
Declarative Events for Object-Oriented Programming
Technical Report TUD-CS-2010-0122 ∗

Vaidas Gasiunas Lucas Satabin
Mira Mezini

Technische Universität Darmstadt
{gasiunas,satabin,mezini}@informatik.

tu-darmstadt.de

Angel Núñez Jacques Noyé
École des Mines de Nantes

ASCOLA Research Team (EMN-INRIA, LINA)
{angel.nunez, jacques.noye}@mines-nantes.fr

Abstract
In object-oriented designs inversion of control is achieved
by an event-driven programming style based on impera-
tively triggered events. An alternative approach can be found
in aspect-oriented programming, which defines events as
declarative queries over implicitly available events. This
helps to localize definition of events and avoid preplanning,
but lacks a clean integration with object-oriented features
and principles. The contribution of this paper is a concept of
object-oriented events that combines imperative, declarative
and implicit events and provides their seamless integration
with object-oriented features, preserving encapsulation and
modular reasoning. We present an efficient and type-safe
implementation of the concept as an extension to the SCALA
language.

1. Introduction
Stability and reusability of software are among the major
goals of decomposing software into modules. Design prin-
ciples supporting these goals [24] often lead to dependen-
cies that are opposite to the direction of the control flow.
Therefore, the so-called inversion of control mechanisms are
essential for improving stability and reusability of software
systems.

One of the major techniques for inversion of control is
implicit invocation [15]. Instead of invoking a method di-
rectly on an object, we can announce an event and so implic-
itly invoke the methods of the objects that are observing and
reacting to the event. This programming style, also known
as event-driven programming, is natural in domains with re-
active behavior such as user interface, control automation,
business-to-business integration, etc.

Conceptually an event can be understood as a noteworthy
state change. It can be a change in a data model, a button
press, or even a change in the physical world modeled by the
software, such as a movement detected by a sensor. Since
in object-oriented approaches state is organized by objects,

∗ This report is also available as INRIA Research Report RR-7313.

it is natural to associate events with objects. In addition to
attributes to access the state of the object and methods to
modify it, an object can also provide information about its
state changes in a controlled way by exposing corresponding
events. Not surprisingly, a lot of classes in standard Java and
C# libraries expose events as part of their interfaces.

In object-oriented designs, implicit invocation is usually
achieved by the Observer pattern [14]. The major problem
with the pattern is that it produces a significant amount
of glue code for describing observer interfaces, for regis-
tration/unregistration and for notification of observers. A
lightweight alternative is the event-delegate mechanism of
C#. C# events can be declared as special class members and
are accessed as attributes of objects. Event handlers are de-
fined as delegates – a form of function closures in C#, often
defined simply by references to methods of objects. An event
provides methods to register and unregister delegates. An
event can have one or more parameters, and type checking
ensures that only delegates with the same parameter types
are registered. An event is triggered using a syntax analo-
gous to the one of method calls with the effect of calling all
delegates registered to the event. C# events provide the same
functionality as Observer, but significantly reduce its code
overhead.

The semantics of an event can be characterized by the set
of its occurrences at runtime. The occurrences of Observer
and C# events are defined imperatively by triggering them.
We use the term imperative events to refer to events defined
in this way.

A different flavor of event-based programming is realized
by aspect-oriented programming (AOP) [23]. The goal of
AOP is to separate crosscutting concerns, e.g., transaction
management and security, from the base functionality of
an application and define them in separate modules called
aspects. The separation is achieved through the join-point
interception mechanism. A join point is an identifiable point
in the execution of a program, e.g., a method execution or a
field access. An aspect can intercept join points and insert its
own functionality before or after them, or even completely
replace them. The join points to be intercepted are specified

1

by pointcuts – queries selecting a set of join points and
binding their parameters to various values characterizing
the join point. A typical pointcut language consists of a
set of atomic pointcuts selecting different elements of static
and dynamic program structures (e.g. execution stack), and
various operators to compose them. The functionality to be
inserted at the join points selected by a pointcut is specified
by the piece of advice associated to the pointcut.

Join-point interception provides an alternative to explicit
event notification. Like imperative events, AOP achieves in-
version of control, because the functionality of aspects is
called from classes without having explicit dependencies of
classes on aspects. Instead of registering with explicitly trig-
gered events, an aspect intercepts the required events as join
points. Thus, join points can be considered as implicit events,
i.e., events that implicitly exist in the program. Pointcuts can
be seen as declarative definitions of events, the occurrences
of which are the selected join points.

The AO flavor of event-driven programming has several
advantages over C# and Observer style imperative events.
First, it separates and localizes definitions of events, con-
tributing to understandability and stability of the design.
Second, events defined as pointcuts can be combined with
each other or specialized to define other events. Third, treat-
ing identifiable points in program execution as implicit
events avoids the need to declare and trigger these events
explicitly and so simplifies the code and reduces the need
for preplanning.

However, the AOP-style of event-driven programming
does not align well with object-oriented designs. Pointcut
languages are primarily designed to support the selection of
event occurrences based on the static structure of a program
across class/object boundaries, while in object-oriented de-
signs, we are primarily interested in events of particular ob-
jects or groups of objects. Although AO languages often
make it possible to include various dynamic conditions into
pointcuts and to localize the scope of aspects to the join
points of particular objects, they are still not suitable for
modelling events as properties of objects in an efficient and
intuitive way. Moreover, AOP promotes a global perspective
on the functionality on the application, which is not compat-
ible with the typical OO heuristics of defining each piece of
functionality from the local perspective of a certain object
using only its state and the interfaces of explicitly referenced
objects. As a result, aspects may create sophisticated and im-
plicit interdependencies that complicate modular reasoning,
modular compilation, and loading.

The contribution of this paper is the concept of declara-
tive object-oriented events that enhances imperative events
in the C# style with AOP elements while preserving the
goals and principles of object-oriented design. Like in C#,
events are declared as a new kind of class members and can
be accessed as attributes of objects. However, unlike C#, the
occurrences of an event can be defined not only imperatively

by explicit triggering, but also declaratively by expressions
involving and composing other events. The declarative event
definition is one of the elements that our approach shares
with AOP. However, unlike typical pointcut languages, the
event expressions are defined as properties of objects using
only the state of the object and the events available from the
interfaces of the referenced objects. For a full support of ob-
ject relationships in event expressions, we make access to
events late-bound and support quantification over polymor-
phic collections of objects.

Another common element with AOP is that we make
method calls available as implicit events and so reduce
the code overhead and preplanning associated with explicit
event declaration and triggering. Unlike in AOP, however,
an event definition can refer only to implicit events triggered
by methods in its lexical scope and by methods explicitly
declared as observable in the interfaces of the referenced
objects, thus supporting modular reasoning in the object-
oriented style. Implicit dependencies between modules and
the pointcut fragility problem [1] are avoided, since event
definitions can only rely on explicit references to statically
visible software elements.

We present an efficient and type-safe integration of
declarative events into SCALA [31, 32]. We have chosen
SCALA because it supports both object-oriented and func-
tional features, in particular higher-order functions. The
powerful type system of SCALA enables type-safe and struc-
ture preserving encoding of event expressions. Implicit type
conversions and the possibility to overload operators makes
it possible to embed much of the proposed features with-
out extending the compiler. The implementation of events is
based on fine-grained management of dependencies between
events of individual objects and a push-based notification
process based on these dependencies. In this way, we achieve
that Observer pattern and C# events can be replaced by de-
signs based on declarative events without degrading per-
formance. Moreover, declarative event definitions make the
dependencies between events explicit, enabling optimiza-
tions that were difficult to achieve with imperative events.
In particular, we can detect and switch off unused chains
of events, avoiding redundant event notifications. Our ap-
proach to integrating AO elements into the language design
fully preserves modular compilation and loading of classes.

The paper is structured as follows. In Sec. 2 we analyze
the strengths and the limitations of the imperative events
found in object-oriented designs and the aspect-oriented ap-
proach of defining events as pointcuts. In Sec. 3 we present
the language design of ESCALA combining imperative,
declarative and implicit events and providing their seam-
less integration with object-oriented features. In Sec. 4 we
analyze the advantages of ESCALA and its design trade-offs.
In Sec. 5 we describe the implementation of events and the
translation of ESCALA to SCALA. We discuss related work
in Sec. 6, and conclude in Sec. 7.

2

1 public abstract class Figure {
2 protected Point position;
3 protected Color color;
4 ...
5 public delegate void NoArgs();
6 public event NoArgs changed();
7 ...
8 public virtual void moveBy(int dx, int dy) {
9 position.move(dx, dy); onChanged();

10 }
11 public virtual void setColor(Color col) {
12 color = col; onChanged();
13 }
14 protected virtual void onChanged() {
15 if (changed != null) { changed(); }
16 }
17 ...
18 }
19

20 public class RectangleFigure : Figure {
21 protected Size size;
22 ...
23 public virtual void resize(Size size) {
24 this.size = size;
25 onChanged();
26 }
27 public virtual void setBounds(int x1, int y1, int x2, int y2) {
28 position.set(x1, y1); size.set(x2 − x1, y2 − y1); onChanged();
29 }
30 ...
31 }

Figure 1. Figures in C#

2. Problem Statement
In this section, we outline the deficiencies of the way events
are supported in mainstream object-oriented languages. Fur-
ther, we argue that although these deficiencies could be ad-
dressed by the aspect-oriented mechanisms of pointcut and
advice, there are certain limitations related to using aspects
for event-driven programming.

2.1 Imperative Events
Although C# events make the design intention of the de-
veloper more explicit and reduce the code overhead of the
Observer pattern, their semantics is in principle identical to
the semantics of the pattern. In both cases the occurrences of
events are defined imperatively by triggering them at the cor-
responding locations within the program. This way of defin-
ing events has several deficiencies.

Separation of Concerns The definition of events by trig-
gering is not localized. Instead, the code preparing the event
parameters and triggering the events is tangled with method
implementations. This creates some unnecessary dependen-
cies by making, at the implementation level, the methods
dependent on the events, whereas the methods are logically
independent of them. Moreover, when the state change de-
noted by an event may happen at multiple places in the code,
the definition of the event by triggering becomes scattered
over one or even over multiple classes. Tangling and scatter-
ing of event definitions makes it difficult to understand and
to change them independently. It also makes it difficult to
add new events. Moreover, these changes require diving into
details of method implementations.

For example, consider a graphical editor working with
various figures. Fig. 1 shows a possible implementation of
a class Figure and its subclass RectangleFigure in C#. Class
Figure contains fields defining its position and graphical at-
tributes, such as color, and methods changing these fields.
Class RectangleFigure additionally defines an attribute size

and two methods resize and setBounds. To notify clients
about its changes, Figure defines an event changed, triggered
at the end of every operation of Figure and its subclasses.1

The definition of the event changed, i.e., the definition of its
occurrences, is scattered and tangled within methods of class
Figure and its subclasses. To change the notification protocol,
e.g. to introduce more fine-grained events or to provide more
information about the changes, we would need to change the
methods that trigger the events as part of their implementa-
tion.

