
Twitterize: Anonymous Micro-Blogging
Jörg Daubert∗ and Leon Böck∗ and Panayotis Kikiras† and Max Mühlhäuser∗ and Mathias Fischer∗

∗ CASED / Telecooperation Lab
Technische Universität Darmstadt

{daubert, tim.grube, max, mathias.fischer}@tk.informatik.tu-darmstadt.de
† AGT International

pkikiras@agtinternational.com

Abstract—Privacy, in particular anonymity, is required to
increase the acceptance of users for the Internet of Things (IoT).
The IoT is built upon sensors that encompass us in each step we
take. Hence, they can collect sensitive, privacy-invading data that
can be used to establish complete user profiles. For this reason,
sensing in the IoT needs to provide means of privacy-protection.
In this paper, we discuss an approach for sharing smartphone
sensor data and user-generated content in a privacy-protecting
manner via the Micro-blogging platform (MbP) Twitter. For that,
we discuss privacy needs of users in Micro-blogging platforms
(MbPs) and that privacy should not only ensure confidentiality
but also anonymity. We discuss related work and systems along
these requirements and conclude that anonymity is hardly con-
sidered. We introduce our construction Twitterize that integrates
well with the MbP Twitter and allows users and sensors to share
information normally as well as privacy-preserving with a single
application. Twitterize establishes overlay networks for hashtags
over Twitters’ social network and neither depends on additional
infrastructure nor peer-to-peer communication.

I. INTRODUCTION

Micro-blogging is one of the most popular social Internet
applications. For instance, the well known Micro-blogging
platform (MbP) Twitter claimed more than 200 million active
users during a single month with more than 400 million
messages published every day1.

With micro-blogging, users publish messages to groups:
either publicly to all users, or privately to a predefined group.
To structure public messages, MbPs offer means to organize
messages along topics. For example, Twitter established the
notion of hashtags as topics annotation. Users follow such
hashtags, may even forward messages further, and therefore
become part of the global community [1].

Besides standard micro-blogging, platforms like Twitter can
also disseminate sensor data from smartphones to a large
audience. However, data dissemination via micro-blogging
brings up privacy challenges. In standard micro-blogging it is
easy to identify users, so that the risk of defacement and even
political repression is high. This risk becomes evident when
considering that MbPs played a major role during the Arab
spring movement in Egypt[2]. Moreover, even dissidents are
known to use MbPs2. When using micro-blogging platforms
to disseminate smartphone sensor data, the identity of the
devices and thus also the user identity needs to be concealed.

1https://blog.twitter.com/2013/celebrating-twitter7
2http://www.technologyreview.com/news/422735/an-app-for-dissidents/

Otherwise, sensor data from different sources can be connected
to establish complete user profiles that would result in the end
of all privacy. Thus, appropriate privacy protection is required
when using MbPs either for user generated content or for
disseminating sensor data.

In this paper, we propose the privacy-preserving micro-
blogging application Twitterize for Android that does not
only protect confidentiality but anonymity as well. Twitterize
integrates normal Twitter operation with privacy-preserving
Twitter. For that, we transfer our mechanism for anonymous
overlay construction [3] to the application domain of MbPs.
Twitterize establishes a P2P overlay via tweets and therefore
does not depend on other servers or communication channels.

The remainder of this paper is structured as follows: first, we
discuss requirements to MbPs, related work, and applications
in Section II. Then, we introduce Twitterize as a solution in
Section III, followed by an evaluation in Section IV. Finally,
we wrap up our contribution in Section V and point out future
work.

II. REQUIREMENTS AND RELATED WORK

In this section, we introduce requirements to privacy-
preserving micro-blooging and analyze related work in the
area of privacy with respect to these requirements and the
applicability to MbPs.

A. Requirements

We use the following privacy requirements to evaluate
privacy-preserving MbPs.

