
Fernando Lyardet · Erwin Aitenbichler · Gerhard Austaller · Jussi
Kangasharju · Max Mühlhäuser

Lessons Learned in Smart Environments Engineering

Received: 20.06.2007 / Accepted: 14.07.2007

Abstract During the last few years we have developed
different smart environments and artifacts by creating
devices or extending existing ones to make them smart.
In this paper we will show some of the projects developed
at the Telekooperation Group. Throughout those exam-
ples we show how we have been developing ubiquitous
computing aplications by empowering users with new
interactions means and extending devices and services
to make them smart. We also provide an overview of a
middleware and software tools that implement different
abstractions required to building a vision were ubiqui-
tous applicacions can be developed in a more efficient
and scalable way. Finally, we summarize our experience
building smart environments with both top-down and
botton-up approaches, presenting the different issues we
encountered with the hardware, the software design and
development, and the user interaction.

Keywords Smart Products · Ubiquitous Computing ·
Ambient Intelligence

1 Introduction

During the last 5 years we have developed different ubiq-
uitous computing scenarios and smart environments pro-
totypes. Throughout this process we have gathered sev-
eral lessons. In particular, when designing and imple-

Fernando Lyardet, Erwin Aitenbichler, Gerhard Austaller,
Max Mühlhäuser
Telecooperation Group
Darmstadt University of Tecnology
Tel.: +49 6151 16-4267
Fax: +49 6151 16-3052
E-mail: {fernando, erwin, gerhard, jussi, max}
@tk.informatik.tu-darmstadt.de

Jussi Kangasharju
Department of Computer Science
University of Helsinki
E-mail: jakangas@cs.helsinki.fi

Fernando Lyardet
also at SAP Research CEC Darmstadt

menting the ’smartness’ functionality into new or exist-
ing objects rather than the development of the physical
device, as for the latter well defined processes and meth-
ods already exist.

Building different systems has been very useful to
gain an insight of many of the design concerns, and the
complexity involved in their integration. With every de-
velopment we have been shaping the approach of creat-
ing smart environments by extending devices and ser-
vices to make them smart, and transforming them into
more powerful and scalable buiding blocks for reifying
’ambient intelligence’ functionality.

Another important factor are the users, who are the
focus of these applications. Supporting users have been
also a subject of our research, in particular how do we
develop means to integrate them more seamlessly and ef-
fectively with the surrounding technology using different
modalities. With this view in mind, we have developed
the Talking Assistant, that we present in the following
section.

2 Augmenting Users and Objects

2.1 The Talking Assistant

The Talking Assistant [2] is an audio-based device in-
tended as a general purpose personal device for ubiqui-
tous computing environments. It provides a well-defined
minimal functionality which permits very small form fac-
tors, allowing the user to carry the device always with
her. Audio devices do not need large displays to offer use-
ful interaction possibilities, and through advanced man-
ufacturing techniques, could be reduced to ear-plug size
in a few years.

The Talking Assistant is a Pocket PC based system
(figure 1) that offers two basic functionalities: Firstly,
it integrates a compass to determine the current head
orientation of the user. This information is shared with
other devices, like the Context Server, via the Mundo-
Core framework. Secondly, it provides a speech recogni-

325



Fig. 1 The Talking Assistant

tion and synthesis engine, so users can interact with the
system via voice.

2.2 Augmenting Devices and Services: Building Smart
Products

The notorious absence of large scale smart environments
is strongly influenced by the complexity and effort re-
quired to build them. Existing examples such as the of-
fice [1,6] or home [4,12,20] have been carefully designed
top-down by hand at drawing boards, but this approach
is fairly limited:

