
Xcastor: Secure and Scalable
Group Communication in Ad Hoc Networks

Milan Schmittner, Matthias Hollick
Secure Mobile Networking Lab, Technische Universität Darmstadt, Germany

{milan.schmittner, matthias.hollick}@seemoo.tu-darmstadt.de

Abstract—Mobile ad hoc networks (MANETs) are emerging as
a practical technology for emergency response communication in
the case a centralized infrastructure malfunctions or is not avail-
able. Using smartphones as communication devices, MANETs
may be readily established among the civilian population of
affected areas. Beneficiaries would be civilian first responders,
which may form small collaborating groups. Communication
in such groups must be reliable for disaster response to be
effective. In this paper, we address the issue of reliable group
communication on the network layer. We design and implement
the first secure explicit multicast routing protocol called Xcastor,
in which we extend the secure and scalable routing concept of
the Castor unicast routing protocol towards supporting reliable
communication for large numbers of small groups. By simulation,
we show significant performance improvements over Castor.

I. MOTIVATION

Mobile ad hoc networks (MANETs) are decentralized
and autonomous communication systems: participating nodes
(smartphones, laptops, etc.) forward messages to one another
in a multi-hop manner, thereby creating networks spanning
large areas. Such networks can support freedom of speech
in countries with governmental Internet restrictions [1]. In
such a scenario, the network must be able to withstand DoS
by a powerful nation-state adverary. Also, MANETs can
act as temporal backup networks when a natural or man-
made disaster has brought down the local telecommunication
infrastructure [2]. In this case, civilian first responders need
to help the injured and distribute resources until professional
emergency response teams arrive at the scene and erect a
backup infrastructure. In both applications, people will form
self-organizing, collaborative groups. Efficiency and success
of those groups depends on the availability and performance
of a reliable multicast communication substrate.

Challenge. A core problem of MANETs is their poor
scalability. Apart from information theoretic capacity bound-
aries [3], the dominating capacity-limiting factor is the control
overhead of NET and MAC layer protocols [4]. Thus, proto-
cols should minimize the amount of overall data dissemination,
and keep traffic as local as possible. Other problems in
MANETs relate to reliability, e. g., (a) channel error-induced
packet loss, (b) unstable nodes, and (c) node mobility cause
frequent topology changes which need to be addressed. Secu-
rity is an equally important aspect: an adversary able to bring

This work has been funded by the LOEWE initiative Hessen, Germany
within the NICER project.

down local telecommunication infrastructure might very likely
have the resources to also disrupt a backup ad hoc network.
In this sense, we focus on the security goals of availability,
authenticity, and integrity of the routing service.

We summarize the challenge addressed in this work as
follows: we aim at enabling secure and scalable multicast
for wireless communication on resource-constrained nodes
in hostile environments. More precisely, a solution to this
problem should (a) provide reliable data transfer, (b) be able to
withstand denial-of-service (DoS) attacks, (c) be robust against
frequent topology changes, and (d) introduce as little overhead
as possible.

Contribution. We propose the first secure explicit multicast
routing protocol for MANETs called “Xcastor”. The design
is based on Castor [5], a flow-based security-first unicast
routing protocol, and the concept of explicit multicast. Xcastor
introduces the concept of per-destination subflows which on
the one hand sandboxes flow state towards each destination
in the multicast group to maintain Castor’s strong security
properties, and on the other hand is efficient in the sense that
it scales to a large number of small groups, does not introduce
per-group state information or control traffic, and draws only
on efficient symmetric-key cryptography. We experimentally
compare Xcastor with Castor and a flooding protocol and show
that Xcastor achieves better bandwidth utilization (20 %) and
shorter end-to-end delivery delays (36 %) than Castor.

Outline. In Section II, we review related work. Based on the
system model and background on Castor (Sections III and IV),
we present our protocol design in Section V. Section VI
contains implementation details. In Section VII, we present
and discuss our simulation results, and we conclude the paper
in Section VIII.

