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Abstract—Intrusion Detection Systems (IDSs) are an important
defense tool against the sophisticated and ever-growing network
attacks. With this in mind, the research community has been
immersed in the field of IDSs over the past years more than
before. Still, assessing and comparing performance between
different systems and algorithms remains one of the biggest
challenges in this research area. IDSs need to be evaluated and
compared against high quality datasets; nevertheless, the existing
ones have become outdated or lack many essential requirements.
We present the Intrusion Detection Dataset Toolkit (ID2T), an
approach for creating out-of-the-box labeled datasets that contain
user defined attacks. In this paper, we discuss the essential
requirements needed to create synthetic, yet realistic, datasets
with user defined attacks. We also present typical problems found
in synthetic datasets and propose a software architecture for
building tools that can cope with the most typical problems.
A publicly available prototype, is implemented and evaluated.
The evaluation comprises a performance analysis and a quality
assessment of the generated datasets. We show that our tool
can handle large amounts of network traffic and that it can
generate synthetic datasets without the problems or shortcomings
we identified in other datasets.

I. INTRODUCTION

The continuous increase of cyber-attacks has made IDSs
a mandatory line of defense for protecting critical networks
[18]. Research in all areas of intrusion detection has flourished
over the years [4]. However, many researchers struggle to
find valid and commonly accepted datasets for evaluating
their proposals [8]. This difficulty has not been tackled yet.
There is no commonly accepted dataset that can be used
for the purpose of evaluating intrusion detection algorithms
or systems. In many cases, researchers still rely on outdated
datasets to compare their results. The DARPA 1999 dataset
[9] is such an example. This dataset is not only outdated but
it also contains many inherent problems [10]. Moreover, many
systems are evaluated with non-publicly available datasets;
making the reproducibility of the results impossible.

In this paper, we propose ID2T, a toolkit capable of produc-
ing labeled datasets intended for the evaluation of IDSs. This
paper builds on top of the preliminary work presented in [5]
and provides a deeper analysis of the proposed architecture
along with evaluations based on a prototype. ID2T takes
as input network packet captures (of arbitrary sizes) and

generates a labeled dataset. Our target is to build tools to
assist researchers in the process of generating datasets so
as to compare different IDSs in a reproducible manner. In
addition, ID2T also aims at creating flexible datasets tailored to
different scenarios, e.g., corporate or backbone networks. We
are publishing the toolkit and its prototype publicly [13] so that
the research community can benefit from it. The performance
of the prototype is evaluated by showing how it can handle
large amounts of network traffic. Furthermore, we examine
specific properties of generated datasets to assess whether they
contain undesired artifacts or anomalies.

The remainder of this paper is structured as follows. In
Section II we propose a number of requirements for building
high quality datasets and dataset generation tools. We discuss
in Section III the related work in the area of intrusion detection
dataset generation. Section IV provides an extensive discussion
of our system, giving insights into the architecture and the
attack generation process. Section V presents evaluation results
for the ID2T prototype in relation to its performance as well
as its ability to generate quality datasets. We further discuss
the outcome of the evaluation along with existing limitations
and further steps in Section VI. Lastly, Section VII concludes
this paper and provides insights into our intended future work.

II. REQUIREMENTS

In this section, we propose functional and non-functional
requirements for tools that generate synthetic network datasets
as well as for synthetic datasets that aim at becoming useful
for the evaluation of IDSs. It is not expected that all tools
and datasets comply with these requirements. Furthermore.
many requirements can also be partially fulfilled. The more
requirements fulfilled the more general the tools and datasets
become. We also touch on the meaning and importance
of quality, a non-functional requirement, in the context of
automatically creating synthetic datasets.

A. Functional Requirements

Functional requirements relate to certain practical properties
of a dataset generation tool, its output dataset or both.

• Payload Availability: The packets’ payload needs to be
available. This information is required by intrusion de-
tection algorithms that wish to detect intrusions that are978-1-5090-0223-8/16/$31.00 c© 2016 IEEE



only present in the payload, e.g., exploits, SQL injections,
phishing attacks, etc. Note that in many cases the payload
is removed from datasets due to privacy reasons.

• Attack Diversity: The dataset or tool must contain a
broad range of attacks that span from traditional network
attacks, e.g., port-scans, to novel malicious activity, e.g.,
a sophisticated malware.

• Labeled Data: The generated dataset needs to contain
labels identifying malicious traffic.

• Ground Truth: Besides labels, the dataset should be able
to guarantee the absence of attacks or anomalies in the
labeled as non-malicious data. Usually this can only be
achieved via a synthetic dataset generation.

