
Decomposition of Educational Presentation Systems

Georg Turban

Technische Universität Darmstadt

Germany

turban@informatik.tu-darmstadt.de

Max Mühlhäuser

Technische Universität Darmstadt

Germany

max@informatik.tu-darmstadt.de

Abstract

In this paper, we propose an extended version of

our component-based framework for the development

of educational presentation systems. The improvement

is the application of a three-tier architecture. In

contrast to related work, the introduction of new

multimedia types, their rendering and storage can be

completely decoupled from the core system.

1. Introduction

Educational presentation systems exceed the

functionality of traditional presentation systems and

typically support separation of views, ink-annotations

and lecture recordings, for instance. The systems

therefore deal with different multimedia types such as

audios, videos, freehand drawings and images.

In this paper, we propose an extended version of our

component-based framework (presented in [1]) for the

development of educational presentation systems. The

improvement is based on a three-tier architecture.

Extensions that are built following the three tiers

presentation, business and data can uniformly

contribute to the core system. Such extensions can

provide their specific rendering, handling and storage

of multimedia content in order to support functionality

and content that is not yet available within the core

system.

2. Concept

The core presentation system is shown on the left

side of figure 1. The presentation layer provides at

least a presentation area. For a simple presentation

system this area is shown to the lecturer and to the

students. It consists of visualizations that are provided

by extensions. The extensions render their content like

layers in common 2d-graphical applications (more

information about the rendering is provided in [2]) to

this presentation area. The rendering is handled by the

EventDispatcher. Commands such as clear and store

force the rendering of all extensions. The

EventDispatcher is also able to send commands to a

dedicated layer. A clear for a single layer is typically

applied to an annotation layer in order to wipe out all

annotations while keeping the background, for

instance. The EventDispatcher also receives events that

are emitted from extensions. A layer that provides

images of slides may emit the command slide-

transition when applicable. The EventDispatcher then

calls the layer DataPool in order to prepare the storage

Figure 1: Core presentation system and extensions following a three-tier architecture.

Ninth IEEE International Symposium on Multimedia 2007 - Workshops

0-7695-3084-2/07 $25.00 © 2007 IEEE
DOI 10.1109/ISM.Workshops.2007.20

77

Ninth IEEE International Symposium on Multimedia 2007 - Workshops

0-7695-3084-2/07 $25.00 © 2007 IEEE
DOI 10.1109/ISM.Workshops.2007.20

77

of information and content. In a simple scenario the

DataPool-layer gathers the specific content from

extensions by forcing them to store their content to an

entry of the data pool.

3. Examples

The concept can be demonstrated using different

sets of extensions. In addition, the extensions can be

configured and some components can be exchanged on

the fly. In figure 2, a snapshot of a set-up is shown that

consists of following extensions: a background (always

black), a remote framebuffer (shows the content of

remote or local screens) and an ink (fast or smooth

rendering) extension. In the given example, the remote

screen contains the eclipse-IDE and arbitrary

annotations. This set-up can be used as a basis for the

development of distributed presentation systems.

Similar to screen-recordings, the rendered content

can be continuously stored to disc, but augmented

using meaningful navigational indices that can be

obtained from slide-transitions. In contrast to screen-

recorders our solution stores the content provided by

extensions separately including more meaningful

information (please refer to table 1 that contains data

from the first snapshot of figure 3) than available in flat

images.

In figure 3, three other sample configurations are

shown. The left one uses a simple ink-rendering

component (points are highlighted and just connected

by lines). The remaining two samples use an ink-

rendering component for debugging purposes that

displays the points and their corresponding timestamps.

The center and right samples use the so-called

chameleon background component (before and after

switching to a whiteboard-surface) that allows

switching between different colored surfaces.

4. References

[1] G. Turban, and M. Mühlhäuser, “An Open

Architecture for Face-to-Face Learning and Its

Benefits”, in: Proceedings of the 8th IEEE International

Symposium on Multimedia, San Diego, CA, USA,

2006.

[2] G. Turban, and M. Mühlhäuser, “A Framework for the

Development of Educational Presentation Systems and

its Application”, in: Proceedings of the 1st Workshop

on Educational Multimedia and Multimedia Education,

in conjunction with ACM Multimedia, Augsburg,

Bavaria, Germany, 2007.

Figure 3: Different samples of the presentation system and underlying components.

Table 1: Sample entry of the DataPool.
ID Content

0 background 0 0 0

1

2 string br w 2421325

3 stroke 0 0 255 0 0 1.0

point 0 1186853828702 768 432

point 1 1186853828892 747 458

point 2 1186853828892 747 458

[…]

point 37 1186853833559 770 432

stroke 1 0 255 0 0 1.0

[…]

Figure 2: Snapshot of a sample set-up.

7878

