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1. Introduction

Democratic elections represent an important value in many modern states.
This is not limited to governments, also companies and other organizations are
constituted in democratic elections. In general, most democratic elections follow
the principle of equal elections, meaning that one person’s vote should be worth
as much as another’s, i.e. one man – one vote [16]. However, this principle often
represents a challenge to voters, who are not sufficiently informed regarding the
particular matter that is voted on. In order to address this issue, a new form
of voting has been proposed, the so called proxy voting. In proxy voting, each
eligible voter has the possibility to delegate her voting right to another eligible
voter, so called proxy, that she considers a trusted expert on the matter. In this
way, the proxy can use the received delegations to vote for her preferred voting
option, so that the proxy’s vote would count several times (i. e. as many times
as the number of delegations she received, plus her own vote if the proxy votes
as an eligible voter in the election herself) in the tally.

A few proxy voting implementations, provided by different organizations,
already exist. Two widely known implementations are LiquidFeedback1 and
Adhocracy2. Further proxy voting proposals are the approaches proposed in
[21] and [24].

However, all existing proxy voting proposals fail to address the issue of voter
coercion: namely, the case when the adversary threatens the voter to vote in a
particular way, or to abstain from voting. This issue has been commonly con-
sidered for non-proxy Internet voting, and a number of Internet voting schemes
have been proposed, that address the problem of coercion, e.g. by providing
coercion resistance [13] or coercion evidence [9]. In this paper, we build upon
[13, 6] and an extension proposed by Spycher et al. [20] to propose a coercion
resistant end-to-end verifiable Internet proxy voting scheme.

This paper is structured as follows: In section 2 we identify and derive se-
curity requirements that are relevant for proxy voting. Section 3 introduces the

1http://liquidfeedback.org/, last accessed January, 7, 2016.
2https://adhocracy.de/, last accessed January, 7, 2016.

Preprint submitted to Elsevier September 11, 2017



fundamentals used for our proposal, which we present in section 4. In section 5
we evaluate the security of our proposal with respect to the requirements. Sec-
tion 8 summarizes our contributions and provides directions for future research.

2. Requirements for Proxy Voting

We consider the following use case for proxy voting. The voter is not sure,
which candidate or which voting option she wants to support in the election.
However, she knows an expert, a public person or even a friend or a relative,
whom she considers to be more informed on the election issue and whom she
trusts to make the right decision. Hence, in this scenario the proxy can use the
delegations she received from the voters to vote on her own discretion. On the
other hand, the voters that know how they want to vote are supposed to vote
directly without involving proxies. While conditional delegations, e. g. as the
voter requesting from a proxy to choose between candidates A and B, or to vote
for anyone but candidate C, are an interesting direction of future research on
proxy voting, we consider such requests to be out of scope of our work.

Note that non-Internet proxy voting such as in Netherlands considers a dif-
ferent use case, whereby the voter might know how to vote, but delegate to a
proxy due to being unable to physically get to the voting booth. Such a use case,
however, would not be relevant for Internet voting, where physical presence at
the polling station is not required for casting a vote.

The following functional requirements should be provided by a proxy
voting system:

Delegation cancellation. If the voter for any reasons decides to vote herself, she
should be able to cancel the delegation at any point of time before the tallying.

Delegation back-up. The voter can assign up to T priorities to her proxies.
Only the vote from the proxy having highest priority will be included in the
vote count. This functionality is useful if the voter wants to have a “back-up”
delegation, in case her first choice of a proxy abstains from the election.

The security requirements in Internet voting have been thoroughly inves-
tigated in the literature, and both formal [8] and informal [18, 15] definitions
have been proposed. In this work, we aim to address the following security
requirements for the election.

Vote integrity. All votes cast by eligible voters should be included in the result.

Availability. It should be possible to compute election result even if some of the
involved entities are faulty.

Vote secrecy for voters. The voting system should not reveal a link between the
voter and the cast vote to anyone but the voter herself.
We aim at achieving the following security requirements for the delegation pro-
cess:
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Delegation integrity. Only the proxy having a valid permit from the voter should
be able to cast a vote on this voter’s behalf. The proxy should not be able to
alter the priority given to them by the voter.

Delegation availability. A proxy should not be selectively prevented from having
the votes delegated to her.

Vote secrecy for proxies. The voting system should not reveal a link between
the proxy and her cast vote to anyone but the proxy herself.

Delegation privacy. The voting system should not reveal the link between the
proxy and the identity of the voter who delegated to this proxy to anyone but the
voter herself. Furthermore, it should not reveal whether a voter has delegated
a vote or voted directly to anyone but the voter herself.

Delegation power privacy. The voting system should not reveal how many vot-
ers have delegated their vote to a specific proxy to anyone, including the proxy
herself. Note that while the proxy can know her number of upcoming dele-
gations, delegation power privacy is still ensured if the proxy cannot tell, how
many of these delegations are valid, i. e. how many of her cast delegated votes
will be included in the tally.
Note, that as we want to ensure coercion resistance, we require that vote secrecy
for both voters and proxies, as well as delegation privacy and delegation power
privacy, should be ensured also for the case when the adversary is capable of
communicating with the voter or proxy. As such, we aim to prevent the following
coercion scenarios:

Direct voter coercion. Similar to the definition in [13], we aim to ensure receipt-
freeness (i. e. the voter should not be able to create a receipt that proves how
she voted) and protect against forced abstention (i. e. coercing the voter to
abstain from the election), simulation (i. e. the adversary voting instead of
the voter) and randomization (i. e. coercing the voter to invalidate her vote
by casting a randomly composed ballot). Preventing coercion for direct voters
means, that vote secrecy is preserved also given the assumption, that the coercer
can communicate with the voter.

Delegation coercion. We aim to prevent attacks, whereby the voter is coerced
to delegate to a specific proxy. Preventing delegation coercion means, that
delegation privacy and delegation power privacy are preserved also given the
assumption that the coercer can communicate with the voter.

