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Abstract. The evaluation of the trustworthiness of complex systems is one of the
major challenges in current IT research. We contribute to this field by providing
a novel model for the evaluation of propositional logic terms under uncertainty
that is compliant with the standard probabilistic approach and subjective logic.
Furthermore, we present a use case to demonstrate how this approach can be
applied to the evaluation of the trustworthiness of a system based on the knowledge
about its components and subsystems.

1 Introduction

The evaluation of the trustworthiness of complex systems is one of the major challenges
in current IT research, as — following the visions of the Internet of Services, the Future
Internet and Cloud Computing — IT systems become highly distributed, dynamically
composed, and hosted and managed by multiple parties. For example, in the field of
Cloud Computing (which we will take as a running example in the following), people
and enterprises are still hesitating to move to the Cloud due to missing transparency and
security concerns [1-3]. However, it is not only the users who are interested in evaluating
the trustworthiness of a service, infrastructure, or platform, but also the providers and
accreditation authorities.

Currently, there are several approaches supporting those stakeholders in assessing the
trustworthiness of such kind of systems, e.g., from the field of trusted computing [4],
experience-based trust and reputation models [5], and security [6-8]. The first two ap-
proaches tackle the evaluation of trust from opposite sides. Trusted computing may pro-
vide a technical root of trust, however, attestation concepts based on trusted computing,
e.g., [9,10] focus on the evaluation of single platforms not on compositions. On the other
hand experience-based trust models concentrate on deriving the trustworthiness of a ser-
vice or system from user feedback without considering technical details. In contrast, the
approaches in [6-8] require knowledge on the implementation or address a particular
security requirement only.

However, for complex systems there is a lack of models that provide means for de-
riving the trustworthiness of the overall system considering (1) the trustworthiness of
the subsystems and atomic components (independently from how these trust values are
assessed), (2) information on how the system combines its subsystems and components,
and (3) the knowledge about which subsystems and components are redundant.



Hereby, a major challenge of this task is taking into account that in real world applica-
tions this information about the trustworthiness of the subsystems and components itself
is subject to uncertainty. For example, reputation values might be based on insufficient
information and current solutions from the field of trusted computing cannot effectively
capture dynamic changes in trust [11]. Also when considering the recent advances in the
field of property-based attestation (e.g., [9]), there is a need for modeling trust and un-
certainty in order to deal with the fact that (1) the state of the system that was measured
at the time of booting does not necessarily reflect the state of the system at the time of
attestation and (2) that the authority that provides the property certificates might only
be trusted to a certain degree [12]. Thus, models for evaluating the trustworthiness of a
complex system need to be capable of modeling the uncertainty that is associated to the
trustworthiness of the subsystems and components of the system and to also calculate and
express the degree of uncertainty associated to the derived trustworthiness of the overall
system.

In this paper, we provide a model for the evaluation of propositional logic terms under
uncertainty. The model has been designed to be compliant to the standard probabilistic
approach and subjective logic [13,14], which also provides the justification for the mathe-
matical validity of the model. In our model a statement about the truth of a proposition
explicitly takes into account the initial expectation about the truth of this proposition
and the knowledge acquired in previous experiments - including a parameter that re-
flects uncertainty associated to this knowledge. In contrast to subjective logic, our model
is based on independent parameters, which is considered to be an advantage from the
modeling perspective and which allows for a more intuitive representation. As a core con-
tribution of this paper, we describe how the parameters of the model can be assessed; we
define operators for AND, OR, and NOT such that the uncertainty can be reflected in
the input as well as in the calculated result; and we give the properties of these opera-
tors. Furthermore, we introduce a use case to show how this approach could be used for
evaluating the trustworthiness of a system in a Cloud Computing scenario and to show
how the evaluation of the trustworthiness of a complex system relates to the evaluation
of propositional logic terms. However, neither the representation of propositions nor the
evaluation of the operators are restricted to this use case.

The remainder of the paper is structured as follows: First, we clarify the terminology
(Sec. 2), present the related work (Sec. 3), and introduce a use case (Sec. 4). Next, we
present the model (Sec. 5), give some examples (Sec. 6), and show the compliance with
subjective logic (Sec. 7). Finally, we discuss the evaluation of the use case (Sec. 8), and
draw our conclusions (Sec. 9).

2 Terminology

In the following, we briefly introduce our understanding of trust and uncertainty.

Trust & Probabilities Trust is a well-known concept in everyday life and often
serves as a basis for decisions in complex situations, and there have been numerous ap-
proaches for modeling this concept in different research fields of computer science, e.g.,
virtual organizations [15-17], mobile and P2P networks [18,19], and eCommerce [20, 21].
Although, the general concept of trust is well-known, it is hard to give a definition. A
definition, which is currently shared or at least adopted by many researchers [5,15,16,22],
has been provided by the sociologist Diego Gambetta [23]: “trust [...] is a particular level



of the subjective probability with which an agent assesses that another agent or group of
agents will perform a particular action, both before he can monitor such action [...] and
in a context in which it affects its own action.” Following this definition, we also consider
trust as a subjective probability, which can be modeled as Bayesian probabilities [24], and
which is - when derived from previous experience - subject to uncertainty. However, we
extend the scope from agents to software or computer systems in general.

Uncertainty For making our understanding of uncertainty more explicit, we refer to
a simple example with dice. For a Laplace die, it is not possible to say whether it will
show a “6” when thrown the next time, but it is known that the probability for showing
a “6” is 1/6. Although, in this case the outcome of the next throw is uncertain, there is
no uncertainty associated to the probability. In contrast, for a real die the latter must
not be true. When given a real die, one could assume that the probability for showing
a “6” is 1/6 based on a subject’s prior knowledge about dice, however, this statement is
still subject to uncertainty, as the die could have been manipulated. In order to reduce
the uncertainty, one could throw the die a number of times, 5 times, 10 times, 100 times,
... based on the assumption that this leads to more and more representative estimates
about the probability for showing a “6”. Formally, this could be modeled using Bayesian
probabilities (see [24] Chap 1 & 4 for a discussion of the Frequentists interpretation and
the Bayesian interpretation of probabilities). On the other hand, instead of throwing the
die one could also examine it and say based on one’s expert knowledge, one is quite certain
that the probability for a “6” is 1/6, or a non-expert could say “I guess the probability
is 1/6, but I am not really certain about this guess”. In this paper we are focusing on
the latter type of uncertainty, where uncertainty is associated to the probabilities under
evaluation and relates to the question whether the past experience is representative for
the future behavior.