B. Non-Functional Requirements

Non-functional requirements refer to the properties of the
generated dataset, the toolkit that influences the quality of the
produced dataset, or both.

• Availability and Reproducibility: The generated datasets
must be publicly available and, hence, allow the repro-
ducibility of experiments.

• Scalability: The toolkit for generating datasets should
be able to handle as input and output network files of
arbitrary size.

• Interoperability and Flexibility: The toolkit needs to pro-
vide the user with a method, e.g., templates or an API,
for creating new attacks or modifying existing ones.

• Quality: For creating synthetic datasets, the attack gen-
eration process is required to actively avoid introducing
undesired patterns, or artifacts, outside of the scope of
the desired attacks. We expand on this requirement in
what follows.

C. Dataset Quality

Many intrusion detection datasets have had problems with
the injection of inadvertent anomalies which are easy to rec-
ognize by pattern recognition techniques. We have identified
several of these which should be addressed whenever unrelated
network packet capture files are merged as one or when a
packet capture file is altered. The following list of defects, or
artifacts, is non-exhaustive and only reflects the main sources
of problems we found in our experiments and related work.

• TTL Value Distribution: Due to the different connectivity
characteristics of individual networks, the distribution of
TTL values varies. The distribution of TTL values must
be replicated to avoid creating easy avenues of detection
for learning algorithms.

• Packet Capture Time Record: Depending on many fac-
tors, such as the bandwidth and the number of connected
hosts, packets captured in a network are recorded with
different time characteristics. Bursty or constant packet
rates should be imitated as well as the distribution of
packet inter-arrival times.

• Packet Checksum: It is not sufficient to only modify
desired values in network packet capture files. It is crucial
to recompute checksums whenever appropriate.

• IP Address Distribution: Depending on the network,
IP addresses are usually concentrated between specific
address ranges. Injected or modified packets should use
IP addresses from the same regions of concentration.

• Network Link Reliability: Due to the nature of networks,
it is common to loose packets due to a saturated link
or exhausted resources. It is important to identify these
problems and replicate them when appropriate.

We further discuss the aforementioned requirements in the
evaluation section of the ID2T prototype (see Section V) and
in the discussion section (see Section VI).

III. RELATED WORK

In this section, we discuss the related work by first exam-
ining existing datasets and discussing other available tools for
creating datasets.

A. Datasets

A number of synthetic and non-synthetic datasets have been
published over the years with the purpose of being utilized for
the evaluation of intrusion detection algorithms and systems
[9], [7], [15], [8]. There are two major problems with the
majority of existing datasets. First, many of them have been
created over a decade ago and, thus, do not exhibit realistic
network traffic nor contain up to date cyber-attacks. Second,
as a result of their synthetic creation, many of these datasets
include undesired artifacts that can significantly reduce their
usability. The DARPA 1999 dataset [9] is an illustrative ex-
ample of both the aforementioned problems. Being generated
more than 15 years ago, it contains network traffic and attacks
that are antiquated. Moreover, a lot of criticism has been made
with regard to undesired artifacts during the generation of the
attacks [12]. For instance, Mahoney and Chan [10] discovered
inconsistencies in the Time To Live (TTL) values of malicious
and non-malicious traffic.

Other examples of datasets include [1], [6], [17] and [7].
None of these fulfill all the desired requirements (cf. Section
II). For instance, the MAWI dataset [7] consists of a very
large number of modern network captures but there is neither
a ground truth nor packet payloads.

B. Dynamic Creation of Datasets

Beyond single, static datasets, research has been conducted
in the area of dynamically generated datasets, e.g., [16],
[3]. Shiravi et al. [16] proposed a systematic approach for
generating datasets by making use of profiles. Even though
this work seems promising, the results are only available on-
demand. Moreover, the authors do not distribute their toolkit
but rather an output dataset.

The Flow-Level Anomaly Modeling Engine (FLAME) [3]
tool is the work that is the closest to ours. It works by taking
as an input serial streams of flows and injecting hand-crafted
network anomalies. As the name implies, this tool manipulates
network flows. While this is useful in many circumstances, it
also comes with a number of restrictions. First, datasets gen-
erated by FLAME cannot be utilized for evaluating intrusion



detection algorithms in an agnostic manner; rather, they are
limited to algorithms that make use of network flows. Lastly,
FLAME, due to only working with network flows, is limited
to the injection of attacks with flow footprints.

IV. ID2T
In this section, we first discuss the architecture of our toolkit

and, subsequently, give insights into the attack generation
modules of ID2T. In addition, we provide a brief description
of the Graphical User Interface (GUI) of our prototype.

