
Information Flow Analysis Based Security Checking of
Health Service Composition Plans1

Dieter Hutter, Matthias Klusch, Melanie Volkamer

Deduction and Multiagent Systems
German Research Center for Artificial Intelligence

Stuhlsatzenhausweg 3, 66123 Saarbrücken
{ hutter, klusch, volkamer}@dfki.de

Abstract: In this paper, we present an approach to solve the problem of provably
secure execution of semantic web service composition plans. The integrated
components of this approach include our OWL-S service matchmaker, OWLS-
MX, the service composition planner, OWLS-XPlan, and the security checker
module for formally verifying the compliance of the created composition plan to
be executed with given data and service security policies using type-based
information flow analysis. We demonstrate this approach by means of its
application to a use case scenario of health service composition planning.

1 Introduction

The composition of complex services available in the Web, and the semantic Web, at
design time is a well-understood principle which is nowadays supported by, for example,
service composition planners such as SHOP2, or OWLS-XPlan. However, ensuring the
secure execution of composed services still remains to be a challenge. Related tasks
range from secure communication via protection of services against misuse to the
preservation of user data privacy. Standard approaches for secure execution of services
such as those using REI [12] or Ponder [3] are based on the specification of access
control policies that control the individual execution of services as actions on individual
objects and thus focus on the first two tasks. With respect to privacy aspects, access
control policy mechanisms suffer from the problem of Trojan Horses, or information
leakage caused by hidden channels. The main reason for this is that no security policy
control is enforced on the use of provided data once it has been released to the
authorized web service. Improper processing of confidential information and subsequent
calls of unauthorized sub-services by an agent offering a composed service as part of the
composition plan to be executed could lead to the revelation of private information even
without intention. In particular, we have to address the following questions: How can we
represent and formalize privacy concerns of users, i.e. how to denote security

1 This work has been carried out within the basic research project SCALLOPS funded by
the German ministry of education and research (BMB+F); www.dfki.de/scallops.

59

59

classification of provided data and the user’s security rating of web services (the
clearances of web services)? How can we propagate classifications of input data to
classify newly computed data in view of a dynamic composition of the program or plan?

How then can we check automatically whether a web service call complies with a given
security policy? How can a subsequently called web service enforce its security
requirements on its own data (provided as a result of its call)? How can we guarantee the
existence of an overall consistent security policy?

Since access control mechanisms are obviously inappropriate to cope with these
problems, we propose to use information flow techniques [4], in general, and techniques
from programming language security [17], in particular. Analogously to the concept of
proof carrying code, we propose to add a (security) type checking mechanism to the
implementation of web services that enables an agent to do an information flow analysis
on dynamically generated plans or programs. This type checker is used to enforce the
privacy requirements of a user by guarding calls of other web services and avoiding the
execution of plans that would result in a prohibited leakage of information. In this paper,
we apply this approach to the problem of privacy preserving execution of Web services
described in OWLS as part of a given composition plan generated by our semantic Web
service composition planner OWLS-XPlan. Please note, however, that the integrated
component for security checking of both individual services and the composition plan as
a whole can be, in principle, applied to any kind of Web services such as those described
in WSDL, or WSMO.

The remainder of this paper is structured as follows. We motivate our research on the
problem of provably secure execution of service composition plans by means of a brief
use case description in section 2. Section 3 then provides an overview of our solution
approach to this problem, while section 4 describes the information flow based security
check in more detail. We demonstrate this approach by means of its application to the
motivating use case scenario in section 5. Related work is briefly discussed in section 6;
and we conclude in section 7.

2 Use Case Scenario

Suppose Peter Miller is suffering from a cold and aids, and wants to keep this fact
private as good as it gets, that is no one whom he does not trust shall know about his
disease, in particular not that he is suffering from aids. Peter calls his personal medical
agent (MED) via mobile phone, requesting it to purchase appropriate medicine online at
a relevant online pharmacy in the web. The required drug for treatment of his disease has
to be a special one in the sense that it has to take both, cold and aids into account at the
same time. As to the provision of web services, we assume that one or multiple web
services are encapsulated and deliberately provided by so called service agents. As a
consequence, the Peter’s personal agent MED first has to discover the set of available
online pharmacy service and payment service agents. It then selects the most relevant
pharmacy agent to obtain information on the appropriate drug and its price, and then to
make the corresponding payment online.