Proxy coercion. We aim to prevent attacks, whereby the proxy is coerced to
forward her received delegations to an adversary or to use them to vote in a
specific way. In particular, for the votes cast by proxies, the same coercion resis-
tance as for the voters should be achieved (i. e. ensuring receipt-freeness, as well
as protecting against forced abstention, simulation and randomization attacks).
Preventing proxy coercion means, that vote secrecy for proxies and delegation
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power privacy are preserved also given the assumption that the coercer can
communicate with the proxy.

3. Background

In this section we introduce the fundamentals used to design our coercion-
resistant verifiable proxy voting scheme.

3.1. Cryptographic Primitives

In the following we describe the cryptographic primitives our scheme relies
on. Hereby, Gq denotes a cyclic multiplicative group with order q and Zq denotes
the cyclic additive group of integers modulo q.

Zero-knowledge proofs. In order to prove the correctness of statements within
the voting scheme without revealing anything beyond the correctness zero-
know-ledge proofs are employed. For this sake, techniques such as proving the
knowledge of discrete logarithm [19] or discrete logarithm equality [5] are being
used. These proofs can be made non-interactive by employing the strong version
of the Fiat-Shamir heuristic suggested in [3]. An important extension of such
proofs are designated-verifier proofs described in [12]. Given the verifier’s pub-
lic key, these proofs convince only the designated verifier about the correctness,
rather than the general public.

Linear Encryption. In some parts of our scheme, we use a modified encryp-
tion scheme suggested in [4] (further denoted as LE-ElGamal). This scheme is
semantically secure under the DLIN (decisional linear) assumption which is im-
plied in groups where the DDH assumption holds. Namely, let pk = (g1, g2, h) ∈
G3

q be the public keys of the encryption and (x1, x2) ∈ Zq ×Zq the private keys
with gx1

1 = gx2
2 = h. If the keys are jointly generated by multiple parties with

x1, x2 as threshold-shared secrets, then, according to [2] at least 2/3 of the
parties have to be honest.

The message m ∈ Gq is encrypted as follows: two random values (r1, r2) ∈
Zq × Zq are chosen and then the encryption - denoted as {{m}}pk ∈ G3

q - is
calculated as (c1, c2, c3) = (gr11 , g

r2
2 ,m · hr1+r2). The decryption then proceeds

as m = c3 · c−x1
1 · c−x2

2 . Ciphertexts can then be reencrypted by multiplying
a ciphertext by an encryption of 1 using a random value (r′1, r

′
2) ∈ Zq × Zq.

Further operations used together with the ElGamal encryption, such as mix net
shuffle, well-formedness proofs and plaintext equivalence tests can be adjusted
for LE-ElGamal as well.

Plaintext Equivalence Tests. In order to check whether a given ciphertext c
encrypts the same plaintext as another ciphertext c′ without revealing any ad-
ditional information about plaintexts, plaintext-equivalence tests [11] can be
employed. This can be performed by the holders of an encryption secret key
and consists of jointly decrypting the value (c/c′)r given a secretly shared ran-
dom value r ∈ Zq which results in 1 in case the plaintexts are equal or in random
value otherwise.
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Proxy Reencryption. Let {m}pk1 be a ciphertext encrypting message m with
ElGamal public key pk1 = (g1, h1). Given the knowledge of corresponding secret
key x1 = logg1 h1 which can also be a shared secret between several participants
the method described in [10] allows for computing a new ciphertext {m}pk2

,
that encrypts the same message using a different ElGamal public key pk2.

Mix nets. Important components in electronic voting systems are mix net schemes
which are used for anonymizing lists of ciphertexts e1, ..., eN . In addition to en-
sure the integrity of the shuffle a number of zero-knowledge proofs have been
proposed in the literature. The most efficient schemes - up to now - are pre-
sented in [22] and [1]. A modification of such proofs can be used to mix tuples
of ciphertexts (ē1, ..., ēN ) with ēi = (ei,1, ..., ei,k) while preserving the ordering
within the tuple.

3.2. JCJ/Civitas Scheme

For our goal to provide a scheme for coercion resistant proxy voting we
chose the JCJ/Civitas voting scheme proposed in [13] and then extended and
implemented in [6] as basis. The coercion resistance of the scheme is based on
the application of voting credentials. These credentials are used to authorize
votes from eligible voters. In case a coercer demands the credential from a voter
she can simply provide a fake credential which could not be distinguished from
the real one by the coercer. We briefly outline the scheme below.

Setup and Registration. Prior to the election the election supervisor announces
the different election authorities, namely the registrar, registration tellers and
tabulation tellers and publishes their respective public keys on the bulletin
board. The registrar publishes the electoral register which contains the iden-
tity, the public registration key, and the public designation key of each voter.
Building upon a homomorphic cryptosystem the tabulation tellers generate an
election key pair in a distributed manner and publish the respective public key
pk on the bulletin board.

For each voter Vi each registration teller j = 1, ..., N generates a creden-
tial share ci,j and publishes its encryption next to the respective voter’s iden-
tity on the bulletin board from which the encryption of the voting creden-
tial Ei = {ci}pk =

∏N
j=1{ci,j}pk can be computed by multiplying all the in-

dividual credential shares. The shares ci,j in plaintext together with corre-
sponding designated-verifier correctness proofs are then being forwarded to the
voter. Now the voter can use them to compute their secret voting credential
ci =

∏N
i=1 ci,j . Finally, the encrypted credentials Ei are being shuffled via mix

net.

Voting. The voters use anonymous channels for vote casting. As her vote, the
voter casts a tuple

〈Ai = {o}pk, Ci = {ci}pk, σ〉

with o as a chosen voting option and σ as well-formedness proof for Ai and proof
of plaintext knowledge for Ci. The tuple is sent to one of the available ballot
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boxes which stores the votes. In case the voter is forced to reveal her credential
to a coercer she can give a fake credential c′ instead while the coercer is not
able to distinguish it from a real one.

