
MundoCore: A Light-weight Infrastructure for Pervasive

Computing

Erwin Aitenbichler, Jussi Kangasharju, Max Mühlhäuser

Abstract

MundoCore is a communication middleware specifically designed for the requirements
of pervasive computing. To address the high degree of heterogeneity of platforms and net-
working technologies, it is based on a microkernel design, supports dynamic reconfigura-
tion, and provides a common set of APIs for different programming languages (Java, C++,
Python) on a wide range of different devices. The architectural model addresses the need
for proper language bindings, different communication abstractions, peer-to-peer overlays,
different transport protocols, different invocation protocols, and automatic peer discovery.

1 Introduction

The original aim of distributed object computing middleware was to enable the cooperation
of objects independent of devices, operating systems, and programming languages. Over time,
personal computer and server platforms became more powerful and had no problems running
large, monolithic, and not well-optimized middleware software. Pervasive computing introduces
a wide spectrum of new computing platforms, vastly different in terms of size, mobility and
usability. The lower end of this spectrum is marked by computers embedded into everyday
objects and small sensor nodes that often have only very limited processing capabilities.

Pervasive computing does not build on single computing devices - its real power emerges
from the cooperation of many devices. Hence, communication is a fundamental requirement.
Because the communication requirements of devices are also very different, several different
wireless networking technologies are in place. To address the increased heterogeneity of devices
and networks, modular and reconfigurable middleware architectures gained interest.

1.1 Goals of MundoCore

MundoCore is the lowest middleware layer of our smart spaces platform. It is responsible for
all communication-related aspects and was specifically designed for the needs of the services in
the higher layers. The typical communication requirements in smart spaces are described in the
following.

Pervasive computing applications running on mobile devices have to be adaptive on multiple
levels, because it is unlikely that the surrounding infrastructure will be equally “smart” every-
where. Today we have a growing number of different wireless networking technologies, tailored
for specific purposes. The combination of low-bandwidth networks with a large coverage area
and hotspots with high-bandwidth connectivity leads to so-called wireless multitier networks
[1]. In order to provide mobile users with a continuous network connection, it is necessary to
provide seamless handovers between different networking technologies. IP supports, e.g., only
simple roaming between WLAN cells, because this can be handled at the driver level. However,
switching to a different network interface breaks open TCP connections.

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

1.2 Our Contribution 1 INTRODUCTION

An adaptive middleware must be adaptive at all levels. Roaming to a different network
can also require different routing strategies. Single-hop routing is a good strategy for highly
dynamic networks with not more than 30 nodes. For larger networks, the introduction of super-
peers [29, p. 355] is useful and communication on the global scale may require concepts like
Distributed Hash Tables [23, 26, 30]. Because of uneven conditioning, the services provided by
the surrounding environment also change. When a user enters a smart space, the user’s personal
computing environment should be able to spontaneously interact with the computing devices
embedded into the environment. When the user leaves the smart space, it may be necessary to
switch from using remote services to local services, that might be less powerful.

MundoCore addresses the above adaptivity issues by providing a layer model with modular
services, that can be replaced on demand and applications can extend the middleware core by
providing additional transport, discovery, routing, and brokering services.

An effective API must provide functions to programmers suitable for their specific applica-
tion scenarios. Distributed Object Computing is a widely-accepted and easy to use programming
model. In context-aware and other information-driven systems, publish/subscribe is a good ab-
straction for distributing events, because it supports multicasting and decouples data producers
from data consumers. Having the right abstractions offered by the middleware leads to reduced
application development time and reduced size of application code.

TCP/IP with its notion of streams was designed for transferring files and documents over
the Internet. However, it is a bad match for many message-based applications, like remote
invocations, sensor events, or multimedia data. Applications should be able to tailor the com-
munication stack specifically for their needs. For example, sensor data in augmented reality
applications needs to be distributed with low latency, while losing single samples is not critical.
This leads to a different choice of transport protocol (i.e., UDP instead of TCP). If low latency
and reliability are required, then the application might want to add a forward error correction
handler to the protocol stack.

In strictly layered communication architectures, a protocol layer is only allowed to interact
with the next lower and the next higher layer. However, in many cases, this approach is not
flexible enough and we already observe a number of “layering violations” in current systems (see
section 4). Also, if a layer is adaptive, its adaptive behavior should not be completely hidden
inside the layer. Instead, the information that an adaptation took place should be propagated to
all interested external components. Finally, applications should be able to influence the amount
of control they want to have over adaptations. This requires means to communicate the changes
in context observed in lower protocol levels up to the application level.

1.2 Our Contribution

In the following, we describe a modular middleware system that addresses the issues described
above. Our contribution is threefold.

First, the modular architecture supports a wide range of devices reaching from small sensors
up to servers. The connector abstraction allows to fully decouple components and allows us
to separate the service functionality itself from concerns like service interconnection, service
orchestration, or error recovery into separate services. To implement this decoupling, we made
an extension to the Java language to provide output interfaces.

Second, the layer model organizes communication services into groups, according to the
addressing schemes and message structure used. With this model, we aim to harmonize the
worlds of DOOP, Publish/Subscribe, Peer-to-Peer and multimedia communication. This gives
a number of interesting synergies, e.g., programming language objects can be externalized and

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

2 MIDDLEWARE ARCHITECTURE

filtered by the content-based publish/subscribe system or oneway calls can be used to multicast
using the publish/subscribe system. Also, in the lower levels, different systems share much
common functionality. For example, an object request broker can rely on a publish/subscribe
system for object location and naming.

Third, with the concept of protocol heaps, applications can tailor the protocol stack according
to their needs. Adaptivity and custom protocol stacks are often conflicting goals. We describe
a method to support both.

This paper is organized as follows. Section 2 describes the middleware architecture, section 3
the layer model, and section 4 the protocol heap model. Section 5 explains how to program with
MundoCore with a few code examples. Section 6 presents evaluation results and section 7 an
inspection tool for the middleware. In section 8 we discuss related work and conclude the paper
in section 9.

2 Middleware Architecture

Service

Serializers

Component

Protocol
Coordinator

Service
Protocol
Handlers

Application Layer

Language Binding
Layer

Brokering Layer

Routing Layer

Transport Layer

Node

Communication Microkernel

Stubs ...

... Service

Serializers

Component

Protocol
Coordinator

Service

Protocol
Handlers

Node

Communication Microkernel

Stubs ...

...

Operating System Operating System
Network

MundoCore Framework MundoCore Framework

Figure 1: Overview of MundoCore Architecture

The architecture of MundoCore is shown in Figure 1. At the most basic level, the MundoCore
framework provides utility classes and platform abstractions for memory management, process
management (threads and synchronization), and I/O APIs. The microkernel and all services
build on top of this framework. The central element is the communication microkernel, which
handles all communication between services within the same node. Communication with remote
nodes involves the protocol coordinator and protocol handler services, which are described in the
next section.

2.1 Communication Microkernel

First, we describe the intra-node communication. The kernel permits services to communicate
with each other based on a channel-based publish/subscribe interaction scheme. Services in-
terested in certain messages subscribe to the corresponding channel and receive notifications

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

2.2 Services in MundoCore 2 MIDDLEWARE ARCHITECTURE

when new messages are published to that channel by other services. Services that want to emit
messages to a channel have to advertise first. The basic communication operations are:

S = subscribe(channel)
unsubscribe(S)

callback: received(message)
P = advertise(channel)

unadvertise(P)
send(P,message)

The most important building blocks of the MundoCore middleware and of applications are
services. Services are “coarse-grained” application or middleware components with well-defined
interfaces that typically consist of multiple objects. Applications in a smart environment typ-
ically span multiple devices and involve dozens of services distributed among these devices.
Services are interconnected by channels, which end in input or output ports of services.

2.2 Services in MundoCore

A service implements a certain application or middleware functionality. At the basic level, there
is no distinction between middleware and application services. The middleware itself is modular
and can be extended in many ways. Services have the following properties.

A service is a container for objects that are closely related to each other. It is the distribution,
migration, and persistence unit.

• Distribution: References to local and remote objects are explicitly distinguished by dif-
ferent types of reference variables. This distinction explicitly expresses that the interaction
with remote objects is inherently different. Local object references express tight coupling
between objects. Remote object references implement loose coupling. Remote method
calls have different error semantics and are by orders of magnitude slower.

• Migration: Services are not bound to a particular physical location, they can be mi-
grated from one address space to another. The communication abstractions provided by
MundoCore enable services to maintain all communication links to other services even if
they are moved to other physical locations.

• Persistence: Services implement methods to write their configuration or state to persis-
tent storage and to instantiate the service again from the data in the persistent store.

Services also serve as a synchronization concept to deal with the concurrency that is natural
to distributed systems. Services implement the Active Object Pattern [12] to decouple operation
invocation from operation execution.