II. RELATED WORK

Multicast prevents duplicate information from being trans-
mitted over the same link (Fig. 1). To achieve this, stateful
multicast protocols build either (single-path) spanning-trees [6]
or (multi-path) meshes [7], [8]. Stateful protocols need to
maintain network-wide state for every group, supporting a
few large groups in the network. Stateless approaches are
either based on probabilistic gossip [9] or apply the concept
of explicit multicast (Xcast) [10]. Xcast protocols enumerate
all destinations in the packet header and let a unicast protocol
provide the routing decisions for each destination. Hence, they
do not require maintenance of a separate multicast structure978-1-5090-2185-7/16/$31.00 c©2016 IEEE

0

1000

2000

3000

0 1000 2000 3000

Source Dest. Other

B
an

dw
id

th
U

til
iz

at
io

n

0

1000

2000

3000

0 1000 2000 3000

Source Dest. Other

B
an

dw
id

th
U

til
iz

at
io

n

Fig. 1: Qualitative comparison of Castor (left) and Xcastor (right) addressing
a group size of 10 nodes. Castor exhibits a traffic “hot spot” around the source
which is eliminated by our Xcastor protocol.

and can consequently support an arbitrarily large number of
groups. However, they scale poorly with group size, and are
therefore often referred to as “small group multicast”. Most
work on Xcast for MANETs has attempted to improve scaling
for larger groups by introducing group membership caches or
node hierarchies [11], [12], [13].

Work on secure MANET multicast is sparse: to our knowl-
edge, only secure tree-based multicast has been consid-
ered [14], [15]. However, the practical relevance of these pro-
posals is questionable, as tree-based approaches lack alternate
paths needed to cope with route failures common in MANETs.
In contrast, numerous secure unicast protocols have been
proposed, offering different levels of security and applicability:
SAODV [16] and SRP [17] are vulnerable to the tunneling
attack. ARAN [18] completely prevents message alteration but
relies on computationally expensive public-key cryptography
at every hop. Ariadne [19] successfully routes around multiple
colluding malicious nodes, but requires security associations
between all nodes on the path. More recently, Castor [5] offers
resilience against a vast range of attacks, is highly adaptive
to topology changes, and has minimal trust assumptions. It
essentially satisfies our requirements in Section I for the
unicast case.

III. SYSTEM MODEL

We base our work on a network, trust, and adversary model.
Network Model. We assume a MANET with the follow-

ing properties: (a) Shared broadcast channel. All nodes are
equipped with omnidirectional antennæ so that a node’s trans-
mission can be overheard by any of its neighbors. This requires
the presence of an access control mechanism at the data link
layer. In this work, we focus on IEEE 802.11. (b) Symmetric
links. The transmission range is fixed for all nodes, resulting
in bidirectional links. (c) Continuously connected nodes. The
network is sufficiently dense such that there always exists at
least one (multi-hop) path connecting any two nodes (or group
of nodes) that want to communicate. Otherwise, routing would
not be possible. (d) Mobility. Nodes may freely move around
as long as (c) is not violated.

Trust Model. A minimal trust model is assumed. Specifi-
cally, we assume three levels pre-established of security asso-
ciations: (a) between a source s and every destination in the
group di referred to as Ksdi ; (b) between all group members to
protect group message integrity. (c) between neighbors, so that

they can authenticate one another to protect against flooding-
based DoS attacks.

Adversary Model. Our adversary model is a weaker variant
of the Dolev–Yao man-in-the-middle adversary [20]. Specifi-
cally, the adversary (a) can be an authenticated member of the
network taking part in the protocol execution, and might even
be part of a multicast group (“insider”); (b) can eavesdrop on
the communication and interfere with the protocol operation
by message manipulation, forgery, and dropping; (c) can
control a portion (not all) of the communication links such
that there always exists an adversary-free path between any
two nodes in the network (otherwise DoS attacks could not be
prevented); and (d) cannot break cryptographic primitives. In
this model, an adversary is able to conduct attacks including—
but not limited to—route spoofing, rushing, wormhole, sybil,
and black-/greyhole attacks. In this work, we are not concerned
with the prevention of passive attacks (sniffing) or attacks on
lower layers (MAC and PHY).