• Anonymity: Participants should remain anonymous
within sufficiently large anonymity sets [4]. In particular,
their group memberships should be concealed within an
anonymity set. This requirement should protect against
global adversaries, e.g., the MbP itself, as well as inside
adversaries, e.g., when devices and secrets get compro-
mised.

• Confidentiality: Micro-blog entries, like tweets, should
be kept and transmitted secretly between sender and
receivers.

In addition to these non-functional requirements, a privacy-
preserving MbP should also comply to the functional require-
ments of a normal MbP and impose low additional overhead.
We focus on the following requirements.

https://blog.twitter.com/2013/celebrating-twitter7
http://www.technologyreview.com/news/422735/an-app-for-dissidents/


• Understandable privacy: The system should indicate
the privacy-protection applied to each message. The user
should be able to chose the desired level of privacy-
protection.

• Easy group management: The process of adding and
removing participants should be integrated in the system,
quick to perform, and easy to understand. Every partici-
pant should be able to easily determine his current group
memberships.

• Low overhead: The privacy-protection should cause only
mild overhead. That is signaling overhead, memory con-
sumption, and battery drain on mobile devices.

B. Related Work

First, we summarize related anonymization systems. Sec-
ond, we discuss privacy-preserving micro-blogging applica-
tions. Third, we discuss privacy-preserving group communi-
cation applications.

a) Anonymization Protocols: Such protocols hide
senders and receivers of messages within a set of participants,
the anonymity set [4]. This can be achieved by relaying
messages through other nodes to remove the link between
message and sender/receiver. MIX networks, onion routing,
and Crowds are the most common protocols to implement
this scheme.

MIX networks were first introduced in 1981 [5]. In a MIX
network, a sender forwards a message through several MIXes
to the sender. Each MIX collects multiple messages, and
forwards them in shuffled order to the next MIX. Therefore,
each MIX conceals the link between incoming and outgoing
messages, rendering senders unlinkable to receivers.

Onion routing, first published in 1998, extends MIX net-
works and is today predominantly know from The Onion
Router (Tor) [6]. In the Tor system, the sender creates a virtual
circuit consisting of several Tor nodes. The sender adds layers
of encryption around the message, each layer only decryptable
by a specific Tor node and only revealing the address of the
next node in the circuit.

In Crowds [7], introduced at the same time as onion
routing, participants organize themselves in groups, so called
crowds. The sender forwards the message to another crowd
member. Each crowd member may forward to yet another
crowd member or to the receiver. Thus, onion routing and
Crowds also remove the link between sender and receiver of
a message.

These systems offer particular benefits while suffering from
drawbacks. MIX networks provide good message decoupling
but require high latency or cover traffic (overhead). Onion
routing offers low latency but requires to establish circuits first,
in particular for both-sided privacy-protection. Crowds does
not depend on circuits but rather forwards probabilistically.
Members have to maintain crowd sets. However, attacks on
all protocols are possible: [8], [9].

Off-the-Record Messaging (OTR) describes another proto-
col for privacy-preserving communication [10]. Compared to
the previous three protocols, OTR provides confidentiality with

plausible deniability rather than anonymity. Goldberg et al.
extend OTR with group communication: mpOTR [11]. They
claim that mpOTR can be combined with an anonymization
service to ensure confidentiality, deniability, and anonymity.
However, the three anonymization service presented here only
support point-2-point communication and thus do not fit the
MbP scenario.

Senftleben et al.[12] propose a micro-blogging service based
upon Crowds and mobility of users. Senders transfer messages
to other crowd members using ad-hoc P2P communication if
possible. Crowd members spread the message further or store
the message at a central server in case participant mobility
is insufficient to bridge crowds. However, a full protocol
specification and evaluation is still missing.