60

60

However, the resulting service composition plan (Figure 1) to be jointly executed by the
agents involved still has to be checked whether it complies with Peter’s data security
policies. For example, the pharmacy agent MA1 could disclose the type of Peter’s
disease to other agents. If the price to be announced to the payment agent PA2 depends
on the drug and this drug discloses the disease, PA2 could indirectly deduce Peter’s
disease from the order for payment including the price and the identity of Peter Miller as
purchaser. Two solutions to this problem are obvious. Either the price of the drug does
not reveal the type of the drug (resulting in some kind of “flatrate” for medicine) or Peter
has to trust the payment agent. Both solutions result in the fact that the sensibility of the
price information is appropriate to the trust we have in the payment agent. In order to
verify this appropriateness we use information flow analysis to verify that sensible
information will flow only to agents with appropriate clearance. We will explain this
approach in more detail in subsequent sections, and then apply it to solve the privacy
problem of this use case scenario.

Privacy:
Cold & AidsH

Bank account, Receiver, 25 € H / L

MED

Pharmacy Agent MA1 Payment Agent PA2

ok

Peter Miller

…
call(MA1, disease, price)

call(PA2, price, ok)
…

…
call(MA1, disease, price)

call(PA2, price, ok)
…

Composed service
execution plan of MED

MorphiaH, 25 €H / L

Cold & AidsH

Figure 1: Composed service execution plan with service providing agents involved.

3 Conceptual Architecture

The basic conceptual architecture of the personal secure service composition planning
and execution agent (SCPA), called MED in the use case scenario, is shown in Figure 2.
As input, the SCPA requires the request for some desired service in OWL-S 1.1 from the
user, and her local security policies in terms of the security classification of personal
data and clearance of known web services. The SCPA then attempts to discover OWL-S
web services that are semantically relevant to the request using its service discovery and
matchmaker module, named OWLS-MX [8]. In addition, it collects the corresponding
service security policies published by the respective service provider agents.

61

61

If the matchmaker module finds equivalent services to the query, it directly passes the
top ranked one to the security checking module to verify whether its published security
policy complies with given local security policies and with the web service's security
type. If no equivalent service is found, the OWLS-MX module passes the set of services
to its composition planner, named OWLS-XPlan [9]. The planner then converts both the
request and all OWL-S services retrieved by the matchmaker into an initial state and
goal ontology written in PDDXML, and generates a sequential service composition plan
that satisfies the goal.

Figure 2: Conceptual architecture of the secure service composition planning agent

In case a composition plan with more than one service is generated, the compliance of
published security types of all web services involved in the plan is checked against the
local security policies of the user. In contrast to usual access control mechanisms, the
security checking of the SCPA relies on type-based information flow analysis. Thereby
the approach also includes dynamically computed data of web services and their security
classification, and its proliferation to other services. In any case, the composition plan
gets executed only if the security types of all web services meet the local security
policies. So, the plan as a whole is formally verified as being secure, or not.

Otherwise the SCPA triggers a re-planning activity to be performed as follows. The
security checker provides the matchmaker module with a set F(P) of services of plan P
that caused the plan P to not comply with the local security policies, in order to select
one semantically equivalent service with a different published security policy for each or
at least some of them. If successful, the composition planner simply modifies the
original plan considered by replacing each service in F(P) by its substitute, and returns
the modified plan to the security checker for verification. If there exists no services in
F(P) for which equivalent service can be found (and which are not yet tried), the
composition planner generates a new plan by means of heuristic re-planning. In any
case, if the modified plan is also provably insecure, the SCPA repeats the same
procedure until a secure composition plan is generated, or it returns a failure otherwise.