Preplanning Although C# events reduce the overhead of
the Observer pattern, support for each event is still associ-
ated with additional overhead. Therefore, the developer still
has to anticipate all possible events required by the clients
and carefully design the interface of the class to support
them. In particular, the developer must anticipate which state
changes of the class are of interest to its clients, how specific
the events should be, and what data should be provided by
the events. If the granularity of the events or the associated
data is not sufficient to particular clients, the implementation
of the class must be changed.

For example, different clients of Figure may be interested
in particular changes of the figure, e.g., resizing or mov-
ing the figure, and may need different information about
the events. As was explained above, since event definitions
are tangled with the implementation of the methods on the
figures, changing the observation protocol would require
changing the methods of the class and its subclasses.

Composition of Events Defining an event by triggering
can be seen as a definition of its occurrences by simply enu-
merating them, i.e. the developer must write the code that
explicitly triggers each occurrence of the event. Conceptu-
ally, an event could also be defined declaratively in terms
of other more primitive events. An event of an object can be
defined as a union or specialization of other events of the ob-
ject. For example, having events denoting figure movement,
resizing and its color change, the figure change event could
be defined as a union of these events. An event of an object
can also be defined in terms of events of other more primitive
objects. For example, a change of a drawing can be defined
as a change in any of its figures.

Since imperative events are defined only by triggering,
they do not directly support the definition of events in terms
of other events and force the developer to use workarounds.

1 The event is triggered indirectly via the method onChanged. This is
because in C# an event can be directly triggered only from the declaring
class, not from its subclasses. Also, if no handlers are registered with the
event, the value of the event is null and the event cannot be triggered.

3

1 public abstract class Figure {
2 ...
3 public event NoArgs changed();
4 public event NoArgs resized();
5 public event NoArgs moved();
6 ...
7 public virtual void moveBy(int dx, int dy) {
8 position.move(dx, dy); onMoved();
9 }

10 public virtual void setColor(Color col) {
11 color = col; onChanged();
12 }
13 protected virtual void onMoved(Point pt) {
14 if (moved != null) moved(pt); onChanged();
15 }
16 protected virtual void onResized(Size size) {
17 if (resized != null) resized(pt); onChanged();
18 }
19 protected virtual void onChanged() { ... }
20 ...
21 }
22

23 public class RectangleFigure : Figure {
24 ...
25 public virtual void resize(Size size) {
26 this.size = size; onResized();
27 }
28 public virtual void setBounds(int x1, int y1, int x2, int y2) {
29 position.set(x1, y1); size.set(x2 − x1, y2 − y1);
30 onResized(); onMoved();
31 }
32 ...
33 }

Figure 2. Defining events of figures in terms of each other

In the case of events of the same class, a method trig-
gering an event can also trigger other events. For example,
Fig. 2 shows a refactored version of classes Figure and Rect-

angleFigure with more specific events denoting figure move-
ment and resizing. To define that every resized or moved event
is also a changed event, the methods triggering the specific
events, i.e., onMoved and onResized, additionally trigger on-

Changed.
To define an event in terms of events of other objects, an

object can register handlers to the events of the other objects
and trigger its events in these handlers. The reactions may
contain statements transforming the parameters of the event
and conditional statements defining dynamic filters on the
event occurrences. For example, a drawing can register to
the changed event of its figures and in the handler trigger its
own changed event.

The problem with a design using the aforementioned
workarounds is that it is not declarative and does not di-
rectly capture the design intention, making it more diffi-
cult to understand. Defining higher-level events by triggering
may also impact efficiency because multiple events are then
explicitly triggered when certain changes occur, even when
these events are not used. The approach based on methods
triggering multiple events creates undesired dependencies,
because methods triggering lower-level events are also re-
sponsible for triggering higher-level events.

Moreover, not all forms of event composition can be
modeled in this way. For example, the changed event in
Fig. 2 is defined to include the union of moved and resized

events, but in the cases when these events overlap changed

is triggered twice. This, e.g., happens in setBounds, which
moves and resizes the figure, and therefore triggers both
moved and resized events.

In general the problem is that instead of abstracting over
the same events in different ways, we trigger new ones. For
example, to model a change to the bounds of the figure
both as a resized and a moved event, we must trigger two
independent events. Then by modeling these events also as
occurrences of changed, we actually create two more events.
There is no way to detect that all four events represent the
same logical event. As a result we cannot properly model
union of events and other typical set operations such as
intersection and difference of sets.

2.2 Aspect-Oriented Programming
The AOP approach to defining events addresses the disad-
vantages of imperative events.

First, the definition of an event as a pointcut is localized,
which achieves a better separation of concerns. Pointcuts are
defined independently of the methods triggering the inter-
cepted join points. This makes the design more stable, be-
cause existing pointcuts can be changed and new pointcuts
can be defined without changing the observed classes.

Second, the availability of join points as implicit events
reduces the need for preplanning, because classes are made
observable without any special preparations. The most stable
and thus the most useful join points are executions (or calls)
of public methods. They make it possible to insert function-
ality of aspects before and after method executions and thus
conceptually correspond to the events triggered at the begin-
ning and the end of methods. Indeed, our analysis of Java
and C# libraries showed that a vast majority of events are
triggered at the beginning or at the end of the methods.

Finally, unlike imperative events, pointcuts can be com-
posed using the operators provided by the pointcut language.
For example, the pointcut language of AspectJ [22] supports
the conventional logical operators – disjunction, conjunc-
tion, and negation – as well as the possibility to restrict join
points by conditions defined as Java expressions. Pointcuts
can be declared as named members of an aspect and ref-
erenced in the definition of other pointcuts, which enables
their reuse. Unlike imperative events, pointcuts can share
join points, and the operators on pointcuts can be interpreted
as proper set operators on their join points. For example, a
disjunction of two pointcuts selects their shared join points
only once.

Despite these advantages, the pointcut-advice mechanism
does not align very well with object-oriented features. In the
following, we elaborate on what we mean by this, referring
primarily to AspectJ features. In Sec. 6 we discuss in detail
to what degree the listed problems are addressed in other
AOP approaches.

4

Events from the Perspective of Objects AO design is fo-
cused on separation of crosscutting concerns often involving
different parts of an application. Therefore, AO design tends
to view the application as a whole and modularize its differ-
ent concerns into aspects that cut across the object-based de-
sign. Consequently, the pointcut language of AspectJ is de-
signed to quantify over the static structure of an application:
the members of a class, the classes of the application, in-
heritance relationships between classes. Although the point-
cut language supports dynamic conditions in pointcuts, these
conditions are executed in a static context and can use only
static variables and methods.

In a typical OO design, each piece of functionality is de-
fined from the perspective of a certain object using the meth-
ods, attributes and relationships of the object. An object does
not have a complete knowledge of the world, only of its own
state and the interfaces of directly referenced objects. In a
proper OO design all functionality is defined from a local
perspective, while global functionality is avoided as much
as possible. In object-oriented designs we are primarily in-
terested in events of certain objects rather than events of all
instances of certain classes. For example, a view is inter-
ested in the events of a model that it observes rather than
all instances of the model class. If the model is a composite
structure, the view may be interested in the events of the ob-
jects constituting the model. To support event definitions of
this kind we need two things. First, pointcuts must be able
to refer to events of certain objects and quantify over rela-
tionships among objects. Second, pointcuts must be defined
in the context of objects in terms of their attributes and rela-
tionships.

Event Reactions in Objects An aspect is primarily consid-
ered as a module of some crosscutting concern and is either
stateless or modeled as a singleton. This means that reac-
tions to events, modeled as pieces of advice, are executed in
the context of singleton objects. To model objects reacting
to events of other objects, e.g., views observing the models
that they display, we need an infrastructure analogous to that
of the Observer pattern: an aspect must maintain a registry
of objects interested in its events and notify the registered
objects in its pieces of advice [20].

Variation of Event Definition The definition of an event
may not only depend on the state of the object, but may also
vary depending on its type. For example, the definition of
the figure change event depends on the type of the figure.
Although certain attributes and methods are shared by all fig-
ures, other attributes and methods are available only to spe-
cific figure types. For example, RectangleFigure of Fig. 1 can
be changed by methods setBounds and setSize. Such methods
are not applicable to all types of figures, e.g., PolylineFigure

would be modified by modifying its points.
A pointcut intercepting changes of any figure would need

to refer to methods of Figure and all its subclasses. The
problem with such a pointcut is that the objects interested in

the changes of a figure would be exposed to all specific types
of the figure. Changes to specific figure types would not be
isolated, because they may require updating the definition
of the pointcut. The design would not be extensible with
new types of figure, because the pointcut would need to be
changed to include their new methods.

To vary the definition of an event depending on the type
of an object and to hide these variations from its clients, we
must support events as attributes of objects. Moreover, to
support the use of events over polymorphic references to ob-
jects, the references to events must be resolved dynamically
depending on the dynamic type of the object.

Fine-Grained Events As argued in [35] and [38], join
points or the data related to the join points are often insuffi-
cient to define all useful events. Since availability of events
depends on the granularity of decomposition into methods,
an oblivious design cannot guarantee availability of all nec-
essary events as join points. The events that do not naturally
correspond to the boundaries of methods must still be mod-
eled as events that are explicitly triggered at the appropriate
locations within the methods of the class.

Modularity The availability of join points as implicit
events reduces the need for preplanning. Nevertheless, un-
constrained quantification over implicit events has also sev-
eral drawbacks.

If the interface of a class is not specifically designed for
observation by aspects, the decomposition of a class into
methods can be more or less accidental and can be changed
in the next version of the class. The result is fragility of
the pointcuts intercepting such methods. This problem can
be mitigated by limiting join-point interception to public
methods only, because then the aspect, like all other clients
of a class, would depend only on its public interface. This
would, however, reduce the set of available implicit events
and would increase the need for explicit event triggering.

Even more problematic are pointcuts based on method
name patterns, because then there are no explicit dependen-
cies between the pointcut and the methods to which they re-
fer. Implicit dependencies make the software more difficult
to analyze and to maintain. For example, if a method is re-
moved, or its signature is changed, it is difficult to detect the
pointcuts that are affected by the change.

The lack of explicit interfaces for observation implies that
a class is completely open to aspects and so complicates
modular reasoning about its properties, because the aspects
can directly or indirectly affect the behavior of the class at
every join point.

Last but not least, uncontrolled join-point interception
also compromises the typical implementation-related prop-
erties of object-oriented languages. In object-oriented lan-
guages, classes are considered as modules that can be in-
dependently checked, compiled, and even loaded. It is dif-
ficult to preserve these properties in presence of join-point
interception. To compile or to load a class in a modular way,

5

without knowing all the aspects that can potentially observe
it, we must prepare all join points of the class for a potential
interception, which creates a significant performance over-
head.