In summary, the presented anonymization schemes do not
fit the MbP scenario or impose overhead by presuming a P2P
overlay approach.

b) Privacy-preserving Twitter Applications: Secure Twit-
ter applications haven been proposed in recent years: Hum-
mingbird [13] mimics Twitter functionality, encrypts Tweets,
provides access control, and allows users to follow hash-
tag via oblivious matching and therefore conceals interests.
Twister [14] mimics a pseudonymous Twitter. Senders reg-
ister a pseudonym, their nickname which is bound to a
key pair via the Bitcoin [15] protocol. Pseudonyms enforce
non-repudiation and cause all actions from the sender to be
linkable. Senders publish signed tweets via the BitTorrent [16]
protocol. Receivers anonymously follow senders and hashtags.
Twitsper [17], [18] uses a second central server besides
Twitter to realize private group communication. Senders notify
receivers via direct Twitter messages, the receivers then obtain
further information from the Twitsper server. Other approaches
[19] focus on the anonymization of tweets and metadata
using techniques based upon k-anonymity [20]. However, such
approaches are only applicable for bulk data release, i.e., after
tweets have already been posted.

In summary, these applications focus on confidentiality and
provide at best pseudonymity, but no anonymity.

c) Privacy-preserving Group Communication: Privacy-
preserving Instant Messaging (IM) applications mimic behav-
ior similar to MbP, i.e., send messages to groups as compared
to followers and hashtags.

With Threema [21], users communicate confidentially but
with a phone number as identity. Threema stores encrypted
and signed messages on a central server. Group membership
is established via a list of at most 20 participants. Threema
establishes authenticity via an out-of-band verification. TextSe-
cure from Open WhisperSystems [22] uses a modified version
of OTR for confidential messaging. TextSecure uses a central
server to distribute messages and a phone number as optional
identity, too. FireChat [23] uses ad-hoc communication to ex-
change messages. FireChat only distinguishes between global
and a locality-based group and thus misses the flexibility of
self-defined groups and hashtags.

All of the presented products suffer from one or more
drawbacks: dependence on additional central servers, lack of



Fig. 1. Twitter social graph with follow relation and tweet flow. The bold
arrows represent the overlay for a hashtag on top of the social graph underlay.

scalable group communication, and lack of build-in anonymity
protection besides confidentiality.

III. TWITTERIZE

As the related work does not provide anonymity in mi-
croblogging scenarios, we designed Twitterize to overcome
this shortcoming. Twitterize builds upon the MbP Twitter and
encrypt tweets to achieve confidentiality, forwards and mixes
tweets via several participants to achieve anonymity of sender
and receivers, and is implemented as an Android application
to meet the usability requirement.

For anonymity, we establish overlays networks that connect
sender and receivers, but do not require ad-hoc or P2P commu-
nication. Twitterize creates one such overlay per hashtag. Each
overlay contains additional nodes called forwarders that are
not interested in the hashtag, i.e., they are neither sender nor
receiver for that hashtag, to increase the size of the anonymity
set.

We use the Twitter social graph as underlay network.
That is, Twitter users represent nodes and followers represent
neighbors with directed edges for the flow of tweets. Each
Android application takes the role of a node, maintains the
local overlay state per hashtag, and exchanges messages via
tweets and re-tweets. Therefore, Twitterize can maintain nor-
mal Twitter functionality while also providing the option to
tweet anonymously and confidentially at the same time using
solely tweets.

Figure 1 depicts an example of a Twitter social graph.
Users follow each other (dotted arrows) and thus receive status
update tweets (solid arrows) from the users they follow. Twit-
terize exploits this social graph as an underlay and constructs
hashtag overlays on top. In this example, the two forwarders in
the center forward tweets from sender to receiver. Therefore,
sender and receiver remain decoupled and no single forwarder
can link sender and receiver together.

In Section III-A, we describe the theory of the overlay
construction. We transfer this theory in Section III-B to Twitter
and Android.

A. Anonymous Overlay Construction

We use the paradigm publish-subscribe (pub-sub) with
advertisements [24] to construct overlay networks for hashtags
following our prior work [3]. We briefly summarize this work

and adapt it to a tweet-based underlay in the following para-
graphs key generation and secrets, flooding of advertisements,
and hashtag discovery and subscriptions.