62

62

The SCPA executes a secure plan sequence in joint collaboration with those agents that
provide the services involved. For this purpose, it calls each of them by sending the
required input data. In addition, the SCPA transmits information on the clearance of
other services with respect to the information category of the input data. For example, if
a service is trusted by the user to preserve the privacy of data of the local information
category ``Location'', the SCPA also sends its actual list of clearances of other services
for this particular category. If some service is not trusted with respect to keeping data on
location data private, hence does not have a clearance for receiving it, it does neither
obtain the private data, nor information on the clearance of other services with respect to
this particular category. As a consequence, untrusted service agents cannot even know
which agent to persuade of revealing private data at all, or of certain category.

To summarize, the SCPA assists its user in service oriented computing tasks by means of
automatically searching for, and composing individual or composed service. Moreover
the SCPA ensures that plans are only executed if the web services are provably secure
with respect to the security policies and security type. We acknowledge that the amount
of security related information the user provides to her SCPA in terms of classified data
and service clearances determines the degree to which the security of an automatically
generated composition plan can be formally verified.

4 Security Checking of Service Composition Plans

4.1 Privacy of User Data

To protect the privacy of user related information, the data used in web services is
always classified according to its confidentiality. Web services require the corresponding
clearances to deal with confidential data. Both classifications and clearances are denoted
by a so-called security rating. There is a partial ordering ≤ on security classes which
allow us to compare them. The set of all security classes together with ≤ forms a lattice,
i.e. for two arbitrary security classes there is always a least upper bound. In the simplest
case we may have H and L as the set of security classes denoting confidential (H or
“high”) and public (L or “low”) data, respectively. Similar to the approach presented by
Bell and LaPadula [1], the idea is that a web service is only entitled to obtain a specific
datum if its clearance is at least as high as the classification of the data. For example, in
order to receive data classified as H, a web service needs a clearance H while web
services with clearance L are not entitled to get any H-classified data. However, in
practice we would like to select the clearances of web services and also the classification
of data with respect to individual categories or types of information.

For instance, while we trust the travel agent to keep our travel routes confidential we
might have mixed feelings when providing the same agent with a direct debit
authorization for our bank account. Analogously, a given datum may allow us, for
instance, to infer confidential information about the location of a person or confidential
information about his bank account. Hence, both classifications of data and clearances of
web services are described by a vector of security ratings. Each entry in the vector

63

63

denotes the classification or clearance - such as H and L denoting high confidentiality
and public release, respectively - with respect to a particular category, like location or
payment information.

The clearances of web services used for a web service request are assessed by the
original provider of the data (typically the user) or, in case of a delegation, by a web
service acting on behalf of the provider. In other words, an information provider may
specify which web service it trusts to keep data private with respect to given categories,
or not. Analogously, the provider determines the classification of the data that will be
provided to web services. Web services classify data they provide as an output by
integrating the classifications of the input data used to compile the result and the
requirements of their own security policies.

The set of information categories of data used when invoking a web service may change
while it does process the request. That is, any service may introduce a new category and
classify the new data also with respect to this new category. This way, any subsequently
called web service can formulate its security requirements for its provided data by
defining also the clearances of all web services with respect to the new category. In this
case, all data provided by the calling web service have to be classified as public with
respect to the newly introduced categories. This is to avoid the blocking of external data
by classifying them as confidential for a new category but providing no clearances for
any web service.

4.2 Type-based information flow analysis

Web services provided by service agents deal with confidential input and in general their
answers will also include confidential bits, i.e. knowing the output of a web service call
(but not the input) we might be able to deduce constraints on the confidential input. If
the knowledge of the output of a web service call would disclose information about a
confidential input, the output itself has to be confidential as well. In order to assess the
classification of data computed by web services we use information flow techniques in
general and program language security techniques in particular. Clearances and
classifications are formalized by means of standard information flow policies [4, 11, 10].
Obviously, the output of a web service call does not contain any information about
confidential input data if it does not depend on the concrete values of input data. Low-
security data must not depend on any high-security data. More generally, the security
classification of any computed or synthesized data has to be at least as high as the
classification of all used data. That is, no secret bit of information must be disclosed in
public information.

To ensure these restrictions for web services, we adopt a security type calculus
developed by Volpano and Smith [17, 18, 14] in order to analyse synthesised plans and
formally encode security classifications as types. Their approach secures information
flow in a simplified programming language. They distinguish security classifications and
security clearances.