Tallying. The tallying is jointly performed by the tabulation tellers. The votes
with invalid proofs are excluded and the plaintext-equivalence tests are used for
identifying the votes with duplicated credentials which are handled according
to the rules concerning vote updating. The remaining tuples 〈Ai, Ci〉 are being
shuffled and of votes are being anonymized with mix net shuffling. Afterwards,
plaintext-equivalence tests are applied for checking the validity of the voting
credential by each Ci with each authorized credential from the shuffled list Ei.
For the votes with valid credentials the voting options Ai are being decrypted.

Security assumptions that JCJ/Civitas relies on:

1. The adversary is not capable of simulating the voters during the registra-
tion process. The adversary is also not present at the registration phase.

2. At least one registration teller is trusted and the communication channel
between this teller and the voter is untappable3.

3. The voting client is trusted.

4. At least k out of n tabulation tellers do not fail during decryption.

5. At least n−k+1 out of n tabulation tellers are trusted not to reveal their
key shares.

6. The channels between voters and voting system used for vote casting are
anonymous.

7. The DDH assumption and the RSA assumption hold and a random oracle
is implemented via cryptographic hash function.

8. At least one ballot box to which the cast votes are submitted is correct.

In addition to the security requirements, it is assumed that the voters are
capable of handling the credentials, e.g. by using some kind of secure credential
management.

4. Proposed Proxy Voting Scheme

To tailor our JCJ/Civitas extension towards proxy voting we introduce a new
kind of credentials, so called delegation credentials. In addition to a unique voter
credential in JCJ/Civitas, each voter i obtains a list of prioritized delegation
credentials. To delegate a vote with a certain priority j the voter selects the
j-th credential from her list and forwards it to the intended proxy. Voters
are allowed to forward different credentials with different priorities to different
proxies. Throughout the tallying phase for each voter only the vote cast with
the highest priority is counted. Due to the fact that delegation credentials are

3That is, the adversary is incapable of reading the messages sent over the channel.
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generated on the same principles as the voting credentials in the original scheme
the security of our extension also relies on the fact that the delegating credentials
can be faked by the voter in case of coercion.

4.1. Necessary Modifications

We describe the modifications to the JCJ/Civitas scheme that are needed for
implementing the delegation while ensuring the requirements listed in Section 2.

Ballot Clustering. Within the JCJ/Civitas scheme coercion-resistance is achieved
by breaking the link between a voter’s identity and votes cast in her name, both
real and fake votes. The introduction of prioritized delegation credentials re-
quires a relation between different credentials being maintained throughout the
vote tallying phase. Retaining such a relation might however cause vulnerabili-
ties with regard to coercion. To address these challenges we build upon proposals
from scientific literature. Spycher et al. [20] present a JCJ extension towards
linear tallying time. Therefore, the authors propose to assign identifiers to cast
(real and fake) votes. During vote tallying after anonymization cast votes are
only compared against the public credential assigned to their respective identi-
fier. This reduces the tallying complexity from quadratic to linear regarding the
number of cast votes. We build upon this approach: votes cast by the voter or
delegated to different proxies share the same identifier such that within the set
of votes sharing the same identifier the vote with the highest priority is tallied.

Delegation Server. Forwarding voting credentials to proxies results in a coer-
cion vulnerability: The adversary might coerce a proxy to forward all received
voting credentials. In order to test whether the proxy complies the adversary
could anonymously delegate a credential to her and check whether this creden-
tial is being forwarded back to her. We address this problem by introducing a
new entity - possibly implemented in a distributed way - that functions as dele-
gation server (DS). The underlying idea is that proxies do not receive delegated
credentials directly from the voter. Instead the voter blinds her credential and
sends it to the DS (over an anonymous and untappable channel) which forwards
an anonymization of the blinded credential to the proxy. The unblinding value
is sent to the proxy over the private and anonymous channel. In this way, even
if the coercer demands from a proxy to forward all credentials to her, the intro-
duction of the delegation server, who is trusted for coercion resistance, allows
the proxy to generate fake credentials instead. Since the blinded credential is
anonymized, the fake credentials forwarded by the proxy to the adversary are
indistinguishable from the credentials submitted by the voters.

Inclusion of Linear Encryption. To prevent unauthorized usage of voting cre-
dentials the JCJ/Civitas scheme forces the voter to include the plaintext knowl-
edge proof for the ciphertext encrypting the credential. This solution, how-
ever, is inapplicable to the delegation process since the proxy does not get
to know the value of the credential as outlined above. We address this chal-
lenge by publishing voting credentials (in the registration and voting phases)
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encrypted with linear encryption rather than ElGamal encryption. On the
other hand for delegating her vote the voter encrypts their delegating credential
with standard ElGamal using (g2, h) as an encryption key. The resulting tuple
{c}pk = (a = gr2, b = chr) together with other necessary information (see Sec-
tion 3.2) is being forwarded to the proxy. If the proxy wants to cast the vote she
chooses a random value of s and computes (gs1, a, bh

s) which is an LE-ElGamal
encryption of c with randomness values r, s for which the proxy also can prove
the knowledge of s as logg1 g

s
1.

4.2. Scheme Description

In this section we provide a detailed description of our proposed scheme.
The scheme involves following entities:

• Registration tellers are responsible for generating and distributing the cre-
dentials to the voters. At least one of the registration tellers is trusted
not to reveal private information to the adversary and to establish an
untappable channel to the voters.

• Delegation server is responsible for forwarding the delegation credentials
from the voters to the proxies. The server is trusted not to reveal its
private information to the adversary.

• Bulletin board is responsible for publishing and storing all the public data
in an election. It is trusted to act as a reliable append-only broadcast
channel, i.e. not to remove or modify its contents once they are published
and show the same view to everyone.