2.3 Connector Abstraction

Object-oriented programming languages provide the abstraction of objects and systems are
composed out of many interacting objects. While the interfaces of objects are clearly defined
on the “input side”, mainstream object-oriented languages do not provide explicit support to
express the connections of an objects to other objects. Instead, connections are implicit, either
as object references on the heap or implemented by applying design patterns such as Proxy,
Adapter or Observer [12]. As a consequence, connection code is not clearly separated and
becomes part of the application code. This has several drawbacks:

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

2.4 Component Model 2 MIDDLEWARE ARCHITECTURE

• The Observer pattern is often used to connect an event source with multiple event lis-
teners, e.g. in GUI toolkits. This pattern requires the event source to maintain a list of
listeners and to provide methods for registration and deregistration. Hence, the necessary
listenerlist-bookkeeping code is replicated over and over again.

• The dispatch code in event sources is replicated as well. This issue cannot be simply solved
by subclassing, because if general parameter types are used, the system loses type safety,
or additional methods have to be implemented for each event type.

• In distributed systems, the dispatch code also has to take exception handling and syn-
chronization aspects into account, which adds a considerable additional overhead to each
dispatch method.

Because of this code replication and the missing separation of connector and application
code, it is difficult to reuse and evolve connection mechanisms. In MundoCore, services have
well-defined input and output interfaces. A class can define its input interface with the Java-
standard interface keyword and its output interface with the emits keyword, which we have
added. Services can emit events or perform anonymous request/reply calls by using the special
variable emit. The outputs and inputs of objects can be connected with the connect operation,
which allows to connect objects directly or via channels:

connect(eventSource, eventListener)
connect(eventSource, channel) and connect(channel, eventListener)

Subscription management and event dispatching is implemented by the publish/subscribe
system. Method invocations are marshaled to message structures by stubs, which are automat-
ically generated by a precompiler (see section 2.6). The examples in section 5 show how our
connector abstraction is used in programs.

2.4 Component Model

Especially in pervasive computing, a common operating system, the same middleware imple-
mentation, or programming language on all devices in the system cannot be assumed. As a
consequence, we do not try to keep the principle of data abstraction across component bound-
aries. The serialized forms of requests, replies, and events are explicitly described along with the
interfaces. Thus, MundoCore’s programming model is programming language independent and
interoperability is established on the protocol level. It has also been observed in the one.world
project [14] that data-centric data models have significant advantages over programmatic data
models (see also section 8).

Software components are binary units of independent production, acquisition, and deploy-
ment that interact to form a functioning system [33]. Because we want to achieve independence
between components, independence from platforms and programming languages, and support
for late composition, many programming abstractions known from object-oriented languages
cannot be used, e.g., type declarations, preprocessor macros, templates, or (Smalltalk) code
blocks. Other abstractions, such as methods, classes, modules, or entire applications, can form
components, as long as they have the necessary interfaces to be composable.

MundoCore services can be packaged to form such self-contained software components. The
component model is concerned with service interdependencies, dynamic loading of services,
and the description of services. One or multiple services can be packaged into a MundoCore
Component.

A MundoCore Component consists of

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

2.5 Static and Dynamic Configurations 2 MIDDLEWARE ARCHITECTURE

• the implementations of services in binary form,

• the implementations of stubs, serializers, and data objects that are exchanged via the
service interfaces,

• interface and data object descriptions (in WSDL), and

• the description of dependencies with base libraries.

Components are packed into Java Archives (JARs) and can be loaded and unloaded from
a MundoCore node at run time. Data objects have an arbitrary number of public fields and
constant value declarations, but no methods. They are typically used to implement event notifi-
cation data structures in a portable way. Since MundoCore uses the WSDL standard to describe
interfaces, services can be easily made accessible as Web Services via simple proxies.

2.5 Static and Dynamic Configurations

It is possible to create static or dynamic configurations for deployment. In a static configuration,
certain middleware and application services are packaged together with the middleware core into
a single distribution package (JAR). In this case, the services are selected at design time and
the configuration process is similar to configuring a Linux kernel. When the underlying Java
platform supports custom class loaders and has sufficient resources (RAM), then MundoCore
also supports dynamic configurations. In dynamic configurations, optional services are packaged
as components that can be loaded by a process on demand.

The loading, unloading, and administration of dynamic components is controlled by a service
manager service running on each node. The service manager monitors a deployment directory in
the filesystem. If a new Java archive file is copied into this directory, it gets automatically loaded.
An XML configuration file in the archive describes which service instances should be created
and how they should be configured. Components can also be unloaded by simply deleting the
corresponding archive file in the deployment directory. The service manager then automatically
shuts down all service instances created by this component. In addition, the service manager
provides interfaces for the remote instantiation, configuration, and administration of services.

Hybrid configurations that combine the benefits of both approaches are also possible. Ser-
vices that are permanently used by an application can be linked statically, while services that
depend on certain contexts are built as independently loadable components. Such contexts are,
e.g., available memory, available network connectivity, or available location tracking systems in
the environment.

2.6 MundoCore Precompiler

The MundoCore precompiler generates the necessary glue code between services. It reads inter-
face descriptions from Java 1.5 conforming metadata tags embedded in Java source files, from
special comment tags embedded in C++ header files, or from WSDL files. Based on these in-
terface descriptions, it can generate interface declarations for Java, class declarations for C++,
WSDL files, as well as object serializers, client and server stubs for remote method calls for
Java and C++. In addition, it implements a C-style preprocessor for Java source files and some
Java language extensions. The preprocessor is very useful for writing portable Java programs,
since the Connected Limited Device Configuration (CLDC) profile that is typically used on cell-
phones, is significantly different from other Java profiles. Without the preprocessor, a separate
source tree for the CLDC version would be required.

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

3 CONCEPTUAL LAYERS OF THE COMMUNICATION ARCHITECTURE

MundoCore uses some proprietary extensions to WSDL to implement data objects (see section
2.4). The language-specific implementations of data objects and their serializers are automati-
cally generated by the precompiler.

3 Conceptual Layers of the Communication Architecture

A node hosts an arbitrary number of services implementing the application-specific functionality,
together with the basic services. A node typically corresponds to a single operating system
process.

When the kernel receives a subscribe or advertise request, it in turn generates corresponding
notifications. Thus, services may subscribe to subscription notifications in a way similar to
subscribing for normal messages. Message brokers use this concept to get information about
new communication endpoints, i.e., publisher and subscriber objects. The concept of subscribing
for subscriptions can also be used for on-demand automatic instantiation of services and to
efficiently implement multi-stage information flows.

This section presents the communication architecture of MundoCore, which comprises all
services involved in the transport of a message from one application-layer communication end-
point to the other. After the description of the general architecture with its components and the
interfaces between components, details about the implementation in MundoCore are presented.

This architectural layer model classifies communication services according to the addressing
schemes used and message semantics understood. Transport services in the lower layers require
routes as address information, while message brokers in the higher layers may support indirect
addressing via channels. In terms of semantics, low-level services treat messages as binary data
blocks, while application-level services use programming-language native objects (Table 1).

Layer Addressing Message Content
Language Binding Any Programming language native objects
Brokering Any Passive objects
Routing Node-Id Passive objects
Transport Route-Id Binary data

Table 1: Addressing and Message Content in Different Layers

The layer model only serves as a reference model and does not define a strictly layered
system. How communication stacks can be configured is described in section 4. The services in
the different layers have the following responsibilities, starting with the lowest layer: Transport
services provide connections to adjacent nodes. The overlay routing layer routes a message
to the node with the specified node-id. The abstraction provided by this layer makes routing
independent of underlying transports. Messages that are indirectly addressed to their targets
are handled by the broker services in this layer. The language binding layer offers convenient
programming interfaces to access services in the lower layers.

3.1 Transport Layer

Services in the transport layer are responsible for transporting messages to adjacent nodes. Fre-
quently used transport services in our projects include IP, (bluetooth virtual) serial connections,
and infrared links. The information how to reach a specific destination peer is shared between
routing services and transport services by means of Route objects. Route is an abstract class
that contains the node-id of the destination node. Each transport service provides specialized

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

3.1 Transport Layer3 CONCEPTUAL LAYERS OF THE COMMUNICATION ARCHITECTURE

versions of Route that contain additional service-specific information. For example, an IPRoute
adds the IP address of the destination. Concrete routes are discovered by a transport service
itself or are provided by higher level services.

The interface of transport services provides methods to manage connections and to transport
messages.

• Connection management: The methods provided allow to open the necessary connec-
tions required to reach the destination specified by a route.

• Message transport: These methods allow to send a message to a remote peer using the
specified route.

Transport services emit the following events:

• Discovery: The service signals when a new neighbor node is discovered. It creates a
new route object containing the node-id of the remote node and service-specific address
information. Once a routing service receives this event, it adds the route to its routing
table. The transport service also generates an event when it loses connection to a remote
peer.