IV. BACKGROUND ON CASTOR

Our protocol builds on Castor [5], a secure and scalable
unicast routing protocol for MANETs. Below, we briefly
discuss Castor’s core concepts.
• Implicit route discovery. Castor builds routes implicitly.

Initially, data packets (PKTs) are flooded through the
network. Acknowledgment packets (ACKs) from the des-
tination are then used to dynamically build and adapt
routes according to the distance-vector routing principle.

• Reliability as (primary) distance metric. Rather than
using hop count as a routing metric, Castor considers
the reliability of a link for transmissions towards a
destination. This approach takes both accidental as well
as deliberate packet loss into account. “Reliability” is
defined as the past behavior of an individual neighbor, and
measured as the moving average of the packet delivery
ratio. The round-trip time is used as a secondary metric.

• Independent route exploration vs. exploitation. Nodes
independently decide whether to perform route explo-
ration (broadcast) or route exploitation (unicast) for an
individual PKT. The decision is made probabilistically
based on whether or not a reliable route is known.

Communication in Castor is flow-based. The PKT is a
tuple 〈s, d,H, bk, fk, ak,P〉, where s and d are the source
and destination identifiers; H is the flow identifier; bk is
the PKT identifier; fk is the flow authenticator; ak is the
PKT authenticator; and P is the user payload, which may
be encrypted. The entire PKT must be integrity-protected.
The index k denotes the kth PKT of flow H . We denote
ENCKsd

(·) and DECKsd
(·) as a pair of symmetric encryption

and decryption functions; Ksd is a shared key between s and
d. H(·) is a cryptographic hash function. The flow ID H is the
root of a Merkle hash tree, where H(bk) , k ∈ {1, · · · , 2l}, are
the leaves. fk = 〈x1, . . . , xl〉 contains sibling tree elements
leading from bk to H , which enables any forwarding node to
verify that a PKT with bk belongs to flow H (cf. Eq. (4)).
The ACK consists of the ACK authenticator ak, which can

Algorithm 1 Basic explicit multicast

function FORWARD(PKT(D))
for all Dj := {d ∈ D : NEXT HOP(d) = hj ∈ N} do

if Dj 6= ∅ then
UNICAST PKT(Dj) to hj

DN := {d ∈ D : d /∈
⋃
Dj}

if DN 6= ∅ then
BROADCAST PKT(DN) (to N)

be generated by the destination by decrypting ak. If an
intermediate node receives ak, it knows that the destination
must have received the corresponding PKT and can safely
update its routing state.

To summarize, Castor maintains correct routing state by a
scheme that satisfies two properties: (1) only the source node
is able to generate PKT IDs bks belonging to a flow H , and
(2) valid ACKs can only be received by intermediate nodes if
the destination has actually received the corresponding PKT.

V. XCASTOR DESIGN

We present the design of our novel secure multicast protocol
called Xcastor. We start with an unsecured toy protocol to
illustrate the basic idea. Then, we introduce the concept of
per-destination subflows which enables Xcastor to operate
efficiently and securely, and explain the technical workings
of the protocol in detail.

A. Explicit Multicast

In Xcast, the source specifies a list of destinations (i. e.,
the group members) D = 〈d1, . . . , dn〉 in each packet header.
A node makes independent forwarding decisions for each
destination di in D. In our protocol, Castor makes the decision,
i. e., for every destination a node decides to either unicast
to a single neighbor or broadcast to all neighbors N . The
combination of Xcast and Castor results in Algorithm 1. We
denote hj as a neighbor identifier, Dj as the forwarding set
containing destinations that hj should forward the PKT to,
and DN as the broadcast set containing destinations that all
neighbors should forward the PKT to (because no reliable
route is known).