• Tabulation tellers are responsible for performing the tallying after all the
ballots have been cast. More than 2

3 of them is trusted not to reveal their
private information to each other or to the adversary, and at least 1

3 of
them is trusted to provide valid output during the election and

Preliminary Stage. During this stage the keys used for encrypting votes and/or
credentials are generated. The DS generates ElGamal keys with pkD = (gD, hD)
as public key. The tabulation tellers distributively generate LE-ElGamal keys
pkT = (g1, g2, hT ). We further denote {m}pkT

as ElGamal encryption with
(g2, hT ) as corresponding key and {{m}}pkT

as LE-ElGamal encryption.
The list of proxies D1, ..., Dd is being made public together with their public

keys used for signing and designated-verifier proofs. For the sake of simplicity
we assume that each proxy is eligible to vote herself as well. Furthermore,
anonymous channels that enable communication between the proxies and the
delegation servers as well as between proxies and the rest of the voters are
established.
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ID Priority Credential shares

id1 1 {{c1,11 }}pkT
, . . . , {{c1,N1 }}pkT

...
...

...

id1 T {{cT,1
1 }}pkT

, . . . , {{cT,N
1 }}pkT

...
...

...

idk 1 {{c1,1k }}pkT
, . . . , {{c1,Nk }}pkT

...
...

...

idk T {{cT,1
k }}pkT

, . . . , {{cT,N
k }}pkT

Table 1: Content of the bulletin board after the setup phase of the extended scheme.

Setup Phase. Opposed to the standard JCJ/Civitas scheme, each registration
teller generates T credential shares at random for each voter. Analogously
to the JCJ/Civitas scheme, the encrypted credentials are publicly assigned to
the respective voters whereby the order of the credential shares is of central
importance to the delegation process. A public identifier, e.g. the position of
the respective voter in the electoral roll is assigned to each voter. After the
setup phase the bulletin board contains T credentials for every voter V1, ..., Vk
(see Table 1) as well as individual credential shares from each of N registration
tellers for each priority 1, ..., T . We consider the lower number to denote the
higher priority.

Registration. The registration phase remains identical to the standard JCJ/
Civitas scheme except the fact that each registration teller releases T ordered
credential shares to the voter. The voter can then verify whether the received

shares from the tellers for a credential c
(j)
i correspond to the encrypted shares

published on the bulletin board near idi and priority j.
Before the voting, the voter merges her N · T credential shares as follows:

c
(1)
i = c1,1i · c

1,2
i · . . . · c

1,N
i

...
...

c
(T )
i = cT,1

i · cT,2
i · . . . · cT,N

i

Voting. To cast a vote (without considering delegation) for voting option o voter
i prepares the following tuple:

〈{{idi}}pkT
, {{c(j)i }}pkT

, {{o}}pkT
, σ〉

Here σ signifies both the well-formedness proofs for o as well as proof of ran-

domness knowledge for {{c(j)i }}pkT
: namely, given {{c(j)i }}pkT

= (c1, c2, c3) =

(gr11 , g
r2
2 , c

(j)
i hr1+r2) the voter proves the knowledge of randomness r1 as logg1 c1.
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Note that due to the zero-knowledge property of σ, it does not leak any informa-

tion about the plaintext c
(j)
i . The value of j is chosen depending on the voter’s

delegations where we distinguish the following cases:

1. If the voter does not intend to delegate her vote at a later point in time
she sets j = 1.

2. If the voter might intend to delegate her vote at a later point in time she
sets j as the lowest available priority: that is j = T in case she did not
delegate any vote yet or j = jd − 1 if jd is the highest priority that was
already delegated.

Additionally, the voter i casts her identifier idi in an encrypted manner which
later serves for clustering ballots from the same voter with different credentials.

Delegating. To delegate her vote with priority j = 2, . . . , T to the proxy Dk the
following protocol (see Figure 1) is executed.

1. The voter i chooses a random value x and sends the following tuple to one
or more of the DS:

〈{{idi}}pkT
, {(c(j)i )x}pkD

, σ, idDk
〉

Here c
(j)
i is the j-th credential from her credential list (c

(1)
i , . . . , c

(T )
i ), idi

is the voter’s index, σ is the proof of plaintext knowledge for {(c(j)i )x}pkD
4

and idDk
is the identifier, e.g. the public key, of the chosen proxy. The

voter also sends x, {{idi}}pkT
to Dk over a private channel.

2. The DS computes {(c(j)i )x}pkT
from {(c(j)i )x}pkD

using proxy reencryption
scheme and a designated-verifier proof using the public designated-verifier

key of Dk that both {(c(j)i )x}pkT
and {(c(j)i )x}pkD

encrypt the same plain-

text. The proof and the values of {(c(j)i )x}pkT
, {(c(j)i )x}pkD

together with
the voter’s index {{idi}}pkT

are being forwarded to Dk.

3. The proxy Dk verifies the proof and sends the signed value of {(c(j)i )x}pkD

back to the voter as confirmation.5

She further computes {c(j)i }pkT
as {(c(j)i )x}1/xpkT

.

Casting a delegated vote. To cast a delegated vote for a (unknown) voter X

with (unknown) priority Y the proxy first calculates {{c(Y )
X }}pkT

. For this -

given an encryption {c(Y )
X }pkT

= (c1, c2) - she chooses a random value s and

computes {{c(Y )
X }}pkT

= (gs1, c1, c2h
s). Then she encrypts her voting option o

and prepares her ballot according to the voting process outlined above.

4Same as for voting, due to its zero-knowledge property σ does not leak any information

about the plaintext (c
(j)
i )x.

5This can be done via a two-way anonymous channel or by publishing the signature on

{(c(j)i )x}pkD
on the bulletin board.
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Figure 1: Delegation of the voter idi to the proxy Dk, with zero-knowledge proofs omitted.

Cancelling a delegation. If the voter intends to withdraw one or several vote
delegations (but not excluding delegation in general), she issues the highest
prioritized unused credential, overriding all previously cast votes on her behalf.

