10/2015 15:57:54). The summary of the datasets is provided
in Table I.

Sality (Version 3) ZeroAccess (Port 16470)
Total IPs 735, 443 25, 236

Average IPs/day 162, 804 7, 128
Min IPs/day 155, 957 5, 905
Max IPs/day 177, 267 7, 864

TABLE I. DESCRIPTION OF THE DATASETS

B. Experimental Setup

We conducted our analysis using sensors that were imple-
mented in the Python language for both botnets, i.e., Sality and
ZeroAccess. All of our detection mechanisms are triggered by
the type and contents of the received (or missing) responses
from a particular node. However, for the frequency-based
detection mechanisms, i.e., Abuse class, a configurable sliding
window-based detection mechanism is implemented to identify
IPs aggressively contacting our BTs. This detection mechanism
takes two input parameters: the length of the sliding window
t (in seconds) and the minimum number of messages nmin

to trigger the detection mechanism. A detection is triggered
if a particular IP sends more than nmin messages within any
sliding window observations.

To evaluate the performance of our proposed mechanisms,
we consider the amount of IPs that triggered the BTs and
then attempt to verify manually if the behavior of a node
behind an IP is indeed a crawler. Since manual checking
cannot always yield a binary answer, the IPs are classified on a
best-effort basis using the following classifications: 1) Highly
Possible, 2) Possible, 3) Unknown, and 4) False Positive. A
node is classified as Highly Possible when there is significant
evidence that resembles a crawler’s behavior, e.g., avoiding to
exchange information. A node is classified as Possible when
there is evidence that (almost) equally resembles as both a
possible crawler and a bot. Meanwhile, a node is classified
as Unknown when the available evidence is not helpful to
make any conclusion. Finally, a node is classified as False

Positive when logs only indicate the behaviors of a benign
bot. In such cases, an explanation of why those bots were
initially flagged is also provided. In some cases, we were
also able to identify the organizations behind the detected
crawling activities. Nevertheless, we do not disclose any details
regarding this to prevent targeted attacks from the botmasters.

First, we conduct an analysis to identify the best threshold
values for the parameters t and nmin in our frequency-based
detection mechanisms, i.e., SA1-BurstTrap and ZA1-BurstTrap,
for both botnets. These threshold values are important to mini-
mize the false positives that may occur due to bots behind NAT
and proxy-like devices. Then, we evaluate the performance of
the detection mechanisms described in Section III-C and III-D.
Finally, we highlight the common characteristics exhibited by
the crawlers that were detected by our detection mechanisms.

C. Results

We first investigated on the best threshold values for the
frequency-based detection mechanisms. For that, we conducted
an analysis of the various combination of parameters of t and
nmin. Specifically, we varied the sliding window interval, i.e.,
60, 120, . . . , 2400 seconds, and repeated the experiments with
different number of minimum messages required to trigger a
detection, i.e., 10, 20, . . . , 100 requests, for Sality. Due to space
constraints, the results of the complete analysis is summarized
in this paper. Our analysis indicated that Sality’s BT performs
best with the parameters t = 120 and nmin = 30. The analysis
was also repeated in a similar manner for ZeroAccess, and
the results indicated that the best parameters are t = 60 and
nmin = 40. We speculate that the higher number of messages
required for ZeroAccess in comparison to Sality can be due to
the short MM-cycle interval of this botnet, i.e., 256 seconds.

Next, we evaluate the performance of all detection mech-
anisms in both botnets within the measurement period. The
overall results are summarized and presented in Table II
according to the respective misbehavior classes (cf. Section
III-B).

Defiance Abuse Avoidance
SD1 SD2 ZD1 SA1 ZA1 ZA2

Detected IPs 4,212 3 88 11 188 108
After Sanitization 966 - - - - -
Highly Possible 4 3 7 9 116 35

Possible - - 81 1 72 73
Unknown 962 - - - - -

False Positives 3,246 - - 1 - -

TABLE II. PERFORMANCE OF THE BoobyTrap MECHANISMS

For the class of Defiance, two BTs were set up for Sality
(SD1 and SD2) and one for ZeroAccess (ZD1). The SD2-
BaitTrap for Sality was least often triggered by crawlers.
However, this particular trap is also the most obvious indicator
for a crawler as benign bots in Sality would simply ignore
entries that are already known and responsive, i.e., a benign
bot would ignore the entry of the BT’s secondary port as
long as the entry with primary port is still responsive. The
SD1-IgnoreTrap was triggered by 4, 212 IPs throughout the
week, which seems abnormally high compared to other traps.
Detailed analysis of the results indicates that many of the
flagged IPs are behind ISPs that use multiple NAT IPs or load
balancing configurations. Since each request in Sality is sent
from a new port (cf. Section II-A), NAT devices assume that a
new flow or connection is being established and may decide to



