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Abstract: Systems of Multivariate Quadratic Equations (M Q ) are important in cryptography due to the
resistance against attacks that will arise with the advent of quantum computing. Resistant algorithms
against attacks based on quantum computing are called post-quantum cryptography. Unbalanced Oil-
Vinegar (UOV) is a well known post-quantum signature scheme based on M Q . This paper presents a
variation of the implementation of UOV. The proposed and default schemes were implemented in Java
using FlexiProvider library, and they were compared with each other. The results present a faster
processing time and a reduction in private key size. The proposed implementation was inspired by cryp-
tographic symmetric algorithm RC4 to generate the private key. The size of the private key is independent
of the parameters chosen to UOV.

Key-words: Multivariate Quadratic Equation, Post-Quantum Cryptography, Unbalanced Oil and Vine-
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1 Introduction

Currently all digital signature schemes that ensure Internet security are based on the problem of integer
factorization or the discrete logarithm. However, due to Shor’s algorithm [9], these problems can be
easily solved on a quantum computer of appropriate size. Therefore one needs alternatives to the classical
public-key schemes like RSA [8], DH [1] and ECDLP [5, 4], so called Post-Quantum Schemes.

There are several proposed post-quantum algorithms, however M Q based schemes are the most
promising: Multivariate public key cryptography is one of the main approaches to guarantee on the
security of communication in the post-quantum world [6].

One of the best known multivariate signature schemes is the UOV scheme of Kipnis and Patarin [3].
Since the operations needed by UOV are computationally very simple, it is very fast and can also be used
on small devices like RFID chips and smart cards. However, the key sizes of UOV are relatively large.

In this paper we present a variation of the standard UOV implementation in which we can create
smaller private keys as well as speed up the processing time, and also present a comparison with the
default implementation. On [7] can be found a scheme to reduce the public key, this work presents a
scheme to reduce the private key.

∗I would like to thank to PCI/LNCC for funding me to visit the CASED at end of 2010 and also to Prof. Johannes Buchmann
and Dr. Stanislav Bulygin for discussions about M Q .
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Figure 1: Signature generation and verification.

2 Multivariate Public Key Cryptography

The basic idea behind multivariate cryptography is to choose a system F of m quadratic polynomials in
n variables which can be easily inverted (central map). After that one chooses two affine invertible maps
S and T to hide the structure of the central map. The public key of the cryptosystem is the composed
quadratic map P = S ◦F ◦T which is difficult to invert. The private key consists of S , F and T and
therefore allows to invert P . Due to this construction, the security of multivariate cryptography is based
on two mathematical problems:

Problem M Q : Solve the system p1 = · · ·= pm = 0, where each pi is a quadratic polynomial in the
n variables x1, . . . ,xn with coefficients and variables in GF(q).

Problem EIP (Extended Isomorphism of Polynomials): Given a class of central maps C and a map
P expressible as P = S ◦F ◦T , where S and T are affine maps and F ∈ C , find a decomposition of P
of the form P = S ′ ◦F ′ ◦T ′, with affine maps S ′ and T ′ and F ′ ∈ C .

In this paper we concentrate on the case of multivariate signature schemes. The standard process for
signature generation and verification works as follows in Figure 1.

Signature Generation: To sign a document d, we use a hash function H : {0,1}∗→ Fm to compute
the value h = H (d)∈ Fm. Then we compute x = S−1(h), y = F −1(x) and z = T −1(y). The signature of
the document is z ∈ Fn. Here, F −1(x) means finding one (of the possibly many) pre-images of x under
the central map F .

Verification: To verify the authenticity of a document, one simply computes h′ = P (z) and the hash
value h = H (d) of the document. If h′ = h holds, the signature is accepted, otherwise rejected.

3 The Unbalanced Oil and Vinegar (UOV) Signature Scheme

One way to create an easily invertible multivariate quadratic system is the principle of Oil and Vinegar.
Let F be a finite field. Let o and v be two integers and set n = o+ v. We set V = {1, . . . ,v} and

O= {1, . . . ,o}. We call x̌1, . . . , x̌v the Vinegar variables and x1, . . . ,xo Oil variables. We define o quadratic
polynomials f (k)(x) = f (k)(x1, . . . ,xo, x̌1, . . . , x̌v) by

f (k)(x) = ∑
i∈V, j∈O

α
(k)
i j x̌ix j + ∑

i, j∈V, i≤ j
β
(k)
i j x̌ix̌ j (1)

Note that Oil and Vinegar variables are not fully mixed.
The map F = ( f (1)(x), . . . , f (o)(x)) can be easily inverted. First, we choose the values of the v

Vinegar variables x̌1, . . . , x̌v at random. Therefore we get a system of o linear equations in the o variables
x1, . . . ,xo which can be solved e.g. by Gaussian Elimination. If the system does not have a solution, one
has to choose other values of x̌1, . . . , x̌v and try again.

The public key of the scheme is given as P = F ◦T , where T is an affine map from Fn to itself. The
private key consists of the two maps F and T .