• Message delivery: The service signals when it receives a message from a remote peer.

Beside message transport, the second important functionality of a transport service is the
automatic discovery of peers. Node discovery could be handled by separate services as well.
However, in many cases discovery is closely related to message transport and often based on the
same set of APIs. For example, the IPTransportService uses TCP or UDP packets for message
transport, and its discovery mechanism uses TCP, UDP unicast, and UDP broadcast packets.

In the following, the problem of node discovery is considered. Because users should be enabled
to interact with smart environments in a natural way, the computing devices involved must be
aware of each other. Thus, devices must be able to find all available devices and services in the
nearby environment in a reliable way. It should be noted that node discovery is not necessarily
the same as service discovery. Service discovery is a concern of a higher layer and involves
the description of services, caching of service information, and complex queries. However, if
node discovery at the transport layer allows to discover all nearby nodes in a reliable manner,
a higher-level service can easily discover all services on those nodes. Services that provide node
discovery should be designed according to the following principles:

Autoconfiguration: Transport services should not require any node-specific or dynamic
configuration information. Instead, a single, common, and static configuration should describe
how nodes can find each other. Most current systems lack zero-configuration capabilities.

Reliability: Node discovery should have an all-or-nothing semantic. Either a node is fully
integrated into the group, or it does not get any access to remote services. In the unlikely case
that packet loss in the network is extremely high, a node joining the network will not be able
to discover any other node. Conversely, if a node successfully joins the network, all nodes in the
network see the entire network.

Discovery in MundoCore is based on the following three concepts:

• A node joining the network announces its presence with IP broadcasts.

• Because the loopback network drivers of some operating systems virtually drop all broad-
cast packets, the discovery of local processes cannot rely on broadcasts. The rendezvous

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

3.2 Routing Layer3 CONCEPTUAL LAYERS OF THE COMMUNICATION ARCHITECTURE

via the primary port ensures reliable discovery in this case. The primary port is a well
known TCP port defined in the configuration file. MundoCore ensures that if at least one
process is running on a machine, a process will listen on the primary port.

• Neighbor messages are used to propagate information about new nodes in the network.
This permits to open connections to hosts in other domains. Since MundoCore guarantees
that a process is listening on the primary port if at least one process runs on a machine, it
is possible to connect to remote machines in other domains by knowing the hostname or
IP address. Neighbor messages then propagate information about this new link and can
connect processes across multiple domains.

Thus, MundoCore features true zero-configuration in most cases. There is no need to provide
any node-specific, dynamic configuration information. For example, any number of processes
can be started on a single host without having to configure port numbers manually.

3.2 Routing Layer

Routing services deliver packets to remote nodes that are directly addressed by their node-ids.
A routing service uses one or more transport services in the next lower layer for the actual
message transport. For a given message and address, it picks a suitable transport service and
route according to a metric. Route objects can be created by services at lower layers:

• Many transport services support the automatic discovery of neighbor nodes. Each time
a new neighbor is found, discovery creates a new route object and notifies the routing
services. For example, the IP transport service uses UDP broadcast packets to discover
other nodes in the same subnet.

Route objects can also be created by services at higher layers:

• Routes can be provided by a service registry. Only when a client wishes to use a specific
service, the underlying communication links are opened. This technique is useful for
power-saving.

• In many cases, routes between different domains are statically configured by the admin-
istrator. These routes interconnect super-peers. Usually, also firewalling rules are defined
on such gateway nodes.

• Bluetooth requires the explicit formation of links, for power-saving reasons. Routing ser-
vices can request network access services to open new routes.

• The sender of a message can specify the full route for source-routing.

MundoCore supports both structured and unstructured overlays. The type of overlay usually
has to be decided from case to case based on the requirements of an application. A large number
of nodes joining and leaving a structured overlay - often referred to as churn - concurrently puts
particular stress on the overall stability of the system, reducing routing efficiency, incurring
additional management traffic, or even resulting in partitioned or defective systems [29, p.
93]. While structured overlays offer better scalability, unstructured overlays are more reliable,
because they are less affected by churn. However, the routing table sizes grow proportional to
the size of the network.

Currently, MundoCore implements routing services tailored for the following three different
network structures:

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

3.3 Brokering Layer3 CONCEPTUAL LAYERS OF THE COMMUNICATION ARCHITECTURE

• Single-hop: In a single-hop network, each node communicates with each other node
directly. This network structure is usually the best choice if the network is highly dynamic,
like in spontaneous collaborations, and the number of nodes does not exceed about 30
clients.

• Hierarchical: A larger number of clients can be supported by introducing super-nodes.
Super-nodes should be highly available and rather static in terms of location. For example,
a smart environment has embedded computing resources and can easily provide such static
super-nodes. The routing algorithm between super-nodes can be a variant of distance
vector routing. Because a generic network topology is allowed, the routing algorithm must
avoid routing messages along cycles. In order to do so, the classic reverse path forwarding
technique is used. In most cases, this algorithm is not used to route messages through
the network. It is rather used to route subscribe and advertise requests between channel-
or content-based publish/subscribe brokers. The publish/subscribe layer then builds a
multicast tree for the distribution of messages.

• Structured: Especially on the publish/subscribe layer, unstructured networks only scale
up to a certain degree, because the size of routing tables grows with the size of the network.
In structured overlays, each data item, etc. is assigned a location where it is stored in the
overlay. Thus, structured overlays are more suitable for large-scale deployments. Mobile
clients use single-hop communication to the nearest super-peer. The super-peers in the
same site use distance vector routing. A site gateway connects the network to a global,
structured network.

3.3 Brokering Layer

The routing layer described in the last section provides the functionality to route messages
to a node by specifying its address. The publish/subscribe layer adds the functionality for
indirect addressing and multicast. The implementation of MundoCore provides services for
channel-based and content-based addressing. Because addresses are an abstract concept, the
architecture allows for plugging in additional services that handle these new address types.

Since the basic programming paradigm is already channel-based publish/subscribe, message
brokers on this level forward messages to remote nodes. A channel-based broker simply matches
publishers and subscribers by comparing the channel names provided with their advertisements
and subscriptions. As a consequence, such brokers are relatively simple and can also run effi-
ciently on resource-constrained devices. The channel-based addressing scheme is sufficient for
many applications.

If more flexibility is required, then the content-based addressing scheme can be used. In
this scheme, publishers do not address consumers directly in any way. Instead, they provide
messages that are fully transparent to the routing service and subscribers may incorporate
any part of a message into their filter expressions. Compared to channel-based routing, this
approach offers more flexibility and extensibility, however filtering is more complex and has
higher requirements in terms of computing resources. Filters are specified with subscribe and
advertise operations. A subscription filter specifies the interests of the client. It will only receive
messages that match this filter. An advertisement filter expresses which messages a client intends
to emit. A client may only emit messages that match the filter specified in the advertisement.
The filter model in MundoCore builds on the notion of conjunctive filters. This is a powerful
model, however, its expressiveness is intentionally limited in some aspects to allow for filter
merging in a distributed network of brokers. This is an important prerequisite to build scalable

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

3.4 Language Binding Layer 4 PROTOCOL HEAPS

publish/subscribe systems. A detailed description of the data and filter model can be found in
[2].

Brokering services can further be distinguished by the type of overlay network they assume:
Routing in unstructured overlays: In a single-hop network, each node communicates

with each other node directly. To match the subscriptions of a node with all advertisements,
it has to contact all its neighbors. This causes a lot of traffic when a new node joins the
network. However, departing nodes do not affect the communication of other nodes in the
network. This mode of operation is usually the best choice if the network is highly dynamic, like
in spontaneous collaborations. The efficiency and scalability of larger networks can be enhanced
by introducing super-nodes. A super-node acts as a central rendezvous point for subscriptions
and advertisements for a group of peers.

Routing in structured overlays: Structured overlays offer a better scalability, because
the subscription tables are distributed among nodes in the network. This approach scales well
but requires a rather static network. While routing is very efficient, the maintenance cost for
the overlay is high. If a node departs, it may affect the communication of seemingly unrelated
remote nodes. To circumvent loss of global knowledge, information must be replicated in the
overlay. The MundoCore services for structured overlays build on top of FreePastry, a publicly
available implementation of Pastry [26].

3.4 Language Binding Layer

The interfaces between lower layers are characterized by the message data structure and a simple
message handler interface. The language binding layer now aims to provide a broader and more
easy-to-use programming interface for the application layer.

With externalization, MundoCore supports the transformation of objects native to the pro-
gramming language into structured messages. The methods that perform the actual data con-
versions are automatically generated by the MundoCore Precompiler. In contrast to most other
frameworks, in MundoCore this mapping is a two-step process. Externalization converts an
active object structure with arbitrary user objects to a passive structure, that only contains a
number of base types. Serialization then converts the passive object structure to e.g., an XML
document or into a binary form.