To take advantage of the wireless broadcast channel, routing
decisions (UNICAST and BROADCAST) are accumulated and
transmitted in a single MAC layer broadcast. The accumulated
routing decisions are organized in a forwarder map F =
〈〈h1,D1〉 , . . . , 〈hm,Dm〉 ,DN 〉 with m being the number of
neighbors we are transmitting to. A receiving neighbor hj then
filters for its respective Dj and, in turn, applies Algorithm 1
to PKT (D := Dj ∪ DN).

B. Efficient Per-Destination Subflows

In order to preserve the security of Castor, our explicit
multicast protocol needs to maintain independent flow state
for each destination. A naı̈ve approach would be to include
a full Castor header (flow ID, flow authenticator, PKT ID,
and PKT authenticator) for each destination. This is highly

inefficient and impractical even for small groups because the
header size quickly grows to multiple kilobytes.

We propose a much more efficient solution incurring a
bandwidth penalty of only one PKT identifier per destination.
To this end, we introduce additional layers in the Merkle tree,
where the exact number depends on the group size n. For PKT
k of a certain flow, the source draws a value ck at random.
The source node leverages the shared keys Ksdi

to calculate
per-destination ACK authenticators ak,i. From ak,i, the source
derives per-destination PKT identifers bk,i. The latter ones are
in turn used to generate the leafs of the Merkle hash tree. The
full generation is shown in Fig. 2.

When sending a PKT, the source includes ck (can be seen
as the equivalent ek in Castor), as well as a list of all PKT
identifiers Bk in the header:

Bk = 〈bk,1, . . . , bk,i, . . . , bk,n〉 (1)

Upon PKT reception, destination di calculates ak,i from ck
and returns ACK = 〈ak,i〉. Intuitively, the challenge at the
destination is to encrypt ak with the source–destination secret
Ksdi

. This ensures that only the destination can acknowledge
the reception of PKT with bk. Note that even another group
member cannot forge the ACK for di as it would require
knowledge of Ksdi . This assures immunity against insider
adversaries.

Due to the nature of Xcast, some header fields of Xcastor,
in particular F and Bk, change during transit. This means that
these fields cannot be end-to-end integrity protected. However,
they do not need this protection, as explained below:

Reordering Attack. Let an adversary swap any two
destinations di and dj in F . This would go unnoticed by
intermediate nodes. Upon reception, destination di returns the
correct ACK with ak,i = ENCKsdi

(ck) which is returned
on the reverse path. The first correct node upstream of di
receiving this ACK would realize that H(ak,i) does not match
the previously forwarded bk,j . The ACK is consequently dis-
carded, resulting in a reliability estimator penalty for the entire
path including the adversary after TACK. Similar reasoning can
be applied to show that other tampering with D will not break
the protocol.

Lk = H
(

H(. . .) ||ylog2 n

)

H
(

H
(
bk,1

)
||y1

)

H
(
bk,1

)

bk,1 = H
(
ak,1

)

ak,1 = ENCsd1 (ck)

y1

·

·

ylog2 n

·

·

·

·

bk,n

ak,n

ck

Lk = H(bk)

bk = H(ak)

ak

ek = ENCsd(ak)

Fig. 2: Merkle tree leaf generation (Lk) in Xcastor (left) and Castor (right).

C. Packet Format

The packet format of our final Xcastor looks as follows:

PKT =
〈
s,

forwarder map F︷ ︸︸ ︷
〈h1,D1〉 , . . . , 〈hj ,Dj〉 , . . . , 〈hm,Dm〉 ,DN ,

H, bk,1, . . . , bk,i, . . . , bk,n︸ ︷︷ ︸
per-destination PKT ids Bk

, fk, ck,P
〉
, (2)

ACK = 〈ak,i〉 , (3)

where⋃m
j=1Dj ∪ DN = D is the set of destinations,

H, fk are the flow identifier and authenticator,
respectively, as in Castor,

ck are the seeds for the Merkle tree,
ak,i = ENCKsdi

(ck) are the ACK authenticators, and

bk,i = H(ak,i) are the per-destination PKT identifiers.