1. In real life there are too many scenarios to be modeled
one by one

2. The scenarios, people and technology change over
time

Therefore, future ambient intelligent infrastructures
must be able to configure themselves from the avail-
able, purposeful objects [8] creating small worlds, ”where
all kinds of smart devices are continuously working to
make inhabitants’ lives more comfortable” [5]. The no-
tion of smarter objects has been also explored in busi-
ness scenarios for tracking [10, 17], with enhanced sens-
ing and perception to autonomously monitor the phys-
ical integrity of goods or to avoid dangerous physical
proximity [7]. or to avoid dangerous physical proxim-
ity [18]. Together with the increasing ability to embed
computing power, also did the capability to network with
their surrounding and peers, with ad-hoc interactions
with P2P techniques to gather and disseminate informa-
tion [11, 18]. However, many of these artifacts are based
on the ECA (event, condition, action) principle [21]. This
first generation of smarter objects, even with increas-
ing embedding complexities are still far from becoming
everyday objects people use outside industrial environ-
ments, in their homes and offices. Such environments
poses new challenges as they are usually managed by
people with little or no training, and ”these networks of
products are often deployed incrementally, one product at
a time” [13]. A new generation of artifacts called ”smart

products” is defined by real-world objects, devices or
software services bundled with knowledge about them-
selves and their capabilities, enabling new ways of inter-
acting with humans and the environment autonomously.
These properties make Smart Products not only intelli-
gible to users, but also smart to interpret user’s actions
and adapt accordingly. By smart we denote the ability of
an object to adapt and combine its behavior according to
the situation in which it operates that is the set of possi-
ble things that are happening and conditions that exist
at a particular time and place. We have identified a set
of properties we consider are cardinal to Smart products:

– Self Explanatory. It refers to the notion that the ar-
tifact’s operation (be it software or a physical device)
must be discoverable without extensive training, from
the information provided by the machine itself. It is
then self-explanatory ”. . . to the extent someone look-
ing at the artifact is able to reconstruct the design-
ers intentions regarding its use” [19]. In computer-
enriched artifacts, information can be embedded so
that they can explain themselves more like humans
do.

– Self Organizing. They provide the ability to com-
bine with other federated smart products to provide
meaningful, value added functionality. That is, the
”spontaneous formation of well organized structures,
patterns, or behaviors, from random initial conditions”
[9].

– Self Sustainable. Smart products should be able to
work in a self-supported (with ad-hoc connectivity at
most) or infrastructure mode (connected to a local
network).

– Extensible. An important part of a Smart Prod-
uct’s functionality requires some kind of communi-
cation capability. Communications allow the SP to
be extended and supported locally or by third-party
subscriptions.

2.3 A Smart Product Example: The Smart Coffee
Machine

The Smart Coffee Machine [3] is a normal off-the-shelf
coffee machine from Saeco. When used out of the box,
the user can choose between three kinds of coffee namely
espresso, small coffee, and large coffee. There is a cof-
fee bean container and a water tank attached to the
machine. If either is empty, a small display on the ma-
chine prompts to refill them. The display also prompts
to empty the coffee grounds container if it is full.

Our modifications allow us to control all the buttons
remotely and determine the state of the machine (Fig-
ure 2). With this state information and additional RFID
readers, we can detect user actions and automatically
start processes or proceed in a workflow.

The hardware of the enhanced system consists of the
coffee machine, an RFID readers to identify cups, one

326



Fig. 2 Hardware components added to the coffee machine

reader for reading the digital keys, and a PC running the
control software. The roles of the individual components
are as follows.

Coffee Machine: Because the machine does not come
with a data interface, we modified the front panel circuit
board and attached our own microcontroller to it. This
allows us to detect keypresses, simulate keypresses, check
if the water tank is empty and read the pump control
signal. The latter indicates that the machine is actually
dispensing fluid and gives a very accurate measure how
much fluid has run through the pump. The machine com-
municates with the rest of the system via Bluetooth.

RFID reader: The antenna of this reader is at-
tached to the bottom of the coffee machine’s cup holder
surface. It is positioned such that the reader is able to
identify cups as soon as they are placed below the coffee
dispensing unit. The RFID tags are glued to the bot-
tom of the cups. This allows the system to start brewing
coffee as soon as a cup is put down.

Key reader: Our reader for the digital keys consists
of a SimonsVoss Smart Relais, a microcontroller, and
a USB interface. Like the electronic locks in our com-
puter science building, the relais can be triggered with
the digital keys, which are given to all employees and
students. Every user owns a key, and there is a one-to-
one relationship between users and keys, which makes
these keys highly suitable for identification purposes. In
addition, the keys can already serve as simple interaction
devices. Because users are required to activate them ex-
plicitly by pressing a button, the reception of a key ID
can be directly used to trigger actions.