3 Related Work

In the field of trust modeling there is a number of approaches modeling the (un-)certainty
of a trust value, well-known approaches are given in [16,17,19-21,26,27]. However, those
approaches do not tackle the issue of deriving the trustworthiness of a system based
on the knowledge about its subsystems and components, instead the challenge of these
approaches is to find good models for deriving trust from direct experience of a user,
recommendations from third parties, and also additional information, e.g. social relation-
ships. Especially, those models aim on providing robustness to attacks, e.g., misleading
recommendations, re-entry, Sybil attacks, etc. (see also [5,28,29] for a survey of attacks).
For those tasks they usually provide operators for combining evidence from different
sources about the same target (also called consensus or aggregation) and for weighting
recommendations based on the trustworthiness of the source (also called discounting or
concatenation). However, the goal of those approaches is not to provide operators for the
evaluation of propositional logic terms.

Although, there are researchers in the field of trust focusing on modeling (un-)certainty
[13,16,22,30], they do not provide operators for the evaluation of propositional logic terms,
except for “subjective logic” [13,14].

Finally, there are well-known approaches for modeling uncertainty outside the trust
field. At first, there is the standard probabilistic approach. However, this approach only



allows to deal with the uncertainty of the outcome of the next event, but probabilities are
assumed to be known.

Furthermore, fuzzy logic [31] seems to be related, however, it models another type of
uncertainty, which could be typed as linguistical uncertainty or fuzzyness. For example,
if it is “hot” in a room with a degree of 0.8, it does not mean that the probability that
it is hot in this room is 80% (assuming that being hot means temp > 30°); but it means
that one cannot agree on a clear threshold when it is hot (above we assumed 30°), and
thus a degree of 80% states that it is closer to hot than to cold.

There is the field of (Dempster-Shafer) belief theory, which again leads to “subjective
logic” [13]. The main drawback of this model is that the parameters for belief, disbelief, and
uncertainty are dependent on each other, which introduces an unnecessary redundancy
from the perspective of modeling and prevents one from re-assign just a single parameter.

Beyond subjective logic there are numerous other approaches for probabilistic reason-
ing, for further references see e.g. [32]. However, as we argue for the mathematical validity
of our model based on its compliance to subjective logic and the standard probabilistic
approach, we do not provide a discussion of probabilistic reasoning in general.

Finally, it is possible to model uncertainty using Bayesian probabilities [24], this usu-
ally leads to probability density functions, e.g., the Beta probability density function.
For the approaches in [13,22], it has been shown that there are bi-directional mappings
between the representations proposed in those papers and the Beta probability density
function. It is possible to apply the propositional standard operators to probability density
functions, however, this leads to complex mathematical operations and multi-dimensional
distributions, which are also hard to interpret and to visualize. In our proposed approach,
we will not increase the dimensions when calculating AN D and OR.

While our previous work [22,33,34] shares the basic representation with CertainLogic,
our previous research focuses on the modeling of experience-based trust, e.g., providing
means for aging, operators for consensus and discounting, and for coping with Sybil at-
tacks. The approach of deriving the trustworthiness of a system based on its components
and subsystems considering uncertainty, the discussion how to assess the parameters, as
well as the definition of the operators for the evaluation of propositional logic terms and
the introduction of their properties are original contributions of this paper.

4 Use Case

In the following, we introduce a scenario from the field of Cloud Computing, and show
how the evaluation of the trustworthiness of the overall system can be carried out, if there
is an appropriate approach for the evaluation of propositional logic terms (see also [25]).

Assume that we evaluate the trustworthiness of a simple Customer Relationship Man-
agement (CRM) system focusing on the availability of the system.

In the example (see Fig. 1), the CRM system S directly relies on two subsystems, S;
providing authentication capabilities, So offering storage capacity for sales data and data
mining capabilities, and an atomic component C' for the billing. Subsystem S1 consist
of two authentication servers (A; and As), where at least one of the servers has to be
available. Similarly, subsystem S2 is composed of three redundant data bases servers (only
one needs to be available).



Based on the description above and assum-
ing that the information about the trust values
of the atomic components is known, the evalua-
tion of the trustworthiness of the complete sys-
tem in the context of availability, can be carried
out by evaluating the following propositional [ ANN

logic term: C10of2 > 10f3 >

(Al\/AQ)/\(Bl\/BQ\/B3)/\C

Fig. 1. System architecture (incl. infor-

where A7 is a proposition that is true if the com- mation about redundant components)

ponent A; behaves as expected (e.g., the com-
ponent replies to requests within a certain time
limit); the interpretations of the other propositions are assigned in the same way. Al-
though, we restricted the scope of our example to availability, please note that it is possi-
ble to model statements about the fulfillment of other relevant properties (e.g., attested /
self-evaluated security properties or reputation of a component or subsystem) as proposi-
tions and to consider them in the evaluation of the overall trustworthiness of the system
using propositional logic terms. However, as the knowledge about the fulfilment of the
propositions is subject to uncertainty, the evaluation method has to take this uncertainty
into account when calculating the trustworthiness of the overall system.

5 CertainLogic

In the following, we introduce a novel model, which we call CertainLogic, for evaluating
propositional logic terms that are subject to uncertainty. Especially, we define the standard
operators of propositional logic: AND, OR, and NOT'. However, before introducing these
operators, we have to introduce a way for modeling probabilities and uncertainty.

5.1 CertainTrust - Representation

The model for expressing opinions, this is how we call the construction for modeling
probabilities that are subject to uncertainty (in accordance with [13]), is called Certain-
Trust [22]. CertainTrust (CT) bas been designed as a representation for evidence-based
trust, but may also serve as a representation for uncertain probabilities. Additionally, it
supports users with a graphical, intuitively interpretable interface (see Table 2).

Definition 5.1 (Representation CertainTrust)

In CertainTrust, an opinion o4 about the truth of a proposition A is given as 04 =
(t,c, f) where the parameters are called average rating t € [0, 1], certainty ¢ € [0, 1], and
initial expectation value f €]0, 1[2. If it holds ¢ = 0 (complete uncertainty), the expectation
value (see Def. 5.2) depends only on f, however, for soundness we define t = 0.5 in this
case.

3We exclude f = 0 and f = 1 here for the sake of simplicity when defining the operators.



The following introduces the basic semantics of the parameters®. The average rating
t indicates the degree to which past observations (if there are any) support the truth of
the proposition. It can be associated to the relative frequency of observations supporting
the truth of the proposition. The extreme values can be interpreted as follows:

— average rating = 0: There is only evidence contradicting the proposition.
— average rating = 1: There is only evidence supporting the proposition.