A. Architecture
Figure 1 provides an overview of the system’s architecture.

With respect to the core part of the toolkit, there are four
internal modules that react to user input for creating labeled
datasets: the statistics, the packet splitter, the attack controller
and the merger.
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Fig. 1. ID2T Architecture

The statistics module is responsible for calculating statistics
required by the attack controller module so as to replicate the
quantitative and qualitative characteristics of the input. It is
also connected with the GUI, providing a statistical overview
of the input.

The packet splitter module is responsible for processing
large network files by splitting them into smaller chunks,
thus, allowing an efficient processing of network files. The
splitting process is achieved either by utilizing fixed time
intervals or fixed packet numbers. This module is envisioned to
support different network file formats, e.g., pcap and pnpcap.
It currently supports only the pcap file format.

Attacks are modeled utilizing a framework provided by the
attack controller module. As this is one of the core parts
of ID2T, we comprehensively discuss it in the following
subsection.

Lastly, the packet merging module utilizes the network
packets created by the attack controller and merges them with
the input file. This module also provides the user with the
flexibility of selecting between various generated attacks. After
the attacks of interest are specified, the merger combines them
with the input. During the merging process, all the packets are
chronologically sorted and stored as a single file. Additionally,
labels are exported.

B. Attack Generation

ID2T is able to generate attacks by utilizing two different
techniques, namely script-based attack generation and pcap
modification. The first technique aims at generating attacks
on-the-fly with python scripts. The second one modifies user
provided pcap files. This is particularly useful for replicating
existing malware or known exploits. We proceed to discuss
each technique in more detail.

1) Script-based Attack Generation: The main idea behind
script-based generation is that many cyber-attacks can be
modeled as a large number of packets with similar parameters
that utilize the same properties. For instance, in the case of
a Distributed Denial of Service (DDoS) attack, large number
of packets share almost the same parameters; only specific
fields change. It is easy to replicate random attackers by
selecting random IPs as attackers, all targeting one predefined
IP address. A multitude of attacks can be modeled in such a
way and are easily implemented in ID2T via scripts.

Implementing new attacks is a straightforward process; the
only precondition is to follow the class-template style of ID2T
and the toolkit will include the new attack automatically.
However, attacks that include several protocols and a large
amount of parameters – where these cannot be easily modeled
– should, instead, use the pcap modification technique as
explained in the following.

2) PCAP Modification: In contrast to the script-based at-
tack generation, pcap modification offers a technique suitable
when modeling more complex attacks. For example, this
may refer to attacks that make use of multiple protocols,
include specific payloads or both. The first requirement for
this injection technique is the availability of a pcap file that
contains traffic belonging to an attack. The user can either
acquire such files from publicly available databases (e.g., from
VirusTotal) or create his own manually. When such a pcap
file is available, the user can provide replacement parameters
(e.g., the preferred malicious IP addresses) that will be used
in newly injected attacks. Subsequently, ID2T makes use of
certain functions, provided by the Scapy [2] network packet
manipulation tool, to adjust parameters with respect to the user
input. The outcome of the overall procedure is a new pcap file
that includes the malicious traffic with specific fields replaced
by the values provided by the user. The merger module is
responsible for injecting the newly created file into a user
defined input.

C. ID2T Prototype

The prototype for ID2T has been implemented in Python.
The GUI, as depicted in Figure 2, is responsible for visualizing
all the necessary elements of ID2T.

In the current prototype version, the procedure for generat-
ing a dataset is a three step process. First, the user specifies
the input pcap file that is used as the basis (normal traffic)
of the dataset generation. The statistics module parses the
data, generates information with respect to the input and
computes various statistics (e.g., the TTL distribution) which
are utilized in subsequent steps. Second, the user can decide,



through the attack generator, which attacks to inject into the
original pcap file. When this is decided and the respective
parameters are given, the toolkit can generate a pcap file
with the chosen background traffic and the selected attacks.
Note that the system is making use of information gathered
from the first step to create realistic attacks. For instance,
the TTL distribution of the network is taken into account
so as to replicate it in the attack packets. The prototype
uses two strategies to label data. It can either create a text
file indicating where each attack has been inserted (with its
time and duration) or by tainting the MAC addresses of all
attack packets. MAC address tainting is the process of setting
specified bits of the MAC addresses to known values. It is
later possible to decide if a packet belongs to an attack by
comparing the bits of the MAC addresses to the taint. Finally,
ID2T will produce, as a final output, a labeled dataset in the
form of a pcap network file.