Summarizing this approach, users first exchange secrets via
an out of band channel. We implement two variations of
this out of band channel (cf. Section III-B). Then, senders
(publishers) flood the the social graph (underlay) with routing
information about hashtags. Upon receiving these routing
information, receivers (subscribers) subscribe to hashtags and
thereby establish fast and efficient routing paths (overlay).
Afterwards, publishers can send tweets anonymously and con-
fidentially to subscribers. Throughout the following paragraphs
we describe what secrets we use, how they protect confiden-
tiality, how knowledge about hashtags is flooded through the
underlay, how users subscribe to hashtags, and how tweets are
distributed in the system.

a) Key generation and Secrets: The first publisher cre-
ating a new confidential hashtag has to create key material.
We use a symmetric key Kx for hashtag x to encrypt and
decrypt information. An optional asymmetric key pair can be
used to sign information and thus also ensures integrity and
authenticity. The publisher uses Kx to encrypt and hash the
hashtag and thus creates as pseudonym: tx := H({x}Kx

).
Now the publisher can annotate all tweets that relate to x with
tx without revealing x itself. The tuple (x,Kx) constitutes the
secret and has to be shared with subscribers of hashtag x.

b) Flooding of Advertisements: To distribute knowledge
about a hashtag x, the publisher uses our private flooding
mechanism [3]. For that, the publisher creates an advertisement
tweet (tx, h) and floods the underlay with it. Here, h is an el-
ement of a hash chain: h1 = nonce, h2 = H(h1), . . . , hn+1 =
H(hn), where H() denotes a hash function. The hash chain
serves two purposes. First, it acts as a transaction pseudonym
for flooding processes as each publisher selects its own nonce.
Second, each node increments the hash chain element by
one when forwarding and thus enables nodes to determine
the shortest path and avoid routing loops. As a result of the
flooding process, every node establishes a table containing
tipples (tx, h, v) where v is the last sender or forwarder of
the advertisement tweet. This flooding scheme treats hashtags
confidential and protects anonymity as neither global identi-
fiers nor pseudonym are required.

Figure 2 illustrates this process with Twitter. A publisher
p tweets the advertisement as a status update to her timeline
(step 1). As forwarder f follows p, the advertisement tweet
will automatically show up on f ’s timeline (step 2). Forwarder
f the forwards this advertisement by incrementing the hash
element and posting another status update to her timeline (step
3). Finally, subscriber s receives the advertisement tweets as
s follows f .

c) Hashtag Discovery and Subscription: Each participant
w in possession of the secret (x,Kx) compares elements
(ty, h, v) from its triple table with tx and subscribes in case
ty and tx are equal. To do so, w sends a direct tweet (ty)
to the sender of the advertisement tweet v. A direct tweet in
Twitter starts with @userv and will only be visible to userv .



Fig. 2. Advertisement tweets propagate in Twitter over timelines to followers.
If an advertisement is new for a follower, the follower increments the hash
element and posts it to her own timeline. Hence, the follower becomes a
forwarder.

Fig. 3. Subscription tweets propagate via direct tweets in Twitter. users have
to main a routing table as state outside of Twitter for the Twitterize protocol.

Node v remembers this message as tuple (ty, w) in a second
table and forwards the subscription towards the origin of the
advertisement.

Figure 3 illustrates this process from right to left. The
subscriber s sends a subscription via a direct tweet to f (step
1). Forwarder f then updates its internal state, the routing
table, and forwards the subscription to p (step 2). Finally
publisher p receives the subscription and updates her internal
state as well. As we use direct tweets here, the social graph
may remain directed.

d) Summary: The flooding of advertisements in com-
bination with hashtag discovery and subscriptions forms an
overlay network for each hashtag. The two routing tables at
each node describe the flow of tweets (notifications). The key
material ensures confidentiality of these tweets. Furthermore,
the mechanisms introduced so far do not require global iden-
tifiers. Thus every participant is limited to its local view on
the message flow an does not learn origin and destinations,
similar to MIX networks (cf. Section II).