3. Object-Oriented Events in ESCALA

In this section, we present ESCALA, an extension of the
SCALA programming language [31, 32] with object-oriented
events. Basically, we extend the idea of events as object
members, realized in C#, with the possibility to define events
by declarative expressions. The event expressions are analo-
gous to pointcuts in aspect-oriented languages, but are better
integrated into the object-oriented paradigm. From AOP we
also borrow the idea of join points as implicit events.

SCALA was chosen as a base language, because it sup-
ports a combination of object-oriented and functional fea-
tures supplied with a powerful type system, which enables
structure and type preserving embedding of events and event
operators in the language. The presented concepts are not
specific to SCALA, however, and can be applied to any
object-oriented language.

3.1 Different Kinds of Events
An event is declared as a class member with the keyword
event. An event can collect data about the context of its oc-
currence. The type of the collected data can be inferred from
the definition of the event or specified explicitly in square
brackets after its name.2 An event can be either defined by
an event expression or declared as imperative, which means
that it is defined by explicit triggering. Event expressions
make it possible to define events in terms of other events, at
the lowest level relying on primitive events.

There are two kinds of primitive events: In addition to
imperative events, which are defined by triggering, ESCALA
also supports implicit events, which mark language-specific
actions during the execution of a program, such as the begin-
ning or the end of the execution of a method. Implicit events
in ESCALA correspond to join points in aspect-oriented lan-
guages. We adopt the point-in-time join point model of Ma-
suhara et al. [25]. Whereas the join point model of AspectJ
associates a join point to the entire execution of an action,
this model defines a join point as an event occurring either
before or after an action. For the sake of simplicity, the only
actions we will consider in this paper are method executions.
Extending ESCALA to support a richer join-point model is a
possible direction of future work.

In contrast to implicit events, we will refer to the events
explicitly declared as class members as explicit events. An
explicit event is either imperative or declarative depending
on whether it is defined imperatively by triggering or declar-
atively by an event expression.

For illustration, Fig. 3 shows the definition of the events
of Figure in ESCALA. The events moved, changed, and in-

2 We use SCALA’s type Unit to declare events providing no data.

1 abstract class Figure {
2 ...
3 event moved[Unit] = after(moveBy)
4 abstract event resized[Unit]
5 event changed[Unit] = resized || moved || after(setColor)
6 event invalidated[Rectangle] = changed.map(=> getBounds())
7 ...
8 def moveBy(dx: Int, dy: Int) {
9 position.move(dx, dy)

10 }
11 def setColor(col: Color) {
12 color = col
13 }
14 def getBounds(): Rectangle
15 ...
16 }

Figure 3. Figure in ESCALA

1 class Connector(val start: Figure, val end: Figure) {
2 start.changed += updateStart
3 end.changed += updateEnd
4 ...
5 def updateStart() { ... }
6 def updateEnd() { ... }
7 ...
8 def dispose() {
9 start.changed −= updateStart

10 end.changed −= updateEnd
11 }
12 }

Figure 4. Figure connector

validated are defined declaratively. The event moved is de-
fined by the expression after(moveBy), more precisely af-

ter(this.moveBy), thus referring to the implicit events denot-
ing the points in time after the executions of the method
moveBy on this. The event resized is declared as abstract,
because Figure does not provide any methods resizing the
figure. Nevertheless, such an event is useful because it can
be refined in subclasses. The event changed is defined as a
union of resized, of moved, and the points after the execu-
tions of setColor. Finally, the event invalidated is defined by
attaching the information about the current figure bounds to
the event changed.3

3.2 Event Reactions
The mechanism of binding reactions to events is analogous
to the one of C#. A reaction can be registered to an event by
a statement of the form e += f , where e is an expression
referring to the event and f is a function implementing
the reaction. Analogously, the statement e -= f unregisters
the reaction from the event. A reaction to an event can be
any function which can take the data value of the event as
argument, i.e., the data type of the event must be a subtype of
the argument type of the function. A reaction can be defined
by a reference to a method of an object, as well as by an
arbitrary function value.

3 See Sec. 3.3 for the definition of map. The parameter of the map operator
is a closure calling the method getBounds on this object.

6

Fig. 4 shows an implementation of a connector connect-
ing two figures, represented by the fields start and end. To
update the respective ends of the connector after changes in
the figures, the connector registers the method updateStart as
a reaction to the event start.changed, and the method upda-

teEnd as a reaction to the event end.changed. In the example,
registration takes place in the constructor of the class.4

Class Connector also provides a method dispose, in which
the reactions are unregistered from the observed events. Ex-
plicit unregistration is necessary for garbage collection, be-
cause event-reaction binding creates a link from the object
declaring the event to the object implementing the reaction.
In general, if an object referencing an event has a shorter life
time than the owner of the event, it must unregister from the
event in order to be garbage collected. Analogous explicit
unregistrations are also necessary when using C# events or
the Observer pattern.

3.3 Event Expression Language
The semantics of an event can be described as a function
on event occurrences that tells whether the event matches a
particular event occurrence, and, if so, returns a value con-
taining relevant information about that occurrence. Let Occ
be the set of all event occurrences, andEvent(S) denote the
set of events with data type S. Then Event(S) is the set of
functions of type Occ → S⊥, where S⊥ = S ∪ {⊥}. If the
event matches a given event occurrence, it computes a value
from S; otherwise, it returns a special value ⊥. The same
event occurrence can be selected by multiple events; differ-
ent events can collect different data about the same event
occurrence.

Event expressions enable to define new events by means
of references to explicit and implicit events of objects, as
well as by means of operators to combine and transform
other events.

Implicit events are referred by expressions of the form
before(expr.M) and after(expr.M) denoting the points be-
fore and after the executions of method M with the object
expr as a target. The semantics of a reference to an implicit
event before(expr.M), respectively after(expr.M), is a func-
tion that selects occurrences denoting the points before, re-
spectively after, the executions of the method M on the ob-
ject referenced by expr. The data of a before event is the
tuple of parameters passed to the method, while the data of
an after event is a pair consisting of the tuple of parameters
and the return value of the method.

Explicit events are referenced by expressions of the form
expr.E, where expr is a SCALA expression evaluating to an
object, and E is the name of an event exposed by the object.
The prefix expression expr can be skipped to refer to events
of this. The semantics of a reference to an explicit event de-
pends on whether it is defined imperatively or declaratively.

4 In SCALA, the statements inside the block of the class are executed as a
part of its constructor.

or[S,T] :: Event(S)× Event(T)→ Event(S ∪ T)

or[S,T](e, e′) = λx.

{
e(x), if e(x) 6= ⊥
e′(x), otherwise

and[S,T] :: Event(S)× Event(T)→ Event(S × T)

and[S,T](e, e′) = λx.

⊥, if e(x) = ⊥
⊥, if e′(x) = ⊥
(e(x), e′(x)), otherwise

diff [S,T] :: Event(S)× Event(T)→ Event(S)

diff [S,T](e, e′) = λx.

{
⊥, if e′(x) 6= ⊥
e(x), otherwise

filter [S] :: Event(S)× (S → Bool)→ Event(S)

filter [S](e, c) = λx.

⊥, if e(x) = ⊥
e(x), if c(e(x))
⊥, otherwise

map[S,T] :: Event(S)× (S → T)→ Event(T)

map[S,T](e, f) = λx.

{
⊥, if e(x) = ⊥
f(e(x)), otherwise

empty[S] :: Event(S)
empty[S] = λx. ⊥

any[O,S,U] :: List(O)× (O → Event(S))→ Event(T)
any[O,S,U](l, f) = λx. foldl (l,⊥, join(x))

where join(x) = λs.λo.

{
s, if s 6= ⊥
f o x, otherwise

Figure 5. Event operators

The semantics of a reference to an imperative event is a func-
tion that selects any triggering of the event and returns the
data passed as parameters. The semantics of a reference to
a declarative event is the semantics of the expression defin-
ing the event (the this reference in the defining expression
is replaced by the reference to the object resulting from the
evaluation of the prefix expression). Lookup of the definition
of a declarative event is explained in Sec. 3.5.

Event operators of ESCALA make it possible (a) to com-
bine the sets of occurrences selected by operand events by
typical set operators, (b) to filter them by additional condi-
tions, and (c) to transform the data returned by the operand
events. Since events are semantically described by functions,
the semantics of operators on events are described by higher-
order functions, listed in Fig. 5.

• The expression e || e′ denotes the union of two events. Its
semantics is defined by the function or(e, e′): the result
is an event that matches an occurrence if it is matched by
e or e′. The data type of the resulting event is a common

7

supertype of the data types of e and e′, which we describe
as a union of the sets denoting the types.5 When both e
and e′ match an occurrence, the occurrence is selected
only once with the data collected by e.
• The expression e && e′ denotes the intersection of the

two events with the semantics defined by the function
and(e, e′). The resulting event matches an occurrence
only when both e and e′ match it. The collected data value
is a pair of the values collected by e and e′.
• The expression e \ e′ denotes the set difference between
e and e′ with the semantics defined by the function
diff (e, e′). The resulting event selects an occurrence if
it is selected by e, but not by e′. In case of a match the
data collected by e is returned.
• The expression e && c filters the event e by the condition
c. The condition is an arbitrary boolean function taking
the data of the event as a parameter. The semantics is
defined by the function filter(e, c). The resulting event
matches an occurrence if e matches it and if c evaluates
to true when applied to the value collected by e.
• The expression e.map(f) applies function f to the value

collected by the event e. Its semantics is defined by the
function map(e, f). The resulting event matches an oc-
currence when it is matched by e, and in case of success
the data collected by e is transformed by f .
• The expression empty denotes the event that never matches.

It is defined as a function that always returns ⊥.
• The expression l.any(f) aggregates events of a collection

of objects, where l is a collection containing objects of
type O, and f is a function from an object of type O to
an event. The aggregated event matches an event occur-
rence, if the occurrence is matched by any of the events
computed by applying f to the elements of l. The se-
mantics of the operator can be compactly defined by left-
folding the collection with the initial value ⊥, and with
the combinator join. Given an event occurrence x and a
function f , this combinator returns a function that takes
the last result of matching s and returns it in case of suc-
cess, otherwise takes the next object o in the collection,
retrieves the corresponding event, and matches the event
occurrence. Left-folding is used to repeat matching un-
til success occurs or there is no object left, which corre-
sponds to a failure (⊥ is returned).