PC: The PC hosts most of the services and is hid-
den in a cupboard. It gives users voice feedback via the
speakers. Users can view their favorite webpages on the
monitor. The monitor, keyboard, and mouse are optional
and not required to use the core functions of the system.

2.4 The TK Showroom

The combined showroom and meeting room at the Tele-
cooperation Group is equipped with several wall dis-
plays, data projectors, tracking systems, smart power

plugs, and an audio system. A number of computers are
used to drive the displays and host application services.
The showroom provides the smart environment in which
smart artifacts like the Talking Assistant or the Smart
Coffee Machine live in. The Talking Assistant relies on
tracking systems in the infrastructure for its location
awareness capabilities and the Smart Coffee Machine can
benefit from nearby interaction devices. We will discuss
the development of smart environments applications in
the next section.

3 Lessons Learned in Software Development

Over the past few years we have implemented over 40 ap-
plications for smart environments. We have managed to
quite successfully solve the networking and distribution
issues with our communication middleware MundoCore.
To support the development of smart environment ap-
plications, we have created a set of common services and
development tools.

3.1 Networking Issues

In an environment where networks will be formed spon-
taneously, hosts must be able to configure themselves
automatically and adapt to changing conditions. Fur-
thermore, they must be able to operate in isolation and
cannot rely on an infrastructure to be present. From the
available networking technologies only a few qualify for
spontaneous networking. Related networking issues in-
clude the following.

Bluetooth is a PAN technology. Bluetooth was
designed as a technology for cable replacement in Per-
sonal Area Networks. Because it only supports eight ac-
tive nodes in a piconet and its slow and power consuming
inquiry process, Bluetooth is not good at dynamically
adding or removing nodes.

WLAN IP configurations are vastly different.
Network properties like IP network class, whether access
points permit point-to-point communication between wire-
less peers, whether access points permit multicast com-
munication, and by which authentication and VPN tech-
nology the Internet can be accessed vary vastly between
organizations.

Personal firewalls block discovery packets. Per-
sonal firewalls virtually inhibit all application-level dis-
covery mechanisms based on IP broadcast or IP multi-
cast communication. Users must first manually configure
their firewalls accordingly.

We have put considerable effort into the implemen-
tation of efficient mechanisms for spontaneous network-
ing in our communication middleware MundoCore [3].
MundoCore plays an important role as an integration
platform. It enables to interface with a large variety of
devices, operating systems and vendor-specific APIs in
different programming languages.

327



3.2 Processing of Context Information

Similar to distributed systems platforms, it has been
found useful to integrate certain new service classes as
common services into ubicomp platforms. While common
services in distributed systems platforms are naming,
synchronization, caching, object brokering, etc., common
services in ubicomp platforms are likely to be location
tracking, context processing, task and workflow process-
ing, etc. We will describe some of the services and tools
we found useful during the development of multiple dif-
ferent applications in the following.

The Mundo Context Server is responsible for trans-
forming the readings gathered from sensors into infor-
mation that is meaningful to applications. The function
of the Context Server is threefold:

– Interpreting the heterogeneous data received from
sensors and transforming this data into a common
representation.

– Maintaining a geometric world model of the smart
environment.

– Storing histories of sensor data and generated high-
level events and supporting queries and subscriptions
in those histories.

To derive higher-level context information, the Con-
text Server uses a detailed geometric world model. This
model is the virtual counterpart of the real environment
which the application targets. It is basically a detailed
geometric model of the walls and objects used for visual-
ization purposes. The world model is augmented with a
metadata layer that describes objects and regions of in-
terest in space. By means of the world model, the context
server is now able to infer higher-level context informa-
tion from location systems that provide 3D coordinates
and orientations, like in which room a user is, which ob-
jects are near the user or which object the user is cur-
rently looking at. Applications can now send queries or
subscribe to the events generated by the Context Server.
Thus, the event notifications received by applications are
already abstracted from the underlying sensors and de-
scribe changes in higher-level context.