B. Proof of Concept

We implemented Twitterize as a proof of concept (POC)
using Android. We first provide an overview of the majors
components. Next, we elaborate on the functionality using
a top-down approach: we start with the User Interface (UI),
cover how overlay management functions get translated into
tweets (serialization into tweets), and finally demonstrate the
whole notification flow. The Twitterize architecture is com-
prised of the following components: Twitter services, data
storage, UI, cryptography and encoding.

Twitter services are based on the twitter4j library [25] and
provide functionality to log in, retrieve user information and
send or receive tweets. The services periodically obtain new
tweets from Twitter. Data storage consists of an Android
SQLite DB and shared preferences. This Database (DB) stores
the tweets, subscriptions, cryptographic keys and notifications
sent by the application itself. The shared preferences maintain
the runtime state of the Twitterize protocol and application.

The UI displays this data in form of timelines: A home
timeline and a new Twitterize timeline for each hashtag.
Additionally, users can customize the behavior of Twitterize
via shared preferences. These offer options such as automatic
synchronization, the amount and frequency of tweets to pull
during synchronization, and the time frame for protocol re-
covery, e.g., re-processing of old tweets in case data has been
lost.

a) Tweet Serialization: To protect confidentiality, Twit-
terize encrypts messages sent via Twitter service with AES
128bit in Cypher Block Chaining mode. For that, Twitterize
maintains the key Kx for every hashtag x.

Twitter services are bound by Twitter restrictions, e.g., no
binary data and only 140 characters per message. Thus, the
ciphertext of notifications, the tx of an advertisement and the
hash chain element h must be transformed into a non-binary
representation. Furthermore, data structures like JSON are
too verbose to structure messages. Therefore we use Base64
encoding that converts ciphertexts and hashes into UTF-8
representable strings. We use rarely utilized UTF-8 symbols
to structure messages and distinguish message types.

b) Notification Flow: The combined information flow,
covering application components, serialization into Tweets,
and Twitter itself is depicted in Figure 4. For this example,
we assume that publisher p created hashtag x by generating
key material Kx. The publisher then invited subscribers by
sharing Kx via QR code and NFC. Furthermore, p announced
x via an advertisement, and thus Twitterize constructed an
overlay for x.

In Figure 4, p creates a notification N for hashtag x en-
crypted with Kx and tweets it to her home timeline. Forwarder
f is a follower of p and therefore obtains N from her home
timeline via the PullTweetTask class. The task identifies N as
a Notification and checks if it has been seen and forwarded
before. It then passes N on to the SendTweetTask class which
re-tweets N to f ’s home timeline and marks it as forwarded
in the DB. As f does not subscribe to x, f does not gain any
knowledge about N besides length, immediate predecessor,
and successors.

Subscriber s pulls N from her home timeline. As s sub-
scribed to x, her PullTweetTask decrypts N with the key Kx

obtained from p and store it inside the DB. The plaintext of
N is now shown in both the home timeline and the timeline
of hashtag x. Figure 5 shows some screenshots of the final
POC.

This POC allows users to read and tweet regular as well
as privacy-preserving tweets. Users can quickly create new
hashtags and invite new users via near field communication



Fig. 4. Information flow of a notification. A publisher creates an encrypted tweet (top left) and posts it as status update to his home timeline (bottom). The
forwarder (top center) follows the publisher and thus received this tweet, processes it, and posts it to its timeline (bottom center) as status update so that the
subscriber (top right) will receive it.

Fig. 5. Screenshots of Twitterize. Left: home timeline with normal tweets and
one privacy-preserving tweet at the bottom. Middle: minimal user interface to
create new hashtags. All protocol functions remain in the background. Right:
One out-of-band channel to share secrets for a hashtag.