route the packet using a different proxy or NAT IP as a load
balancing technique. As such, our BT node recorded Hello
messages from a different IP than the one received for the
NLReq , thus triggering the trap. We looked into these cases
and sanitized them by correlating a Sality-specific identifier.
As a result, we identified 77% of the detected IPs to be false
positives. Out of the remaining 966 IPs, only four IPs exhibited
strong indication as crawlers. The remaining 962 IPs could not
be reliably classified as their identifiers were set to Sality’s
default identifier. Hence, they were classified as Unknown.

The ZD1-NonComplianceTrap was triggered by 88 IPs.
Seven of those IPs, which were detected on the first day,
consistently responded to us with a retL message containing a
fixed flag, i.e., flag = 0. These IPs are particularly interesting
because they responded with exactly 65 messages before they
stopped to contact our BT sensor. We suspect that these
are crawlers that exhibit a blacklisting mechanism to avoid
crawling or contacting rogue nodes, i.e., other sensors. We
verified that those IPs kept contacting another instance of our
sensor node after our BT sensor was (presumably) blacklisted.
The remaining IPs responded with a flag value set to either 0 or
1 up to a maximum of five replies. As we did not observe such
behavior from the malware variants we reverse-engineered, we
have no explanation for this other than this could be a crawler
behavior.

Our evaluation on the BTs within the class of Abuse was
conducted based on the frequency of received NL request
messages for both botnets. The parameters of the BTs were
set according to our previous parameter study: Sality (t = 120,
nmin = 30) and ZeroAccess (t = 60, nmin = 40). Evaluation
results indicated 11 flagged IPs by the SA1-BurstTrap. Out
of the 11, nine IPs were classified as Highly Possible. A daily
analysis of this particular BT as presented in Figure 2 indicates
that an average of four crawlers is successfully identified every
day. Meanwhile, false positives were caused by many bots
behind a single shared IP coincidentally contacting our BT
node around the same time.
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Fig. 2. Daily analysis of the SA1-BurstTrap

The ZA1-BurstTrap flagged a total of 188 IP addresses
throughout the measurement period. After manual inspection,
we were able to classify 116 IPs as strongly exhibiting crawler-
like behavior. However, the remaining IPs were classified as
Possible. These IPs exhibited similar behavior to benign bots
that lack responsive neighbors in their NL during their initial

bootstrapping phase. This speculation could especially be true
considering that a large portion of the ZeroAccess botnet was
sinkholed in 2013 [9]. As such, bots that experience a lack of
neighbors could have requested NLs with a higher frequency.

The ZA2-IgnoreTrap, as an avoidance trap, within the
class of Avoidance attempts to identify crawlers that are
refusing to respond to the crafted requests sent in the ZD1-
NonComplianceTrap. Our evaluation of this BT indicates 108
IPs in our ZeroAccess dataset that never responded to any of
our request messages. In more details, 35 IPs were classified
as Highly Possible crawlers because the BT node recorded
abnormally high number of received getL requests, i.e., be-
tween 10 and 14, 800, but without any replies for any of our
crafted request messages. Meanwhile, 73 IPs were classified as
Possible crawlers. These IPs seemed to be shared among many
bots, i.e., identified by distinct botnet-specific identifiers, but
originate only from selected network prefixes. An alternative
hypothesis for this observation can be explained if there is
any packet-level filtering mechanism deployed within those
networks that drops all inbound ZeroAccess’ requests or
replies. Such a scenario could result in the BT node observing
the behavior of bots refusing to respond.

Finally, we analyzed the various crawlers that were de-
tected and attempted to find the common characteristics ex-
hibited by them. Our observations indicate that some of the
crawlers are using blacklisting mechanisms to improve the
quality of their crawl data, i.e., ignore rogue nodes. In addition,
some crawlers also seemed to perform sanity-checking on the
results obtained from bots. Meanwhile, detection mechanisms
within the class of Defiance detected a smaller fraction of
crawlers than those within the class of Abuse. Hence, it seems
that there are crawlers that follow the implementation of the
protocols very closely in the botnets. Upon analyzing crawlers
detected via the frequency-based mechanism, we noticed that
only a minority of crawlers were observed to crawl the botnets
continuously, i.e., 24x7. Nevertheless, some of these crawlers
communicated aggressively with our BT node with a high
frequency, i.e., in average 15 requests per minute in Sality.