64

64

Security ratings τ, like H or L, are used to describe the classification of data (or
expressions in a program). τ acc denotes the clearance (e.g. of a program variable) to
store or keep information up to a classification τ. For instance, a variable of type H acc is
entitled to store confidential data. Its security rating is H. Besides storing confidential
information into low-security variables, a program may leak confidential information if
confidential information causes the program to move into different branches of the
program that cause different settings of low-security variables. For example, let x be a
low-security and y be a high-security Boolean program variable, then if y = true then x
:= true else x := false implicitly copies the value of y to x. Thus, Volpano and Smith
introduce a security type τ cmd for program statements or fragments denoting that the
execution of this fragment can be only noticed by observers with clearance higher or
equal than τ. Obviously, a program fragment is of type τ cmd if there are only
assignments to variables that possess a clearance higher or equal than τ.

Calculus rules are used to formally reason on security classifications and to propagate
the types of data along the program to newly computed data. For instance, an assignment
like x := c is secure if x has type τ acc and c the type τ or a type τ_ ≤ τ. Then, the
statement itself is of type τ cmd. Such rules are defined for all expressions and
commands of the programming language. The programming language used in [18]
comprises a notion of procedures as well. The applied programming language and the
web service composition plans are very similar. The only command that has to be added
and modelled is the web service call. The underlying idea of our approach (compared to
[5]) is that web service calls can be treated like remote procedure calls, while encoding
global states as global variables common to various web services.

However, in contrast to procedures, web services have to be first class citizens. In our
approach web services possess an individual clearance. As a consequence, each service
call has to be guarded by a check whether the input to be provided to this service lies
within its clearance. In particular, each web service WS(x, y) with input parameter x and
output parameter y propagates a security type τ proc(τ1, τ2). τ1 is the classification of the
input x, i.e. WS promises to send or assign x only to services or variables which possess
a clearance higher or equal than τ1. τ2 describes the resulting classification of the output
of WS. On the one hand τ2 is determined by the flow of information from x to y and the
type τ1. If y contains information about x then τ2 has to be at least as high as τ1. On the
other hand τ2 incorporates also the requirements of WS on potential receivers of y with
respect to any information originally contributed by WS in order to compute y (for
instance, the pharmacy shop might not want that its special prices become publicly
known and encodes this restriction in an additional role of τ2). To prevent indirect
information flow, i.e. altering publicly available data depending on the value of
confidential data, a web service also exports a type τ specifying the minimal clearance a
web service must possess to be able to observe the run of WS. If there is no observable
global “world” state (i.e. there are no side effects of executing web service on the global
state) then τ would be always the maximal upper bound (e.g. H).

In general, web services are polymorphic in their types, i.e. τ1 and τ2 may be type
variables rather than fixed values. Let τ1 be a type variable then a type τ proc(τ1, τ1)

65

65

would simply indicate that the output requires the same clearance as the classification of
the input. An example would be a web service that simply copies its input to the output.

4.3 Propagation of clearances

The security type of a web service tells us about the propagation of confidential inputs to
the outputs and to the global state. However, we also have to propagate the clearances a
customer is willing to issue to individual web services or classes of web services.
Therefore, each web service provides an additional input parameter to receive the
clearances assigned to web services by the customer. However, both the user and her
agent do not necessarily know all web services that are involved in a particular
composition plan, depending on the granularity of the respective process model
specifications, or black-box views on subordinated services. Thus, the user may also
specify delegation rules that allow some trusted web service to fix the clearance of web
services unknown to the user. A web service may only add clearances to new web
services but it must not change existing clearances. Once a web service has added a
clearance it will be fixed till the end of the complete service. To communicate the
addition to the clearances there is also an additional output parameter that propagates
any increments of the list of clearances to the calling web service.