The certainty c indicates the degree to which the average rating is assumed to be
representative for the future. It can be associated to the number of past observations
(or collected evidence units). The higher the certainty of an opinion is, the higher is
the influence of the average rating on the expectation value in relation to the initial
expectation. When the maximum level of certainty (¢ = 1) is reached, the average rating
is assumed to be representative for the future outcomes. The extreme values can be
interpreted as follows:

— certainty = 0: There is no evidence available.
— certainty = 1: The collected evidence is considered to be representative.

The initial expectation f expresses the assumption about the truth of a proposition in
absence of evidence.
In Section 5.2, we describe different ways to assess the parameters (i.e. ¢, ¢, and f).

Definition 5.2 (Expectation value of CT)
The expectation value of an opinion E(t,c, f) € [0,1] is defined as E(t,c, f) =t*c+
(1—c)x*f.

It expresses the expectation about the truth of the proposition taking into account
the initial expectation, the average rating and the certainty.

5.2 Assessment of the parameters

The parameters for an opinion o = (¢, ¢, f) can be assessed in multiple ways.

Direct assessment: They can be assessed directly, e.g., based on the opinion of an
expert, who estimates initial expectation value f based on her overall knowledge of the
topic, the average rating t is derived from the available data, and the certainty ¢ expresses
the expert’s confidence in the representativeness of the average rating.

Derived from direct experience and recommendations: They can be derived
from a trust or reputation system that takes into account one’s past experience and
recommendations from third parties. Especially, CertainLogic can directly be applied to
trust or reputation values of Bayesian trust models, as e.g. [16, 19,21, 26]. Furthermore,
when considering that those models provide operators for discounting, those models can
be used to increase the uncertainty when the information about the truth of a statement
is received from a source that is not fully trusted.

“There are additional parameters defined in [22], i.e., the weight w of the initial belief, the
number of expected evidence units N, and a parameter for considering the age of evidence. When
deriving the parameters (¢,c, f) from past evidence, one could assume w = %(ro + s0) =1 and
lim N — oo. The parameter age is not directly relevant for this paper.



Subjective Logic: They can be derived from an opinion given in subjective logic (see
Section 7).

Beta probability distribution: The Beta distribution is a commonly used distri-
bution for a random variable 0 < p < 1. The Beta probability density function f(p | o, 3)
can be given as:

flpla,p)= ;}ig;{;gpa‘l(l—-p)ﬂ‘lv )

where 0 <p<1l,a>0,8>0.

By defining &« = r + 9 and 8 = s + rg, it is possible to relate the probability func-
tion directly to the collected evidence (or observed outcomes), where r and s represent
the number of outcomes supporting the proposition and contradicting the proposition,
respectively, and 7y and sg define the prior knowledge (1o + so # 0) (see [22,35]). The
expectation value is defined as E' = —%=. The mathematical foundations of this Bayesian

+8°
approach are described, e.g., in [24].

Definition 5.3 (Mapping CT to Beta pdf)

Using the Beta probability density functions’s (Beta pdf’s) input parameters, an opin-
ion can be denoted as (r,79, s, 80). It can be mapped® to CertainTrust using (t,c, f) =
mB(r,ro, 8, 50), where it holds:

t_{05 ifr+s=0,

s else .
s 2)
Cr4s+2
__To 4; |y —
ro + So 35| ;ijf;j s
For ¢ # 0 the mapping can also be calculated in the —_ * |
inverse direction (as a simplified version of the descrip- § '7';
tion given in [36] pp. 75 & 86), however for brevity, we 15|
do not present the inverse mapping here. L
The mapping between CertainTrust and Beta pdfs 03

is especially interesting, as both representations have 0 0204 06 08 !

been shown to calculate the same expectation value
[22,36], i.e., it holds E(t,c, f) = E(f(p|r + 70,5+ s9)) Fig.2. Beta probability density
if (t,c, f) =mBp(r,ro,5,50). function

5.3 Logical Operators

Having introduced the representational model, and explained how the parameters can be
assessed, we define the operators of propositional logic (OR, AND, and NOT'). These
operators are defined in a way that they are compliant with the evaluation of propositional
logic terms in the standard probabilistic approach. However, when combining opinions,
those operators will especially take care of the (un-)certainty that is assigned to its input
parameters, and reflect this (un-)certainty in the result.

°In the following we use the convention m;”°™ whenever defining a mapping.



Table 1. Definition of the operators

ca(l—cp)fp(1—ta)+ (1 —ca)epfa(l —tp)
fa+fe—fafB

1 _ i
OR tave :{ Taop (cata +cptp —cacptatp) ifcavp #0 ,

CAVB =CA +CB — cACB —

else .

fave =fa+ fB — fafB

(1—CA)CB (1—fA)tB +ca (1—65)(1—fB)tA

CAAB =CA +CB — CcACB —

1—fafs
a(l—cpg)(1— t 1—c 1—fp)t .
AND tang = CAI/\B (CACBtAtB + callzep) fA)fBl,AfZ(fB AlepfaC-ip) B) if canp # 0,
0 else .
fare =fafB
NOT toa=1—ta,con=ca,and foa=1— fa

Operator OR The operator OR is applicable when opinions for two independent propo-
sitions need to form a new opinion reflecting the degree of truth for at least one out of
both propositions.

Definition 5.4 (Operator OR)

Let A and B be two independent propositions and the opinions about the truth of these
propositions be given as oa = (ta,ca, fa) and o = (tg,cs, fB), respectively. Then, the
resulting opinion is denoted as oavp = (tavs,cavs, fave) where tavp, cave, and favp
are defined in Table 1 (OR). We use the symbol 'V’ to designate the operator OR and we
define oayp =04 V 0pB.

Operator AND The operator AND is applicable when opinions for two independent
propositions need to be aggregated to produce a new opinion reflecting the degree of truth
of both propositions simultaneously.

Definition 5.5 (Operator AND) Let A and B be two independent propositions and
the opinions about the truth of these propositions be given as o4 = (ta,ca, fa) and op =
(tg,cB, [B), respectively. Then, the resulting opinion is denoted as

0AAB = (LAAB, CAAB, fArB) where tang, canp, and fanp are defined in Table 1 (AND).
We use the symbol 'N' to designate the operator AN D’ and we define oapnp = 04 N 0B.

Operator NOT The operator NOT is applicable when an opinion about an proposition
needs to be negated.

Definition 5.6 (Operator NOT)

Let A be a proposition and the opinion about the truth of this proposition be given as
04 = (ta,ca, fa). Then, the resulting opinion is denoted as 04 = (t-a,C=a, f-a) where
t-a, c-a, and f-a are given in Table 1 (NOT). We use the symbol’'='" to designate the
operator NOT and we define, 0.4 = —04



The operators for AND and OR can be shown to be commutative and associative.
Both properties are essential for the evaluation of propositional logic terms.

