
Experiences from Developing Educational Presentation Systems

Georg Turban

Technische Universität Darmstadt

Germany

turban@informatik.tu-darmstadt.de

Max Mühlhäuser

Technische Universität Darmstadt

Germany

max@informatik.tu-darmstadt.de

Abstract

This paper is a report about experiences and

observations during the development of educational

presentation systems for higher education. The paper

discusses workflows during a typical slide-centric

presentation. It presents different models that can be

hierarchically aligned and extended by temporal

information in order to reflect the workflows and to

structure the content presented during a lecture. While

structure and timing contribute to the high-level design

of presentation systems the paper also identifies

aspects that are relevant for mid- to low-level design

and implementation of components within presentation

systems. With respect to the comparison of related

work, four key aspects are discussed. Finally, we

present conclusions for the general design and

development of flexible presentations systems.

1. Introduction

Today, many different presentation systems are used

for education. The systems comprise very simple up to

more complex functionality and vary in their intention

and technical realization.

Some systems such as Windows Journal [1], e-chalk

[2] or TinyWB [3] focus on the development of content

from scratch during a lecture, while other systems such

as PowerPoint [1], Lecturnity [4] or Lectern II [5]

focus on the presentation of prepared lecture slides.

Systems such as Camtasia [6], TeleTeachingTool [7] or

Presenter [8] process desktop captures that can be

augmented. In addition, systems of the latter two

groups often introduce features to support creating and

annotating blank slides during a session, in order to

overcome the disadvantages and limitations of slide-

centric talks. This paper focuses on selected aspects of

such systems and on our experiences and observations

during the development of educational presentation

systems.

In a top-down manner, we analyze the typical

workflow in a slide-centric lecture and present

hierarchically aligned models that are capable of

representing the structure and temporal relationships

within a lecture in chapter 2. Chapter 3 focuses related

work in respect to highlighted aspects and their specific

implementation. Based on the observations and our

own experiences during the development of

educational presentation systems, design issues for the

discussed aspects are also proposed in chapter 3. The

paper closes with chapter 4, a summary of the

presented work.

2. Representing a Typical Lecture Scenario

This chapter focuses on presentation-centric lectures

and discusses a typical lecture scenario in order to

derive a suitable model-based representation for a

presentation system that is capable to reflect workflows

in respect to processed content.

2.1. A Typical Lecture Scenario

In presentation-centric lectures, the lecturer mediates

content using presentations. During a lecture series,

several presentation files are created for this purpose

and presented to the audience. A presentation consists

of different slides that are often augmented using

digital ink. Afterwards, the modified presentations are

usually distributed and reused by the students.

2.2. Workflows during a Lecture

The sequence diagram in figure 1 shows the timelines

of different types of models (dashed lines) and the

period of their modification during a typical lecture that

relies on slide-based presentations.

A so-called lecture session is initialized and

terminated by using a presentation system. During a

session, slides of different presentations are presented

Ninth IEEE International Symposium on Multimedia 2007 - Workshops

0-7695-3084-2/07 $25.00 © 2007 IEEE
DOI 10.1109/ISM.Workshops.2007.67

363

Ninth IEEE International Symposium on Multimedia 2007 - Workshops

0-7695-3084-2/07 $25.00 © 2007 IEEE
DOI 10.1109/ISM.Workshops.2007.67

363

and augmented. The beginning and ending of

modifications result from different actions such as

show slide and hide slide. Actions occur on different

stages during a session and can be distinguished by

their granularity.

2.3. Timed Models for the Representation

The different stages within a workflow can be

represented using a hierarchical set of models that

consists of models for sessions, presentations, slides

and annotations. The hierarchical alignment and

temporal relationships can be expressed using the

alignment of models shown in figure 2. Figure 2 also

contains timing-models that are capable to reflect the

temporal information of processes within the

workflows. The hierarchy consists of following models.