D. Packet Processing

We next describe Xcastor’s packet processing algorithm and
highlight differences and similarities to the Castor protocol.

Forwarder map filtering. Upon PKT reception, a node x
first checks whether it is included in the forwarder map. If not
(i. e., if D′ := Dx∪DN

!
= ∅), the PKT is discarded. Otherwise,

x removes all 〈hj ,Dj〉 for j 6= x and the corresponding bk,i
values. Then continues with a duplicate check: the previously
seen bk,i are removed along with di, and if a corresponding
ACK for bk,i was already received, a copy of the cached ACK
is returned to the PKT sender. Note that when removing bk,i
from the PKT, some intermediate tree elements y (Fig. 2) must
remain in Bk to allow proper verification of the Merkle tree
(below).

Flow verification is essentially the same as in Castor: x
needs to calculate Lk from Bk and then verify that Lk is in
fact a leaf of the Merkle hash tree with root H using the sibling
nodes in fk. As an example, for k = 1, the check would look
as follows (the concatenation order for other k depends on the
position of bk in the Merkle hash tree):

H
(
. . . H(H(H(b1) ||x1) ||x2) || . . . xlog2w

) !
= H. (4)

If the check fails, the PKT is discarded.
PKT verification. When a PKT arrives at destination di, it

calculates ak,i = ENCKsdi
(ck) and verifies that

H(ak,i)
!
= bk,i. (5)

If successful, di returns ACK = 〈ak,i〉 to the PKT sender.
Then, di removes itself and bk,i from PKT. If D′′ := D′\{di}
contains other destinations, di has to forward the PKT.

Castor nodes maintain routing state as a running average of
the delivery reliability per flow and per neighbor (reliability
estimator). In Xcastor, we introduce subflows Hi = 〈H, di〉,
and keep reliability estimators per flow, per neighbor, and
per destination, to allow independent routing decisions for
each destination. The PKT forwarding process is as follows:

(1) look up the next hop for every destination (subflow Hi)
independently, (2) generate the forwarder map, and (3) start
individual timers TACK for each forwarded bk,i. If bk,i was
forwarded over neighbor hj and hj does not return a valid
ACK until TACK times out, then the appropriate reliability
estimator is decreased.

ACK verification is similar to that of Castor. The only
difference is that the destination calculates bk,i = H(ak,i)
instead of bk = H(ak) and checks whether it as previously
forwarded bk,i. If yes and TACK has not yet expired, the
reliability estimator for the sending node hj is increased.

VI. IMPLEMENTATION

Our implementation builds upon the Click modular router
framework [21]. In the following, we discuss some imple-
mentation details that strongly influence the performance of
Xcastor.

Cryptographic primitives. The choice of cryptographic
primitives is relevant for the bandwidth efficiency of our pro-
tocol. We use SHA-1 and AES-128-CTR. This keeps hashes
and ciphertext values as low as 20 bytes. For a flow size of
256, the total security overhead per PKT is 200 (constant),
plus 20 bytes per destination (individual PKT identifier).

ACK timeout. The authors of [5] employ a fixed ACK time-
out for updating Castor’s reliability estimators. This impedes
optimal operation for two reasons: firstly, reliability estimators
should be updated as fast as possible, i. e., ACKs on low-delay
paths should expire earlier. Secondly, round-trip times increase
in highly loaded networks due to contention on the MAC layer.
Castor will discard late ACKs leading to subsequent broadcasts
for route discovery. We implement an adaptive timeout similar
to TCP [22], exploiting the “free” ACKs of Castor and Xcastor.