Theorem 5.1 (Commutativity)
It holds oang = 0Bpa and oayvp = OBvA

Theorem 5.2 (Associativity)

It holds OAA(BAC) = O(AAB)AC and 0Av(BvC) = O(AVB)VC-

The proofs are given in Appendices (A, B, and C).

The operators are not distributive, i.e., it does not hold that oanBve) = 0anB) V
oancy; as AN B and A A C are not independent propositions®.

Compliance: Standard probabilistic approach In the standard probabilistic ap-
proach (which is not considering the uncertainty that might be associated with a proba-
bility), the operation for AN D is usually defined as p(A A B) = p(A)p(B), the operation
for OR is given as p(AV B) = p(A) + p(B) — p(A)p(B), and the operation for NOT is
given as p(—A) =1 — p(4).

The expectation value E(t,c, f) of an opinion can be interpreted as the probability
for the truth of a proposition and it can be shown that the following statements are true:

Theorem 5.3 (Compliance)

The propositional logic operators for AND, OR, and NOT as defined in Table 1 are
compliant with the standard probabilistic evaluation of propositional terms as it holds:

1. E(oans) = E(oa)E(0og) (for AND)
2. E(oavp) = E(oa) + E(op) — E(oa)E(op) (for OR)
3. E(0-4) =1—E(0a) (for NOT)

The proof is given in Appendix D.
Although, the standard probabilistic approach is compliant with CertainLogic, there
are multiple advantages when combining opinions with CertainLogic:

— Our model can express the uncertainty, which is not possible in the standard proba-
bilistic approach. This is important, because in real world scenarios probabilities are
usually not known, but have to be estimated or derived from experiments, and thus
they are subject to uncertainty.

— Our model does not only take the (un-)certainty as an input parameter, but it reflects
also the uncertainty calculated for the result. Thus, the certainty is a good indicator
for the confidence associated to the calculated result.

5The evaluation of propositional operators in the standard probabilistic approach does not
satisfy distributivity, too, for the same reason.



6 Examples

In the following, we present some examples showing the impact of the newly defined
operators on opinions modeled in CertainLogic. The left part of Table 2 shows 3 examples
for the AN D operator and the right part for the OR operator. For each example, we
provide the opinions as tuple and additionally we provide the expectation value and the
graphical representation of an opinion (and in the first row we also provide the parameters
of the corresponding beta probability density functions”).

In the graphical representation the color-gradient indicates the expectation value of
each point in the figure. Therefore, the color of each point in the figure is calculated as
a linear combination of the RBG-vectors of red (E = 0), yellow (E = 0.5), and green
(E = 1)8. For example, in the first row one can see how the AND operator affects the
initial expectation f. Whereas for the initial expectation of A and B it holds f4 = fg =
0.5, it holds faap = 0.25, as A and B have to be true simultaneously. This is directly
reflected by the color-gradient. As the certainty of ¢4 = ¢ = 0 (no experience available),
the certainty of the resulting opinion is also canp = 0, and the expectation value of each
opinion is equivalent to the initial expectation.

In the second row, we provide an example where we are certain (c4 = 1) that propo-
sition A is false (t4 = 0) and for B it holds ¢g = 0 (complete uncertainty). The certainty
of the resulting opinion is canp = 1 and the rating is ¢ = 0, as in this case the knowledge
about A is sufficient to be sure that A A B is false.

However, the third row shows that if we are certain (c4 = 1) that proposition A is
true (t4 = 1) and for B it holds cg = 0 (complete uncertainty), then, the certainty of
the resulting opinion is only carp = 0.33 as knowing that one proposition is true is not
sufficient for AND.

The examples for the OR operator follow a similar reasoning. In the first row, one
can immediately see how the initial expectation value is influenced by the OR operator;
the resulting opinion’s color-gradient is more ’greenish’. This is reasonable as the initial
expectation value of the A and B are f4 = fp = 0.5 and the resulting opinions expectation
value is favp = 0.75, as the chances that AV B is true are higher than the chances for
just A or just B.

7 Compliance to Subjective Logic

Subjective logic (SL) has been described in [13], and it combines elements from belief
theory with Bayesian probabilities. In the following, we show that the operators of Cer-
tainLogic are compliant with those of subjective logic, which finally provides the argument
for the mathematical validity of our approach.

Definition 7.1 (Belief representation (SL))
According to [13], an opinion is given by w = (b,d, u,a), where b models the belief, d
the disbelief, u the uncertainty, and a the atomicity.

"It holds s = 7 + 7 and Ba = s + so and (r,r0,$,50) = mgT(oA) (analogous for ap and
ﬂB, for QAANB and ﬁAAB, and for QAVB and ﬁAvB).

8We have developed a Java application for the visualization of opinions (also calculating
the color-gradient of the background) and for demonstrating the operators. The examples are
basically screen shots from this application.



Table 2. Examples for the operators AND and OR

o4 = op = ‘ oAnE ‘H o4 = op = 0AVE
(tarca, fa) (tp.cp, fB) (ta,ca, fa) (tp.cp, fB)
(0.5,0,0.5) (0.5,0,0.5) (0.5,0,0.25) (0.5,0,0.5) (0.5,0,0.5) (0.5,0,0.75)
E(o4) = 0.5 E(opg) = 0.5 E(oqnp) = 0.25 E(o4) = 0.5 E(og) =0.5 E(ogyp) = 0.75
f(plag,Ba) = | f(plag,|Ba) = |f(rlaanB:BasB)) = f(plapg,Ba) = | f(rlap,Bp) = |f(rleayB:BavB)) =
(1,1) (1,1) (0.5,1.5) (1, 1) (1,1) (1.5,0.5)
0 ‘Ac ‘AC T A ‘Ac 1 °©
i
' 1 A 1
- \ Lty o et N BN \ Ll O avs :
o % i 0 1 o % i
(0,1,0.5) (0.5,0,0.5) (0,1,0.25) (0,1,0.25) (0.5,0,0.75) (0, 0.0769, 0.8125)
E(op) =0 E(op) =0.5 E(oanp) =0 E(oy) =0 E(opg) =0.75 E(opayp) =0.75
'/\; A °© - © (\( 1‘
! A
t B t - L5 |0 3 S AVE S
) 1 0 I> |> 1 1
(1,1,0.5) (0.5,0,0.5) (1,0.333,0.25) (1,1,0.25) (0.5, 0,0.75) (1,1,0.8125)
FE(oy) =1 E(og) = 0.5 E(ogap) =0.5 E(oy) =1 E(og) = 0.75 E(oqyp) =1
a e 7e e : 7 = 1
o 1 0 1 0 17> 1

The mapping between CertainTrust and subjective logic opinions is provided in [36].
The mapping of an opinion in CertainTrust to subjective logic is denoted as a function
m&T which is defined below:

Definition 7.2 (Mapping CertainTrust to SL)

The mapping from an opinion o = (t,c, f) in CertainTrust to an opinion w = (b,d, u, a)
in subjective logic is denoted as (b,d,u,a) = mSE(t,c,f) and defined by b = t x c,
d=(1-t)xc,u=1—c, anda=f.