5 Application to the Use Case Scenario

Let us return to our use case of ordering and paying Peter’s medicine. To guarantee
Peter’s privacy in this example, Peter has to classify his personal data he provided to his
personal agent MED. This is done with respect to different information categories (or
roles). One role “Medicine” is related to the privacy of his disease while another one
“Payment” regulates the confidentiality of his payment account data. In the same way
Peter has to assess the clearance of known web services with respect to different roles.
Comparing the clearance of a web service with the classification of a particular data
determines whether the web service gets access to this data. For example, since the
pharmacy agent MA2 has only a clearance L (“low”) in the role “Medicine”, a call of
MA2 with the input data “Cold & Aids” being classified as H (“confidential”) is
prohibited. Figure 3 illustrates Peter’s settings in our example.

..…..

LHCold & Aids

PaymentMedicineSPData

..…..

LHCold & Aids

PaymentMedicineSPData
HHMED

LLMA2

HHPA1

……

HLPA2

LHMA1

PaymentMedicineSPWS

HHMED

LLMA2

HHPA1

……

HLPA2

LHMA1

PaymentMedicineSPWS

call (MA1, Cold&Aids)

call (MA2, Cold&Aids)

Security classification of data Clearance of known services

Figure 3: User data security classification, and clearance of known services

66

66

Typically, a service composition plan created by MED may also contain services that are
unknown to Peter in advance. Hence, Peter can delegate individual web services the
right to assess the clearance of an unknown web service with respect to a particular role.
Depending on the needs we can model either non-transitive or transitive delegation
rights. Once the service plan has been composed, the web service agent MED has to
check this plan with respect to the classification and clearances of data and involved
services. In order to decide whether a web service call in a plan is admissible, it has to
compare the classification of the parameter x, y of an intended call WS(x, y) with its own
security requirements for WS specified by the clearance for WS. While the parameter
“Cold & Aids” sent to the pharmacy agent has been already rated by Peter himself, the
agent MED has to deduce the classification of the data used as input for the call to the
payment agent by itself. This classification reflects the confidentiality of the information
used to compute the data. Our agent makes use of the security type calculus to compute
the classification of such data according to the way it was computed.

For example, Figure 4 presents two different security policies of the pharmacy agent. In
the right case the price does not reveal any information about the ordered medicine and
thus the required output clearance is L while in the left case the price reveals information
about the medicine and thus the price is rated as H with respect to the role “Medicine”.

LHPrice

..…..

LHCold & Aids

PaymentMedicineSPData

LHPrice

..…..

LHCold & Aids

PaymentMedicineSPData

Price depends on the disease (H) Price is a flat rate, hence
does not depend on the disease (L)

LLPrice

..…..

LHCold & Aids

PaymentMedicineSPData

LLPrice

..…..

LHCold & Aids

PaymentMedicineSPData

Figure 4: Security classification of user data based on their dependencies

The type calculus propagates this requested clearance for the output (“price”) of the
pharmacy agent as a required clearance of the input of the call to the payment agent.
This means that in the right case of Figure 4, the MED agent can call any payment agent
with a L clearance while in the left case an agent with H clearance is required. In the
same way MED makes uses the type calculus to compute from Peter’s classification of
the initially given data and the security policies of the involved web services the
resulting classifications of all data which will be computed within the composed web
service plan. Based on the resulting types it can check the admissibility of the
incorporated web service calls.

Figure 5 and 6 illustrate the resulting security type check of a composed plan to buy the
medicine from pharmacy agent MA1 first and then to instruct payment agent PA1 to pay
the bill. While in Figure 5 the plan fails the security requirements because the price
includes information about the medicine (and thus implicitly also about the disease),
Figure 6 shows the case in which the same plan gets accepted because the price does not
reveal the information about the medicine. Another solution would be to exchange the
payment agent. Using PA1 instead of PA2 would allow the MED agent to transfer

67

67

information rated as H with respect to “Medicine” to the payment agent since PA1

possesses a H clearance with respect to this category.