(NFC) as well as QR codes. Hence, only few seconds of
physical closeness of participants are necessary. Mandatory
user confirmation prevent accidental and malicious joining of
hashtags. Moreover, QR codes can be used via a secure out-
of-band channels to add new users as well.

IV. EVALUATION

In this section, we discuss how the Twitterize meets the
requirements, outline implications of our platforms decisions,
and analyze the overhead of Twitterize.

c) Requirement Discussion: The symmetric cryptogra-
phy used in Twitterize is assumed to be secure. Thus, Twitter-
ize protects confidentiality if tweets in transmission as well.

Finally, we constructed the security of Twitterize to be
easy to understand for the user. For that, every tweet carries
iconographic and textual representations of the applied privacy
protections. Furthermore, we designed the key management in
an easy and familiar manner by leveraging NFC gestures and
QR codes.

d) Empirical Usage: To analyze the overhead (cf. Sec-
tion II-A) that Twitterize imposes over normal smartphone
operations, we measured CPU load and battery drain. For
that, we used a LG Nexus 5 smartphone running Android
OS version 4.4.3 with the Trepn Profiler from Qualcomm3

and compared measurements for Twitterize with measurements
for Twitter version 5.13.1 as reference application. We set the
Twitterize pull rate to r = 1/60 (once per minute), measured
over 15 minutes in wake state with no user interaction, and
obtained 8850 samples each.

Twitter caused a mean normalized CPU load of 7.739%
(standard deviation of 3.906%) whereas Twitterize caused a
load of 8.454% (standard deviation of 5.142%). Moreover,
Twitter caused a mean power consumption of 2, 117mW
(standard deviation of 571mW ) compared to Twitterize with
2, 216mW (standard deviation of 622mW ). Thus, Twitterize
caused only moderate overhead compared with Twitter.

3https://developer.qualcomm.com/mobile-development/
increase-app-performance/trepn-profiler

https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler
https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler


●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0

500

1000

1500

2000

2500

0 25 50 75 100
Hashtags

N
ot

ifi
ca

tio
ns

 / 
ha

sh
ta

g

● 10% overlay
50% overlay
Max overlay

Notifications over hashtags depending overlay sizes

Fig. 6. Tweets per hastag over the number of hashtags in the system. The
system degrades quickly with increasing overlay sizes, e.g., max overlay
size (blue squares). However, with an overlay membership rate of 10% (red
circles), the system can still handle one tweet per hour for 1, 000 hashtags.

The advertisement flooding process introduced in Sec-
tion III-A requires even non-interested users to main some
state information as forwarders and potential forwarders. How-
ever, our implementation requires to store 48Byte per hashtag.
Hence, every participant can manage more than 21, 000 hash-
tags per megabyte of storage space.

The routing through a hashtag overlay causes delay of
messages compared to normal Twitter usage. According to
[26], several samples of the Twitter social graph indicated
a degree of separation of up to 4.71 users in 2012. Using
this parameter for the Twitter underlay and pulling once per
minute, we can calculate the average delay davg = 4.71/(2×r)
for a tweet with davg = 142 seconds (dmax = 300 seconds
upper boundary) until delivery to all receivers.

In summary, Twitterize causes only mild processing over-
head and negligible storage on Android systems. However,
secure tweets get delayed by several minutes.

e) Twitter and Android Limitations: We share some of
the shortcomings we encountered during prototype construc-
tion with both the Android platform and the Twitter API.
Twitter applies several usage constraints. General limitations
are 2, 400 tweets/day, 250 direct messages/day, access to only
the 3, 200 latest tweets, users can only follow 2, 000 other
users, and the API allows only 15 requests per 15 minute
window.

The limit of 250 direct messages per day is insufficient
to run the whole protocol. This leaves us with the 2, 400
tweets/day which have to be shared between regular and
Twitterize tweets. Given that notifications will be re-tweeted
this greatly limits the frequency of Twitterize tweets or the
amount of participants. Figure 6 visualizes this limitation.