3.3 Modeling and Monitoring

WorldView is a tool for creating a spatial model of the
smart space (Figure 3). In the main window, the appli-
cation provides an overview of the available resources.
Since many applications are location-sensitive, World-
View provides an easy way to define the regions of inter-
est that should trigger spatial events.

WorldView can be used to inspect the running system
by visualizing the events from certain event sources, like
tracking systems. If a tag is physically moved around, the
position of the corresponding symbol in the map view is
updated in real-time. To test applications, WorldView
can be used to simulate certain tracking systems. In this

case, the user can move around the symbols on the map
and WorldView generates the same kind of events the
tracking system would.

Fig. 3 WorldView map and logic editors

3.4 Application Prototyping

A lot of research in ubiquitous computing is conducted
around possible application scenarios that can be put to
daily use. Many of these scenarios are quite simple and
straightforward to implement. However, many of these
applications never come to life, because the whole pro-
cess from development to deployment is still very com-
plex.

This led us to the idea to create a set of tools to
make this development process as easy and fast as pos-
sible. An aim was to enable a wide variety of people
with some basic technical background, but not neces-
sarily with knowledge of a programming language, to
create and alter applications. Simple-structured applica-
tions can be directly developed with the provided tools,
while more complex applications can be prototyped.

The SYstem for Easy Context Aware Application De-
velopment (SYECAAD) [16] facilitates the rapid devel-
opment of context-aware applications. Applications are
built using a graphic-oriented block model. The basic
building blocks of applications are sensors, operations,
and actors. Operations perform logic or arithmetic oper-
ations, implement dictionaries, render HTML pages, etc.
Actors can control devices in the smart environment or
send feedback to users.

4 Lessons From the Users

We performed different user studies when testing the
newly enriched devices. These user studies were performed

328



as a between subjects study, and they consisted mainly in
performance tests designed to gather information through
direct observation followed by a debriefing questionnaires.
We found a number of aspects that were recurrent in our
studies:

Check your assumptions: Understanding the per-
formance impact of adding technology into everyday ar-
tifacts challenges our perception. A common assumption
with the automation of manual procedures is raw speed:
the overall time to accomplish would be lower with the
new technology instead of the manual operation. In the
case of the smart Saeco, our studies consistently showed
that the automated process was slower than the man-
ual operation (time-to-accomplish performance criteria)
but the automated behavior was still preferred. On the
other hand, the self-explanatory capabilities of the device
allowed a dramatic improvement (task-completion rate
performance criteria) over following the printed instruc-
tions in the user’s manual. In the first case, the longer
execution times were due to the latencies required by
the technology in order to trap, communicate over Blue-
tooth, process the commands, and trigger back the re-
quired operations on the coffee machine. The question of
why the automated procedure was still preferred in spite
its lower speed led to the next topic.

Attention is a Valuable Resource: Different au-
thors have already identified the user’s attention as a
scarce resource in desktop applications, and that obser-
vation is also true in the ubiquitous computing space:
users consistently preferred the automated assistance in
spite of proving to be a slightly slower procedure. After
interviewing the users to collect their subjective impres-
sions, we found out that smart functionality was pre-
ferred because it requires lower or no user attention to
trigger and control the device’s operation.

Multimodality Challenges: The ability to com-
municate through different channels adds a number of
problems previously unknown in desktop applications.
We have studied the design of multimodal and voice
user interfaces in the context of eyes-free, hands free sce-
narios such as blue collar workers [14], and consumer
devices [15], but the pervasive integration of voice in-
terfaces is a strong commitment to capturing the user’s
attention: while it is possible to avoid watching a display,
it is impossible to stop listening. Visual feedback can be
personal while aural feedback is always collective. These
examples show some of the concerns involved when inte-
grating new modalities: consistency, orientation, cogni-
tive overload and privacy.