Remark: In opposite to other multivariate schemes the second affine map S is not needed for the
security of UOV. So it can be left out.

The UOV signature scheme over GF(28) is commonly believed to be secure for o ≥ 26 equations
and v = 2 · o Vinegar variables. For UOV schemes over GF(31) we need at least o = 33 equations and
v = 2 ·o Vinegar variables.



4 Implementation Details

In our implementation we use a matrix representation of the polynomials. A homogeneous quadratic
polynomial f can be represented as a matrix Q following the relation

f (x1, . . . ,xo, x̌1, . . . , x̌v) =~xQi~xT ,

where~x = (x1, . . . ,xo, x̌1, . . . , x̌v). Since xix j = x jxi∀i, j, we have diagonal superior matrices.
For instance, let F=GF(4), o = v = 3 and α be a generator of F. Let f be the polynomial

f = αx1x̌1 +αx1x̌2 + x2x̌1 + x2x̌3 +α2x3x̌1
+ x3x̌2 +α2x3x̌3 +α2x̌1x̌2 + x̌1x̌3
+ x̌2x̌3 +αx̌2

3

(2)

of type (1), then the matrix representation of f is given by

Q =



0 0 0 α α 0
0 0 0 1 0 1
0 0 0 α2 1 α2

0 0 0 0 α2 1
0 0 0 0 0 1
0 0 0 0 0 α

=

(
0 A
0 B

)
,

where A and B are block matrices of size 3×3. These block matrices are used in our implementation of
the scheme. Note that, due to the special structure of the polynomial (2), the upper left submatrix of Q is
zero. Algorithm 1 generates a set of matrices for the UOV private key.

Algorithm 1 UOV Private Key
Require: Integers o and v
Ensure: Private Key

1: for i < o do
2: Qi← random Oil-Vinegar matrix
3: end for
4: Ln×n← an invertible random matrix
5: return Qi (i = 0, . . . ,o), L

Algorithm 2 generates a public key associated with private key from Algorithm 1. An attacker,
observing the public key but not having access to private key, must attempt to recover Qi from Q̄i. It is
assumed that the attacker does have knowledge of the algorithm but does not know L and Qi.

Algorithm 2 UOV Public Key
Require: Private Key
Ensure: Public Key

1: for i < o do
2: Q̄i← LT QiL
3: end for
4: return Q̄i (i = 0, . . . ,o)

Algorithm 3 shows how to sign a message that might be a hash. This is the analogous operation with
polynomials represented as matrices. More informations about the operations with polynomials can be
found in [2].

The recipient may verify the signature using Algorithm 4.



Algorithm 3 UOV Signature
Require: Private Key and Message M = (m1, . . . ,mo)
Ensure: Signature (s1, . . . ,sn)

1: repeat
2: V = (x̌1, . . . , x̌v)← random values
3: for i < o do
4: Fi←V× SubmatrixA(Qi)
5: yi← mi +V× SubmatrixB(Qi)×V T

6: end for
7: z← GaussianElimination(F,y)
8: until gets a solution z
9: (s1, . . . ,sn)← (y1, . . . ,yo,z1, . . . ,zv)×L−1

10: return (s1, . . . ,sn)

Algorithm 4 UOV Verifing the Signature
Require: Public Key, Message M and Signature S
Ensure: True or False

1: for i < o do
2: Wi← SQ̄iST

3: end for
4: if W = M then
5: return True
6: else
7: return False
8: end if

4.1 Paper Contribution

The main contribution of this paper lies in speeding up Algorithm 1. Instead of using pseudo-random
numbers generated by the FlexiProvider function getRandomElement we use Algorithm 5. The per-
mutations generated by the Algorithm 5 are inspired by the symmetric algorithm RC4 which is widely
used on the Internet.

Algorithm 5 receives three parameters, a symmetric key K and states i and j. The states are started as
zero and the key K is composed by elements of the field. The key size |K| can be chosen independently
of the UOV parameters. Moreover one has to store only K to recover the whole key.

Algorithm 5 Pseudo-random stream of bites based on RC4
Require: Private Key K, States i and j
Ensure: Next pseudo-random element of field

1: i← i+1 mod |K|
2: j← j+K j mod |K|
3: t← Ki

4: swap(Ki,K j)
5: Element← (Ki +K j)×Ki+ j mod |K|
6: return Element

Each algorithm was implemented in Java using FlexiProvider library. The following commands
were used: GF2mField k, k.add, k.mult, and k.getRandomElement.

Some popular algorithms were also implemented, namely matrix multiplication over GF(2m) and
transpose, Gaussian elimination for the equation system over GF(2m), and Gauss-Jordan elimination for
the inverse matrix over GF(2m).



· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Table 1: Operations of multiplication (left) and addition (right) of elements in F.

This approach can be used in other languages like C. The use of the function rand() is normally not
enough. Looking to the prototype: void srand ( unsigned int seed ); we can see that the bit size
of the seed might be a small number. For cryptographic purposes, the length of the seed must be at least
80 bit.