…
call(MA1, disease, price)

call(PA2, price, ok)
…

…
call(MA1, disease, price)

call(PA2, price, ok)
…

Clearances:
MA1 : H, L
PA1 : L, H

Cold & Aids: H, L

exports security policy:
ττ proc (ττ1, ττ1 acc)

Price: H, L

MA1 PA2

exports security policy:
ττ proc (ττ1, L acc)

Price: H, L

…
call(MA1, disease, price)

call(PA2, price, ok)
…

…
call(MA1, disease, price)

call(PA2, price, ok)
…

Clearances:
MA1 : H, L
PA1 : L, H

Cold & Aids: H, L

exports security policy:
ττ proc (ττ1, ττ1 acc)

Price: H, L

MA1 PA2

exports security policy:
ττ proc (ττ1, L acc)

Price: H, L

…
call(MA1, disease, price)

call(PA2, price, ok)
…

…
call(MA1, disease, price)

call(PA2, price, ok)
…

Clearances:
MA1 : H, L
PA1 : L, H

Cold & Aids: H, L

exports security policy:
ττ proc (ττ1, L acc)

Price: L, L

MA1 PA2

exports security policy:
ττ proc (ττ1, L acc)

Price: L, L

…
call(MA1, disease, price)

call(PA2, price, ok)
…

…
call(MA1, disease, price)

call(PA2, price, ok)
…

Clearances:
MA1 : H, L
PA1 : L, H

Cold & Aids: H, L

exports security policy:
ττ proc (ττ1, L acc)

Price: L, L

MA1 PA2

exports security policy:
ττ proc (ττ1, L acc)

Price: L, L

Figure 5: Security check (H-prices) Figure 6: Security check (“flatrate”)

6 Related Work

Starting with the work of Goguen and Meseguer [4] in the domain of security,
information flow control has been subject of a large variety of different approaches
introducing different formal notions of independence. Most prominent, McLean [11],
Zakinthinos and Lee [19] and Mantel [10] proposed frameworks to embed these different
notions in a uniform framework. Our work is based on language based information flow.
The general problem whether a program leaks information from high-level to low-level
is not decidable. Thus, type calculi as they are proposed, for instance, in [18] are
incomplete. Meanwhile following Volpano and Smith’s work, more refined type calculi
(e.g. [13]) have been developed that are able to recognize more programs as secure.
Since dynamically composed web services are rather simple programs, we decided to
use a less refined type calculus, which requires the usage of less resources. Various
aspects of security of web services have been investigated. Some aspects were concerned
with how to specify a policy in a machine readable and user friendly way at the same
time (see e.g. [6], especially the WS-Policy part, or REI [12, 7]), how to compose
different policies, and how to prove that the web services involved enforce their policy
specification for each request. Most of the current approaches to secure service
execution concentrate on the proper use of access control mechanisms.

As a consequence, any generated service composition plan gets executed anyway, while
checking just during execution whether the given access control matrix prohibits any
access. If that is indeed the case, the whole execution process is stopped, and a new
composition plan has to be created. These approaches can be classified according to the
type of policy they work with. For example, both KAoS [16] and Ponder [3] handle
security policies for authentication and obligations, while REI [12] copes with the
specification and reasoning with security policies for rights, prohibitions, obligations and
dispensations. REI, in particular, is a rich logic-based policy language using rules and
constraints to formulate security and privacy policies. However, the REI based approach

68

68

presented in [7] does not take any information flow aspects into account. As a result, the
proposed enforcement of privacy policies is simply a matter of secure communication
between web services in terms of agreed encryption protocols. In other words, privacy
aspects are assumed to be dealt with by means of cryptographic techniques only.
However, this is not enough to ensure the absence of hidden channels, or unintended
leakage of information in compiled data. However, the description of our service
security policies in terms of logical type calculus expressions could be translated to
equivalent but more natural language like expressions to be of use for annotating OWL-
S service profiles with corresponding policies. That could be done, for example, by
adapting the RDFS syntax of REI as proposed in [7]. However, the details have to be
explored in future work.

Finally, we would also like to refer to related approaches that are concerned with the
theory of composing security policies independent of the type of the policy [2], and
practical extensions resulting in IBM’s algebra for composing policies, which is based
on their Enterprise Privacy Authentication Language (EPAL) [6], [15].