The inverse mapping can be given as follows:

Definition 7.3 (Mapping SL to CertainTrust)

The mapping from an opinion w = (b,d,u,a) in subjective logic to an opinion o =
(t,c, f) in CertainTrust is denoted as (t,c, f) = m2k(b,d, u,a) and defined by c =1 — u,
a=f,andt= b_%d forb+d#0, else t = 0.5.

This mapping has the following features:

Theorem 7.1 (Equality of Expectation Values)
It holds that E(b,d,u,a) = b+ua = E(t,c, f), if (b,d,u,a) = m§L(t,c, f) (for a proof
see [36]).

Theorem 7.2 (Compliance of operators)

Let A and B be independent propositions. In subjective logic, wa and wp are two

opinions about proposition A and B, respectively. Using the mapping functions (i.e. mgg

and mg% , our operators are fully compliant with the operators for the normalized ver-
sions of AND, OR, NOT provided for subjective logic in [14]. This means that for
op € {AND,OR} the first two statements and for NOT the last two statements are

true:



04 = mCT(wA) and og = mCT(wB) = Waops = MS L (0a0pB)
wa = mSL [ (04) and wp = mSL 1 (08) = 0a0pp = M (WaopB)
04 = mCT(WA) = W-4 = mSL( A)
wa =mG] (04) = 0-4 = M (w-a)

e~

The proof is given in Appendiz E. As the mapping between opinions in CertainTrust
and subjective logic is bijective, this basically means that it is possible to switch between
the representations as well as the operators.

Although subjective logic provides capabilities for reasoning under uncertainty, our
approach has the following advantages:

— It is based on 3 independent parameters (i.e., t, ¢, and f) whereas in subjective logic
b, d, and u are interrelated by b+ d + v = 1. This independence of the parameters
is considered to be a major advantage from a modeling perspective, as it reduces the
number of required parameters to a minimum.

— As our model is based on 3 independent parameters, they can be adjusted separately,
e.g., one can increase the certainty (¢) without changing the average rating (¢). In
contrast, in subjective logic it is not possible to change only one of those parameters.

— Our model comes with an intuitive graphical representation supporting the user with
two orthogonal axes instead of showing the three parameters of belief, disbelief, and
uncertainty using three non-orthogonal axes. Furthermore, the visualization the dis-
tribution of the expectation value depending on the initial expectation by using a
color-gradient makes our visualisation more expressive than the one of subjective
logic.

Finally, based on the mapping between CertainTrust and subjective logic, and follow-
ing the argumentation provided in [14], the operators for AN D and OR calculate the same
expectation values as when doing the operation on Beta / Dirichlet probability density
functions, however, the variance is not exact, but well approximated.

8 Evaluation of the Use Case

In this section, we show how the operators of CertainLogic can be applied to the use case
presented in Section 4. The propositional logic term for evaluating the trustworthiness of
the system in the use case has been given as:

(A1 VA)AN(B1V BaV B3)AC

For the evaluation, we assume that we have good knowledge about the components of
subsystem S (consisting of A; and As) and subsystem Sy (consisting of By, By, and B3)
and that the components are highly available. The opinions 04, and 04, as well as the
resulting opinion o4,va4, = 0g, are given in Table 3(a). The opinions op,, op,, and op,
as well as the resulting opinion op,vp,vB; = 0s, are given in Table 3(b). In both cases,
the subsystems are highly trustworthy (E(os,) = 0.9963 and E(o0g,) = 0.9964) and the
certainty for both systems is also high (cg, = 0.9956 and cg, = 0.9894).

We show the advantage of the new operators presenting different scenarios regarding
the trustworthiness of the atomic component C. Depending on whether the component



Table 3. Resulting opinions for S; and So

(a) Si: (b) So:
04, (0.90,0.98,0.5) op, (0.9,0.8,0.5)
oA, (0.99,0.95,0.5) o5, (0.95,0.8,0.5)
04 vay = 05, ](0.9974,0.9956,0.75)] oBg (0.9,0.9,0.5)

[0B,vByv By = 05,(0.9978,0.9894,0.875)]

is hosted by the owner of the overall system or by a third party, the certainty about the
behavior of this component might be higher or lower.
Here we consider two cases:

— Case 1: We assume that the trustworthiness of C' is given as oc = (0.9,0.9,0.5) [high
certainty] or as oo = (0.9,0.1,0.5) [low certainty]. For this case, the trustworthiness
of the overall system S (consisting of S, S2, and C) are given in Table 4(a). In the
first row, we see that the high certainty in oc is also reflected in the resulting opinion
(cs = 0.9229), whereas the low certainty in oc is reflected in the resulting opinion
(cs = 0.3315) in the second row. In this example, we have different expectation values
for oc (depending on the certainty), and thus also different expectation values for og.
Case 2: Here, we assume that the trustworthiness of C' is given as oo = (0.9,0.9,0.9)
[high certainty] or as oc = (0.9,0.1,0.9) [low certainty]. Here, both opinions lead
to the same expectation value. The expectation value for the trustworthiness of the
overall system is also the same (due to the compliance with the standard probabilistic
approach). However, in our approach the different values for the certainty in the input
parameters are still visible in the final result, for the certainty it holds c¢g = 0.9704
[high certainty] and cg = 0.7759 [low certainty] (see Table 4(b)).

Table 4. Resulting opinions for S
(b) Case 2:

[ oo

(a) Case 1:

[ oc [051/\32Ac = Osl l [OslAszAc = Osl

high certainty

(0.9,0.9,0.5)

(0.8978,0.9229,
0.3281)
E(os) = 0.8538

high certainty

(0.9,0.9,0.9)

(0.9028,0.9704,
0, 5906)
E(og) = 0.8935

low certainty

(0.9,0.1,0.5)

(0.9556,0.3315,
0.3281)
E(os) = 0.5361

low certainty

(0.9,0.1,0.9)

(0.981,0.7759,
0.5906)
E(os) = 0.8935

9 Conclusion

In this paper, we proposed a novel model for the evaluation of propositional logic terms
under uncertainty. The operators for AND and OR have been shown to be associative
and commutative, which is essential for the evaluation of propositional logic terms. Addi-
tionally, the operators have been shown to be compliant with the standard probabilistic
evaluation of propositional logic terms and with subjective logic, which finally provides the
justification for the mathematical validity of our model. However, the proposed approach



is more expressive than the standard probabilistic approach, and although it is as expres-
sive as subjective logic, it provides simpler representation since it is based on independent
parameters and provides a more intuitive and more expressive graphical representation.