Ultimately, we must reflect on how the integration
of modalities such as voice contribute to a more flexible
interaction or rather they become a new kind of infor-
mative pollution. An interesting example appears in the
case of the Talking Assistant, where the user is wearing
a special headset working usually in noisy industrial en-
vironments and is able to navigate through menues and
documents using voice activated commands. In this case,

the feedback is only heard by the user, who can control
the application and navigate through documents using
single word commands, and the user’s voice impact is
mitigated by the environmental noise.

The ability of being able to interact both ways in
certain modalities such as audio is important but still
possible only in a few cases. Our experience with the
current state of the art technology tells us that the use
of voice interaction must be also be balanced against a
highly asymmetric interaction, and the resulting danger
of cross multimodality confusion. Most of current voice
user interface technologies allow a minimal interaction
with the user: while the device can provide spoken feed-
back and explanations through Text To Speech (TTS),
often users cannot ask back, acknowledge or cancel an
operation, and they must resort to other input modali-
ties.

Ability to Recognize, Remember and Adapt:
In the examples we presented, we have applied different
mechanisms to recognize objects and identify the users.
Some of these technologies can be used for both purposes,
but as we have also seen in the preceding examples, they
can be different as well. Sometimes, technology adoption
is defined by what technologies are already deployed and
adopted by the users, for instance in the case of using the
smart keys as a user identification mechanism instead of
rfid.

At least one of these technologies is required for any
smart product, for instance enriching cups with rfid tags
allows recognizing the object type and its properties.
However, not always both technologies need to be present:
we can allow the association of one entity with other
(e.g., a cup with a person) to infer the information we
require to retrieve or ”remember” the knowledge of pre-
vious experiences (e.g., user preferences), and apply this
knowledge to adapt the behavior, that is, reacting in a
”smart” way.

The decision of what kinds of associations we intro-
duce has practical implications: adding an extra identi-
fication mechanism adds knowledge and certainty, but it
also means adding an extra step to the user interaction
process. We tested in our smart coffee machine scenario
two different approaches:

1. Enforcing user identity: every time users had to use
their electronic key to trigger the automatic features

2. Temporal associations: users identify themselves to
temporarily associate themselves with an object, or
renew a previous association. After a period of time,
associations would disappear.

The decision proved to be task based: temporal as-
sociations were more appropiate for the most frequent
tasks, with periodical identification enforcement. In the
coffee machine example, users would need to identify
themselves with their smart keys to associate a cup with
them, but afterwards, only the cup was necessary for the
system to identify the user preferences.

329



5 Conclusions

The examples we presented in this paper show that a
succesful design of smart environments involves the clear
definition of the usage scenarios, actors, objects and ac-
tivities as a first rationale to determine what functional-
ity and adaptation schemes will be required. We found
this first analysis critical to avoid costly pitfalls, regard-
less of whether the development will follow a top-down,
or bottom-up approach based on the gradual addition
of smart objects. These approaches do define different
assumptions on the specialization of the functionality,
scalability and ease of deployment. We believe both ap-
proaches will co-exist, but for different scenarios.

Finally, future work should seek the development of
design and development artifacts to better identify what
are the specific design and implementation concerns, and
isolate the different technological components, a task
that today is still very much unstructured.

References

1. M. Addlesee, R. Curwen, S. Hodges, J. Newman,
P. Steggles, and A. Hopper A. Ward. Implementing a sen-
tient computing system. In IEEE Computer, volume 34,
pages 50–56. IEEE, August 2001.

2. Erwin Aitenbichler, Jussi Kangasharju, and Max
Mühlhäuser. Talking Assistant: A Smart Digital Iden-
tity for Ubiquitous Computing. In Advances in Pervasive
Computing, pages 279–284. Austrian Computer Society
(OCG), Austrian Computer Society (OCG), 2004.

3. Erwin Aitenbichler, Jussi Kangasharju, and Max
Mühlhäuser. MundoCore: A Light-weight In-
frastructure for Pervasive Computing. Perva-
sive and Mobile Computing, pages 332–361, 2007.
doi:10.1016/j.pmcj.2007.04.002.