Session: A session-model consists of meta-information

and references to presentation-models. Examples for

meta-information are the name of the lecturer, the

name of the lecture series and the date, time and room

of the lecture.

Presentation: Presentation-models consist of meta-

information such as the title of a presentation and

references to slide-models.

Slide: A slide-model consists of a title and content that

is in many cases just a simple image, but may also

contain speaker notes. The model can contain further

references that, e.g., point to annotation-models.

Annotation: An annotation-model represents different

types of annotation. In this work, we focus on freehand

ink annotations.

Timing: A timing-model is capable of representing the

beginning and ending of a models modification. The

corresponding time span does not essentially match the

lifecycle of the associated object. For instance, slide-

models may be created (but still not modified) in order

to provide previews for navigation purposes.

3. Selected Aspects of Presentation Systems

Different presentation systems are focused in respect to

their intention and underlying technical realization in

the following sections. Based on the discussion, the

application domain is decomposed into selected aspects

and components that can be (re-)used in order to ease

the development of similar systems and to increase the

understanding for the development of such systems.

3.1. Static vs. Dynamic Content

The requirements and complexity of systems and their

implementations varies heavily based on whether the

presentation of static or dynamic content is supported.

Presenting and augmenting static content can be

reduced to the problem of processing images. Many

systems including Classroom Presenter [9] and

Multimedia Lecture Board [10] chose this approach

and therefore require converting presentation files into

Figure 1: Sequence diagram that depicts the

timeline of modifications, applied to different types

of models, during a lecture.

Figure 2: Hierarchically aligned models.

364364

image sets. Annotating dynamic content is comparable

to annotation of videos [11], but requires additional,

expensive processes like screen-capturing and real-time

rendering to various destinations, such as the displays

of lecturers and students.

A static slide can be represented by a single image.

In contrast, animated slides or videos from systems that

follow the screen-recording approach produce far more

images. For most applications, dealing with over 25

images per second is unfeasible. Especially distributed

solutions process (rectangular) updates of screen

regions and limit the overhead using the remote frame

buffer protocol. A suitable solution is to add the

updates including timestamps to the slide-model or to

introduce a new type of model as shown in figure 3 and

named update-model.

For collaborative video annotations (rather text than

ink), Vannotea [12] proposes the following meta-

model: video nodes consist of video segments. A

segment contains a single key frame and temporal

information. While video and video segment nodes can

be compared with our presentation and slide models, a

list of key frames (instead of a single key frame) are

comparable to our slide updates.

Update: An update-model is associated with a slide-

model and represents (regional) updates. It also

contains a reference to a timing-model that reflects the

time span or moment when the update occurred. Those

timings are especially valuable for later playback.

Similar to common video compression methods like

MPEG, the update region can also be an update of the

whole slide.

Partial updates also increase the performance during

rendering and transmission of the content, while tasks

such as navigation and previewing require a “full

image”. If only partial updates are processed,

recalculating the image representation of a specific,

queried moment becomes expensive. Therefore,

systems such as [7], [8] and [13] occasionally force full

updates of the whole framebuffer, similar to I-frames in

MPEG encodings. In addition, we experienced

significant ease of handling updates by introduction of

the component shown in figure 4. Please note that we

do not discuss in detail that detected modifications of

the source frame buffer can be optimized by the

specific implementation (e.g., VNC) and split into a

sequence of transmitted, regional updates. From a

black-box view, the component consumes partial

updates, but delivers a full image to other components.

The full image is always up to date and can be

spontaneously used for storage and previewing

purpose. From a white-box view, the component

receives and stores (partial) frame buffer updates that

are continuously rendered on top of an image that can

be queried from other components via an outgoing

port.

3.2. Local vs. Distributed Systems

Systems that support dynamic content vary in the way

how the content is obtained. There are large differences

between the complexity and performance of such

solutions.