The event expression language is designed to support the
object-oriented style of programming. Events are defined
from the perspective of an object using its attributes, re-
lationships, and other events. An object can use events of
the referenced objects by means of expressions of the form
expr.E. Also, both the conditions of a filter expression and
the function of a map expression are evaluated in the context

5 In the implementation, we rely on the unification of types provided in
SCALA, which is more restrictive.

1 class Drawing(val figures: List[Figure]) {
2 event invalidated = figures.any(.invalidated)
3 ...
4 }
5

6 class View(val drawing: Drawing) {
7 drawing.invalidated += repaint
8 def repaint(bounds: Rectangle) { ... }
9 ...

10 }

Figure 6. Drawing

of the object defining the event; they can use its fields and
methods. For example, the definition of the event invalidated

at line 6, Fig. 3 uses the map operator with a function that
calls getBounds on this.

The aggregation of events of a collection of objects (by
l.any(f)) provides a convenient way to quantify over one-
to-many object relationships. For example, Fig. 6 shows the
definition of a Drawing that contains an arbitrary number of
figures stored as elements of its field figures. The invalidated

event of the Drawing aggregates the invalidated events of its
figures. Such an event can be used to repaint the invalidated
area of the View displaying the Drawing (line 7, Fig. 6).

3.4 Evaluation of Events
Event expressions appear in event-reaction binding/unbind-
ing statements and in the definitions of member events.
Event expressions that appear in statements are evaluated
when the statement is executed. However, an expression
defining a member event of a class is evaluated on demand
when the event is accessed for the first time; following ac-
cesses to the event return the same value.

For example, the expression start.changed in line 2 of
Fig. 4 appears within a statement of the constructor of Con-

nector. This expression is evaluated when the constructor is
executed. In line 9 of Fig. 4, the same expression appears
within the body of the method dispose and will be evalu-
ated as a part of its execution. However, the event changed of
the figure referenced by start will be evaluated only once.
Thus, since start is an immutable field, the evaluation of
start.changed in the constructor and in the method dispose

will return the same value.
This evaluation regime preserves the identity of an event

declared as an attribute of an object, which is important for
properly unregistering reactions. For example, in order to
unregister the reaction associated with start.changed in the
method dispose, it is important that the expression refers
to the same event as the one with which the reaction was
registered in the constructor of the class.

The lazy initialization of events has two advantages. First,
since the events of an object can reference each other in their
definitions, it is important that the referenced events are ini-
tialized before the events using them. With lazy evaluation,
the correct initialization order is determined automatically.

8

1 class RectangleFigure extends Figure {
2 ...
3 event resized[Unit] = after(resize) || after(setBounds);
4 override event moved[Unit] = super.moved || after(setBounds);
5 ...
6 def resize(size: Size) {
7 this.size = size;
8 }
9 def setBounds(x1: Int, y1: Int, x2: Int, y2: Int) {

10 position.set(x1, y1); size.set(x2 − x1, y2 − y1);
11 }
12 ...
13 }

Figure 7. Rectangle figure in ESCALA

Second, lazy initialization improves efficiency, because an
event is initialized only if it is actually used.

The result of evaluating an event expression is a func-
tion on event occurrences representing the event. This event
function is conceptually evaluated at every event occurrence.
Technically, the implementation of events in ESCALA fol-
lows a more efficient push-based evaluation strategy to be
presented in Sec. 5. Functions defining conditions and trans-
forming event data are evaluated as a part of event matching.
Since ESCALA is an imperative language, functions used in
event expressions may be closures that depend on mutable
state of the program, e.g., instance variables of the object
declaring the event. Thus, event matching depends not only
on the data captured from the event occurrence, but also on
the current values of the variables captured by the closures.

3.5 Inheritance and Late-Binding of Events
Like all other members of a class, events are inherited by
subclasses. The semantics of event inheritance is analogous
to the inheritance of methods. The inherited events can be
overridden by binding them to new event expressions. The
definition of the event in the subclass must be compatible
with the event of the superclass: the data type of the event
must be preserved, visibility restrictions can be weakened.
The definitions of the events inherited from the superclass
can be accessed through the super reference.

Fig. 7 shows how RectangleFigure defines or redefines
the events declared in its superclass Figure. Event resized,
which was declared as abstract in Figure, is defined to refer to
returning from the methods resize or setBounds. Event moved

reuses its super definition, extended with returning from the
method setBounds.

In abstract classes, events can be declared as abstract.
In concrete classes inherited abstract events must be imple-
mented either by declaring them as imperative or by defin-
ing them declaratively. For example, the compiler checks
whether the abstract event resized declared in Figure is im-
plemented in its concrete subclass RectangleFigure. Abstract
events are especially useful for describing interfaces of ob-
jects consisting both of methods and events.

Since the same event can be defined differently by dif-
ferent objects, references to events cannot be resolved stati-

cally. For example, the definition of the event start.changed

in line 2 of Fig. 4 depends on the type of the figure refer-
enced by the field start. Like methods, events are late-bound
in ESCALA. The access to an event is prefixed by a reference
to an object, and is resolved by a dynamic lookup of the defi-
nition of the event in the class of the object. For example, the
event expression start.changed in line 2 of Fig. 4 would eval-
uate to the definition of changed defined in the class of the
object referenced by start. If the connector is created with
start of type RectangleFigure, the definition of changed from
the class RectangleFigure would be taken. Although Rectan-

gleFigure does not redefine changed, there is some late bind-
ing taking place: its inherited definition of changed uses the
new versions of resized and moved.

3.6 Mutable Object Relationships in Events
The event expressions in the examples so far use only im-
mutable relationships between objects. For example, the
Connector of Fig. 4 immutably connects the figures refer-
enced by the fields start and end, and the Drawing of Fig. 6
contains an immutable list of figures. However, an object
may also have relationships that change during its lifetime:
the values of its fields change through assignment; one-to-
many relationships are usually represented by collections
and are changed by adding and removing elements.

If an object reacts to events of other objects referenced by
its relationships and these relationships change, the reactions
of the object must be unregistered from its old references and
registered with the new references. For example, class Con-

nector of Fig. 4 can be changed to enable reconnecting the
connector to other figures. This can be achieved by turning
start and end into mutable fields (declared with the keyword
var instead of val). The problem is that every time the con-
nector is reconnected to another figure, it must be unregis-
tered from the events of the old figure, and registered with
the events of the new figure.

The use of mutable object relationships in the definitions
of events is even more problematic. As described in Sec. 3.4,
the definition of an event is evaluated only once when it is
accessed for the first time. If the definition of the event de-
pends on relationships that change after the event is evalu-
ated, the event may become inconsistent with the state of the
object. For example, the event invalidated of Drawing (Fig. 6)
is defined as a union of the invalidated events of all child fig-
ures. Assume that we change the field figures to a mutable
collection. If we add or remove figures after the invalidated

event of the drawing is evaluated, the event would still refer
to the events of the figures that were part of the drawing at
the time of its evaluation.

A straightforward solution to the problem is to reevalu-
ate the events that depend on mutable references at every
event occurrence. Such a solution would be very inefficient
and would be incompatible with the push-based implemen-
tation of events described in Sec. 5. Therefore, we use a
different approach. We observe changes to the relationships

9

1 class MutableConnector(
2 val start: Variable[Figure],
3 val end: Variable[Figure]) {
4 ...
5 event startChanged = start.changed || start.event(.changed)
6 event endChanged = end.changed || end.event(.changed)
7 event figureChanged = startChanged || endChanged
8 ...
9 startChanged += updateStart

10 endChanged += updateEnd
11 ...
12 def connectStart(fig: Figure) { start := fig }
13 ...
14 }

Figure 8. Mutable figure connector

1 class MutableDrawing {
2 val figures = new VarList[Figure]
3 ...
4 event invalidated = figures.any(.invalidated)
5 ...
6 def addFigure(fig: Figure) { figures.add(fig) }
7 }

Figure 9. Mutable composite figure

between objects and reevaluate only events that depend on
these changes. We define class Variable[T] to model observ-
able mutable references and VarList[T] to model observable
one-to-many relationships.

Class Variable[T] defines a wrapper to a reference of type
T. The class provides an event changed denoting changes to
the reference, and a method event for defining events that
depend on the reference. The method is parametrized by
a function f that computes an event from a value of the
reference. The method produces an event that is equivalent to
f applied to the current value of the reference. Technically,
the event is recomputed not at each event occurrence, but
only when the reference is changed.

For illustration, consider the implementation of a mutable
connector in Fig. 8. The connected figures are referenced
by wrappers of type Variable[Figure] (lines 2 and 3). The
event startChanged at line 5 is defined as a union of the
changes of the start reference itself and the changes of the
currently referenced figure. The changes of the reference are
provided by the event changed of Variable. The changes of
the figure are obtained by method event of applied to the
function .changed, which simply accesses the event changed

of Figure. The event endChanged is defined analogously.
The result is that the events startChanged and endChanged

are always kept consistent with the current relationships of
the connector. The reactions of the object to these events
(lines 9 and 10) always react to events of the currently con-
nected figures. We can also be sure that other events defined
in terms of startChanged and endChanged, e.g., figureChanged

at line 7, are always consistent with the relationships of the
object.

Mutable one-to-many references are implemented as ob-
servable lists, instances of the class VarList. The class defines

1 trait IFigure {
2 ...
3 event changed[Unit]
4 ...
5 observable def moveBy(dx: Int, dy: Int)
6 observable def resize(size: Size)
7 observable def setColor(col: Color)
8 ...
9 }

Figure 10. Figure interface with observable methods

a method any with semantics analogous to the one of the any

operator in Sec. 3.3: It aggregates the events of the elements
of the list described by the function given as a parameter to
the method. The difference is that the method produces an
event which always aggregates the events of the current el-
ements of the list. Again, as with Variable, the aggregated
event is recomputed not at every occurrence, but only after
changes to the list.

Fig. 9 shows an implementation of a drawing with a
changing list of figures. The invalidated event is defined as
an aggregation of the invalidated events of the figures. The
definition is analogous to the definition of the event in the
immutable Drawing of Fig. 6. However, the list of children
can change (e.g., in line 6), but the event is always kept
consistent with the current value of the list.

3.7 Observable Interfaces
The clients of a class can use only its public events. Visi-
bility of the explicit events of a class is controlled by the
conventional visibility modifiers. Like any other class mem-
bers in SCALA, events are considered as public by default,
but can be declared as private or protected to constrain their
visibility.

By default the implicit events of an object are visible only
within the object, i.e., an event expression can without re-
strictions refer to the implicit events based on the visible
methods of this object. To make implicit events of an ob-
ject observable by other objects, the corresponding methods
must be declared as observable. For example, besides the
explicit events denoting various types of figure changes, we
could also enable direct observation of the calls to the public
methods of the figure by declaring these methods as observ-
able as shown in Fig.10.

4. A Review of ESCALA’s Language Design
The language design of ESCALA addresses the limitations
of imperative events outlined in Sec. 2.1 as well as the prob-
lems with using aspect-oriented features in object-oriented
designs outlined in Sec. 2.2.