Obfuscating the number of cast votes. The fake votes intended to hide the num-
ber of votes cast by a specific voter or her proxy are added accordingly to Spy-
cher et al.. For each identifier idi the tabulation tellers cast a random number
of votes of the following form:

〈{{idi}}pkT
, {{r}}pkT

, {{o}}pkT
, σ〉

Here r denotes a fake credential randomly drawn for each fake vote, a random
valid voting option o, and the respective zero knowledge proofs σ. The number of
fake votes for each voter is secret and is distributed as outlined in [20]. Note, as
the result of the obfuscation, the tabulation tellers know which ballots originated
from them and which ones were cast by the voters, but they do not know the
identities of the voters who cast their ballots. At the same time, since each
tabulation teller casts her obfuscating ballots independently, a tabulation teller
knows which ballots were cast by other tabulation tellers, but she does not know,
on behalf of which voter these ballots were cast (i.e. which id was used).

First anonymization. After all the votes have been cast, votes with invalid
proofs are removed and excluded from further tallying. The remaining bal-
lots are further processed by the tabulation tellers in order to remove duplicates
(i.e. the ballots cast using the same credentials) as described in [23], accord-
ing to the election policies on vote updating. 6Thereafter, tuples of the form
〈{{id}}pkT

, {{c}}pkT
, {{o}}pkT

〉 are anonymized by the application of a mix net,
whereby each tabulation teller acts as a mix node. The purpose of the first

6Note that this step can be omitted if the election does not allow vote updating – in that
case, from the ballots cast with the same valid credential, a random one will be included in
the tally.
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anonymization step is to remove the link between the voter id and the cast
ballot, so that neither the tabulation tellers nor the general public knows which
ballots were submitted by the voters themselves, and which were cast by the
tabulation tellers in the obfuscation stage.

Ballot clustering. After anonymizing the tuples the values of id are jointly de-
crypted by the tabulation tellers. For any index idi appearing within at least

one anonymized tuple the respective ordered list of credentials ({{c(1)1 }}pkT
, . . . ,

{{c(T )
1 }}pkT

) is obtained from the bulletin board. All tuples sharing the same
idi are clustered. The ordered list of credentials is attached to each cluster, and
the value idi is removed from all tuples.

Second anonymization. All lists of resulting tuples together with the respective
list of attached credentials are anonymized again. The purpose of the second
anonymization is to remove the link between the voter id and the used cre-
dentials, so that neither the tabulation tellers nor the general public can tell,
whether a ballot on behalf of a given voter (cast either by the voter herself or by
the tabulation tellers in the obfuscation stage) was cast with a valid or invalid
credential, or whether and with which priority a given voter delegated to some
proxy. The anonymization proceeds as follows. First, a second set of obfuscating
ballots is cast by the tabulation tellers for the purpose of preventing information
leakage from the cluster size. Namely, given X as the size of the largest cluster,
a corresponding amount of the tuples 〈{{r}}pkT

, {{o}}pkT
, σ〉 are added to each

cluster by the tabulation tellers as in the previous obfuscation, so that each
resulting cluster has exactly X ballots. Afterwards, a mix net is being applied
with each tabulation teller acting as a mix node, so that the lists are being

reencrypted and permuted. The shuffle results and the corresponding proofs of
shuffle validity (provided by the tabulation tellers) are published on the bulletin
board. Note that the order of ciphertexts within the tuples is preserved so that
the priority order of delegation credentials remains intact.

Extracting votes to be counted. In addition to weeding out the votes with invalid
credentials our goal is to tally only the vote with the highest priority in case
delegation took place. In order to do this for any element of the cluster - namely
a list of tuples and public credentials - the list of tuples is matched on the basis of
plaintext equivalence tests (PET), in decreasing order against the list of public
credentials. Starting with the highest priority credential c1 PETs are jointly
executed by the tabulation tellers between all credentials of submitted tuples
until a match is found. The results of PETs and corresponding validity proofs
are published on the bulletin board. If a match is found the value {{o}}pkT

is extracted from the matching tuple. Once the process has been terminated
for all tuples a list of encrypted voting options ({{o1}}pkT

, . . . , {{on}}pkT
) has

been extracted.

Third anonymization and result calculation. The list of encrypted voting op-
tions is anonymized by the application of a mix net with each tabulation teller
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acting as a mix node. The purpose of this anonymization is to remove a link
between the vote and the delegation priority, so that neither the general public
nor the tabulation tellers know, whether a given vote was cast directly by some
voter or by some proxy, and with which delegation priority it was cast. Even-
tually, the anonymized encrypted voting options are jointly decrypted by the
tabulation tellers, and the resulting anonymized list together with the proofs of
shuffle validity is published on the bulletin board.

5. Security of the Proposed Scheme

In this section we consider the security evaluation of our scheme. We first
summarize the security assumptions that need to be made, and then provide an
informal security argument regarding the requirements given in Section 2.

5.1. Security Assumptions

We summarize the security assumptions specific to our scheme in the list
below:

1. More than 2/3 of all tabulation tellers are trusted not to disclose private
key shares to the adversary.

2. At least 1/3 of all tabulation tellers does not fail during decryption.

3. At least one of DS does not fail to forward the delegated votes to the
proxy.

4. The DS does not disclose private information to the adversary.

5. The public key infrastructure for the proxies is trustworthy.

6. The private signing and designated-verifier keys of the proxy is not leaked.

7. Communication channels between the voters and the proxies are private.

5.2. Security Evaluation

We hold on to the assumptions of the original scheme which we provide in
Section 3.2. The security properties of our scheme and the additional assump-
tions that are needed for them can then be evaluated as follows:

Vote integrity. The assumptions on integrity for voters remain the same as in
the original scheme.