7 Conclusions

In this paper, we presented an approach to solve the problem of provably secure
execution of semantic web service composition plans by means of type based
information flow analysis prior to, and during, execution of the plan. While we
concentrated on privacy aspects to illustrate our approach it is worth to mention that the
same approach can be also used to ensure the integrity of data. Non-repudiation or
availability issues are orthogonal to our approach. The integrated components of this
approach include our OWL-S service matchmaker, OWLS-MX, the service composition
planner, OWLS-XPlan, and the security checker module for formally verifying the
compliance of the created composition plan to be executed with given data and service
security policies of both service consumer and provider. Our approach can be, for
example, considered in part complementary to the one presented in [7] with respect to
the abstraction of specification of policies and used means of their enforcement.

References

[1] D. E. Bell and L. LaPadula. Secure computer systems: Unified exposition and
multics interpretation. Technical Report MTR-2997, MITRE, 1976.
[2] P. A. Bonatti, S. D. C. di Vimercati, and P. Samarati. An algebra for composing
access control policies. ACM Trans. Inf. Syst. Secur., 5(1):1–35, 2002.
[3] N. Dulay, N. Damianou, E. Lupu, and M. Sloman. A policy language for the
management of distributed agents. In Agent Oriented Software Engineering (AOSE-
2001), pages 84–100. Springer, LNCS 2222, 2001.
[4] J. A. Goguen and J. Meseguer. Security policies and security models. In 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 1982. IEEE Computer Society.

69

69

[5] D. Hutter and M. Volkamer. Information flow control to secure dynamic web-service
composition. In 3nd International Confernce on Security in Pervasive Computing.
Springer, LNCS, 2006.
[6] IBM and Microsoft. Security in a Web Service World: A proposed architecture and
roadmap. www-106.ibm.com/developerworks/ webservices/library/ws-secmap, 2002.
[7] L. Kagal, M. Paoucci, N. Srinivasan, G. Denker, T. Finin, and K. Sycara.
Authorization and Privacy for SemanticWeb Services. IEEE Intelligent Systems (Special
Issue on Semantic Web Services), 19(4):50–56, July 2004.
[8] M. Klusch, B. Fries, and K. Sycara. Automated semantic web service discovery with
OWLS-MX. In 5th International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS). ACM Press, 2006.
[9] M. Klusch, A. Gerber, and M. Schmidt. Semantic web service composition planning
with owlsxplan. In 1st International AAAI Fall Symposium on Agents and the Semantic
Web. AAAI Press, 2005.
[10] H. Mantel. Possibilistic definitions of security – an assembly kit. In IEEE Computer
Security Foundations Workshop, Cambridge, UK, IEEE Computer Society, 2000.
[11] J. McLean. A general theory of composition for trace sets closed under selective
interleaving functions. In IEEE Symposium on Security and Privacy. IEEE Computer
Society, 1994.
[12] A. Patwardhan, V. Korolev, L. Kagal, and A. Joshi. Enforcing policies in pervasive
environments. In Mobile and Ubiquitous Systems, MobiQuitous-2004, pages 299–308.
IEEE Computer Society, 2004.
[13] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1), 2003.
[14] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative
language. In Conference Record of POPL 98: The 25th Symposium on Principles of
Programming Languages, pages 355–364, New York, NY, 1998.
[15] W. H. Stufflebeam, A. I. Ant´on, Q. He, and N. Jain. Specifying privacy policies
with P3P and EPAL: lessons learned. In Workshop on Privacy in the Electronic Society,
WPES-2004, Washington DC, USA, 2004.
[16] A. Uszok, J. M. Bradshaw, R. Jeffers, A. Tate, and J. Dalton. Applying KAoS
services to ensure policy compliance for semantic web services workflow composition
and enactment. In International Semantic Web Conference. Springer, LNCS 3298, 2004.
[17]. D. M. Volpano and G. Smith. A sound type system for secure flow analysis.
Journal of Computer Security, 4(3):167–187, 1996.
[18] D. M. Volpano and G. Smith. A type-based approach to program security. In
TAPSOFT’97: Theory and Practice of Software Development, pages 607–621. Springer,
LNCS 1214, 1997.
[19] A. Zakinthinos and E. S. Lee. A general theory of security properties. In 1997 IEEE
Symposium on Security and Privacy, pages 94–102, Oakland, CA, USA, 1997.

70

70