With regard to the attack generation, the prototype already
implements some common network attacks. In more details,
resource exhaustion attacks such as the Ping of Death (PoD),
a TCP-SYN Denial of Service (DoS) and a TCP-SYN DDoS
have been implemented with the script-based attack generation
technique. Similarly, a number of port-scan attacks are also
implemented. Additionally, the traffic generated by the Angler
malware and the Aurora exploit are available.

Fig. 2. GUI view of the ID2T prototype

V. EVALUATION

We evaluate the ID2T prototype in a twofold manner. We
begin examining the performance of the toolkit in terms of its
ability to handle network files of arbitrary size. Afterwards, we
evaluate the quality of the generated datasets by searching for
common mistakes and criticisms of other synthetically created
datasets, as mentioned in the related work. We further map
the requirements stated in Section II to the attributes of the
generated datasets.

A. Performance Evaluation

For an intrusion detection dataset toolkit to be practically
usable, it is important to efficiently handle large input files.
Figure 3, depicts the time required for the statistics module
to perform its functions with large network files. For this we

utilized real-word traffic files from the MAWI dataset [7]. As
one can notice, the toolkit is able to handle large datasets in
a reasonable window of time.
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Fig. 3. Performance of the statistics module for different dataset sizes

Likewise, Figure 4 shows the time required for generating
three different types of attacks with respect to the number of
packets injected. In particular, we examine the generation time
for the TCP-SYN DoS and DDoS attack as well as the classic
PoD attack. The results suggest that the prototype is able to
effectively perform the injection even when a large number of
packets are injected.
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Fig. 4. Attack generation time with respect to the number of generated packets

Table I shows four different experiments, each of them
conducted with different input datasets (as normal traffic)
and injected attacks. For the first three, a 2GB slice of the
MAWI dataset [7] was used, while the last (fourth) assessment
is based on 13.8GB from the same dataset. In the first
experiment, the 2GB background data is merged with 500, 000
TCP SYN packets and 1, 024 Port Scan packets. The second
assessment is similar to the first one but includes an additional
2, 724 packets generated by the Angler malware. The last
2GB merging evaluation uses the four captures similar to the
previous two scenarios but adds 6, 704 packets generated by
the Aurora exploit. Finally, for the 13.8GB input dataset, all
four previous attacks are merged and utilized. In all cases, the
timestamps of the attacks have been modified so that they fit
within the time of the input dataset. As a result of the merging
process, we observe a non-linear increase in the computation
time. The required time is, nonetheless, reasonable enough so
as to be able to use large network packet capture files.



Input Dataset
Size

TCP SYN
(packets)

Port Scan
(packets)

Exploit 1
(packets)

Exploit 2
(packets)

Total Time
(seconds)

2GB 500,000 1,024 - - 19.884
2GB 500,000 1,024 2,724 - 20.156
2GB 500,000 1,024 2,724 6,704 20.638

13.8GB 500,000 1,024 2,724 6,704 199.128
TABLE I

OVERALL MERGING PERFORMANCE OF ID2T FOR VARIOUS DATASETS AND ATTACKS

B. Avoiding Artifacts

It is highly important to take specific quality requirements
into account when synthetic attacks are injected into real
packet captures. In the following, we examine quality require-
ments and discuss how ID2T avoids adding undesired artifacts.

1) TTL Distribution: As discussed in Section III, it is im-
portant to take into consideration the packets’ TTL distribution
of a given network file before injecting attacks into it. We
compare the packets’ TTL distribution before and after attacks
are injected. Figure 5 depicts a TTL distribution comparison
of one arbitrary network packet capture file from the MAWI
dataset against the same file after having being injected with
multiple attacks. As one can observe, the statistic module
correctly derives the TTL distribution of the input file and,
thus, the toolkit was able to generate a dataset that closely
resembles the original distribution.
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Fig. 5. TTL distribution comparison of the Mawi dataset and ID2T

2) Consecutive Packets Time: In a real world network,
packets take different paths depending on the routing infor-
mation or the load of routing devices. Similarly, some packets
might be dropped or lost so that they never reach their final
destination.

We examine such network communication characteristics
and model the inter-arrival packet time. Ideally, the time
between consecutive packets (∆ time) should follow a burst
behavior in which large number of packets are sent and
received in a short time interval. There are usually, however,
distinct time clusters corresponding to delayed packets or
network congestion protocols doing what they can to alleviate
congestion, among other communication issues.