The retrieval limit of 3, 200 tweets allows us to limit the
processing of message, e.g., one day into the past, since we
also cannot re-tweet more than 2, 400 notifications at once.
This period is still sufficient to compensate for short offline
periods.

For our protocol to work properly, we need the participants
to be always online. This drawback is mitigated by the use
of an Android application compared to a web page in a
browser. Our application runs continuously in the background
of an Android device connected to the Internet, whereas
browser windows might be closed at some point. Our empirical
evaluation showed that the battery drain of Twitterize is
sufficiently low. The use of Twitter as underlay still offers
potential redundant connections to propagate notifications in
the presence of node failure.

V. CONCLUSION

In this paper, we motivate the need for anonymity besides
confidentiality to protect privacy in Micro-blogging platforms
(MbPs). Our discussion of related work and systems reveals
that most approaches do not ensure anonymity or depend upon
an additional infrastructure. Hence, we adapt our construction
method for privacy-preserving P2P overlay networks on top of
MbPs. We evaluate this construction via an Android POC im-
plementation Twitterize for the Twitter MbP. This POC neither
depends on additional infrastructure nor P2P communication
but tweets. Furthermore, the POC integrates normal tweets
with privacy-preserving tweets.

Future work will address overlay robustness as future re-
quirements, for instance quick detection and recovery from
failed nodes, as well as increase efficiency of the tweet
serialization.

ACKNOWLEDGMENTS

Authors would like to thank Daniel Joaquin Gonzalez
Nothnagel, Patrick Müller, Tobias Hamann, and Jonas Mantel
for supporting the POC implementation.

REFERENCES

[1] A. Java, X. Song, T. Finin, and B. L. Tseng, “Why we twitter:
An analysis of a microblogging community,” in WebKDD/SNA-KDD,
ser. Lecture Notes in Computer Science, H. Zhang, M. Spiliopoulou,
B. Mobasher, C. L. Giles, A. McCallum, O. Nasraoui, J. Srivastava, and
J. Yen, Eds., vol. 5439. Springer, 2007, pp. 118–138.

[2] G. Lotan, E. Graeff, M. Ananny, D. Gaffney, I. Pearce et al., “The
arab spring— the revolutions were tweeted: Information flows during
the 2011 tunisian and egyptian revolutions,” International Journal of
Communication, vol. 5, p. 31, 2011.

[3] J. Daubert, M. Fischer, S. Schiffner, and M. Mühlhäuser, “Distributed
and anonymous publish-subscribe,” in Network and System Security, ser.
Lecture Notes in Computer Science, J. Lopez, X. Huang, and R. Sandhu,
Eds. Springer Berlin Heidelberg, 2013, vol. 7873, pp. 685–691.

[4] A. Pfitzmann and M. Köhntopp, “Anonymity, unobservability, and
pseudonymity - a proposal for terminology,” in Workshop on Design
Issues in Anonymity and Unobservability, ser. Lecture Notes in Com-
puter Science, H. Federrath, Ed., vol. 2009. Springer, 2000, pp. 1–9.

[5] D. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–88, 1981.

[6] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The second-
generation onion router,” in USENIX Security Symposium. USENIX,
2004, pp. 303–320.

[7] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transac-
tions,” ACM Trans. Inf. Syst. Secur., vol. 1, no. 1, pp. 66–92, 1998.

[8] M. Wright, M. Adler, B. N. Levine, and C. Shields, “An analysis of the
degradation of anonymous protocols,” in NDSS. The Internet Society,
2002.



[9] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. F. Syverson, “Users
get routed: traffic correlation on tor by realistic adversaries,” in ACM
Conference on Computer and Communications Security, A.-R. Sadeghi,
V. D. Gligor, and M. Yung, Eds. ACM, 2013, pp. 337–348.