Remote Method Calls allow to transparently call methods on remote services via stubs.

4 Protocol Heaps

Protocol layering has served well as an organizing principle for the strict end-to-end model
of the original Internet infrastructure. However, today firewalls, NAT boxes, proxies, caches,
QoS, multicast, overlay routing, and tunneling require many “layering violations” [8, 22]. This
suggests that strict layering is not a good abstraction, since some interactions between layers
have to happen implicitly and hidden - as explained below.

The network stacks in modern operating systems are designed according to the ISO/OSI
7-Layer Model. Since most applications use TCP/IP for communication, the lower four layers
implement a functionality that is commonly used. In contrast to that, common implementations
for layers 5 (session) and 6 (presentation) never made it into operating systems, because the
requirements of applications are too diverse. As a consequence, the original 5-Layer TCP Model
[35] is still often used by the networking community, or the OSI-Layers 5 to 7 are all considered
to be in the application layer [20].

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

4.1 Basic Concepts of Non-Layered Architectures 4 PROTOCOL HEAPS

Even in the lower layers, there is constant pressure for “layer violations” and to insert new
functionality between existing layers. For example, MultiProtocol Label Switching was inserted
at “layer 2.5”, IPsec at “layer 3.5”, and Transport-Layer Security at “layer 4.5” [8].

The same applies to the Bluetooth stack. Because wireless networks are based on a shared
medium, multicast would often be available “for free”. However, the Bluetooth stack only
provides point-to-point links in the lower levels. Furthermore, emulations of higher-level service
discovery performance in Bluetooth scatternets show that cross-layer optimizations can lead to
1-2 orders of magnitude better performance [22].

The Interceptor design pattern is commonly used in modular implementations of CORBA.
It allows applications to extend a framework transparently by registering ‘out-of-band’ services
with the framework via predefined interfaces [27, p. 109]. For a designated set of events processed
by the framework, it specifies and exposes an interceptor callback interface. Applications can
derive concrete interceptors from this interface to process occurrences of these events in an
application-specific manner.

The interceptor concept has several drawbacks. Interceptors have no or only little control of
how messages flow through the middleware services. In addition, an interceptor callback cannot
split up a single control path into multiple, e.g., to split up a message into multiple fragments.
Different interception points specify different, incompatible interfaces. This makes it difficult to
write general handlers that can be registered at different interception points.

iBus [5] is an IP-based communication middleware with a configurable protocol stack. The
bottom of each stack ends in a definable TCP or UDP socket and connections are distinguished
by the respective IP port numbers. The order in which protocol handlers are applied is strictly
defined by the stack. Protocol handlers are limited to relatively simple operations, like trans-
formation of the payload, fragmentation, or flow control. A handler cannot redirect packets,
implement overlay routing, or dynamically select among handlers in the next lower layer.

4.1 Basic Concepts of Non-Layered Architectures

An idealized Role-based Architecture determines the processing order based on dynamic prece-
dence information carried in packets as well as static precedence associated with the protocol
handlers in the nodes [8]. Giving up protocol layering has a number of immediate consequences.
Layering provides modularity, a structure for metadata, encapsulation, and an ordering principle
for processing packets.

Modularity is an important concept to decompose complex systems into better manageable,
smaller pieces. Each protocol layer adds to the services provided by the lower layers in such a
manner that the highest layer provides a full set of services to manage communications and run
distributed applications. The principle of information hiding ensures independence of layers by
defining services provided by each layer to the next higher layer without defining how the services
are to be performed. This permits changes in a layer without affecting other layers. Because
modularity is an indispensable tool for system design, alternate non-layered architectures must
address this issue adequately.

The structure of metadata in layered architectures logically forms a stack. When a layer
receives a packet from the next higher layer, it adds its protocol header and passes the packet on
to the next lower layer. Conversely, if a packet is received from the next lower layer, the protocol
header is removed and processed, and the remaining part of the packet is passed on to the next
higher layer. Without strict layering, it must be possible to access metadata in random order,
not only in FIFO order. Thus, the “stack” is replaced by a container holding variable-sized
blocks of metadata, which may be accessed, modified, inserted, or removed in any order.

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

4.2 Messages 4 PROTOCOL HEAPS

Encapsulation is the addition of control information to the payload data by a communica-
tions protocol. Encapsulation takes place at each layer of the OSI reference model. Non-layered
architectures require a different organizational principle for data and metadata in a packet.
Encapsulation only needs to be performed if it is necessary. In most cases, metadata about
the data being encapsulated does not need to be encapsulated itself, as would be the case in a
layered architecture. The payload of a packet only needs to be encapsulated, if it has to be, e.g.,
fragmented or transformed.

The processing order is fixed in layered architectures. A packet either travels downwards
or upwards through the stack, strictly from one layer to the next layer. In non-layered systems,
the processing order is no longer defined implicitly. In principle, protocol handlers may operate
on messages in any order, or even simultaneously. However, in most cases an appropriate partial
ordering among specific handlers is required.

Because reasoning on dynamic properties is complex and ambiguous, MundoCore relies solely
on static properties.

4.2 Messages

A message is a tuple (type, chunk1, ..., chunkn) where type is the MIME type [17] and chunk1

... chunkn are the chunks of the message. Each chunk is a tuple (name, repr, content), where
name is the name of the chunk, repr is the representation of the content, and content is the
content. The representation is one of the following:

• An active object graph contains objects native to the programming language.

• A passive object tree only contains basic data types, lists and maps. This data structure
is comparable to a DOM tree [16]. However, it is typed and makes a clear distinction
between lists and maps.

• A binary data chunk contains a variable-sized array of bytes.

Chunks are uniquely identified by their name combined with the type, i.e., the same chunk
may exist in several different representations at the same time. Applications typically create
messages from programming language native objects. This active object graph is first external-
ized into a passive object tree. Then, this passive structure is serialized into XML or a binary
format which can be sent over a transport connection. Transformations between representations
are only made when they are necessary. As long as a message is passed around within the local
node, there is no need to perform any transformation on the message object.

Because the parts of a message structure can be accessed in random order, information from
higher “layers” during sending, and information from lower “layers” during reception of messages
remains accessible. For example, consider a transport service receiving a message over WLAN.
This service is able to store the RSSI information associated with the received data packets in
the message and pass it along all the way to the application this way.

4.3 Common Type System

MundoCore defines a set of basic data types that allow constructing structured and typed
messages. This basic type system is common to all implementations of MundoCore (Java,
C++, and Python). The basic scalar data types were chosen as a subset of the types defined in
XML Schema. This enables a one-to-one mapping from messages containing only basic types to
XML/SOAP documents and vice versa.

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

4.4 Message Processing 4 PROTOCOL HEAPS

The container types array and hash allow for nesting and creating structured messages.
These basic container types were chosen because this concept has proven successful, e.g., in
the programming languages Perl and Python. Languages like Java or C++ only have scalar
basic types. The language PHP only supports a hash type and arrays have to be implemented
as hashes. This leads to significant performance issues. XML is tree-structured and does not
distinguish between arrays and hashes.

4.4 Message Processing

MundoCore supports configurable protocol stacks that allow to tailor message processing specif-
ically for applications’ needs. For example, programmers can choose in favor of reliability,
efficiency, or security. Custom protocol stacks can be created by combining protocol modules.
Depending on an application’s needs, it is possible to create stacks ranging from unreliable mul-
ticast transfer up to reliable, compressed and encrypted transfers. Such a protocol stack can
be specified separately for each channel. The requirements for data transmission can be very
different:

• If audio or media data streams are transmitted and played back immediately, it is im-
portant that data is transmitted with a low latency. In this case it is important to use a
simple stack that does not unnecessarily delay the transmission. The loss of single data
packets can be usually tolerated.

• If software or application data is transmitted, it is important that it is transmitted cor-
rectly. The time for transmission is of secondary importance. In this case it is important
to select a stack that supports retransmission of lost or faulty data packets.

• If data packets exceed the maximum transferable unit (MTU) of the underlying transport,
data packets must be fragmented beforehand, and then have to be reassembled on the
receiver’s side. For example, in media streaming applications, the size of a frame often
exceeds the MTU of IP.

• If confidential data is transferred over an insecure network, it is necessary to encrypt this
data. In many cases, data is also compressed before it is encrypted. On the receiver’s side,
the packet then has to be decrypted and decompressed accordingly.

4.5 Message Handlers

Protocol stacks can be defined at the granularity of single channels. A stack is described as a
list of message handlers and channel-specific options. Message handlers implement the interface
IMessageHandler with the operations up and down. The operation down is called by the frame-
work when a message is passed to the handler from a higher layer and the operation up is called
when a message is passed up from a lower layer. After the handler has finished processing, it
emits the message using the IMessageHandler signal interface. An external protocol coordinator
component is responsible for identifying the next handler and forwards the message to it. In
addition, a handler may emit additional events, e.g., to indicate that it has discovered a new
peer.