Furthermore, it has been shown that the parameters for assessing opinions in Certain-
Logic can be derived using multiple approaches and source: direct assessment by experts
(e.g., by certification authorities), derived from Beta probability density functions based
on past experiments and prior knowledge (e.g., suitable for statistical data), or using the
results of Bayesian reputation systems (e.g., user feedback).

Finally, we have shown the applicability as well as the benefits of our operators in a use
case set in the field of evaluating the trustworthiness of a system in a Cloud Computing
scenario. It provides a means (1) to derive the trustworthiness of the overall system based
on the knowledge about its components, (2) to take into account multiple criteria (modeled
by propositions), and (3) to explicitly model the uncertainty associated to the truth of a
proposition, which also allows to model that one could have to rely on a not fully trusted
source of information. Thus, we consider this approach an appropriate, expressive, and
well-founded tool for the evaluation of the trustworthiness of complex systems.

While we have used the Cloud Computing scenario as a descriptive example, the model
could also be used for reasoning under uncertainty in other fields such as those involving
contextual information. Such information is also subject to uncertainty; for instance,
information collected by sensors.
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Appendix

Please recall that it holds 0 < ta,tp,ca,cg < 1land 0 < fa, fp <1 (see 5.1).

A Proof: Theorem 5.1

Proof. The proof for o4y = 0gva can be carried out componentwise by verifying t 4y g =
tBvA, CAvB = ¢Bva , and favp = fpva. Using Table 1(OR) for this can easily be verified.

The proof for oanp = 0paa can be carried out analogously, using Table 1(AND).

B Proof: Theorem 5.2 (OR)

Before proving the theorem, we introduce two Lemmas that we need for the proof.

Lemma B.1 As a Lemma we proof: cayp >0 if c4 =0 and cg # 0.

Proof.

CA(l — CB)fB(l — tA) + (1 - CA)CBfA(l — tB)

0<cyqg+cp—cacg—

fatfe—fafs
Using c4 = 0 it holds:
oo cIa(1=15) )
fa+fB—falB

0<cpfa+cafe—cofafp—cfa(l—tp)

Which is true as it holds cgfa > cgfa(l —tp) and cgfa > cfafB.

Lemma B.2 As a Lemma we proof: cavp >0 if ca # 0 and cg = 0.

Proof. The proof can be done using the commutativity (Theorem 5.1) and Lemma B.1.

Lemma B.3 As a Lemma we proof: cavp >0 if ca # 0 and cg # 0.



Proof.

CA(l — CB)fB(l — tA) + (1 — CA)CBfA(l — tB)
fa+feB—fafB
Expand and reorganize, using f4 + fp + fafp > 0 it holds:
cafatcepfatcafp+cepfp+cacsfafp > cafafp+cpfafp+cacpfat
+cacpfp+ca(l—cp)fp(l —ta) + (1 —ca)epfa(l —tp)

0<ca+cp—cacg —

Simplify:
cafa+cpfa+cafp+cepfp+cacsfafe > cafafp+cafafp+
+cafplcp+ (L —cp)(1 —ta)) +epfalca+ (1 —ca)(l—tp))

Using cafa > cafafp and cgfp > cpfafp it holds:
cpfa+cafp+cacsfafp > cafplcp + (1 —cp)(l —ta)) +cpfalca+ (1 —ca)(l —tp))

Using cafp(cp + (1 = cp)(1 —ta)) < cafp(cs + (1 —cp))
and cgfa(ca+ (1 —ca)(1 —tg)) <cpfalca+ (1 —ca)) it holds:
cafp+epfatcacgfafp >cafp+cepfa

Simplify:

cacgfafp >0

Which is true as it holds fa, fB,ca,cp # 0.

Lemma B.4 As a Lemma we proof also: cayp =0 if ca =0 and cg = 0.

Proof. This proof can be carried out using c4y = 0 and cg =0 in cgvp.

Proof. Proof of Theorem 5.2 (OR):

The proof will be carried out componentwise by verifying £ avpyvc = tav(sve), cavByve =
CAV(BVC); and f(AvB)vC = fAv(BvC)~

Proof for faypyvc = fav(sve):

faaveyve = fave + fo — favefe

= (fa+ fe—fafs)+ foc—(fa+ f— fafB)fc

=fa+fe— fafp+ fc— fafc — fefc+ fafsfe (5)
=fa+(fe+ fc— fBfc) = fa(fs + fc — fBfC)

= fa+ feve — fafeve = favBvo)



Proof for ci4vpyvc = cavBvey:

C(AVB)vC = CAvB + CC — CAVBCC—
_cavs(l—cp)fp(1 —tavp) + (1 — cavp)cpfave(l —tp) (6)
fave + fB — favefB

= ... [Expand tayp, cavp, and favp]...
= (cc((=1+ fa)(=1+ fB)fc + (= fa(=1+ fB) + fB)tc) + cp(— (=1 + fa) fp(1 + (=1 +
co)fc —ccte) +tp(—(=1+cc)fo+ fa(l+ (=1 +cc)fo — ccte))) +ca(fa(l+ (=1 +
cg)fp—cptp)(1+(—1+ce)fo—cote)+ta((—1+co)fe(—1+cptp) — (—1+cp) f(1+
(=1+4cc)fe —ccte))/(fa(=1+ fB) (=1 + fo) — fB(=1+ fc) + fo)

= ... [Concentrate tpvc, cgve, and fpyc]...

=cA + CBvCc — CACBVC—
~ca(l —cepve)fp(1 —ta) + (1 —ca)epvefa(l —tpve) (7)
fa+ feve — fafBve

= CAv(BVC)
Proof for t(A\/B)\/C = tAv(B\/C’):

For proving t{(avB)vc = tavvc), we have to consider that there are two cases for
calculating txvy:

— (1) the case cxvy #0
— and (2) in the case cxvy = 0.