Semi-reliable link-layer multicast. By default, Xcastor
uses IEEE 802.11 broadcasts to address all nodes in the
forwarder map. To overcome the unreliability of 802.11
broadcasts (no retransmissions [23]), we implement a semi-
reliable multicast scheme: all wireless interfaces are set into
promiscuous mode. Then, the forwarding node unicasts to one
of its neighbors h̄ from the forwarder map. Upon loss, the
sender will retransmit, giving h̄ and all other neighbors a
second chance to overhear the packet. For maximal reliability,
h̄ is chosen to be the node which has the largest forwarder
set assigned. This scheme is semi-reliable, because the link-
level reliability is achieved in a best-effort manner: a lost
transmission to hj 6= h̄ is not recognized. The simulation
results show that this simple, noninvasive scheme is sufficient
to provide a level of reliability similar to Castor operating as
a multicast-via-unicast protocol.

VII. EVALUATION

We conduct simulation-based experiments using ns-
3.22 [24] as our simulator of choice due to its Click inte-
gration. We benchmark Xcastor against the baseline Castor
unicast protocol with the same security properties operating as
a multicast-via-unicast protocol (i. e., it unicasts a PKT to each
group member), and a simple flooding protocol which employs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 4 8

Pa
ck

et
D

el
iv

er
y

R
at

io

Number of groups

Castor Xcastor Flooding

0

5000

10000

15000

20000

2 4 8B
an

dw
id

th
U

til
iz

at
io

n
[b

yt
es

]

Number of groups

Castor Xcastor Flooding

0

50

100

150

200

2 4 8

D
el

ay
[m

s]

Number of groups

Castor Xcastor Flooding

3
6
4
1
→

2
2
6
→

Fig. 3: Protocol performance with different numbers of groups actively sending packets.

TABLE I: Simulation settings

Network Dimensions w × h 3000× 3000m2

Number of nodes N 100

Traffic Group size 5
Payload size and rate 512 bytes per 0.5 s

Mobility Steady state random waypoint v ∈ [1, 10]m/s, tpause = 0 s

Castor

Broadcast adjust γ 8.0 (as in [5])
Update delta δ 0.8 (as in [5])
Adaptive ACK timeout TACK [0.1, 60] s, init. 1 s
Flow size 2l 256 (⇒ lifetime 128 s)

802.11a
MAC

Beaconing Interval 0.25 s, timeout 1 s
Max. retransmission count 7
RTS/CTS threshold 256 bytes

PHY Propagation loss model Friis (free-space path loss)
⇒ Transmission range r 560.3m

no security mechanisms but is agnostic to wormhole/blackhole
attacks since it is fully stateless. Flooding is known to have
excellent reliability even under extreme conditions at the
cost of very high bandwidth utilization. We omit benchmarks
against other multicast protocols because non of the existing
ones are comparable to Xcastor w. r. t. their security properties.
Our metrics of interest are (a) raw packet delivery ratio (PDR),
i. e., the fraction of successfully received PKTs without any
network or upper layer retransmission scheme (reliability),
(b) bandwidth utilization (BU) per PKT and per destination1

(efficiency), and (c) end-to-end delivery delay (speed).
Detailed simulation settings for ns-3 are provided in Table I.

The plots show averages over 20 experiment runs, seeded with
numbers from the interval [1, 20]. The error bars indicate 95 %
confidence intervals. We first summarize our results and then
discuss them in detail:

• Scalability (VII-A): Castor collapses under high load
when introducing more groups into the network. Xcastor
is only marginally affected.

• Security: (VII-B): Xcastor and Castor maintain close
to identical reliability under the strong greyhole attack,
while Xcastor is more efficient. We identify flow restarts
as a security problem for both protocols.

1The bandwidth utilization includes all frames that are transmitted through
a node’s wireless interface during the run of the simulation, i. e., it accounts
for PKTs, ACKs, beacons, MAC control frames, and retransmissions.

A. Scalability: Number of Groups

Xcastor is supposed to scale well with the number of groups
in the network. We quantify this by letting up to 8 sources
simultaneously transmit to 5 destinations each (Fig. 3), which
means that up to 48 nodes are involved in end-to-end data
transmissions. Xcastor seems to be agnostic to the increased
load: PDR and BU are not affected, only the delivery delay
slightly increases. Castor collapses under the load due to
congestion at a group size of 8. The result is a vicious circle:
less ACKs are coming through, which causes the protocol
to broadcast more often (> 80 % of routing decisions are
broadcasts). Because of the high broadcast rate, each PKT
is effectively flooded 5 (!) times, because Castor establishes
individual flows for each of the 5 destinations. Interestingly,
PDR of flooding remains largely unaffected by the higher load:
the high packet redundancy in the network compensates for
packet collisions. However, this comes at the cost of linearly
increasing delivery delays, caused by the strong contention on
the MAC layer.