[10] N. Borisov, I. Goldberg, and E. A. Brewer, “Off-the-record communi-
cation, or, why not to use pgp,” in WPES, V. Atluri, P. F. Syverson, and
S. D. C. di Vimercati, Eds. ACM, 2004, pp. 77–84.

[11] I. Goldberg, B. Ustaoglu, M. V. Gundy, and H. Chen, “Multi-party off-
the-record messaging,” in ACM Conference on Computer and Communi-
cations Security, E. Al-Shaer, S. Jha, and A. D. Keromytis, Eds. ACM,
2009, pp. 358–368.

[12] M. Senftleben, M. Bucicoiu, E. Tews, F. Armknecht, S. Katzenbeisser,
and A.-R. Sadeghi, “Mop-2-mop – mobile private microblogging,” in
Financial Cryptography and Data Security, 2014.

[13] E. D. Cristofaro, C. Soriente, G. Tsudik, and A. Williams, “Tweeting
with hummingbird: Privacy in large-scale micro-blogging osns,” IEEE
Data Eng. Bull., vol. 35, no. 4, pp. 93–100, 2012.

[14] M. Freitas, “twister peer-to-peer microblogging,” sep 2014. [Online].
Available: http://twister.net.co

[15] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system
(whitepaper),” sep 2014. [Online]. Available: http://bitcoin.org/bitcoin.
pdf

[16] B. Cohen, “The bittorrent protocol specification,” sep 2014. [Online].
Available: http://www.bittorrent.org/beps/bep 0003.html

[17] I. Singh, M. Butkiewicz, H. V. Madhyastha, S. V. Krishnamurthy, and
S. Addepalli, “Twitsper: Tweeting privately,” IEEE Security & Privacy,
vol. 11, no. 3, pp. 46–50, 2013.

[18] I. Singh, M. Butkiewicz, H. Madhyastha, S. Krishnamurthy, and S. Ad-
depalli, “Enabling private conversations on twitter,” in ACSAC, R. H.
Zakon, Ed. ACM, 2012, pp. 409–418.

[19] A. Singh, D. Bansal, and S. Sofat, “An approach of privacy preserving
based publishing in twitter,” in SIN 2014. International World Wide
Web Conferences Steering Committee / ACM, 2014.

[20] L. Sweeney, “k-Anonymity: A model for protecting privacy,” Ieee
Security And Privacy, vol. 10, no. 5, pp. 1–14, 2002.

[21] Threema, “Threema messenger,” sep 2014. [Online]. Available:
https://threema.ch/

[22] M. Marlinspike, R. Orbits, M. Corallo, C. C. Moran, F. Jacobs, and
T. Reinhard, “Open whisper systems textsecure,” sep 2014. [Online].
Available: https://whispersystems.org/

[23] M. Benoliel, S. Shalunov, and G. Hazel, “Opengarden firechat,” sep
2014. [Online]. Available: http://opengarden.com

[24] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many
faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2, pp. 114–
131, 2003.

[25] Y. Yamamoto, “Twitter4j java library for the twitter api,” sep 2014.
[Online]. Available: http://twitter4j.org/en/index.html

[26] M. Watanabe and T. Suzumura, “How social network is evolving?: a pre-
liminary study on billion-scale twitter network,” in WWW (Companion
Volume), L. Carr, A. H. F. Laender, B. F. Lóscio, I. King, M. Fontoura,
D. Vrandecic, L. Aroyo, J. P. M. de Oliveira, F. Lima, and E. Wilde,
Eds. International World Wide Web Conferences Steering Committee
/ ACM, 2013, pp. 531–534.

http://twister.net.co
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://www.bittorrent.org/beps/bep_0003.html
https://threema.ch/
https://whispersystems.org/
http://opengarden.com
http://twitter4j.org/en/index.html

	Introduction
	Requirements and Related Work
	Requirements
	Related Work

	Twitterize
	Anonymous Overlay Construction
	Proof of Concept

	Evaluation
	Conclusion
	References