For the proof, we use the observation that it holds cxyy = 0 if and only if cx =cy =0
(see Lemmas B.3 and B.4), which leads us to 5 cases, which we prove separately:

Case 0. ca # 0, cg # 0, and cc # 0 or exactly one term out of ca, cg, and c¢ is
equivalent to 0: In this case, it holds c(4vpyvc # 0 and cay(pve) # 0 (using Lemmas B.1
and B.2):
1
tiaveyve = ———(cavptavs + ccto — cavpcctavptc)
C(AVB)VC (8)
= ...[Expand tAvB7 CAVB, and fAVB]-~-

= ((fa(=1+ fB)(=1+ fc) — fe(=1+ fo) + fc)(ccto + cptp(l — cote) + cata(—1+
cptp)(—=1+ccte)))/(cc((=1+ fa)(=1+ fB)fc + (= fa(=1+ f) + fB)tc) + cp(—(—=1+
fA)fB(1+ (=1+cc)fo —ccto) +t(—(=1+cco)fe + fa(l + (=1 +co)fo — ccte))) +
ca(fa(l4+(=1+cp)fp —cpt)(1+(=1+4cc)fc —ccte) +ta((—=1+cc) fe(—1+cptp) —
(=1+cB)fe(l+ (=1 +cc)fc —cctc))))

= ... [Concentrate tB\/c, CBvC, and fB\/c]...

= ————(cata+cpvctpvye — cacpvotatpyc) (9)
CAV(BVC)

= tA\/(B\/C)



Furthermore, there are four cases to consider:

Ll e

ca=0,cg=0,and ¢cc #0
ca=0,¢cg#0,and ¢c =0
ca#0,cg=0,and ¢cc =0
ca=cg=cc=0

Case 1.) ¢4 =0, cp =0, and cc #0

1
tiavByve = Ci(CA\/BtA\/B + ccte — cavpcctavptc)
(AVB)VC

Using ¢4 = ¢ = 0= cayp =0 (Lemma B.4) it holds:

1
tavByve = mcctc

Using ciavByve = cav(Bve) it holds:

t(AvB)vC = mcctc
V(BV

Using c4 = ¢ = 0 and cpyetpve = cptp + cotec — cptpecto it holds:

l(avByve = P (cata + cpvetpve — cacpvctatpve)
AV(BVC)

t(AvB)vC = tA\/(B\/C)

(10)



Case 2.) ¢4 =0, cp #0,and cc =0

tavByve = C(i(CAvBtAvB +cote — cavpectavptc)
AVB)VC

Using cc = 0 it holds:

t(A\/B)\/C = ———cavBlavB
C(AVB)VC

Using cavptavp = cata + cptp + catacptp and ¢4 = 0 it holds:

tavByve = mCBtB

Using ¢ avByve = cav(Bvce) it holds:

liavByve = chtB

Using cpvotpve = cptp + cote + eptpecte and co = 0 it holds:

tavByve = —¢Bvelsve
CAV(BVCO)

Using c4 = 0 it holds:

1
tiavByve = ﬁ(CAtA + cpvetpve — catacpvetpye)
AV(BVC

t(AvB)vC = tAv(BvC)

(11)



Case 3.) ca #0,cg =0, and ¢c¢c = 0:

tavByve = ——(cavptavs + cctc — cavpectavptc)
C(AvB)VC

Using cc = 0 it holds:

t(A\/B)\/C = —cavplavp
C(AVB)VC

Using c(avByve = cav(Bve) it holds:

tavByve = ———cAvBlaVB

CAV(BVC) (12)

Using cavptavp = cata + cptp — catacptp and cg = 0 it holds:

t(avB)ve = ﬁCAtA
V(BVC

Using cpve = 0 (Lemma B.4) it holds:
1
lavByve = m(CAtA + cpvotsve — cacpvctatpyc)
V(BV

t(A\/B)\/C = tA\/(B\/C)

Case 4.) CA =Cp = Co = 0

In this case it holds c(avp)yvc = cav(sve) = 0 (applying the Lemma B.4 two times
when calculating c(avB)vc Or cav(Bve), respectively, and thus cavpyve = tav(ve) =
0.5



C Proof: Theorem 5.2 (AND)

For proving t(anpjac = tan(Bac), We have to consider that there are two cases for
calculating txay:

— (1) the case cxay #0
— and (2) the case cxay = 0.

For the proof, we use the observation that it holds cx y = 0 if and only if cx =cy =0
(see Lemma C.1, C.2, C.3 and C.4), which leads us to 5 cases for the proof, which we
prove separately.

Before proving the theorem, we prove the four Lemmas that we need for the proof.

Lemma C.1 As a Lemma we proof: capnp > 0 if c4 =0 and cg # 0.

Proof.
_cg(l—fa)ts
1—fafs
0<ecp(l—fafp) —c(l— fa)ts
cg(l = fa)tp <cp(l— fafB)
Which is true as it holds 1 — fa <1 — fafp and cptp < cp.

0<cp

Lemma C.2 As a Lemma we proof: canp >0 if ca # 0 and cg = 0.

Proof. The proof can be done using the commutativity (Theorem 5.1) and Lemma C.1.
Lemma C.3 As a Lemma we proof: capnp > 0 if ca4 #0 and cg # 0.
Proof.

(1 —ca)ep(l— fa)tp +ca(l —cp)(1— fB)ta
1—fafs
0<ca(l—fafp)+es(l— fafp) —cacg(l— fafp) — (1 —ca)ep(l — fa)tp—
— CA(l — CB)(l — fB)tA

To proof this we show that it holds A) and B):

0<ca+cp—cacg —
(14)

A) CA(l — fAfB) > CA(l — CB)(l — fB)tA
which is true as it holds 1 — fafp > 1— fp and ca > ca(1 — ¢cp)ta.

B) CB(I — fAfB) > CACB(l — fAfB) + (1 — CA)CB(l — fA)tB which is true as it holds
(using 1 — fafp >1— fa):

cacg(l— fafe)+ (1 —ca)es(l — fa)tn

<cacg(l— fafp)+ (1 —ca)es(l — fafB)ts

<cp(l— fafp)(ca+(1—ca)tp)

<ecp(l— faf)(ca+ (1 —ca))

<cp(l— fafp)

Lemma C.4 As a Lemma we proof: cang =0 if c4 =0 and cg = 0.