Availability. The election results can be computed under the assumption that
at least k = 1

3n tabulation tellers participate in the decryption.
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Vote secrecy for voters. The system provides probabilistic coercion resistance,
as there are two scenarios where the coercer can tell whether the voter has
obeyed. The first scenario occurs if the number of fake votes for some voter
equals the known minimal number. The probability of this can be controlled
with the choice of an appropriate distribution function for fake votes. In the
second attack, the coercer requests all the delegation credentials from the voter,
and casts a vote with priority j that is unknown to the voter. In that case, unless
there is a vote cast with the same priority from another voter, the coercer knows
whether the credential given to her was real. The success probability of such an
attack can be reduced with a smaller value of T . For example, with T = 3 the
voter can either vote herself, delegate once or choose one back-up proxy, which
we assume to be sufficient functionality for most of the elections.

Outside of these scenarios, the system provides vote secrecy, and with it coer-
cion resistance for the voters under the same assumptions as the original scheme
with k ≤ 1

3n. Since the delegating credentials are generated and distributed in
the same way as the voting credentials the voter can cheat the coercer who acts
as a proxy by providing a fake credential instead. Even if the coercer is watching
the voter directly during the delegation, the voter can input a random value as
her delegating credential so that the coercer cannot distinguish it from the real
one.

Delegation integrity. Casting a delegated vote without voter’s permission or a
delegated vote with a higher than given priority would require the knowledge

of the corresponding credential c
(j)
i for the voter i and priority j. Given that

each one of those credentials is generated in the same way as the voter creden-
tials in the original scheme it holds that they are not leaked under the same
assumptions. Another way to break the delegation integrity would be to inter-
cept the value x used for blinding the credential forwarded to the proxy which
requires control over the communication channel between voter and proxy. Fur-
thermore, it must be assumed that the public key infrastructure for the proxies
is trustworthy so that impersonation of a proxy to a voter is infeasible.

Delegation availability. The proxy receives the credential from the DS accompa-
nied by the designated verifier proof. In case no credential is sent the voter gets
no confirmation and thus is able to repeat the delegation by choosing another
DS. For this it must be assumed that the proxy’s private key is not leaked and
the confirmation cannot be sent by someone else. However, the DS is capable
of submitting an invalid credential if it can fake the designated verifier proof.
Therefore, it must be assumed that the private designated-verifier key of the
proxy is not being leaked.

Vote secrecy for proxies. Given an anonymous channel between the proxies and
the bulletin board the secrecy of votes cast by proxies corresponds to the vote
secrecy for the voters. An additional assumption is required that the DS is not
collaborating with the adversary. In this case using a designated-verifier proof
the proxy can fake the credentials resulting from the delegation process and
present them to the coercer if forced to do so.
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Delegation privacy. The proxy could be capable of learning the identity of the
delegating voter in following ways: 1) by identifying the message’s origin via
network, 2) by learning the voter’s ID, 3) by being able to assign the given del-
egating credential to the voter’s identity. The communication channels between
voters and proxies are anonymous, the voter ID is sent encrypted and only
decrypted after anonymization. The delegating credentials are not otherwise
leaked which is similar to the voter’s credentials in the original scheme. This
implies that the proxy is incapable of determining the identity of voters delegat-
ing to her. In case of a coerced proxy the coercer would not have a possibility of
knowing whether the credential passed to them is valid and whether the voter
has cast another vote herself. This corresponds with the coercion-resistance
properties of the original scheme.

Delegation power privacy. Given the anonymous communication channels be-
tween the DS and the voters a proxy cannot prove for given credentials that they
come from actual voters and are not simulated by the proxy herself. Moreover,
due to the coercion resistance properties of the original scheme and its creden-
tial generation process the proxy herself cannot verify whether the credential
she received is valid. This implies that the proxy is incapable of constructing a
convincing proof of possessing any amount of delegated votes.

6. Discussion

One bottleneck in the efficiency of our scheme is the addition of fake ballots
during the second anonymization: by casting X ballots on behalf of some voter
withX high enough, the adversary can slow down the tallying stage by the factor
of O(XN) with N as the number of eligible voters. Such a loss of efficiency can
be a serious drawback to our scheme, which we plan to address in future work.
The step of adding fake ballots, however, is crucial to prevent the information
leakage from the size of ballot clusters: otherwise, for large enough X, it is likely
that the cluster with at least X ballots will be the only one in the election, so
that the adversary would be able to identify the cluster of the coerced voter even
after the second anonymization, which could violate the coercion resistance of
the scheme. Namely, an adversary can conduct an attack similar to a 1009-
attack on the original JCJ described in [23] and cast X ballots using the same
credential provided by the voter. Later, given S > X as the size of the coerced
voter’s cluster, if no match is found after S − X + 1 comparisons during the
extraction of the votes to be counted, the adversary knows that she was provided
with an invalid credential7. In this section we discuss the ways to minimize the
impact of this vulnerability.

Note that the voter can still provide a fake credential for a requested priority
to the adversary and cast her own vote with a real credential for the same priority
herself. In order to make sure, that the adversary is not able to tell, which

7We thank the anonymous reviewer for pointing out this attack to us.
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credential has been used, following changes have to be made for the protocol.
Before comparing the credentials used for casting the ballots {{c}}pkT

with
the public credentials, the duplicate credentials (i.e. {{c}}pkT

that encrypt the
same plaintext) should be removed. For this purpose, the method described in
[23] can be used. As a result, only one ballot from the adversary using a fake
credential would be kept in the cluster after second anonymization. Hence, if
a voter has cast her ballot using the same credential, the adversary would not
able to tell which ballot has been counted.