B. Security: Attack Resilience

So far, we have considered the benign case, i. e., without
adversaries present in the network. In this experiment, we
quantify the attack resistance by introducing different percent-
ages of malicious nodes into the network (Fig. 4). Malicious
nodes conduct a greyhole attack as described in [5], i. e.,
they forward all broadcast PKTs to attract traffic and then
drop subsequent unicast PKTs. ACKs are always forwarded.
According to [5], wormhole, blackhole, sybil, rushing, and
jamming attackes are less severe than the greyhole attack.
Thus, we focus on the strongest attack in the evaluation. In this
setting, sources and destinations are considered to be benign.
Malicious nodes are chosen uniformly at random from the
remaining ones.

For the flooding protocol, a malicious node simply drops
all traffic (blackhole). The effect is the same as if up to
40 % of the nodes were removed from the network. By not
forwarding any packets, the malicious nodes basically exclude
themselves from the network. Ergo, BU drops linearly. PDR
decreases slightly because the effective node density declines,
but remains at a high level. The impact of attackers on Xcastor
is not severe: with 20 % of all nodes as attackers, PDR is

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0% 20% 40%

Pa
ck

et
D

el
iv

er
y

R
at

io

Fraction of greyholes

Castor Xcastor Flooding

0

2000

4000

6000

8000

10000

12000

0% 20% 40%B
an

dw
id

th
U

til
iz

at
io

n
[b

yt
es

]

Fraction of greyholes

Castor Xcastor Flooding

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

Pa
ck

et
D

el
iv

er
y

R
at

io

time [s]

0% greyholes
40% greyholes

Fig. 4: Protocol performance under the greyhole attack. The right plot shows Xcastor’s behavior over time. The data points are one-second averages.

reduced by about 15 %. The effect becomes more pronounced
if we double the amount of malicious nodes in the network.

Flow restarts in adverse environments. The authors of
Castor claim that flow restarts (establishing a new flow when
the old PKT identifiers are exhausted) are practically a non-
issue if the flow size is sufficiently large [5]. This is true
when considering bandwidth utilization: each flow initializa-
tion requires flooding of a few PKTs. After a few successfully
received ACKs, the protocol starts unicasting because reliable
routes have been found. We show the behavior of PDR over
time in the benign vs. the adversarial case in Fig. 4 (right):
the periodic peaks indicate the short flooding periods for flow
establishment. After a few successfully received ACKs, the
nodes start unicasting. In the benign case, PDR decreases
slightly and stabilizes quickly. In the adverse case, the initial
unicasts lead to an excessive amount of PKT drops (PDR
< 0.3), followed by a slow convergence towards a relatively
stable value around 0.6. By “forgetting” the old state, Xcastor
suffers a reliability penalty because adversary-free routes have
to be rediscovered after each flow restart. Increasing the flow
size can mitigate this problem, however, the header size poses
a limit as the flow authenticator fk is dependent on the flow
size.

VIII. CONCLUSION

We have explored the feasibility of secure small group
multicast in mobile ad hoc networks. We have designed and
implemented an explicit multicast protocol based on Castor
which we call Xcastor. Based on ns-3 simulations, we have
shown that Xcastor performs equally well as Castor from a
security perspective; and Xcastor can support more groups
concurrently than Castor and flooding, which both experience
much higher delivery delays. The experiments were conducted
in a mobile scenario.