Proof. For the proof use c4 =0 and ¢g = 0 in capp-

Proof. Proof Theorem 5.2 (AND)
Proof for f(A/\B)/\C = fA/\(B/\C):

faaneyne = fafefc = fanro) (15)

Proof for cianpyrc = canBaC):

C(AAB)AC = CAAB + €C — CANBCC —
(1 = canB)ec(l = farB)tc +canp(l —cc)(1 = fo)tann
1 — fanBfc
= ... Expand tanB, canB, and faprp ...
= ... Concentrate tgarc, ceac, and fBac ... (16)
=CA + CBAC — CACBAC—

(1 —ca)epac(l = fa)tac +ca(l —eac)(1 — fBac)ta

1— fafBac
= CAA(BAC)
Proof for t snp)rc = tanBrc):
Case 0.) ¢4 #0, cg # 0, and c¢ # 0.
In this case it holds:
1
tcanBync = ————(canpcctanpto+
C(AAB)AC
canB(l —cc)(1 — fan)fctans
+
1 — fanfc
(1 —canp)ecfanp(l — fc)tc)
1~ fanBfc

= ... Expand tanB, canB, and fanp ...

= ... Concentrate tgac, cac, and fpac ..

= ;(CACBACtAtB/\C"F

CAN(BAC)

ca(l —cac)(1 = fa)fBacta
1— fafBrc

(I —ca)epacfa(l — fBAc)tBAc)

1 — fafBrc

+

+




Furthermore, there are four cases to consider:

ca=0,cg=0,and ¢cc #0
ca=0,¢cg#0,and ¢c =0
ca#0,cg=0,and ¢cc =0
ca=cg=cc=0

Ll e

Case 1.) ca=cp=0

1
tanByac = ————(canBcctanplo+
C(AAB)AC
cans(l —cc)(1 = fans)fetans + (1 — cans)cc fanp(l — fc)tc)
1- fA/\BfC

Using ¢4 = ¢g = 0 it holds canp = 0 (Lemma C.4), and thus:
1 cofans(l — fo)tc
cianBne 1= fansfe
Using farp = fafp it holds:
banmIne = 1 cofafs(l— fo)lc
ccanByne 1= fafefc
Using L = 1 it holds:
C(AAB)AC CAN(BAC)
bangne = 1 ccfafs(1 = fo)tc
canro)y 1= fafefc
Expanding with (1 — fgf¢) it holds:
tanmne = 1 cofafs(l— fe)te(l - fafc)
cansroy (1= fafsfe)(1— fefc)
ccfe(l = fo)tc

t(A/\B)/\C =

Using cg = 0 and cgrctprc = it holds:

1—fefe
b OANBIAG = 1 cprefal — feac)tsac
wanmmn CAN(BAC) 1— fafBrc

Using c4 = 0 it holds:
tanBync = ————(cacctato+
CAN(BAC)
ca(l —cpac)(1 = fa)feacta + (1 — ca)epac fa(l — fB/\C)tC)
1—fafBrc

tianBync = tAn(BAC)



Case 2.) c4 =0,¢cp #0,and cc =0

(analogous to Case 1.)

Case 3.) ca #0,cg=0,and cc =0

(analogous to Case 1.)

Case 4.)ca=cp=cc =0

In this case it holds canpyrc = can(Bac) = 0 (applying Lemma C.4 two times, when

calculating c(anp)rnc and can(pac), Tespectively, and thus tanp)rc = tanBac) = 0.5.

D Proof: Theorem 5.3

Proof. We can prove each of the equations in the theorem separately. The detail algebraic
simplifications are omitted for first two proofs.

1.

E(oanp) = E(tans,canB, farp)[Using Definition 5.5]

=tanp * canB + (1 — canB) * farp[Using Definition 5.2]

= ...[Substitution of tanp, canp, and fanp using Table 1 (AN D) and algebraic simplifications]
(tA *Ccpq + (1 - CA) * fA)(tB *cp + (1 — CB) * fB)

= E(04)E(0p)|Using Definition 5.1 and Definition 5.2]

E(oavs) = E(tavs,cavs, favs)[Using Definition 5.4]

=tavp *cavp + (1 — cavp) * favp[Using Definition 5.2]

= ...[Substitution of tavp, cavp, and fayp using Table 1 (OR) and algebraic simplifications]
= (tA*CA—|—(1—CA)*fA)—|—(tB*CB+(1—CB)*fB) — (tA*CA+(1—CA)*fA)(tB*

cg+ (1 —cB)* fp)

= E(oa) + E(op) — E(0a)E(0B)

[Using Definition 5.1 and Definition 5.2]

E(0-4) = E(t-a, ¢4, f-4)[Using Definition 5.6)

= (t-a *c=a) + (1 — c2a) * f~a[Using Definition 5.2]

=(1—tg)*ca+ (1 —ca)*(1— fa)[Substitution using Table 1 (NOT)]
=ca—taxcatl—ca—fa+faxca

=1—(taxca+ (1 —ca)x*fa)

=1— E(04)[Using Definition 5.1 and Definition 5.2]



E

Sketch of Proof: Theorem 7.2

Proof. In the following we provide a proof for Theorem 6.2 for the NOT operator and
show sketches for AND and OR.

1.

wop = (boa,d-a,u-a,a-4)
= (da,ba,ua,1— aa)[Using Theorem 6 in [13]]
(1 —ta)ea,taca, 1 —ca, 1 — f4)[Using 04 = mg%(wA)]

=m§T (1 —ta,ca, 1 — fa)[Using Definition 7.2]
= mg (t-a,C=A, f-a)[Using Table 1(NOT)]
= mSL L (0-a

0-4 = (t-a,c-a, f-4)
= (1—ta,ca,1— fa)[Using Table 1 (NOT)]
mCT((l —ta)ea,taca, 1 —ca, 1 — fa)[Using Definition 7.3]
m2E(da,ba,ua, 1 —aa)[Using wa = m§Toa]
= mZ2% (w-)[Using Theorem 6 in [13]]

S~ o~

The proof for the operators AND and OR can be carried out analogous to the proof

for NOT'. However, here we just provide a sketch of the proofs.

1.

wArB = (banB,danB,uanB, aanp)[Using 7.1]

=... [Substitution of banB, dArB, UAAB,aAAB With ba, da, ua, aa, bp, dp, up, and agp ...

. as defined by the normal multiplication in [14] ...

applymg 04 =m2k(wa) and op = mZE(wp) ...

.. algebraic simplifications and applying Definition 7.2]
= mgg(tAA& CAAB, fA/\B)
=mg} (0oann)
0anB = (tanB, CcanB, fanB)
= ...[Introduce t, ca,... and replace them by b4, da,...]
= mZ5(banp, dans, WanE, GAnB)
= mgi(wann)
wavB = (bavp,davp,uavB,aayp)[Using 7.1]
= ... [Introduce b4, da,... and replace them by t4, ca,...]
=m$F (tavs,cavp, fave)
=m§] (0avB)
oavB = (tavB,cavp, favs)[Using 5.1]
= ...[Introduce t4, c4,... and replace them by b4, da,...]
=mZE(bavp,davp,uavs,aave)
= m¢i(wavn)
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