Figure 6 depicts the case of the ∆ time for 1000 consecutive
packets of a TCP-SYN DoS attack generated by ID2T. A
packet rate of 10 packets per second is used for injection.
This implies that the average time in between 10 packet
timestamps should be approximately one second. To model
realistic looking inter-arrival packet intervals, ID2T utilizes
various randomization functions which make use of time distri-
butions extracted by the statistics module. Similarly, Figure 7

Fig. 6. Modeling time between two consecutive packets with a 10 p/s rate

presents the same ∆ time for a DoS attack but with an increase
packet rate of 100 packets per second. In both experiments, the
results suggest that the packet time distribution emulates the
characteristics of real network data as the distribution follows
a burst behavior.

Fig. 7. Modeling time between two consecutive packets with a 100 p/s rate

3) Packet Head Checksum Calculation: The packet in-
tegrity of many protocols, e.g., IP and TCP, is guarded by the
usage of checksums. Checksum calculations are important in
the context of a synthetic dataset generator as inconsistencies
can introduce significant defects. For instance, such a case was
discovered by [11] with regard to the DARPA dataset. As a re-
sult of this defect, anomaly detectors were able to differentiate
between normal and malicious traffic by identifying checksum
inconsistencies.

To overcome such problems, checksum values are instantly
computed when attacks are injected into a network file. In
other situations, such as pcap capture modification, where
packet header information has to be forged according to
user-defined parameters, another approach is taken. As the
checksum is related to the packet’s header data, any alternation
of it will lead to changes in the respective checksum value.
Therefore, ID2T recalculates the checksums of every packet
that has been modified. We manually injected packets con-
taining incorrect IP and TCP checksums into pcap files with
external tools. Afterwards we processed these files with ID2T
and proceeded to further inject them with synthetic attacks.
The resulting output was thoroughly checked with Wireshark
[14]. No incorrect checksums for either the IP or the TCP



protocols where found.
4) IP selection and distribution: During the injection of

attacks, the selection of source IP addresses, their distribution
and randomization, are of high importance in order to create
realistic datasets. ID2T handles this by first modeling the user
input (i.e., a supplied pcap file) and then suggesting source
IP addresses as potential attack targets. In addition, the toolkit
offers the ability to add different weights of occurrences for
certain IP addresses. For instance, this might be utilized to
model attackers with different computational resources. Lastly,
the toolkit excludes certain IP addresses from the selection
process (e.g., an IP that starts with 192.168 must not be used
as the source IP of a DDoS attack).

VI. DISCUSSION

The performance and qualitative evaluation for the prototype
of ID2T is promising. The prototype is able to handle large
network files in a reasonable time. In addition, the examination
of various parameters suggests that the generated datasets
contain realistic properties. There are a multitude of challenges
that remain, however, in order to eliminate as many artifacts
as possible from synthetically injected attacks.

First, we argue that there is a need for novel metrics
to measure the quality of synthetically generated datasets.
For instance, such a metric could be formally defined as a
function that includes a weighted composition of all possible
parameters that may introduce undesired artifacts. Second,
a more in-depth investigation into the quality requirements,
beyond the ones already identified in this paper or in related
work, is needed in order to establish how resulting datasets
are affected.

Many functionalities of the ID2T prototype currently in-
clude steps that users have to manually perform (for instance,
using the results of the statistics analysis). We plan to better
interconnect and automate the process of selecting parameters
from the statistics collected during the static analysis of the
user packet capture files. Additionally, we intend to further
develop the attack controller module; focusing on producing
a more flexible method of creating custom and novel attacks.

VII. CONCLUSION

Due to the increasing sophistication of cyber-attacks, if
countermeasures are to be developed, research in the area
of IDSs is required. The availability of adequate datasets,
nonetheless, has always been a major weakness in this field.
The scientific community requires modern, publicly available,
datasets to be able to assess the novelty of old and new
IDSs. We present ID2T, a prototype toolkit for generating
datasets intended for the evaluation of intrusion detection
algorithms and systems. This publicly available toolkit can
inject synthetic, yet realistic, attacks into large network packet
capture files. Our toolkit outputs a labeled packet capture file
that avoids introducing artifacts or defects beyond the desired
attacks. The evaluation shows that ID2T can handle large
network files and that numerous artifacts that were identified
in related work have been avoided.

As future work we aim at further enriching ID2T with more
properties and features, e.g., more sophisticated attacks. At
the same time, we are still evaluating other sources of unde-
sired artifacts that are typically present in intrusion detection
datasets and how to avoid them. Furthermore, the limitations
and concerns identified in Section VI are being tackled and
the improvements to the toolkit will be made available as
development continues. Lastly, additional support for IPv6 is
envisioned.
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