4.2 Validation using a Numerical Example

For instance, we consider an unbalanced UOV scheme (o 6= v), where all the operations are performed
over the finite field F=GF(22) = GF(2)[X ]/ < 1+ x+ x2 >. The elements of F can be represented as
the numbers {0,1,2,3}. The additions and multiplications are done according to Table 1. Fields of
characteristics 2 are very interesting because the operations are fast, since they can be performed using
xor and shift.

Let K = {2,2,1,3,2,2,3,1,3,2} and choose o = 3 and v = 5. Thus, the matrices have dimension n2

where n = o+ v = 8 and the UOV private key consists out of {L,Q0,Q1,Q2}. Note that we don’t need
to store these four matrices, but only K. By applying Algorithm 5 we get

L =



2 0 0 0 2 0 1 0
0 0 0 2 0 0 1 0
1 2 3 2 0 3 0 1
0 2 0 0 1 3 0 2
0 3 1 2 3 2 1 3
3 0 1 1 3 1 2 1
1 3 0 1 1 3 2 1
2 1 1 0 3 2 3 3


. and Q0 =



0 0 0 2 2 1 1 0
0 0 0 2 2 3 3 3
0 0 0 1 2 1 0 1
0 0 0 3 1 3 1 2
0 0 0 0 2 1 0 2
0 0 0 0 0 1 2 3
0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 1


,

Q1 =



0 0 0 2 0 3 2 1
0 0 0 2 1 1 2 2
0 0 0 0 3 3 3 1
0 0 0 3 1 3 1 0
0 0 0 0 3 1 1 1
0 0 0 0 0 1 3 1
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 3


, and Q2 =



0 0 0 1 2 3 2 1
0 0 0 3 3 0 1 1
0 0 0 3 1 2 1 1
0 0 0 3 0 1 1 3
0 0 0 0 2 1 2 1
0 0 0 0 0 1 0 3
0 0 0 0 0 0 2 3
0 0 0 0 0 0 0 3


.

The public key consists of {Q̄0, Q̄1, Q̄2}= {LT Q0L,LT Q1L,LT Q2L}.
Suppose that we want to send a message M =(m0,m1,m2)= (2,2,1) with a signature S=(s0,s1,s2,s3,

s4,s5,s6,s7). To find a valid signature we choose the Vinegar variables at random, say V = (x̌0, x̌1, x̌2, x̌3,
x̌4) = (1,0,2,2,3). 2 0 0

3 2 3
0 2 1

x0
x1
x2

=

0
2
3

 .

Thus we get~x = (0,0,3) and our signature is σ = (2,3,2,1,3,1,2,0). The authenticity of the signature
can be verified by computing

m̃i = SQ̄iST (i = 0, . . . ,2).
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Figure 2: Processing time of implementations showed as box-plot.

Since
m̃ = (2,2,1) = m,

the signature is accepted.

5 Simulation Details and Results

The scheme was implemented in Java version 1.7.0 02-b13 64 bits using FlexiProvider packages
version 1.7p3 as a library. We run our program on an Intel Core(TM)2 Duo CPU T9400 2.53GHz
processor with 4GB of memory. The operating system used was Windows 7 Enterprise 64 bit. The
private key of the scheme is chosen using a pseudo-random number generator. In the default version we
used the FlexiProvider command getRandomElement, in the proposed version we expanded a short
seed of |K| field elements using Algorithm 5. We used the UOV parameters o = 26 and v = 52 and the
operations were done over the binary finite field F=GF(28) = GF(2)[X ]/ < 1+ x+ x3 + x4 + x8 >. With
these parameters, we have to generate results 77142 pseudo-random numbers over GF(28) for the private
key, hence for each simulation.

To obtain statistical confidence in our results, 1000 simulation runs were used for each of the two
versions. The default implementation resulted in 269 systems of equations without solution, and the
proposed implementation resulted in 232 systems of equations of 1000 simulations. The default and the
proposed implementation generated 3 and 4 singular matrices L, respectively.

From Figure 2 it can be seen that the default implementation needs much more time and has bigger
standard deviation than the proposed implementation.

Table 2 presents the mean time in milliseconds from the main steps to use UOV.

6 Conclusion

The proposed implementation requests to store an arbitrary smaller key K than in the default implemen-
tation. The size of the key stored is independent of other UOV parameters. A user can memorize K and
the values of o and v, and can use K to generate the private key.

Simulations verify that the proposed implementation is also faster than the default implementation
using the FlexiProvider command getRandomElement. The machine and software chosen are not
appropriate to benchmark, since it is possible to develop faster implementation in C. However, the dif-
ference between the standard and the proposed implementations remains, if the implementation uses a



Mean Time Standard Deviation
Implementations Default Proposed Default Proposed
Private Key 2,193.02 21.01 25.98 11.30
Public Key 1,945.26 2,189.15 28.28 264.25
Signature 115.68 125.95 7.51 31.48
Verify 35.87 36.74 7.16 13.20

Table 2: Time elapsed on average in milliseconds and standard deviations obtained from implementa-
tions.

secure pseudo-random number generator. Other symmetric algorithms can also be used in M Q schemes
in order to increase the security or speed.
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