4.6 Downward Processing

A custom protocol stack is described as a list of message handlers. When a packet is transmitted,
this stack is processed downwards starting from the application layer down to the transport layer.

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

4.6 Downward Processing 4 PROTOCOL HEAPS

The message handlers are applied on the message simply in the order they are specified. A stack
is primarily made up of a number of routing and transport services, for example:

• A ChannelBroker implements a channel-based publish/subscribe message broker. There
may be multiple implementations that build on different overlay network topologies.

• A RoutingService provides the functionality to forward a message to a remote node specified
by its node address. It keeps track of available transport services on the next lower layer
and picks a suitable transport for the message based on some metric. There may be
multiple implementations that use different routing algorithms, e.g., single-hop, classic
distance vector, or ad-hoc on-demand distance vector.

• An IPTransportService provides message transport over IP connections. There may be dif-
ferent implementations on this level that are based, e.g., on serial links or shared memory.

For improved flexibility and to support implicit adaptations, proxy handlers may be specified
in the stack instead of specific handlers. A proxy handler picks the most suitable handler from
a set of handlers. For example, specifying the proxy AnyTransportService permits MundoCore
to use any available transport service. The concrete handler used is determined either by the
proxy itself or the proxy tries one handler after the other until a handler accepts the message
together with the destination address.

Secondary handlers may be inserted into the protocol stack based on an application’s re-
quirements. Such handlers include:

• The Activation handler transforms active object graphs into passive object trees and vice
versa. This handler is in the stack if object serialization or remote method calls are used.
In a typical stack, this is the first handler.

• The BinSerialization or XMLSerialization handlers transform a passive object tree into a
binary or textual representation. In a typical stack, this is the second handler. The
following handlers then operate on binary data.

• The Fragment handler allows fragmenting big messages into a number of smaller messages
and to reassemble the fragments in the correct order to reproduce the original message. For
example, this handler is useful if the underlying transport is UDP-based and the message
size may exceed the maximum allowed size of UDP packets.

• The ZIP handler compresses the contents of the message.

• Encryption handlers allow encrypting and decrypting a message. Symmetric and asym-
metric encryption methods are provided, e.g., AES and RSA. Usually, an application first
generates a symmetric session key and then exchanges this key via a channel that uses
asymmetric encryption. Then, the actual data transfer is performed over a second channel
using symmetric encryption.

Applications can provide their own, additional message handlers, if necessary. Handlers may
add metadata chunks with service-specific address and routing information or transform the
payload data. If the content type of the payload is changed, the handler changes the MIME-
type of the message accordingly. For example, a compression handler applied to a message of
type text/xml changes the type to application/zip. The original content type is stored in a private
metadata chunk so that it can be restored later on the receiver’s side.

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

4.7 Upward Processing 4 PROTOCOL HEAPS

4.7 Upward Processing

When a packet is received, the protocol stack should be processed upwards starting from the
transport layer up to the application layer. In contrast to downward processing, the transport
service cannot simply forward an incoming message to the next higher handler, because each
channel may have its own stack and the stack which matches the message is not known at this
stage. Hence, upward processing is done in two phases:

1. In the first phase, the name of the destination channel is not known. The responsible
message handler is determined by the MIME-type of the message. The mapping between
MIME-types and handlers is unique, i.e., only a single handler can be registered for a
specific type. If multiple handlers can process the same type, then a proxy handler must
be used that picks and delegates to a concrete handler. The same handler can only be
invoked once in a row in order to avoid infinite loops.

2. The second phase starts as soon as the name of the destination channel is known. As
a consequence, the protocol stack associated with the channel is also known. The first
broker service in the stack is now located and then the remainder of the stack is processed
up to the application level.

4.8 Custom Protocol Stacks

A couple of examples for custom protocol stacks and their relation to the layer model are
described in the following.

AnyTransport

AnyRouting

Language
Binding
Layer

Brokering
Layer

Routing
Layer

Transport
Layer

Activation

ChannelBroker

BinSerializer

Application
Layer

AnyTransport

BinSerializer

AnyRouting

ChannelBroker

RateControl

AnyTransport

AnyRouting

Activation

ChannelBroker

BinSerializer

BinSerializer

ZIPCompression

AESEncryption

Application Application Application

(a) Pub/Sub (b) Encryption (c) Streaming

WS-Invocation

XMLSerializer

IPTransport

RMC Stubs

Activation

Application

(d) WebService

RMC Stubs

CORBA

Activation

Application

(e) CORBA

Figure 2: Examples for custom protocol stacks

The default stack provides publish/subscribe communication with channel-based addressing,
object activation, and permits the middleware to automatically pick suitable routing and trans-
port services (Figure 2a). Single channels can be encrypted by adding an encryption handler
below activation. Because the encryption handler operates on binary data, the message must be

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

5 PROGRAMMING WITH MUNDOCORE

serialized before. In addition, a compression handler was added to this stack as well (Figure 2b).
For streaming media data, a rate control handler is typically used in a high layer to provide end-
to-end Quality of Service (Figure 2c). Remote method calls can be performed by adding stubs
in the language binding layer. Client and server stubs exchange invocation messages using the
MundoCore RMC protocol. Invocation messages can also be translated to alternate inter-ORB
protocols by adding the appropriate broker services, e.g. XML/SOAP Web Services (Figure 2d)
or CORBA-IIOP (Figure 2e).

5 Programming with MundoCore

MundoCore has been implemented in Java, C++, and Python. Services are based on the
MundoCore framework, which provides a platform abstraction and skeletons to build services.
The C++ version supports the platforms Win32, Windows CE, Linux, uClinux, and MacOS/X.
It provides wrappers for memory management, process management (threads and synchroniza-
tion), and I/O (files, sockets, serial port, audio devices) APIs. The advantage of C++ is that
it is easy to access hardware, low-level operating system APIs and program efficient audio and
video processing services. Hence, MundoCore C++ is primarily used for low-level services and
for services where performance is critical. Most higher-level services are programmed in Java,
because of the higher productivity. The following discussion will be limited to the Java version.

In principle, the Java Virtual Machine and the Java class libraries are designed to hide
the peculiarities of the underlying platform from applications. However, the three different
Java profiles (J2SE, J2ME/CDC, and J2ME/CLDC) supported by MundoCore have significant
differences, e.g., missing language features (no static access to class objects with .class on CLDC)
or missing basic interfaces (no Cloneable on CLDC). Hence, our platform abstraction provides
some of the missing interfaces. Missing language features have to be handled by using the
preprocessor. A minimum configuration of the Java version is only 46 KB (JAR size) small and
therefore easily fits on a mobile phone.

In the following subsections, we will explain the API of MundoCore by means of simple
example programs. The basic API is similar to other publish/subscribe systems, such as JMS
[31], or Elvin [28]. The novel elements in MundoCore are that messages can be accessed at dif-
ferent levels in different representations, the concept of filter objects, the seamless integration of
remote method calls with the publish/subscribe system, and the connector abstraction enabling
better decoupling for remote calls.

5.1 Publish/Subscribe in MundoCore

In the following, a simple chat program is considered. The publish/subscribe paradigm is well-
suited for such group communication applications. Because the publish/subscribe system han-
dles subscription management and distribution, it is only necessary to write a chat client appli-
cation. A server is not needed. An arbitrary number of clients can be started in the network.
The program publishes to and subscribes to a common channel, named chat.

class ChatClient extends Service implements IReceiver {
private Subscriber subscriber;
private Publisher publisher;

// overrides Service.init
public void init() {

Channel ch=getSession().getChannel(”lan”, ”chat”);
subscriber=getSession().subscribe(ch, this);

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

5.2 Object Externalization 5 PROGRAMMING WITH MUNDOCORE

publisher=getSession().publish(ch);
}
// implements IReceiver.received
public void received(Message msg, MessageContext ctx) {

System.out.println(msg.getMap().getString(”text”));
}
public void send(String text) {

TypedMap map=new TypedMap();
map.putString(”text”, text);
publisher.send(new Message(map));

}
}

To receive messages, the service subscribes to the common channel and gets a Subscriber
object in return. The second parameter of subscribe specifies the object implementing the
IReceiver interface. The received method of this interface is called when a message is received.
Subscribers receive messages through sessions. Sessions decouple message delivery from message
handling. Messages delivered by the kernel are stored in a queue and then dispatched to the
handler by a separate thread. This concept enhances concurrency and simplifies synchronized
access to objects that reside in their own threads of control. In order to send messages to the
common channel, the service has to advertise first and gets a Publisher object in return. The
send method of this object can then be used to publish messages.