The distributed presentation scenario in figure 5

corresponds to the work of the University of

Cambridge [13] and TeleTeachingTool. The lecturer

prepares his content before the lecture on his own

system. During the lecture, a remote connection to the

Figure 3: Enhancing the slide-model with a model

capable to represent (regional) slide updates.

Figure 4: Extended processing unit for (regional)

slide updates.

Figure 5: Distributed presentation scenario.

365365

system located in his office is established using a

protocol such as VNC. The remote desktop is then

continuously mirrored to the local presentation system

that offers annotation functionality. The remote system

can be controlled using the keyboard and the mouse.

In contrast to the approach of the presented two

systems, Presenter uses virtual frame buffers that have

been developed in a former project state and can be

installed on the system of the lecturer. The desktop is

extended and content located on the virtual frame

buffers can be processed like depicted in the former

example. In contrast to the distributed approach, a

second system is not required and there are fewer

pitfalls in developing a local screen mirror.

By extending the slide-model we introduced support

for incremental updates of images that are able to

represent the frequently updated images that are usually

delivered by the presented approaches. The general

processing of updates, whether obtained from local or

remote desktops, is identical.

The event handling between local and remote

systems is bidirectional and varies in contrast to the

image handling. Controlling remote desktops requires

mapping local mouse and keyboard actions, e.g.,

provided by the frame buffer protocol. The mapping of

keyboard actions can be omitted on windows systems

that contain virtual desktops while mouse actions must

be still handled. Regarding the information flow

between the systems, (local) input events on the remote

system directly force frame buffer updates that are

transmitted to the local system, e.g. the remote frame

buffer protocol transmits mouse movements separately.

But due to the loose coupling of local and remote

systems, presentation-centric actions such as slide-

transitions are usually not handled and transmitted.

There are different approaches that e.g., use

software installed on the local system to generate and

inject messages by extending the common protocols.

Other approaches avoid installing software on the local

system and must therefore post-process images so that

for instance, slide transitions can be detected. There are

even approaches that avoid any modification of the

remote system, but are also able to provide benefits,

while the lecturer can still operate his system locally.

Systems such as TeraVision [14], T-Cube [15] and

ProjectorBox [16] have been primarily developed for

recording purposes or transmission of video signals.

But approaches that are only coupled using the video

signal of computers are very limited: it is rather

difficult to support ink annotations, for instance.

Annotations on the local system would require clearing

them manually after slide transitions and to operate the

local system. Solutions have been developed that even

redirect mouse and keyboard events using hardware.

We expect that such solutions will still remain very

limited in their functionality, but may get more popular

for scenarios that focus on seamless recording support.

3.3. Annotations

In contrast to the differences regarding the processing

of static or dynamic content, augmenting the content is

usually implemented very similarly. Annotations like

ink annotations are added on top of the content and

remain visible until the user or dedicated events such as

slide-transitions force them to disappear.

Annotations are typically not adapted (e.g., they are

not automatically translated or scaled) in

correspondence to the underlying content. Associating

the underlying content is rather difficult and contains

problems such as object recognition. A restricted

solution is presented by Avaya [17] which associates

annotations on top of HTML-websites using the

underlying DOM-tree. But current presentation

systems, especially the ones supporting dynamic

content, do not focus on associations. Therefore,

annotations can be rendered independently of the type

of the underlying content and are implemented

efficiently using layers that are well-known from 2d

graphic applications. Programming languages typically

provide overlays that are similar to glass panes and

their processing is often hardware-accelerated.

Our subsystem for core presentation support

consists of the components presented in figure 6. By

decoupling the annotation layer from the underlying

content, we can dynamically switch between different

image sources and support annotations on surfaces

similar to black- or whiteboards, static images and

dynamically updated images sources. The subsystem

Figure 6: Component-based, layered rendering of

annotations on top of static or dynamic content.

366366

can be configured to support different scenarios based

on different image-sources. A lightweight whiteboard-

setup is for instance used by TinyWB [3]. Our image

layer also enables the corresponding functionality of

systems that follow the approach of annotating static

images and those that follow the approach of

annotating video streams. In section 3.2., we presented

examples for systems that follow different approaches.