Note, however, that being able to identify the cluster of the coerced voter
implies that the adversary would know, with which priority the voter has dele-
gated her vote, or whether the voter abstained from the election. Hence, forced
abstention attacks would be possible. Furthermore, the following attack would
violate coercion resistance, enabling the adversary to tell with non-negligible
probability whether the voter providing her the credentials has cheated. Let T
be the total number of delegation priorities. The coercer demands that the voter

sends her all T of her delegation credentials c
(j)
i . She then chooses a random

number P ∈ {1, ..., T} and votes using the credential c
(P )
i . As the coercer is able

to identify the cluster of a coerced voter at the time when the votes with invalid
credentials are being removed, she would be able to tell whether a valid vote
with priority P was cast by the voter. While the voter can attempt to cheat
by sending fake credentials to the adversary and voting with a valid credential

c
(P ′)
i with P ′ ∈ {1, ..., T} she attempts to guess. If the voter guesses the priority

correctly (i.e. P = P ′), then the coercer would not be able to tell whether the
voter has cheated; otherwise, however, the coercer will notice the absence of a
vote with priority P for a coerced voter. Hence, the probability for the voter
to cheat the coercer without being detected is 1/T , which, especially for large
values of P , can be unacceptably small. As this attack would not be possible
if the adversary cannot distinguish the cluster of a coerced voter (which should
be achieved with the help of fake ballots), a trade-off between efficiency and
security has to be taken when considering whether the step of adding these fake
ballots should be included in the scheme.

7. Comparison With Other Proxy Voting Schemes

In this section we compare our proposal with other schemes that ensure
proxy voting with cryptographic methods, namely [14, 24, 21]. We first provide
a high-level description of these proposals, followed by a brief discussion of their
security and functionality assurances, as compared to the scheme provided in
this chapter.

The table that summarizes the differences of each system is provided in
Table 2. The differences conclude such characteristics as: 1) whether a scheme
provides coercion resistance, 2) whether it preserves the vote secrecy for proxies,
3) whether it hides the fact, whether a given voter has delegated her vote, cast a
direct vote or abstained, 4) whether it preserves delegation power privacy either
before or after the tally (i.e. whether a proxy is capable of proving to a third
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party, how many delegations she has received), 5) whether the schemes allows
to verify, that only the votes from eligible voters are included in the tally, 6)
whether the scheme implements trust distribution (i.e. so that no single entity
is capable to violate a security requirement such as vote secrecy or integrity), 7)
whether the voters are allowed to choose a back-up proxy for their delegation, 8)
whether the proxies are allowed to update their delegated votes, and 9) whether
the proxies are allowed to re-delegate their delegated votes to other proxies,
while retaining the right to cancel the re-delegation.

Table 2: Comparison of proxy voting schemes

This paper [14]
[24]

(client-
side)

[24]
(server-

side)
[21]

Coercion resistance Yes No No No No
Vote secrecy for proxies Yes Yes No No Yes

Delegation privacy
(whether the voter

delegated)
Yes No Yes Yes Yes

Delegation power privacy
(before the tally)

Yes Yes Yes Yes No

Delegation power privacy
(after the tally)

Yes Yes Yes No No

Eligibility verifiability Yes Yes No No No
Trust distribution Yes Yes No No Yes

Delegation back-up Yes Yes No No Yes
Transitivity No No No No Yes

Proxy re-voting Yes Yes No Yes Yes

7.1. Introducing Proxy Voting to Helios by Kulyk et al. [14]

Another scheme for proxy voting functionality in Internet voting has been
suggested by Kulyk et al. in [14]. The proposal extends a well-known and widely
used Helios Internet voting system (namely, building upon its variant that uses
digital signatures for voter authentication, as proposed by Cortier et al. [7]) by
enabling the voters to delegate their votes and cast delegated votes as proxies.
For this purpose, similar to the scheme described in this paper, the voters get
the so-called delegation credentials consisting of a public and a secret key, one
for each delegation priority, and use them to construct delegation tokens that
are used for the delegation.

Thereby, the delegation token consists of two parts. The private part is a
random value m that is chosen by the voter and privately sent to the proxy. The
public part, anonymously published by the voter on the bulletin board, consists
of an encrypted value of the public delegation credential c, the zero-knowledge
proof of knowledge of the secret key for this delegation credential πd, the value
σ = gm for a public generator g and a proof/signature of knowledge πd which
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proves in zero-knowledge the knowledge of the secret key for the used delegation
credential, while binding the proof to the value of σ. For casting the delegated
vote, the proxy then sends her encrypted vote on behalf of the voter together
with the proof of knowledge of m given σ.

Casting a direct vote occurs in the same way as in the original Helios system.
After the period for casting of both direct and delegated votes has ended, the
delegated votes go through the weeding process as follows: first, they are pro-
cessed with a mix net for the sake of anonymisation. Afterwards, the encrypted
delegation credentials belonging to each token are being decrypted in order to
discard the delegated votes that either were cast using invalid delegation cre-
dentials (i.e. not the ones belonging to eligible voters), using the delegation
credential from the voter who also cast a direct vote thus cancelling the delega-
tion, or using the delegation credential ovewritten with another delegation from
the same voter with a higher priority. The remaining votes are being combined
with the direct votes, and further anonymised and decrypted as in the original
Helios system.

Security and Functionality. The scheme aims to preserve the security properties
of the Helios system for the direct voters. Hence, while it ensures vote secrecy
and integrity under the certain trust assumptions (also present in Helios), it
does not ensure coercion resistance, as both the voters and the proxies can prove
casting a vote for a specific candidate (e.g. by storing the randomness used for
encrypting the vote), and the voters can prove delegating a vote to a particular
proxy (controlled by the adversary). Hence, similar to Helios, the extension
towards proxy voting is suitable to be used in low-coercion environment only.

The same mechanisms that are used in Helios to ensure vote secrecy and
integrity for the direct votes, also ensure vote secrecy and integrity for proxies.
The encrypted delegation credential used in delegation tokens ensure, that the
link between the voter and the proxy remains secret, thus preserving delegation
privacy. It furthermore aims to preserve delegation power privacy, in that a
proxy is incapable to find out, whether a given delegation token contains an
encryption of a valid delegation credential, and thus can be used for casting
a valid vote. However, the scheme reveals, whether a given voter has cast a
direct vote, delegated her vote (and with which priority) or abstained from the
election.