In this section, we discuss how this is achieved by high-
lighting distinguished features of the ESCALA design: (a)
the particular combination of the concept of imperative
events found in conventional object-oriented designs with
the concept of quantifying over implicit events found in
aspect-oriented programming, (b) the seamless integration

10

1 class TemperatureSensor {
2 imperative event tempChanged[Int]
3 ...
4 def run {
5 var currentTemp = measureTemp()
6 while (true) {
7 val newTemp = measureTemp()
8 if (newTemp != currentTemp) {
9 tempChanged(newTemp)

10 currentTemp = newTemp
11 }
12 sleep(100)
13 }
14 }
15 ...
16 }

Figure 11. Temperature sensor

of events with object-oriented scoping, inheritance, and sub-
type polymorphism, and (c) the preservation of the typical
object-oriented modularity properties.

4.1 Imperative, Implicit, and Declarative Events
Unlike languages supporting imperative events only, such
as C#, ESCALA directly supports definition of high-level
events in terms of more primitive events and so addresses
the problem of composing imperative events. Definitions of
high-level events are encoded in a declarative way by ex-
pressions rather than indirectly by triggering multiple events
in special methods, or by triggering new events in reactions
to other events. This makes them better localized and more
explicitly encodes the intention of the developer. The devel-
oper analyzing and maintaining the code finds the complete
definition of the event in one place and does not have to look
for all the places where the event could be triggered.

Furthermore, ESCALA’s support for implicit events in the
style of join points in aspect-oriented programming reduces
the need for explicitly triggered events. Often, imperative
events are triggered at the beginning or at the end of meth-
ods, because methods usually denote logical transactions in
the class. Such imperative events can be replaced by refer-
ences to corresponding implicit events in ESCALA.

By localizing the definition of events and reducing the
need for tangling event triggering within methods, support
for declarative and implicit events addresses the problems of
separation concerns and preplanning.

However, unlike aspect-oriented languages, ESCALA
does not abandon support for imperative events, because
they address the problem of fine-grained events in AOP.
Events that are not available as identifiable points in con-
trol flow (join points in AO terminology) can still be defined
by explicit triggering. Such triggering can happen from any
SCALA statement using all the local state available in that
context.

To illustrate the usefulness of imperative events in situa-
tions when we want to trigger events from within a method
body or with data that is stored in local variables, Fig. 11
shows the implementation of a driver for a temperature sen-

sor. A loop periodically measures the temperature and noti-
fies about temperature changes. To notify about the changes,
the class declares an imperative event tempChanged (line 2)
and triggers it every time a change to the temperature is de-
tected (line 9). The event is triggered from inside a loop with
a local variable as a parameter. To model such a behavior
with declarative events, we would need to replace the trig-
gering of tempChanged by a call to a dummy method with
an empty body and define the event by a reference to that
method. This would make the design intention less explicit
and would create additional complexity.

4.2 Object-Oriented Events and Reactions
Unlike aspect-oriented languages based on static singleton
aspects, ESCALA allows defining events and reactions to
these events directly in the context of the objects that imple-
ment the reactive behavior and so addresses the respective
limitations of AO outlined in Sec.2.2. Both event expressions
and reactions can freely use the state variables, methods, and
relationships of the object defining the reactive behaviors.
Events can be filtered and their parameters transformed by
any SCALA expression valid in the context of that object.
Technically, this is achieved by defining the filter predicates
and the transformation functions as SCALA closures.

ESCALA is designed to support different kinds of rela-
tionships between objects in the definitions of events. Refer-
ences to multiple objects are explicitly supported by the any

operator, which makes it possible to aggregate events of a
collection of objects. Mutable references between objects in
event definitions are supported by the library classes Variable

and VarList, which observe changes to the relationships and
automatically update the events depending on these changes.

More importantly, access to events is made late-bound to
support polymorphic references to objects in combination
with the possibility to vary the definition of an event depend-
ing on the object type. An event declared in an interface or in
an abstract class can be defined differently in different sub-
classes. Clients of an object may use its events without de-
pending on their definition. Such a design makes it possible
to introduce new object types and to change the events of the
existing object types without affecting clients. Furthermore,
existing event definitions are made extensible and compos-
able by supporting super references to events in subclasses
integrated with the semantics of mixin composition available
in SCALA.

In statically typed aspect-oriented languages, advice-
pointcut bindings are established by the pointcut references
in the declarations of the pieces of advice. Such bindings
are fixed and cannot be changed during the lifetime of the
aspect. On the contrary, the event-reaction bindings in ES-
CALA are flexible. It is possible to bind and unbind reactions
dynamically and at arbitrary places in the code. For illustra-
tion, consider Fig. 12, which shows pseudo-code for creating
a menu of commands. Method createMenu creates multiple
menu items and registers methods of the application class

11

1 class MenuItem {
2 event selected = ...
3 ...
4 }
5 class Application {
6 def createMenu : Menu {
7 val menu = new Menu
8 val open = new MenuItem(”Open”)
9 open.selected += onOpen

10 menu.add(open)
11 ...
12 menu
13 }
14

15 def onOpen { ... }
16 def onClose { ... }
17 ...
18 }

Figure 12. Creating a menu

as reactions with the selection event of these items. In this
example, reactions are registered with objects that are ref-
erenced by local variables. Thus, it is not possible to create
such bindings outside the method body.

4.3 Encapsulation and Modular Reasoning
Whereas aspect-oriented programming breaks encapsulation
with its invasive pointcuts, several elements of the ESCALA
design contribute to a better integration of event quantifica-
tion with object-oriented encapsulation and with the object-
oriented style of modular reasoning, as we elaborate in the
following.

Unlike typical pointcut languages, the event expression
language of ESCALA does not support name-based quan-
tification over arbitrary elements of the static structure of a
program. Instead, event expressions can be defined only in
terms of explicit references to the names visible in the con-
text of their definition, such as the members of the enclosing
objects and the interfaces of referenced objects. In this way,
dependencies between modules are made explicit, avoiding
fragile event expressions/pointcuts.

Also, the requirement to explicitly declare methods as ob-
servable provides advantages with regard to object-oriented
modular reasoning. First, it gives the developer of a class
full control over the observable interface of the class, and
thus over the points in its control flow, where behaviors of
other classes (aspects) can be inserted as reactions. Second,
the requirement to explicitly declare methods that can be ob-
served from outside a class is necessary for enabling modu-
lar instrumentation of the join points of the class as explained
in Sec. 5.4. ESCALA does not support around advice, and
thus the behavior of an object cannot be changed by its ob-
servers, which further facilitates modular reasoning in the
object-oriented sense.

Supporting object-oriented modular reasoning has certain
trade-offs, however. Unlike a class in aspect-oriented lan-
guages, a class in ESCALA is not completely oblivious of
the ways it can be observed. The developer of a class must
explicitly expose the events of the class that are available

for observation, which obviously involves some preplan-
ning and overhead compared to completely oblivious aspect-
oriented designs.

The effort and the level of preplanning for making a class
observable are comparable to the effort and the preplanning
needed when designing the interface of a class to its sub-
classes. Analogously to deciding which methods of a class
may be overridden by the subclasses, the developer of an
ESCALA class needs to decide which methods may be ob-
served by the clients and declare them as observable. More-
over, if the observation protocol provided by a class is not
optimal for certain clients, they can adapt it by defining event
expressions over the implicit events exposed by the class.

Yet, there are two remarks we would like to make. First,
the overhead involved in making a class observable in ES-
CALA is much lower than achieving the same goal in a lan-
guage that only supports imperative events. Second, prac-
tical AO designs often use annotations in the base classes
to make the pointcuts referring to them less dependent on
syntactic details. The overhead involved in annotating base
classes is comparable to the overhead of declaring methods
as observable in ESCALA.

5. Implementation
In this section, we present the implementation of the event
model described in the previous section. In subsections 5.1,
5.2, and 5.3, we present an embedding of the model as a
library in an unmodified version of SCALA. It allows using
the event model with the standard SCALA compiler, but may
result in some code overhead and in less intuitive code. In
subsection 5.4, an extension of the SCALA compiler that
avoids these problems is presented.

5.1 Representation and Typing of Events in SCALA

The interface of an event is described by the SCALA trait
shown in Fig. 13. The += and -= operators6 (lines 3-4)
can be used to register reactions with an event. Other meth-
ods (lines 6-9) define operators for combining events or for
transforming the event data (one method for each operator
in Fig. 5). For example, the || operator defines a new event
as the disjunction of its receiver and the events passed as pa-
rameters. The map function transforms the event data and is
especially useful when events of different types need to be
combined.

The generic parameter of Event specifies the type of the
data provided by the event; in the case of many values, the
TupleN classes can be used to parametrize the event. The
parameter type of an event is covariant, i.e., if U is a subtype
of T then Event[U] is a subtype of Event[T]. Such a subtyping
relation is valid, because a reaction to an event expecting a

6 SCALA makes it possible to use methods with a single parameter as infix
operators, where the target is the left-hand side operand and the argument
list the right-hand side one.

12

1 trait Event[+T] {
2 // Register and unregister a reaction to the event
3 def +=(react: T => Unit)
4 def −=(react: T => Unit)
5

6 // event combinators
7 // disjunction
8 def ||[S >: T, U <: S](other: Event[U]): Event[S] = ...
9 ...

10 // transform event parameter
11 def map[U, S >: T](mapping: S => U): Event[U] = ...
12 ...
13 }

Figure 13. The event trait

data of type T can also work with a data of a more specific
type.

Event combinators and transformers are also strongly
typed. For example, the event-disjunction method (line 8,
Fig. 13) returns an event whose parameter type is the clos-
est common super-type of the combined events as inferred
by the SCALA compiler. This implementation relies on the
SCALA type system with generics and type inference. Oper-
ators map, filter and any rely on the support for function types
in SCALA. For example, the map method (line 11, Fig. 13)
takes a function transforming the event parameter and pro-
duces an event of the return type of the function.7

5.2 The Push-Based Model for Implementing Events
The goal of our implementation of events is to provide an
efficiency comparable to the object-oriented designs that use
the Observer design pattern. A straightforward implementa-
tion of the semantics, trying to match every existing event at
every event occurrence, is very inefficient. Hence, we opted
for a push-based implementation strategy, in which a trig-
gered event propagates only to other events depending on
it and to reactions registered with it. The remainder of this
subsection elaborates on this strategy.

To represent dependencies between events we build a
graph, in which each event is represented by a node and each
dependency is represented by a directed edge between the
corresponding nodes. The hierarchy of event node classes
is shown in Fig. 14. All event nodes implement the Event

interface and also inherit from EventNode, which contains
functionality shared by all nodes. One kind of EventNodes
is ImperativeEvents that are imperatively triggered in code.
They serve as the source nodes of the graph. Furthermore,
there is a concrete subclass of EventNode for each event
combinator (EventNodeOr, EventNodeAnd etc.). The latter
nodes are created by the corresponding operators defined in
Event trait.