5.1.1 Content-based Subscriptions

The following example shows how to define a content-based subscription with a TypedMapFilter
structure representing a conjunctive filter. Only messages whose text field contains the substring
IMPORTANT pass the filter.

TypedMapFilter filter=new TypedMapFilter();
filter.putString(”text”, AttributeFilter.CONTAINS, ”IMPORTANT”);
subscriber=ContentSubscription.subscribe(session, filter);

The same filter can also be specified using XQuery:
XQuery xq=new XQuery();
xq.parse(”for $o in $msg where contains($o/text, ’IMPORTANT’)”);
subscriber=ContentSubscription.subscribe(session, xq.getMapFilter());

Because the filter model is limited to conjunctive filters and a limited set of operators, only
a subset of the XQuery language is implemented.

These examples illustrated how messages objects can be directly constructed and accessed
in service code. The next section shows how arbitrary Java objects can be directly used in
messages.

5.2 Object Externalization

The metadata tag @mcSerialize instructs the precompiler to generate the necessary externaliza-
tion code for the class ChatMessage:

@mcSerialize
public class ChatMessage {

public String text;
}

Objects of this class can now be directly used as arguments for the send method:
publisher.send(new ChatMessage(text));

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

5.3 Remote Method Calls 5 PROGRAMMING WITH MUNDOCORE

Receivers can obtain the ChatMessage object using the getObject method of Message.

public void received(Message msg, ...) {
... (ChatMessage)msg.getObject();

}

5.2.1 Filter Objects

The precompiler also supports the automatic generation of filter classes. Filters can be generated
for all serializable classes that also specify the @mcFilter attribute:

@mcFilter
@mcSerialize
public class ChatMessage {

public String text;
}

This filter class can now be used as follows to make a subscription:

ChatMessageFilter filter=new ChatMessageFilter();
filter.text=”IMPORTANT”;
filter. op text=filter.CONTAINS;
subscriber=ContentSubscription.subscribe(session, filter);

5.3 Remote Method Calls

This section discusses an implementation of the chat program based on Remote Method Calls.
Remote method calls rely on additional client and server stub classes that are generated by the
precompiler. The @mcRemote tag indicates, that the compiler should generate client and server
stub classes for the following class or interface.

@mcRemote
class ChatService extends Service {

@mcMethod
public void chatMessage(String text) {

// process message
}

}

On the “server side”, the object is connected to the channel chat-rmc with the following opera-
tion:

Signal.connect(getSession().subscribe(”lan”, ”chat−rmc”), this);

On the “client side”, a distributed object (i.e., a client stub) is created an connected to the same
channel:

doChat=new DoChatService();
Signal.connect(doChat, getSession().publish(”lan”, ”chat−rmc”));

A client can now call the chatMessage method on the distributed object to send a message.
Methods in the client stub accept an additional parameter that permits to select between syn-
chronous, asynchronous and oneway calls. In this case the choice is oneway, because it is not
important that the call blocks and if more than one peer is present, then the call might yield
multiple results. (The current implementation would only uses the first result and drop other
responses.)

doChat.chatMessage(text, ClientStub.ONEWAY);

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

6 EVALUATION

5.3.1 Output Interfaces

To send messages to remote parties, the previous example used a remote reference variable. A
drawback of this solution is that the proxy object is created in client code and the outgoing
connections are not explicitly defined in the interface of the service.

@mcRemote
class IChat {

public void chatMessage(String text);
}

class ChatService extends Service implements IChat emits IChat {
public void chatMessage(String text) {

// handle message
}

}

Two local chat services this and otherInstance can be interconnected with the following con-
nect statements:

Signal.connect(this, otherInstance);
Signal.connect(otherInstance, this);

Interfaces can also be connected to subscribers and output interfaces can be connected to pub-
lishers:

Signal.connect(getSession().subscribe(”lan”, ”chat−rmc”), this);
Signal.connect(this, getSession().publish(”lan”, ”chat−rmc”));

All chat examples shown so far explicitly connect the input and output ports of the service
in the init method, which is called at service initialization time. When the last concept with
explicit input and output interfaces is used, a greater degree of decoupling can be achieved.
The service can be connected from outside, by an external coordinator component and does not
make subscriptions or advertisements by itself.

6 Evaluation

The first series of tests compares the performance of MundoCore with other systems (Figure 3).
The tests were conducted on two Athlon 64 systems with 2,0 GHz running Windows XP, inter-
connected by a 1 GBit/s network.

Publish/Subscribe (Test A): This test measures the roundtrip time from a client to a
server process. Because brokers are implemented as external processes in SwiftMQ (A1), it has
additional communication costs. This is the main reason why MundoCore (A2) performs better
in this test. Overall, the results show that the publish/subscribe system of MundoCore provides
a good performance compared to an industry-strength product.

Publish/Subscribe with XML (Test B): This test is similar to the previous one, but
uses XML for message encoding. MundoCore (B2) was compared with JXTA 2.3.1 [34] (B1).
Since JXTA generally uses XML to encode messages, MundoCore was configured to use the
XML/SOAP protocol for better comparability. In JXTA, publish/subscribe was emulated by
using pipes. The performance is quite similar, because both make use of the same XML parser
from the Apache Xerces project and spend most of the time with XML processing. However,
while communication over JXTA pipes is relatively efficient, the discovery of the pipes beforehand
is very inefficient, as later tests will show.

XML Remote Procedure Calls (Test C): Sun’s Java Web Service Developer Pack 2.0
(C1) is compared with MundoCore Java (C2) and MundoCore C++ (C3). Again, the Java-based

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

6 EVALUATION

 0 1 2 3 4 5 6

1.580

3.108

5.158

1.578

0.527

0.098

(A1) Pub/Sub

(B1) XML Pub/Sub

(C1) XML RPC

(D1) RMI+lookups

(D3) RMI

(E1) Local RMI

SwiftMQ 2.1.3

JXTA 2.3.1

JWSDP 2.0

Java 1.5.0-06

Java 1.5.0-06

Java 1.5.0-06

0.9

2.835

4.145

1.35

0.921

0.050

(A2) Pub/Sub

(B2) XML Pub/Sub

(C2) XML RMC over Pub/Sub

(C3) XML RMC over Pub/Sub

(D2) RMC over Pub/Sub

(E2) Local RMC

MundoCore Java

MundoCore Java

MundoCore Java

MundoCore C++

MundoCore Java

MundoCore Java

Test A

Test B

Test C

Test D

Test E

Figure 3: Comparison with Other Systems (Response Time)

programs are based on the same XML parser. MundoCore Java is slightly faster due to more
efficient object adapters and stubs. The C++ program is faster by a factor of three, because it
does not use a VM and because of a custom-built, speed-optimized XML parser.

Remote Method Calls (Test D): MundoCore RMCs are typically used in conjunction
with publish/subscribe to get the benefit of execution transparency. The performance of a
simple Java RMI (D3) was compared with an RMC (D2) and RMI with naming lookups to
emulate the same transparency (D1). RMI is faster than MundoCore in this test, because RMI
uses VM-level optimizations, has a much simpler, linear message flow, and performs less context
switches.

Local Calls (Test E): When client and server reside within the same VM, MundoCore (E2)
performs calls twice as fast as RMI (E1). MundoCore applies protocol handlers only if necessary,
while RMI requests and replies always have to pass through the whole protocol stack.

Overall, the results confirm that the concept of protocol heaps does not have a negative
impact on the performance, compared to the simpler layered architectures. Figure 4 shows the
test results from several embedded platforms.

e830 (Test F): A Toshiba e830 PDA with an Intel PXA272 CPU at 624 MHz running
Windows CE 4.2. The comparison shows a C++ server process using the binary protocol (F1),
XML protocol (F2), and a Java (J2ME/CDC) server process running on the NSIcom CrE-ME
4.00 VM using the binary protocol (F3), and the XML protocol (F4). The advantage of C++
over Java increases on embedded platforms, because efficient Just-In-Time compilation would
require a considerable amount of additional memory, which is often not available.

Triton (Test G): The Ka-Ro Triton 2 is a complete embedded system on a DIMM module. It
is based on an Intel PXA255 CPU at 400 MHz and runs Linux. The figure shows the performance

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

6.1 Discovery 6 EVALUATION

 0 50 100 150 200 250 300 350

312

184

136

37

160

137

36

25

12

(F1) C++, BIN

(F2) C++, XML

(F3) Java, BIN

(F4) Java, XML

(G1) C++, BIN

(G2) C++, XML

(H1) C++, BIN

(H2) C++, XML

(I1) Java, BIN

e830, WinCE

e830, WinCE

e830, WinCE

e830, WinCE

Triton, Linux

Triton, Linux

UNC20, uClinux

UNC20, uClinux

Nokia 3650

Test F

Test G

Test H

Test I

Figure 4: Performance on Embedded Systems (Throughput)

of a C++ server process using the binary (G1) and XML (G2) protocol.
UNC20 (Test H): The FS-Forth UNC20 is a complete system on a small DIL module. It is

based on an NetSilicon 7520 CPU at 55 MHz and runs uClinux.
Nokia 3650 (Test I): A Java J2ME/CLDC server process running on a Nokia 3650 cellphone

using the binary protocol (F1).