4. B. Brumitt, B. Meyers, J. Krumm, A. Kern, , and
S. Shafer. Easyliving: Technologies for intelligent envi-
ronments. In Proc. of 2nd International Symposium on
Handheld and Ubiquitous Computing (HUC 2000), pages
12–27. Springer, September 2000.

5. Diane Cook and Sajal Das. Smart Environments: Tech-
nology, Protocols and Applications (Wiley Series on Par-
allel and Distributed Computing). Wiley-Interscience,
2004.

6. J.R. Cooperstock, S. S. Fels, W. Buxton, and K. C.
Smith. Reactive environments: Throwing away your key-
board and mouse. In Comm of the ACM, volume 40,
pages 50–56. IEEE, September 1997.

7. C. Decker, M. Beigl, A. Krohn, P. Robinson, and
U. Kubach. eseal - a system for enhanced electronic asser-
tion of authenticity and integrity. In Proc. of Pervasive
2004, pages 18–32. Springer, April 2004.

8. J.L. Encarnacao and T. Kirste. Ambient Intelligence: To-
wards Smart Appliance En-sembles, volume LNCS 3379,
pages 261–270. Springer, 2005.

9. J. Rocha Jr. et al. X-peer: A middleware for peer-to-
peer applications. In Proceedings of 1st Brazilian Wksp.
Peer-to-Peer, 2005.

10. A. Fano and A. Gershman. The future of business ser-
vices in the age of ubiquitous computing. In Comm of
the ACM, volume 45, pages 83–87. ACM Press, Decem-
ber 2002.

11. Andreas Heinamann and Max Mühlhäuser. Spontaneous
Collaboration in Mobile Peer-to-Peer Networks, volume
LNCS 3485, chapter 25, pages 419–433. Springer, 2005.

12. C. Kidd, R. Orr, G. Abowd, C. Atkeson, I. Essa, B. Mac-
Intyre, E. Mynatt, T. Starner, and W. Newstetter. The
aware home: A living laboratory for ubiquitous com-
puting research. In Proc. of the Second International
Workshop on Cooperative Buildings (CoBuild99), Octo-
ber 1999.

13. F. Reynolds. The ubiquitous web, upnp and smart
homes. Pervasive Computing Group, Nokia Research
Center, Cambridge, 2004.

14. Dirk Schnelle, Erwin Aitenbichler, Jussi Kangasharju,
and Max Mühlhäuser. Talking assistant - car
repair shop demo. http://elara.tk.informatik.tu-
darmstadt.de/publications/2004/taCarRepairShop.pdf,
2004.

15. Dirk Schnelle and Fernando Lyardet. Consumer Voice
User Interface Design Patterns. In Proceedings of 12th
European Conference on Pattern Languages of Programs
(EuroPlop 2007), 2007. to appear.

16. Jean Schütz. SYECAAD: Ein System zur einfachen
Erzeugung kontextsensitiver Applikationen. Master’s
thesis, Technische Universität Darmstadt, 2005.

17. F. Siegemund and C. Flrkemeier. Interaction in per-
vasive computing settings using bluetooth-enabled ac-
tive tags and passive rfid technology together with mo-
bile phones. In Proc. IEEE PerCom 2003, pages 50–57.
Springer, March 2003.

18. Martin Strohbach, Hans-Werner Gellersen, Gerd Ko-
rtuem, and Christian Kray. Cooperative artefacts: As-
sessing real world situations with embedded technology.
In Ubicomp, pages 250–267, 2004.

19. Lucy A. Suchman. Human-Machine Reconfigurations:
Plans and Situated Actions. Cambridge University Press,
New York, NY, USA, 2006.

20. E. M. Tapia, S. Intille, and K. Larson. Activity recogni-
tion in the home using simple and ubiquitous sensors. In
Proc. of Pervasive 2004, pages 158 – 175. Springer, April
2004.

21. Tsutomu Terada, Masahiko Tsukamoto, Keisuke
Hayakawa, Tomoki Yoshihisa, Yasue Kishino, Atsushi
Kashitani, and Shojiro Nishio. Ubiquitous chip: A
rule-based i/o control device for ubiquitous computing.
In Pervasive, pages 238–253, 2004.

330