The layering turned out to be very flexible and is not

limited to the presented scenarios. Additional layers

can be added on top of the lecturer’s annotation layer

and support private annotations or collaborative

scenarios while handling annotations of the audience.

Private annotations can also be created before the

lecture; in [18] they are called instructor notes and

discussed in more detail.

3.4. Events vs. Content

The assignment of annotations to slides and removal of

annotations during slide-transitions is a major

difference for systems that support static vs. dynamic

content. Systems that convert content and work on

image sets can obviously easily handle the content and

generate or process the required events. Systems that

process arbitrary dynamic content initially can not rely

on any events available within the underlying

presentation system.

Systems such as TeleTeachingTool use key-

bindings that are usually associated with the underlying

actions in presentation systems such as page up/down

for seeking to the next/previous slide. Systems like

virtPresenter [19] or Presenter use add-ins for

PowerPoint to receive the required events. Presenter

contains also a different, more proactive approach: an

extension for presenter is capable to load and control

PowerPoint-presentations and can therefore handle

events easier and avoids modifying PowerPoint. A

uniform way to handle any slide-based presentation, the

corresponding reference implementation called

Universal Presentation Controller and the specific

handling of PowerPoint are discussed in [20].

We developed a couple of different solutions to

control PowerPoint or to subscribe to PowerPoint

events. The different implementation had a significant

impact on our event handling. For instance, latter

solution requires handling the delivered PowerPoint

events asynchronously. Our other solutions –

PowerPoint-Controller and Universal Presentation

Controller – provide different controls on the user-

interface for navigation support. Different action

listeners are associated with those GUI-controls and

events can be handled by our presentation system in

advance to the requested slide transitions. After the

presentation system returns from the specific processes

(e.g., creating of snapshots and new slide-models) the

required operations are forwarded to PowerPoint.

We identified different events such as clear, store

and next slide and modified the event handling by

introducing a dedicated event-dispatcher like shown in

figure 7. One major advantage is that the core

presentation subsystem depicted in figure 6 can now be

developed independent from modifications to event-

providers like the ones shown on the left side of figure

7. This also applies to handling of user inputs using the

mouse and keyboard. Such inputs can be delivered to

the event-dispatcher that either consumes or forwards

them to a specific layer.

4. Summary

We presented our experiences and observations during

the development of educational presentation systems

for higher education. The paper discussed workflows

during a typical slide-centric presentation and

presented hierarchically aligned and timed models.

While structure and timing contribute to the high-level

design of presentation systems, the presented aspects

are relevant for mid- to low-level design and

implementation of components. The key aspects were

discussed in respect to related work. Finally, we

presented solutions and experiences for the identified

aspects that facilitated the development of flexible

educational presentations systems.

References

[1] Microsoft Corporation, “Microsoft Product

Information Center,” http://www.microsoft.com, last

visited July 31st, 2007.

[2] L. Knipping, “An Electronic Chalkboard for

Classroom and Distance Teaching. Ph.D. thesis,

Fachbereich Mathematik und Informatik”, Freie

Universität Berlin, Germany, 2005.

Figure 7: An event dispatcher unifies handling of

control flows and decouples components.

367367

[3] G. Turban and M. Mühlhäuser, “An Open Architecture

for Face-to-Face Learning and Its Benefits”, in:

Proceedings of the 8th IEEE International Symposium

on Multimedia, San Diego, CA, USA, 2006.

[4] W. Hürst, R. Müller and T. Ottmann, “The AOF

Method for Production, Use, and Management of

Instructional Media”, in: Proceedings of the

International Conference on Computer in Education,

Melbourne, Australia, 2004.

[5] N. Joukov and T. Chiueh, “Lectern II: A multimedia

lecture capturing and editing system”, in: Proceedings

of the International Conference on Multimedia and

Expo, Baltimore, Maryland, USA, 2003.