6.1 Discovery

The performance of peer discovery was evaluated in MundoCore and JXTA 2.3.1. Each instance
of the test program advertises a communication endpoint and listens for incoming messages.
Next, the program attempts to discover the endpoints of all other instances and sends a message
to each endpoint. On reception of a message, this event is written to a log file together with
a timestamp. This shows how many communication endpoints could successfully be discovered
and used. In addition, the timestamps are used for performance comparison. The MundoCore
test program uses channel-based publish/subscribe. Each instance subscribes to the channel
with the same name as its own and publishes a message to each other channel. JXTA does
not use a publish/subscribe abstraction. However, the task of discovering pipes in JXTA is
equivalent. The JXTA test program creates a unicast pipe and advertises it once using the
discovery service. To discover the other pipes, the discovery service is called with a polling
interval of 1 or 5 seconds.

The tests were conducted on four Athlon 64 PCs with 2.0 GHz running Linux, interconnected
with GBit-Ethernet. On each machine, eight processes were started. This gives a total of 32
processes and 992 discovery operations and message passes.

As the results in Figure 5 show, the performance of MundoCore is considerably better and
JXTA is only able to discover about 80% of the communication endpoints. The behavior of
JXTA is due to its group concept which does not guarantee that all peers can see each other.

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

7 MONITORING

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

P
er

ce
nt

Time (seconds)

MundoCore C++
MundoCore Java

JXTA 5s
JXTA 1s

Figure 5: Discovery Performance of MundoCore and JXTA

However, in pervasive computing it is often required to discover resources within a defined,
limited scope in a reliable manner. Thus, JXTA is not suitable for applications that require a
good quality of peer discovery.

7 Monitoring

The MundoCore Inspect tool is a SWING-based application to monitor the running system.
This application connects to the debug service of an arbitrary remote node and permits to view
information about the running services. This tool allows to

• list the current routing table of a node and the states of the corresponding connections

• list the imports and exports tables of the publish/subscribe brokers. The imports table
contains a list of all channels for which local subscriptions exist. The exports table lists
channels along with all adjacent nodes interested in receiving messages from this channel.

• inspect messages

• inject messages into the publish/subscribe system

• call methods on a service with a generic RMC client

• deploy, start, and stop services

• view service configuration information and reconfigure services

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

8 RELATED WORK

8 Related Work

Conventional middleware systems like CORBA [4], Java RMI [15], or DCOM [13] were developed
to provide unified access to remote objects independent of hardware architectures, operating
systems and programming languages. They assume a mostly stable network environment and
treat service unavailability as an error. Because conventional middleware is based on a monolithic
design and aims to provide as many services as possible, it is resource intensive and not suitable
for small devices.

Resource-poor devices are addressed by shrinked versions of conventional middleware sys-
tems, e.g. Minimum CORBA [21]. However, providing only a functional subset often leads to a
different programming model. Because Minimum CORBA lacks dynamic invocation, extended
methods not specified in the shrinked interfaces become inaccessible. Furthermore, the CORBA
IIOP and Java JRMP protocols are not self-describing, i.e., an interface repository must be
accessed at run time in order to understand the structure of invocation messages and to perform
dynamic invocations. In MundoCore, invocation messages contain all necessary type informa-
tion. In contrast to CORBA and RMI, dynamic invocation and dynamic stubs are considered to
be the basic functionalities and are made available on all platforms. This way, even MundoCore
services running on limited Java profiles can access all available services and methods in the
distributed system.

Communication frameworks designed for small devices often also lack essential features like
object serialization and remote method invocations. This otherwise common functionality then
has to be built into the application code. The connector abstraction in MundoCore and the
platform-dependent, automatic generation of connector code by the precompiler enable a much
more consistent API across different platforms.

Reconfigurable middleware (e.g. [6, 18, 19, 25]) can adapt its behavior to different envi-
ronments and application requirements. Such middleware has additional interfaces allowing
applications to change the strategies for e.g. concurrency, request demultiplexing, scheduling,
marshaling and connection management. In addition, monitoring is supported to detect when
adaptation should take place. Most of these systems are focused on powerful reconfiguration
interfaces rather than on a fine-grained modular structure suitable for resource-poor devices.
Furthermore, they do not address spontaneous networking. Notable exceptions are modular
middleware approaches that specifically target pervasive computing applications, like BASE [6]
and UIC [25]. These two systems will be described in more detail in the following.

The development of UIC (Universally Interoperable Core) [25] is related to the Gaia [24]
component-based operating system designed for active spaces. UIC defines a skeleton based on
abstract components, which encapsulate the standard functionality aspects common to most
object request brokers. Concrete dynamically loadable components specialize these abstract
components to implement the properties required for particular middleware platforms, devices,
and networks. UIC must be specialized to meet the particular application’s requirements. A
particular instance is denoted as a personality after the specialization.

BASE [6] is a micro-broker-based middleware developed at the University of Stuttgart. The
micro-broker is the central component of the architecture that implements only a minimal func-
tionality. It is responsible for dispatching invocation objects between local services, or to a
transport plug-in, which transports the invocation to a remote broker. A minimum configura-
tion of the middleware can be run on resource-constrained devices. Resource-rich environments
can augment the functionality by adding plug-ins to the system. The prototype of BASE is
implemented in Java and relies only on the functionality provided by the Java J2ME/CLDC
profile. In contrast to that, we have five different MundoCore libraries (for Java 1.1, 1.2, 1.3,

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

9 CONCLUSION

1.4, and 1.5). Each library makes optimal use of the underlying Java framework, which results
in a higher quality of service by the middleware. For example, MundoCore’s node discovery
works better on Java 1.4 and 1.5, because of improved Java networking APIs. The MundoCore
precompiler allows us to generate these different versions from a single source code.

Compared to reconfigurable middleware systems, the concept of protocol heaps is a unique
feature of MundoCore. Other systems either do not support a fine-grained control of message
transport, or they do not support adaptivity. While UIC and BASE allow to build adaptive
systems, reconfigurations always have a global impact on a node. A commonly used concept
are Interceptors [27]. However, they offer no or only little control of how messages flow through
the middleware services. In iBus [5], the order in which protocol handlers are applied is strictly
defined by the stack and each stack ends in a specific TCP or UDP port. This leaves no
room for adaptivity. MundoCore permits applications to customize the message transport on
a much more fine-grained level by defining service-specific communication stacks. The concept
of protocol heaps is described in [8]. However, the authors do not provide implementation
details or efficient algorithms for determining the message flow. A similar approach to the
connector abstraction in MundoCore is described in [3]. MundoCore supports both adaptivity
and application-specific protocol stacks.

one.world [14] represents all data as tuples, which define a common data model, including
a type system and expresses all communication through asynchronous events. Tuples are self-
describing, such that applications can dynamically inspect their structure and contents. Mundo-
Core uses a similar approach with its message structure. However, one.world tuples build on
Java classes as types, resulting in a programmatic data model which suffers from interoper-
ability problems. MundoCore clearly distinguishes between active messages (a programmatic
data model) and passive messages (a data-centric model) and clearly defines the transformations
between these two representations.

Distributed event-based systems, such as JMS [31], Elvin [28], Rebeca [11], or Siena [9], are
mainly designed for the Internet and do not perform well in mobile settings. More recent work
addresses temporary disconnections [32], durable subscriptions [7], roaming [36], and extend-
ing such systems using interception [10]. Since publish/subscribe is an important foundation
of MundoCore, it has many commonalities with distributed event-based systems. However,
MundoCore permits a more flexible configuration of the communication stack and offers a seam-
less integration of the distributed object-oriented programming paradigm.

Most other systems also lack zero-configuration capabilities. For example, JXTA [34] requires
dynamic configuration data and user interaction. It is basically designed for running only a single
process per machine and brings up a GUI on the first start of each process where the user has
to manually assign port numbers, a client name and create an administrator account. Pastry
[26] requires per-node configuration information as well. Each instance must be assigned a local
port number, and the hostname and port number of a boot peer must be specified.

9 Conclusion

MundoCore is a novel communication middleware specifically designed to meet the requirements
of pervasive computing. In a nutshell, MundoCore has two distinctive features: i) it scales from
servers and PCs all the way down to resource restricted embedded hardware and sensors, featur-
ing a very small footprint and thereby high efficiency - without compromising the capabilities,
i.e., application potentials by any restrictions; ii) it provides a distinctive harmonization of all
the important communication abstractions needed in advanced distributed smart environments:

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

REFERENCES REFERENCES

DOOP (distributed object oriented programming), publish/subscribe, peer-to-peer, and multi-
media communication, i.e., streaming.