In addition to implementing registration of event reac-
tions, EventNode provides methods to register and unregister
special reactions, called sinks, responsible for notifying de-

7 The parameter function is defined on a supertype of T, because T is a
covariant type parameter of Event and cannot be used in contravariant
positions.

Figure 14. Event hierarchy

pendent nodes. The nodes implementing event combinators
register their sink methods with the nodes representing the
events being combined.

Each event occurrence is triggered by calling the apply

method on the node representing the corresponding impera-
tive event.8 When an imperative event node is triggered, the
graph is traversed starting from it and the reactions registered
with all events that match the triggered event occurrence are
collected. The collected reactions are executed only after the
matching process is completed; this avoids the execution of
event reactions during the event matching process, hence en-
suring that the reactions do not influence the matching pro-
cess.

The reactions of an event node are collected by the
method reactions implemented in EventNode. The method
collects the reactions directly registered with the event and
calls all registered sinks to collect the reactions of the de-
pendent events. The sink methods of the event combinator
nodes define their matching semantics by deciding whether
to return the reactions to the event or not.

Each imperatively triggered event is associated to a new
fresh identifier. The event identifier allows the identification
of the notifying event in the graph. Indeed, when a sink is
called, it has no other way to identify the originally trig-
gered event than comparing the last seen identifier with the
received one.

For illustration, Fig. 15 shows the implementation of
the disjunction combinator. The class defines a sink named
onEvt (line 4), which is registered with the two events on
which the disjunction is applied (lines 12-13). The sink
is unregistered when the disjunction event is undeployed
(lines 16-17). The sink onEvt saves the event identifier of the
received event and uses it to determine whether an event is
new. This avoids reacting twice, if both ev1 and ev2 share a
particular event occurrence, and thus the disjunction event is
notified simultaneously by two different paths in the graph.
If a new event is received by the sink, its identifier is saved
and reactions method is called to collect the reactions regis-
tered with the disjunction (line 8).

The event conjunction is implemented in a similar way.
It depends on two events and produces a pair of the two
received values by using a mapping function. To be trig-
gered, it must be notified simultaneously by the two depend-

8 As explained later, implicit events are also mapped to imperative events.

13

1 class EventNodeOr[T](ev1: Event[<: T], ev2: Event[<: T])
2 extends EventNode[T] {
3 var id = 0
4 lazy val onEvt = (id: Int, v: T,
5 reacts: ListBuffer[() => Unit]) => {
6 if(this.id != id) {
7 this.id = id
8 reactions(id, v, reacts)
9 }

10 }
11 protected override def deploy {
12 ev1 += onEvt
13 ev2 += onEvt
14 }
15 protected override def undeploy {
16 ev1 −= onEvt
17 ev2 −= onEvt
18 }
19 }

Figure 15. Event disjunction

ing events. Simultaneously means that the sinks are triggered
with the same event identifier by two different paths in the
graph.

Fig. 16 schematically shows the implementation of the
node for quantifying over the events of a varying list of
objects. It uses some more sinks and reactions.

1 class EventNodeAny[T, U](list: VarList[T], evf: T => Event[U])
2 extends EventNode[U] {
3 lazy val onElementAdded = (target: T) => {
4 evf(target) += onEvt
5 }
6 lazy val onElementRemoved = (target: T) => {
7 evf(target) −= onEvt
8 }
9 lazy val onEvt = (id: Int, v: U, reacts: ListBuffer[() => Unit]) => {

10 reactions(id, v, reacts)
11 }
12 protected override def deploy {
13 list.foreach(target => evf(target) += onEvt)
14 list.elementAdded += onElementAdded
15 list.elementRemoved += onElementRemoved
16 }
17 protected override def undeploy {
18 list.foreach(target => evf(target) −= onEvt)
19 list.elementAdded −= onElementAdded
20 list.elementRemoved −= onElementRemoved
21 }
22 }

Figure 16. Quantification over a varying list of objects

This event node computes the events of all elements of
the list using the evf function, and registers the sink onEvt

with these events (line 13). The sink simply collects the
reactions when it is notified by any of the element events.
The node registers and unregisters reactions with the events
of the observed list triggered when an element is added to the
list and removed from it, respectively. The onElementAdded

reaction registers the onEvt sink with the event of the newly
added element. Similarly, the onElementRemoved reaction
unregisters the sink from the event of the removed element.

In order to avoid useless propagations, the deploy and un-

deploy methods of EventNode are called when the first reac-
tion or sink is registered and when the last sink or reaction
is unregistered, respectively. As a result, only events that are

1 class TemperatureSensor {
2 lazy val tempChanged = new ImperativeEvent[Int]
3 ...
4 def run { ... tempChanged(newTemp) ... }
5 ...
6 lazy val logChange = (temp: Int) => { print(temp) }
7 def loggingOn() { tempChanged += logChange }
8 def loggingOff() { tempChanged −= logChange }
9 }

Figure 17. Implementation of temperature sensor using
events library

actually referenced are represented in the graph; an event
node may exist but not be present in any graph, as long as
nobody reacts to it or references it.

5.3 Using ESCALA as a Library
The described implementation of events can be directly used
as a SCALA library. Events can be declared as fields of type
Event[T]. Imperative events can be created by instantiating
ImperativeEvent. Event expressions can be described by call-
ing the combinator operators declared in the Event trait. Re-
actions to events can be registered and unregistered, using
the += and -= operators of the trait, respectively.

Fig. 17 shows the implementation of the temperature
sensor introduced in Fig. 11. At line 2 the tempChanged

event is declared as a field initialized with an instance of
ImperativeEvent, and is triggered at line 4 by calling the
apply operator of ImperativeEvent with the event data as
parameter. Note that events are declared as lazy SCALA
fields to emulate the semantics of the lazy evaluation of
events described in Sec. 3.4.

Line 6 demonstrates an implementation of a reaction to an
event. The reaction logChange is implemented not as a simple
SCALA method, but as a field which is assigned a function
value containing the implementation. In this way, we ensure
that references to logChange always return the same object,
so that the reaction registered at line 7 could be unregistered
at line 8. By declaring the field as lazy, we ensure that the
function object is created only if it is used.

1 abstract class Figure {
2 ...
3 lazy val moved: Event[Unit] = moveBy.after
4 lazy val changed: Event[Unit] = resized || moved || setColor.after
5 ...
6 lazy val setColor = new Observable((col: Color) => {
7 color = col
8 })
9 lazy val moveBy: Observable[Int,Int] = (dx: Int, dy: Int) => {

10 position.move(dx, dy)
11 }
12 ...
13 }

Figure 18. Implementation of a figure using events library

Events can also be implicitly triggered before or after
method calls. To achieve this, one can use the class Observ-

able provided by the library, which wraps a function and
exposes two events named before and after. For example,

14

Fig. 18 shows the implementation of the Figure class using
the library. The method setColor (line 6) is made observable
by lifting its implementation into a function value and con-
structing an instance of Observable with this function value
as a parameter. Alternatively, lifting can be performed by im-
plicit SCALA conversions. For example, the moveBy method
(line 9) is made observable by declaring it as a field of
type Observable[Int,Int] and initialized with a function value
containing the implementation of the function. The SCALA
compiler will look for an implicit conversion from Function

to Observable and apply it.
Events before and after a method execution are made

available as members of an Observable object. For example,
the moved event of Figure (line 3) can be defined by an event
expression that uses the event after of the observable method
moveBy. Higher-level events, e.g., the changed event at line 4,
can be defined simply by applying the combinator methods
defined in the Event trait on references to other events.

Declaring event members, observable and reaction meth-
ods as fields complicates their overriding in subclasses. Al-
though SCALA supports overriding of field initializers, su-
per references to field initializers are not possible. The su-
per references must be modeled manually: One can define a
protected implementation method and call it from the initial-
izers of the fields. This protected method can be overridden
and use its super definition.

5.4 The ESCALA Compiler
As demonstrated in the previous subsection, using the event
library directly introduces some code overhead and unnatu-
ral encodings of methods and events as fields. These prob-
lems are resolved by the ESCALA compiler, which translates
events to fields and automatically instruments methods.

Translating event declarations. The ESCALA compiler
translates event declarations to the corresponding lazy field
declarations. The standard SCALA compiler translates a lazy
field to a private field and a getter/initialization method.
Overriding value fields is allowed in standard SCALA, which
makes it straightforward to implement event overriding. The
generated field declarations are internally annotated with a
special flag <event> to indicate that unlike normal fields,
super references to the field initializers are supported. The
call to a super event is translated by the compiler into a call
to the corresponding super getter/initialization method.

An imperative event is declared in ESCALA using the
imperative modifier and is translated into a field initialized
by an expression instantiating the ImperativeEvent class. The
field is marked as final and thus cannot be overridden. Over-
riding an imperative event with a declarative event would
break the object interface, because it would prohibit trigger-
ing of the event.

Instrumentation of methods. Observable methods are
marked in ESCALA source code with the observable key-
word. Each observable method is instrumented, and the asso-

ciated implicit events are generated as illustrated in Fig. 19.
The interface of the class remains unchanged, but the im-
plementation of the setColor method is now changed so that
each call to it triggers the generated before and after events.
In event expressions, access to implicit events using before

or after keywords are replaced by references to the corre-
sponding generated before and after events. For example,
the event expression after(setColor) in line 6 is translated to
setColorIntafter in line 24.

1 // original source code
2 class Figure {
3 ...
4 observable def setColor(c: Int) { this.color = c }
5 ...
6 event colorChanged = after(setColor)
7 }
8

9 // transformed code
10 class Figure {
11 ...
12 <observable> def setColor(c: Int) = {
13 setColorIntbefore(c)
14 val res = setColor$Color$Impl(c)
15 setColorIntafter(c, res)
16 res
17 }
18 protected[this] def setColorIntimpl(c: Int) { this.color = c }
19 final <event> lazy val setColorIntbefore =
20 new ImperativeEvent[Int]
21 final <event> lazy val setColorIntafter =
22 new ImperativeEvent[(Int, Unit)]
23 ...
24 <event> lazy val colorChanged: Event[(Int, Unit)] = setColorIntafter
25 }

Figure 19. Transformation of observable methods

To enable overriding of observable methods and calling
their super implementations, the actual implementation of
the instrumented method is moved to a generated implemen-
tation method. If a method is already instrumented in the su-
perclass, only the implementation method is overridden in
the subclass, as illustrated in Fig. 20. Since setColor is al-
ready instrumented in Figure and the corresponding events
are generated, the subclass Circle must only override the im-
plementation of the method. The super call to an observable
method is transformed to a call to the generated implemen-
tation method of the superclass rather than the original ob-
servable method. A super call to the original method would
create endless recursion, because it would again call the gen-
erated implementation method.