[6] TechSmith Corporation, “Camtasia Studio Screen

Recording and Presentation”, http://

www.techsmith.com, last visited, July 31, 2007.

[7] P. Ziewer and H. Seidl, “Transparent TeleTeaching”,

in: Proceedings of the Australasian Society for

Computers in Learning in Tertiary Education

conference, Auckland, New Zealand, 2002.

[8] G. Turban and M. Mühlhäuser, “A Framework for

Educational Presentation Systems and its Application”,

in: Proceedings of the 1st ACM Workshop on

Educational Multimedia and Multimedia Education in

conjunction with ACM Multimedia 2007, Augsburg,

Bavaria, Germany.

[9] R. Anderson, R. Anderson, L. McDowell and B.

Simon, “Use of Classroom Presenter in Engineering

Courses”, in: Proceedings of the 35th Annual

Conference on Frontiers in Education, 2005.

[10] J. Vogel, “Präsentation und Kollaboration in

Televeranstaltungen mit dem multimedia lecture

board”, in: Tagungsband der 17. DFN-Arbeitstagung

über Kommunikationsnetze, LNI, GI, Düsseldorf,

Germany, 2003.

[11] D.C.A. Bulterman, “Creating Peer-Level Video

Annotations for Web-Based Multimedia”, in:

Proceedings of Eurographics Workshop on

Multimedia, 2004.

[12] R. Schroeter, J. Hunter and D. Kosovic, “Vannotea - A

Collaborative Video Indexing, Annotation and

Discussion System For Broadband Networks”, in:

Proceedings of Knowledge Markup and Semantic

Annotation Workshop, K-CAP 2003, Sanibel, Florida,

USA, 2003.

[13] S.F. Li, M. Spiteri, J. Bates and A. Hopper, “Capturing

and Indexing Computer-based Activities with Virtual

Network Computing”, in: Proceedings of the 2000

ACM Symposium on Applied Computing, Como,

Italy, 2000.

[14] J. Leigh, J. Girado, R. Singh, A. Johnson, K. Park and

T.A. DeFanti, “TeraVision: a Platform and Software

Independent Solution for Real Time Display

Distribution in Advanced Collaborative

Environments”, Electronic Visualization Laboratory,

University of Illinois at Chicago, 2002.

[15] M. Ma, V. Schillings, T. Chen and C. Meinel, “T-

Cube: A Multimedia Authoring System for

eLearning”, in: Proceedings of E-Learn 2003, Phoenix,

Arizona, USA, 2003.

[16] L. Denoue, D. Hilbert, J. Adcock, D. Billsus and M.

Cooper, “ProjectorBox: Seamless presentation capture

for classrooms”, in: Proceedings of E-Learn 2005,

Vancouver, Canada, 2005.

[17] R. Kashi and S. Ramachandran, “An Architecture for

Ink Annotations on Web Documents”, in: Proceedings

of the 7th International Conference on Document

Analysis and Recognition – Vol. 1, Edinburgh,

Scotland, 2003.

[18] B. Simon, R. Anderson and S. Wolfman, “Activating

Computer Architecture with Classroom Presenter”, in:

Proceedings of the Workshop on Computer

Architecture Education, in conjunction with the 30th

International Symposium on Computer Architecture,

San Diego, CA, USA, 2003.

[19] R. Mertens, H. Schneider, O. Müller and O.

Vornberger, “Hypermedia Navigation Concepts for

Lecture Recordings”, in: Proceedings of E-Learn 2004.

Washington, DC, USA, 2004.

[20] G. Turban and M. Mühlhäuser, “A Uniform Way to

Handle Any Slide-Based Presentation: The Universal

Presentation Controller”, in: Advances in Multimedia

Modeling. 13th International ACM Multimedia

Modeling Conference, Singapore, 2007.

368368