Some crawlers were also observed to utilize identical
botnet-specific identifiers and port numbers across different
instances in a given botnet. This observation may indicate iden-
tical crawler implementations deployed as redundant crawlers
or to obtain additional vantage points for crawling. Some of
the crawlers also use a dedicated port to process incoming
NL replies. This can improve the crawling efficiency as it
allows the processing thread to be independent of the thread
that sends the requests. Moreover, we also noticed that by
performing WHOIS queries on the detected IPs, only a few of
the responses disclose information about the organization or
individual that is behind the crawling activities. In fact, some
crawlers have been seen sharing IP addresses with benign bots,
i.e., behind NAT devices. In addition, IPs of some of these
crawlers were also constantly changing due to dynamic IP
address reallocation by ISPs. Such scenarios will make it more
difficult to detect crawlers via any frequency-based detection
mechanisms. Finally, based on the crawlers identified in this
paper, we could conclude that existing crawlers do not seem to
aid the botnets in any manner. Even in cases where neighbors
are returned, these were either other sensors or simply invalid
entries.



V. RELATED WORK

In this section, we first summarize related work on botnet
crawlers, followed by proposals on detecting botnet crawlers
and existing botnet anti-monitoring countermeasures. Finally,
we discuss existing techniques used to eliminate bias in
monitoring data resulting from activities of other researchers.

Botnet crawlers aim at the enumeration of all bots in
a botnet as well as on retrieving a graph that reflects the
neighborhood relationships of bots [7]. Crawlers usually start
with a seed peer and iteratively request neighbor lists from all
discovered bots and terminate when there are no more new bots
to be discovered. The crawlers are usually implemented based
on graph traversal techniques such as Breadth-First Search
(BFS) [5], [11] and Depth-First Search (DFS) [3]. Since P2P
botnets exhibit high churn dynamics [12], crawlers need to
be very fast and efficient to produce high-quality data. In
addition, to ensure the completeness of the data, the crawlers
need to conduct multiple consecutive crawls on the botnet and
aggregate the respective information [14].

This observable crawler behavior, i.e., aggressively request-
ing neighbor lists, can be easily distinguished from regular
bots. Hence, many botnets nowadays utilize techniques to
avoid or slow down crawling. For instance, the P2P Zeus
botnet implements an anti-crawling mechanism that blacklists
suspected crawlers [11]. The bots blacklist any IP address that
aggressively tries to contact them, i.e., more than six messages
within a sliding window of one minute.

More recently, Andriesse et al. discussed the detection of
crawlers in the P2P Zeus and Sality botnets by focusing on
identifying anomalies in the implementation of the crawlers
[1]. One of their techniques utilizes some sensor nodes to
correlate their gained information on which nodes contacted
them and in which frequency, which allows them to disclose
crawlers. However, the authors admit that their method is
not applicable to the Sality botnet because it would require
hundreds of sensor nodes to have a chance to identify a crawler.
In contrast, we present techniques to detect such crawlers in
Sality and ZeroAccess in an autonomous manner which do
not presume collaborating sensor nodes or heavy computing
resources. Instead, single bots or sensors can identify crawlers
independent from each other and with local knowledge only.

VI. CONCLUSION

In this work, we discuss the need for more advanced
botnet monitoring mechanisms in anticipation of even more
sophisticated botnets in the future. For that, we introduce
autonomous detection mechanisms for crawlers in P2P botnets
that we call BoobyTraps. We demonstrated that we can easily
detect current crawlers by exploiting botnet-specific protocols.
During our one week measurement period, we managed to
identify close to 10 IPs in the Sality and around 120 IPs in the
ZeroAccess botnet that are highly possible crawlers. From our
analysis, we also concluded that a frequency-based detection
mechanism seems to perform best in distinguishing crawlers
from benign bots.

Furthermore, we also presented a brief overview of the
various characteristics observed on the detected crawlers. Par-
ticularly, we found that most crawlers exhibit common charac-
teristics especially regarding aggressively requesting NLs from

bots. On the lessons learned from observing these characteris-
tics, we propose that future crawlers need to follow the botnet
protocols closely, even though this may limit their crawling
frequency. Finally, to evade frequency-based detection mech-
anisms and to still obtain accurate snapshots, we suggest
that crawling activities should be carried out in a distributed
manner, i.e., by using multiple IPs from different ISPs. In
addition, researchers should also ensure that the used IPs do
not reveal the identity of the organization behind the crawling
activities, e.g., via publicly available online databases like the
WHOIS services. For future work, we aim on investigating
the impact on the performance of crawlers in trying to evade
our BT mechanisms. This investigation would allow us to
evaluate how well protocol-abiding crawlers can perform in
the presence of advanced anti-crawling mechanisms like BT.
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