With these transformations no superfluous elements are
generated and overriding of observable methods is com-
pletely supported. The compiler also performs checks ensur-
ing that a method overriding an observable method is also
observable, and that referenced before and after events actu-
ally exist (if the associated method is observable).

As was explained in Sec. 3.7, a class may observe any
method it defines or one of its parents defines, even if the
method is not declared as observable. Such internally ob-
served methods are instrumented on demand by the compiler
and marked with the internal flag obsintern to indicate that it

15

1 // original source code
2 class Circle extends Figure {
3 ...
4 observable override def setColor(c: Int) = super.setColor(c)
5 }
6

7 // transformed code
8 class Circle extends Figure {
9 ...

10 protected[this] override def setColorIntImpl(c: Int) =
11 super.setColorIntimpl(c)
12 }

Figure 20. Overriding of observable methods

is instrumented but only for internal purposes, i.e., it is not
observable from other classes. The generated events are also
made available only internally by giving them protected[this]

visibility.9 It is also possible to instrument a method im-
plemented in a parent class by overriding it with an instru-
mented implementation of the method. This does not break
modularity because the compiler can generate the instrumen-
tation for the subclass without recompiling or changing the
parent classes.

An internally instrumented method can be explicitly
marked as observable in a subclass in order to expose it for
observation to other classes. In this case, as far as the instru-
mentation already exists, the implementation method and
the generated events are redeclared with public visibility and
implemented by references to their super implementations.

6. Related Work
The design of ESCALA combines elements from event-
driven programming, functional reactive programming, and
aspect-oriented programming. We discuss the relation to
work on each of these areas in dedicated subsections. Other
approaches that also combine elements from these areas are
discussed in a further subsection.

6.1 Event-Driven Programming
ESCALA supports an event-driven programming style with
events modeled as object attributes. This style is widely used
in object-oriented software development. It is supported by
the Observer pattern [14] and the Implicit Invocation archi-
tectural style [15]. In Java, events are modeled by a form
of Observer pattern representing events as methods of so-
called Listener interfaces. This form of events is also a part
of the JavaBeans component model [39]. C# [28] provides
language support for declaring and using events as object
attributes, which makes events more explicit in the design
and reduces the overhead of modeling them by design pat-
terns. This style of declaring events and registering reactions
is also adopted in ESCALA. The events of C# are analogous
to the imperative events of ESCALA. In addition, ESCALA
enables declarative definition of events and interception of
implicit events.

9 It means that they are accessible only from this object.

An alternative to modeling events as object attributes is
provided by publish-subscribe systems [12, 17, 33]. They
achieve a higher degree of decoupling by making the ob-
jects (or components) reacting to events independent of
the objects producing the events. Events are published in
a global event system, which dispatches the events to their
subscribers. This high-level degree of decoupling is, how-
ever, not always desired, because it replaces object inter-
action over explicit interfaces by implicit interaction over
the global event system. The implicit dependencies make
the software more difficult to understand and maintain. The
specification of event subscription in publish-subscribe sys-
tems is similar to our declarative definition of events, but is
mostly limited to filtering the immediate properties of the
event as provided by our filter operator.

A significant body of research in the context of event-
driven programming deals with quantification over event
sequences or event-based coordination of concurrent pro-
cesses [3, 9, 13, 16, 18, 19, 30]. This is orthogonal to our
work, which focuses on the definition of individual events
rather than on their coordination. In particular, join patterns
(see, for instance, [3, 19]), although they syntactically look
similar to event expressions, are semantically significantly
different. Most notably, the and operator of join patterns
deal with independent events that need to be synchronized
whereas the and operator of event expressions checks that a
single event occurrence meets two conditions.

6.2 Functional-Reactive Programming
The idea of defining events by declarative expressions origi-
nates in functional reactive programming (FRP) [10, 11, 26,
29]. Events are modeled as lists of event occurrences, and
operations on events are modeled as combinations and trans-
formations of such lists. The central concept in FRP is the
concept of a behavior. A behavior is a changing value that
is modeled as a function of time. Unlike computations based
on conventional variables, which produce fixed values using
the current values of the variables, computations based on
behaviors can produce new behaviors, i.e., changing values.
In FRP, events and behaviors are tightly related. From a be-
havior, one can obtain an event stream representing the list
of its discrete changes. The other way around, a stream of
events can be interpreted as a list of changes of a value and
used to construct the corresponding behavior.

In spite of a common interest for declarative events, the
goals of ESCALA and FRP are very different. While FRP
promotes a fully declarative approach to modeling behavior
as a function of time or a function of events representing the
input, our goal is to provide declarative events for conven-
tional OO designs. In our approach, reactions to events can
be dynamically registered and unregistered; they can update
the state of the owner object as well as perform any other
side effects. ESCALA events are designed to support encap-
sulation, inheritance and subtype polymorphism. Moreover,
we integrate AOP ideas, such as quantifying over implicit

16

execution events and modeling the semantics of events as
queries over event occurrences. Modeling events as queries
enables events with shared occurrences and typical set oper-
ations on events.

Our implementation of events is analogous to the pure
push-based implementation of FRP in FrTime [8] and Flap-
jax [26]. Events are represented as nodes in a graph with
edges representing the dependencies among the events. The
semantics of event operations is implemented by update
methods of the nodes, which decide whether and with what
value an event must be triggered after new occurrences of
the input events. Since the semantics of event operations in
FrTime and ESCALA are different, their concrete implemen-
tation and evaluation is different, too. In FrTime, node up-
dates are performed as soon as the nodes are notified, while
in ESCALA, the graph is completely traversed before execut-
ing the collected reactions. This two-phase approach is nec-
essary for modeling shared event occurrences, as explained
in Sec. 5.1, and for avoiding side effects during event match-
ing. Also, we optimize the graph so that it does not contain
edges not leading to a reaction, while in FrTime the nodes
are updated independently of their use.

6.3 Aspect-Oriented Programming
ESCALA is not designed as an aspect-oriented (AO) lan-
guage, but rather as an object-oriented language integrating
certain ideas of aspect orientation. In the following, we dis-
cuss the relation between ESCALA and AO languages that
share some concepts with ESCALA. Unlike AO languages
discussed below, quantification over join points in ESCALA
is deliberately limited to the dynamic relationships of the
object defining the event. The lack of quantification over the
program structure or over the control flow of the execution
makes ESCALA unsuitable for crosscutting concerns with
global effect such as logging or profiling.

Classes in ESCALA are similar to aspects because they
can define declarative events (counterparts of pointcuts in
AO) as queries over implicit events as well as reactions to
these events (counterparts of pieces of advice in AO). CAE-
SARJ [2, 27] and Classpects [36, 37] are aspect-oriented lan-
guages that unify aspects and classes by making it possible
to declare pointcuts and pieces of advice directly in classes.
Unlike AspectJ-style aspects, aspects in these languages can
be freely instantiated and their instances can be referenced
and used just like normal objects. Furthermore, intercep-
tion of join points of individual objects is enabled by per-
this deployment in CAESARJ and instance-level weaving in
Classpects with the effect of limiting the pointcuts of the
aspect instance to the join points of the registered objects
only. Instantiation of aspects and instance-level deployment
is also supported in multiple other approaches, including As-
pectS [21] and AspectSOUL [7]. More expressive aspect de-
ployment strategies are proposed in [40].

However, despite the mentioned similarities, there are
important differences between the above AO languages and

ESCALA. Although pointcuts are declared as class members
in Classpects and CaesarJ they are still not considered as
object attributes. They are evaluated in the static context of a
class rather than in the context of an object. On the contrary,
ESCALA events are late-bound members of objects.

Instance-level deployment/weaving provides less flexibil-
ity than explicit references to events. Instance-level aspects
can intercept only the join points that directly occur in the
context of the deployed objects. This is often not sufficient
to capture all events that occur in the context of the abstrac-
tion represented by the object: many other objects may be in-
volved. For example, changes in a drawing include changes
to all the components constituting the drawing, but an as-
pect deployed on a drawing object would be able to intercept
only the join points of the drawing object. In general, aspect
deployment strategies filter all pointcuts of an aspect, and
thus, are unsuitable for relating different pointcuts of an as-
pect with different objects. Also, explicit deployment makes
the definition of the relevant events less explicit, because
pointcuts do not contain the complete information about the
events to be selected and must be analyzed in combination
with the deployment instructions of the aspect.

Technically, the features of ESCALA could be imple-
mented on top of any sufficiently flexible AOP framework.
Modeling pointcuts as attributes of objects is possible in
AOP approaches supporting pointcuts (also known as join-
point selectors) as first-class objects [6, 21]. Evaluation of
pointcuts in the context of the declaring objects can be
modeled by integrating closures into the definition of the
dynamic part of the pointcut. An efficient implementation
would, however, require a comparable push-based evalua-
tion of pointcuts.

The need for quantification over relationships between
objects in pointcuts is addressed by the Alpha language [34].
Pointcuts in Alpha are described as Prolog queries quantify-
ing over various static and dynamic structures of the appli-
cation, including the heap. The exclusive focus of the work
on the Alpha language was to show that a more expressive
pointcut language paired with a very rich join-point model
enables to write more declarative and stable pointcuts. No at-
tention was paid to the seamless integration of event expres-
sions into an object-oriented setting. Alpha does not support
explicit events and does not support pointcuts as attributes of
objects. Although Alpha supports much more quantification
possibilities, the advantage of ESCALA is that it is limited to
a form of quantification that can be efficiently implemented
by a push-based approach generating only the events that are
actually used.

The problem with the typical implementations of aspect-
oriented languages based on static or load-time weaving is
that they require knowledge of all available aspects. Support
for implicit events in ESCALA is also based on static instru-
mentation by the compiler, but it is performed in a modular
way due to the observable interfaces. The problem of mod-

17

ular compilation and loading can be mitigated by runtime
weaving implemented by reflective techniques [21] or by dy-
namic bytecode transformation [5, 6]. Reflective techniques
are in general less efficient since they rely on an additional
level of indirection and name-based lookup of methods. The
main problem with the runtime weaving of bytecode is that
it creates a significant overhead for deployment and unde-
ployment of aspects or requires dedicated virtual machines
with adaptive optimizations [4].

The concept of observable interfaces in ESCALA is sim-
ilar to Open Modules [1]. An Open Module can expose its
internal join points by declaring a pointcut that selects them
in its interface; otherwise join points are not visible to the
clients. Since ESCALA is an object-oriented language, we
apply such encapsulation at the level of objects: the internal
event occurrences of an object can be referenced only by its
own event definitions. Like ESCALA, Open Modules avoid
the problem of pointcut fragility by defining pointcuts only
in terms of explicit references to functions and other point-
cuts.