These distinctive ‘outside’ features are realized by way of a considerable number of ‘inside’
concepts. On the highest level, these concepts can be summarized as follows. The first feature
- small footprint - is mainly supported through a dynamically reconfigurable architecture with
‘loadable’ services, the ‘connector’ abstraction for component separation, and the data structures
and algorithms that realize the ‘protocol heap’ approach; the autoconfiguration flexibility comes
at very low cost, namely complexity O(1). The second feature - harmonization of programming
abstractions - is based on both the layer model and a concise way of building these abstraction
atop the core publish/subscribe concept, combined with small but important extensions to the
host programming languages.

The evaluation as described in the present paper provides a glance at the efficiency and
sophistication of MundoCore. In addition to that, the number of applications, prototypes, and
services built atop MundoCore to date - a total of about 50 - represent vital proofs of the quality
of both the approach and its realization.

The monitoring approach described is also just one example from a coordinated set of devel-
opment tools. These tools - for design, test, performance evaluation, etc. - complement standard
software development aids in cases where the development of pervasive computing applications
requires special care. For instance, integrated modeling / test tools support visual design and
testing of intelligent environments, both in 2D (e.g., visualizing application components on a
floor plan) and in 3D (visualizing applications that require a geometric model of the environ-
ment). All in one, MundoCore and the development tools, together with a few off-the-shelf
tools, represent a full-featured distributed programming environment.

MundoCore has been released under an open-source license and can be downloaded from the
homepage of our research group.

References

[1] Behnaam Aazhang and Joseph R. Cavallaro. Multitier Wireless Communications. Wireless
Personal Communications, 17(2–3):323–330, June 2001.

[2] Erwin Aitenbichler. System Support for Ubiquitous Computing. PhD thesis, Darmstadt
University of Technology, 2006.

[3] Jonathan Aldrich, Vibha Sazawal, Craig Chambers, and David Notkin. Language Support
for Connector Abstractions. In Proceedings of ECOOP 2003, volume 2743 of LNCS, pages
74–102, 2003.

[4] M. Aleksy, Axel Korthaus, and Martin Schader. Implementing Distributed Systems with
Java and CORBA. Springer, Berlin, 2005.

[5] M. Altherr, M. Erzberger, and S. Maffeis. iBus - A Software Bus Middleware for the Java
Platform. In International Workshop on Reliable Middleware Systems, pages 43–53, 1999.

[6] Christian Becker, Gregor Schiele, Holger Gubbels, and Kurt Rothermel. BASE - A Micro-
Broker-Based Middleware for Pervasive Computing. In First IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom’03), pages 443–451. IEEE
Computer Society, 2003.

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

REFERENCES REFERENCES

[7] Sumeer Bhola, Yuanyuan Zhao, and Joshua Auerbach. Scalably Supporting Durable Sub-
scriptions in a Publish/Subscribe System. In International Conference on Dependable Sys-
tems and Networks (DSN), pages 57–66. IEEE Computer Society, June 2003.

[8] Robert Braden, Ted Faber, and Mark Handley. From Protocol Stack to Protocol Heap -
Role-Based Architectures. ACM SIGCOMM Computer Communications Review, 33(1):17–
22, January 2003.

[9] Antonio Carzaniga. Architectures for an Event Notification Service Scalable to Wide-area
Networks. PhD thesis, Politecnico di Milano, Milano, Italy, 1998.

[10] Edward Curry, Desmond Chambers, and Gerard Lyons. Extending Message-Oriented Mid-
dleware using Interception. In 3rd International Workshop on Distributed Event-Based
Systems (DEBS’04), 2004.

[11] Ludger Fiege, Gero Mühl, and Felix C. Gärtner. A Modular Approach to Build Structured
Event-based Systems. In ACM Symposium on Applied Computing (SAC), pages 385–392.
ACM Press, 2002.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley Professional, 1995.

[13] Richard Grimes. Professional DCOM Programming. Wrox Press, 1999.

[14] Robert Grimm. One.world: Experiences with a Pervasive Computing Architecture. Perva-
sive, 3(3):22–30, July 2004.

[15] William Grosso. Java RMI. Designing and Building Distributed Applications. O’Reilly
Media, 2001.

[16] Arnaud Le Hors, Philippe Le Hgaret, Lauren Wood, Gavin Nicol, Jonathan Robie, Mike
Champion, and Steve Byrne. Document Object Model (DOM) Level 2 Core Specification.
http://www.w3.org/TR/DOM-Level-2-Core/, November 2000.

[17] IANA. MIME Media Types. http://www.iana.org/assignments/media-types/, August
2005.

[18] Anthony D. Joseph, Joshua A. Tauber, and M. Frans Kaashoek. Mobile Computing with
the Rover Toolkit. IEEE Transactions on Computers, 46(3):337–352, 1997.

[19] Fabio Kon, Manuel Roman, Ping Liu, Jina Mao, Tomonori Yamane, Luiz Claudio Maga-
lhaes, and Roy H. Campbell. Monitoring, Security, and Dynamic Configuration with the
dynamic TAO Reflective ORB. In Middleware 2000: IFIP/ACM International Conference
on Distributed Systems Platforms, volume 1795 of LNCS, pages 121–134. Springer, 2000.

[20] Charles M. Kozierok. The TCP/IP Guide. http://www.tcpipguide.com/free/t
TCPIPArchitectureandtheTCPIPModel.htm, 2001.

[21] OMG - The Object Management Group Inc. The Minimum CORBA Specification. http:
//www.omg.org/cgi-bin/doc?formal/02-08-01, August 2002.

[22] Bhaskaran Raman, Pravin Bhagwat, and Srinivasan Seshan. Arguments for Cross-Layer
Optimizations in Bluetooth Scatternets. In Symposium on Applications and the Internet
(SAINT01), pages 176–184. IEEE Computer Society, January 2001.

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

REFERENCES REFERENCES

[23] Sylvia Ratnasamy, Paul Francis, Richard Karp, and Scott Shenker. A Scalable Content-
Addressable Network. In SIGCOMM 2001, pages 161–172. ACM Press, 2001.

[24] Manuel Roman, Christopher Hess, Renato Cerqueira, Anand Ranganathan, Roy H. Camp-
bell, and Klara Nahrstedt. A Middleware Infrastructure for Active Spaces. Pervasive,
1(4):74–83, October 2002.

[25] Manuel Roman, Fabio Kon, and Roy H. Campbell. Reflective Middleware: From Your
Desk to Your Hand. IEEE Distributed Systems Online Journal, Special Issue on Reflective
Middleware, 2001.

[26] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems. In Middleware 2001: IFIP/ACM International Con-
ference on Distributed Systems Platforms, volume 2218 of LNCS, pages 329–350. Springer,
November 2001.

[27] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-Oriented
Software Architecture, Vol.2 : Patterns for Concurrent and Networked Objects. John Wiley
& Sons, 2000.

[28] Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe notifica-
tion service with quenching. In Proceedings of AUUG97 (Online Proceedings), Brisbane,
Australia, 1997.

[29] Ralf Steinmetz and Klaus Wehrle. Peer-to-Peer Systems and Applications. Springer, 2005.

[30] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet applications. In Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for computer
communications, pages 149–160. ACM Press, 2001.

[31] Sun Microsystems. Java Message Service. http://java.sun.com/products/jms, 2006.

[32] Peter Sutton, Rhys Arkins, and Bill Segall. Supporting Disconnectedness - Transparent
Information Delivery for Mobile and Invisible Computing. In First International Symposium
on Cluster Computing and the Grid, pages 277–285. IEEE Computer Society, May 2001.

[33] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley Professional, 1997.

[34] Bernard Traversat, Ahkil Arora, Mohamed Abdelaziz, Mike Duigou, Carl Haywood, Jean-
Christophe Hugly, Eric Pouyoul, and Bill Yeager. Project JXTA 2.0 Super-Peer Virtual
Network. http://java.sun.com/othertech/jxta/, May 2003.

[35] Ronald E. Wyllys and Philip Doty. Notes on the 5-Layer and 7-Layer Models of Interconnec-
tion. http://www.gslis.utexas.edu/∼l38613dw/readings/NotesOnInterconnection.
html, 2000.

[36] Andreas Zeidler. A Distributed Publish/Subscribe Notification Service for Pervasive Envi-
ronments. PhD thesis, Department of Computer Science, Darmstadt University of Tech-
nology, November 2004.

Published in: E. Aitenbichler, et al., MundoCore: A light-weight infrastructure
for pervasive computing, Pervasive and Mobile Computing (2007),

doi:10.1016/j.pmcj.2007.04.002, published by Elsevier B.V.