Finally, we would like to point out some directions for
future work: (a) we have discovered that flow restarts have a
significant impact on Xcastor’s and on Castor’s reliability. We
are currently working on a solution that completely avoids flow
restarts without relying on public-key cryptography. (b) An
Xcastor node might transmit the same PKT multiple times if it
was selected as a forwarder by different neighbors at different
points in time. One solution could be to not immediately

forward each PKT but wait for other copies to arrive and then
serve all destinations with a single transmission.

REFERENCES

[1] BBC News. (2014, Jun.) Iraqis use Firechat messaging app to overcome
net block. [Online] http://www.bbc.com/news/technology-27994309

[2] H. Goldstein. (2010, Jan.) Engineers race to restore communications
after Haiti quake. [Online] http://spectrum.ieee.org/tech-talk/telecom/
internet/engineers-race-to-restore-communications-after-haiti-quake

[3] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. on Inform. Theory, vol. 46, 2000.

[4] J. Andrews et al., “Rethinking information theory for mobile ad hoc
networks,” IEEE Commun. Mag., vol. 46, 2008.

[5] W. Galuba et al., “Castor: scalable secure routing for ad hoc networks,”
in Proc. IEEE INFOCOM, 2010.

[6] E. M. Royer and C. E. Perkins, “Multicast operation of the ad-hoc
on-demand distance vector routing protocol,” in Proc. ACM MobiCom,
1999.

[7] J. J. Garcia-Luna-Aceves and E. L. Madruga, “The core-assisted mesh
protocol,” IEEE J. on Select. Areas in Commun., vol. 17, 1999.

[8] S.-J. Lee, W. Su, and M. Gerla, “On-demand multicast routing protocol
in multihop wireless mobile networks,” Mobile Networks and Applica-
tions, vol. 7, 2002.

[9] J. Luo, P. T. Eugster, and J.-P. Hubaux, “Route driven gossip: probabilis-
tic reliable multicast in ad hoc networks,” in Proc. IEEE INFOCOM,
2003.

[10] R. Boivie et al., “Xcast concepts and options,” IETF, RFC 5058, 2007.
[11] L. Ji and M. S. Corson, “Differential destination multicast—a MANET

multicast routing protocol for small groups,” in Proc. IEEE INFOCOM,
2001.

[12] C. Gui and P. Mohapatra, “Scalable multicasting in mobile ad hoc
networks,” in Proc. IEEE INFOCOM, 2004.

[13] H. Gossain et al., “A scalable explicit multicast protocol for MANETs,”
IEEE J. on Commun. and Networks, vol. 7, 2005.

[14] S. Roy et al., “Securing MAODV: attacks and countermeasures,” in
Proc. IEEE SECON, 2005.

[15] R. Curtmola and C. Nita-Rotaru, “BSMR: byzantine-resilient secure
multicast routing in multihop wireless networks,” IEEE Trans. on Mobile
Computing, vol. 8, 2009.

[16] M. G. Zapata and N. Asokan, “Securing ad hoc routing protocols,” in
Proc. ACM Workshop on Wireless Security (WiSe), 2002.

[17] P. Papadimitratos and Z. J. Haas, “Secure routing for mobile ad hoc
networks,” in Proc. SCS CNDS, 2002.

[18] K. Sanzgiri et al., “A secure routing protocol for ad hoc networks,” in
Proc. IEEE Int. Conf. on Network Protocols (ICNP), 2002.

[19] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: a secure on-demand
routing protocol for ad hoc networks,” Wireless Networks, vol. 11, 2005.

[20] D. Dolev and A. C. Yao, “On the security of public key protocols,”
IEEE Trans. on Inform. Theory, vol. 29, 1983.

[21] E. Kohler et al., “The Click modular router,” ACM Trans. on Comput.
Syst., vol. 18, 2000.

[22] V. Paxson et al., “Computing TCP’s retransmission timer,” IETF, RFC
6298, 2011.

[23] IEEE Computer Society, “Part 11: wireless LAN medium access control
(MAC) and physical layer (PHY) specifications,” IEEE Std 802.11-2012.

[24] NS-3 network simulator. [Online] https://www.nsnam.org/