6.4 Hybrid Approaches
ESCALA events are related to the hybrid approaches com-
bining ideas of implicit invocation and aspect-oriented pro-
gramming such as Ptolemy [35] and Implicit Invocation with
Implicit Announcement (IIIA) [38]. The three approaches
occupy quite different points on the design space. For in-
stance, unlike ESCALA and Ptolemy, IIIA keeps classes and
aspects distinct, but, like ESCALA, provides both imperative
and implicit events (defined through AspectJ-like pointcuts),
whereas Ptolemy does not provide implicit events.

The main point is however that both Ptolemy and IIIA
event handlers/pieces of advice react to events character-
ized by their (event) type. Using event types fully decou-
ple event sources and event sinks while providing robust in-
terfaces between both ends. It also means that events are
“application-level” events. Restricting observation to spe-
cific sources requires either to set up a filtering mechanism
on the observer/sink side, with possible performance issues
if too many useless events are emitted, or to fall back on
the standard Observer pattern. In line with the philosophy of
OOP, we have rather chosen the opposite route by making
it easy and efficient to observe selected events from selected
objects, handling the Observer pattern behind the scene.

This is facilitated by the possibility of defining events in
a very flexible way based on the use of inheritance, com-
position operators, and late binding. In contrast, IIIA and
mainly Ptolemy have more limited ways to compose event
abstractions. In IIIA, event types can be organized in an in-
heritance hierarchy defining their subtyping relationship and
implemented by AspectJ-like polymorphic pointcuts (differ-
ent pointcuts are attached to different classes but produce
events of the same type). In Ptolemy a disjunction operator
makes it possible to associate a single event handler to a dis-
junction of event types.

Finally, both Ptolemy and IIIA use a region-in-time
event/join-point model: events capture computations in a
closure which can be executed by the handler/piece of ad-
vice and return a result. In a first step, we have chosen to
work with a point-in-time model, which is less powerful but
much simpler to reason with. Dealing with a region-in-time
model is future work.

7. Conclusions
The hybridization of OOP with event-driven and aspect-
oriented genes is a very active area of research. We have
developed ESCALA, a new crossbred language which is an
interesting point in this design space. ESCALA combines
concept of imperative events found in conventional object-
oriented designs with the concept of quantifying over im-
plicit events found in aspect-oriented programming; it seam-
lessly integrates events with object-oriented scoping, inheri-
tance, and subtype polymorphism, while preserving the typi-
cal object-oriented modularity properties. Events can be im-
peratively triggered but also declaratively defined by com-
position. Declarative events are similar to AOP pointcuts ex-
cept that, as standard object attributes, they are evaluated
in the dynamic context of their enclosing objects and are
subject to the standard visibility rules. This avoids pointcut
fragility problems and preserves modularity. This also makes
it possible to observe specific object instances without the
usual boilerplate code associated to the Observer pattern and
without performance penalties.

Future work includes completing the current design and
implementation with a richer event model and considering
an integration of events and pointcuts (that is, the possibil-
ity of smoothly combining a point-in-time event model and
an AOP-like region-in-time join-point model). It could also
be interesting to further investigate the relation of our work
with FRP. For example, the classes Variable and Var List in-
troduced in Sec. 3.6 used to enable mutable object relation-
ships in events are conceptually similar to the behaviors in
FRP, and thus could be possibly replaced by them. Finally,
we have started to consider the combination of our declara-
tive events with approaches describing sequences of events
and their upgrading to a concurrent and distributed setting.

References
[1] J. Aldrich. Open modules: Modular reasoning about ad-

vice. In Proceedings of ECOOP ’05, volume 3586 of LNCS.
Springer-Verlag, 2005.

[2] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An
overview of CaesarJ. In Transactions on Aspect-Oriented
Software Development I, volume 3880 of LNCS. Springer-
Verlag, Feb. 2006.

[3] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency
abstractions for C#. ACM Transactions on Programming
Languages and Systems, 26(5):769–804, 2004.

18

[4] C. Bockisch, M. Arnold, T. Dinkelaker, and M. Mezini.
Adapting virtual machine techniques for seamless aspect sup-
port. In Proceedings of OOPSLA ’06, New York, NY, USA,
2006. ACM.

[5] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual
machine support for dynamic join points. In Proceedings of
AOSD ’04. ACM Press, 2004.

[6] C.-M. Bockisch. An Efficient and Flexible Implementation of
Aspect-Oriented Languages. PhD thesis, TU Darmstadt, Feb.
2009.

[7] J. Brichau, A. Kellens, K. Gybels, K. Mens, R. Hirschfeld,
and T. D’Hondt. Application-specific models and pointcuts
using a logic metalanguage. Computer Languages, Systems
and Structures, 34(2-3), 2008.

[8] G. H. Cooper and S. Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In P. Sestoft, editor,
ESOP, volume 3924 of LNCS. Springer-Verlag, 2006.

[9] R. Douence, P. Fradet, and M. Südholt. Composition, reuse
and interaction analysis of stateful aspects. In K. Lieberherr,
editor, Proceedings of AOSD ’04, Lancaster, UK, Mar. 2004.
ACM.

[10] C. Elliott and P. Hudak. Functional reactive animation. In
ICFP ’97: Proceedings of the second ACM SIGPLAN inter-
national conference on Functional programming, New York,
NY, USA, 1997. ACM.

[11] C. M. Elliott. Push-pull functional reactive programming. In
Haskell ’09: Proceedings of the 2nd ACM SIGPLAN Sympo-
sium on Haskell, New York, NY, USA, 2009. ACM.

[12] P. Eugster. Type-based publish/subscribe: Concepts and expe-
riences. ACM Transactions on Programming Languages and
Systems, 29(1), 2007.

[13] P. Eugster and K. R. Jayaram. EventJava: An extension of Java
for event correlation. In S. Drossopoulou, editor, ECOOP,
volume 5653 of LNCS. Springer-Verlag, 2009.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, 1995.

[15] D. Garlan and D. Notkin. Formalizing design spaces: Implicit
invocation mechanisms. In VDM ’91: Formal Software De-
velopment Methods, volume 551 of LNCS, Noordwijkerhout,
The Netherlands, 1991. Springer-Verlag.

[16] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to net-
worked embedded systems. In Proceedings of PLDI ’03, New
York, NY, USA, 2003. ACM.

[17] M. Haahr, R. Meier, P. Nixon, V. Cahill, and E. Jul. Filtering
and scalability in the eco distributed event model. In PDSE
’00: Proceedings of the International Symposium on Software
Engineering for Parallel and Distributed Systems, Washing-
ton, DC, USA, 2000. IEEE Computer Society.

[18] P. Haller and M. Odersky. Scala actors: Unifying thread-based
and event-based programming. Theor. Comput. Sci., 410(2-3),
2009.

[19] P. Haller and T. Van Cutsem. Implementing Joins using Ex-
tensible Pattern Matching. In Proceedings of the 10th Inter-

national Conference on Coordination Models and Languages,
volume 5052 of LNCS. Springer-Verlag, 2008.

[20] J. Hannemann and G. Kiczales. Design pattern implemen-
tation in Java and AspectJ. In OOPSLA 2002, Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, pages 161–173, Seattle, Washington, USA, Oct.
2003. ACM.

[21] R. Hirschfeld. AspectS - Aspect-oriented programming with
Squeak. In NODe ’02: Revised Papers from the International
Conference NetObjectDays on Objects, Components, Archi-
tectures, Services, and Applications for a Networked World,
London, UK, 2003. Springer-Verlag.

[22] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In J. L.
Knudsen, editor, Proceedings of ECOOP ’01, number 2072
in LNCS, pages 327–353, Budapest, Hungary, June 2001.
Springer-Verlag.

[23] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In M. Aksit and S. Matsuoka, editors, Proceedings
of ECOOP’97, volume 1241 of LNCS. Springer-Verlag, 1997.

[24] R. C. Martin. Agile Software Development: Principles, Pat-
terns, and Practices. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2003.

[25] H. Masuhara, Y. Endoh, and A. Yonezawa. A fine-grained
join point model for more reusable aspects. In Proceedings of
APLAS ’06, volume 4279 of LNCS, Sydney, Australia, Nov.
2006. Springer-Verlag.

[26] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,
M. Greenberg, A. Bromfield, and S. Krishnamurthi. Flapjax: a
programming language for Ajax applications. In Proceedings
of OOPSLA’09, New York, NY, USA, 2009. ACM.

[27] M. Mezini and K. Ostermann. Conquering aspects with Cae-
sar. In Proceedings in AOSD ’03. ACM Press, 2003.

[28] Microsoft Corporation. C# language specification. version
3.0. http://msdn.microsoft.com/en-us/vcsharp/

aa336809.aspx, 2007.

[29] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive
programming, continued. In Haskell ’02: Proceedings of the
2002 ACM SIGPLAN workshop on Haskell, New York, NY,
USA, 2002. ACM.

[30] A. Núñez and J. Noyé. An event-based coordination model
for context-aware applications. In D. Lea and G. Zavattaro,
editors, COORDINATION 2008, volume 5052 of LNCS, Oslo,
Norway, June 2008. Springer-Verlag.

[31] M. Odersky. The Scala language specification. ver-
sion 2.7. http://www.scala-lang.org/docu/files/

ScalaReference.pdf, 2009.

[32] M. Odersky, L. Spoon, and B. Venners. Programming in
Scala. Artima, 2008.

[33] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information
bus: an architecture for extensible distributed systems. In
SOSP ’93: Proceedings of the fourteenth ACM symposium
on Operating systems principles, New York, NY, USA, 1993.
ACM.

19

[34] K. Ostermann, M. Mezini, and C. Bockisch. Expressive point-
cuts for increased modularity. In A. P. Black, editor, Proceed-
ings of ECOOP ’05, volume 3586 of LNCS, Glasgow, United
Kingdom, July 2005. Springer-Verlag.

[35] H. Rajan and G. T. Leavens. Ptolemy: A language with
quantified, typed events. In J. Vitek, editor, Proceedings of
ECOOP ’08, volume 5142 of LNCS, Paphos, Cyprus, July
2008. Springer-Verlag.

[36] H. Rajan and K. J. Sullivan. Classpects: Unifying aspect- and
object-oriented language design. In Proceedings of the 27th
International Conference on Software Engineering, St. Louis,
MO, USA, May 2005. ACM.

[37] H. Rajan and K. J. Sullivan. Unifying aspect- and object-
oriented design. ACM Transactions on Software Engineering
and Methodology, 19(1), Aug. 2009.

[38] F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner. Types and
modularity for implicit invocation with implicit announce-
ment. ACM Transactions on Software Engineering and
Methodology, 20(1), 2010. To appear.

[39] Sun Microsystems. Javabeans(tm) specification. version
1.01. http://java.sun.com/javase/technologies/

desktop/javabeans/docs/spec.html, 1997.

[40] E. Tanter. Expressive scoping of dynamically-deployed as-
pects. In Proceedings of AOSD ’08, New York, NY, USA,
2008. ACM.

20