As Helios employs mechanisms for ensuring end-to-end verifiability, so does
the extended scheme, when it comes to direct voting. In a similar vein, regarding
the delegation process, the voters have the possibility to verify, that their public
delegation tokens are properly stored on the bulletin board and the votes cast
with these delegation tokens are properly included in the tally. The proxies,
similar to the voters casting direct votes, are capable of verifying that their
votes have been cast as intended, stored as cast and tallied as stored.

The functionality provided in the scheme is similar to the functionality of
the scheme described in the present paper. The voters are able to cancel their
delegation by casting a direct vote at any time prior to the tallying, and assign
different priorities for delegating their vote to different proxies for delegation
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back-up.

7.2. Secure and Privacy-Preserving Proxy Voting System by Zwattendorfer. et
al. [24]

The authors of the scheme proposed in [24] take two approaches to delegat-
ing. In the first variant, which they denote as client-side, the voters delegate by
encrypting via a non-determenistic encryption scheme and casting the name of
their chosen proxy as their vote. Hence, after the tallying, the vote of each proxy
counts as many times as there are votes encrypting her name. For cancelling
the delegation, the voter casts another vote that either encrypts the name of
another proxy (thus re-delegating the vote) or the voting option (thus casting
a direct vote).

In the second approach, the so-called server-side delegation, the proxies cast
and publish their votes prior to the election. Then, in order to delegate her vote,
the voter simply encrypts the vote, cast by her chosen proxy.

The anonymity for the voters in both approaches is ensured via blind signa-
tures. In order to cast her ballot, representing either a direct vote, a name of
the chosen proxy (in server-side approach) or a copied vote of a chosen proxy
(in client-side approach), the voter encrypts her choice, authenticates herself to
the ballot signer, who checks whether a given voter has already voted in the
election, and if not, returns a signed ballot to the voter. Together with the
signed ballot, the voter also gets a so-called rejection key, which is also signed
by the ballot signer.

The ballot, signed by the ballot signer, is then being anonymously sent by
the voter to the voting server. For revoking the vote, the voter computes another
ballot which is sent to the ballot signer with the rejection code. At the end of
the elections, the private key is published, so that everyone can decrypt the cast
ballots and tally the election result.

Security and Functionality. The system provides verifiability for the voters, in
that they are able to record their cast ballots, and then check whether theses
ballots are stored on the voting server and decrypted correctly. The eligibility
of the election, however, could be violated by the ballot signer alone: given
that it is the only entity responsible for authenticating the voters, the ballot
signer is capable of adding the ballots that do not belong to eligible voters to
the tally without any means to detect it. Furthermore, the ballot signer is
capable of violating vote secrecy, as it knows the link between each cast ballot
and the voter’s identity. The system is also vulnerable to coercion and vote
or delegation selling, as the voter can prove casting a vote for a particular
candidate or delegating it to a particular proxy. Namely, let Enc(v, r) denote
an encryption of a voting option v (which is either a direct vote or a name of
a chosen proxy) with the randomness value r. As all the cast encrypted votes
are published, if the voter sends v and r to the adversary, then the adversary
can verify that Enc(v, r) is published and included in the tally, hence, the voter
has cast a ballot for the voting option v. Moreover, as all the ballots are simply
decrypted afterwards without any anonymization, the voter can send Enc(v, r)
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to the adversary before casting it as her ballot, and the adversary just has to
verify that the ballot appears on the bulletin board later on, and then verify
that it decrypts to v after the tally.

Regarding the security of the delegation process, the authors do not aim to
protect the vote secrecy for proxies, claiming that it is crucial for the proxies’
votes to be public for ensuring better transparency. In the server-side approach,
as the tally result reveals, how many delegations each proxy has got, it does not
ensure delegation power privacy. The client-side approach, while hiding the
number of delegations to each proxy, as well as the total number of delegated
votes, also provides some limitations on the functionality, as the proxy is not
able to update her vote after the delegation.

The scheme also does not support delegation back-up by not allowing the
voter to chose several proxies for delegating a vote. This, however, is justified
in a setting, where all the proxies are required to cast their ballot prior to the
election.

7.3. Liquid Democracy by Tchorbadjiiski [21]

A proposal for proxy voting by Tchorbadjiiski [21] takes yet another ap-
proach on how to implement the delegation functionality by using hash chains.
The credentials that are issued to the voters consist of public and private parts
and are constructed in the following way. The private part hS is chosen by
a voter at random and kept secret, while the public part hA is calculated by
computing a hash chain using the hash functionH on hS with depth T for T del-
egation priorities (i. e. for i = 1, ..., T + 1, it holds that h0 = hS , hi = H(hi−1),
hA = hT+1). In this way, given a credential hi, it is possible to verify that
it belongs to a hash chain defined by the public value of hA by computing
H(...(H(hi)...) up to T times. Furthermore, for two values hi, hj from the same
hash chain, it is possible in a similar way to determine, which value has higher
priority (i.e. whether i > j).

In order to register their credentials, the voters authenticate themselves to
the voting register (VR) and obtain a blind signature on hA. For delegating
their vote with priority i = 1, ..., T , the voters send the value hi from the hash
chain, calculated as described above, together with the value hA signed by the
VR, to the proxy of their choice. Note, that this scheme also allows for transitive
delegation: given the value hi, the proxy is able to compute the rest of the values
hi+1, ..., hT from the hash chain and use them to re-delegate the vote to other
proxies.

For casting either a direct or delegated vote, the voter or the proxy anony-
mously sends the hA signed by the VR, the blinded value of the suitable voting
credential (i.e. hS for direct votes, hi for delegated votes) and the blinded value
of her chosen voting option to the VC. The VC, after verifying the signature on
hA, signs the blinded values and returns them to the voter. The voter then un-
blinds the vote and the credential and sends them back to the VC, thus finalising
the casting of her vote.

After the vote casting is finished, each public credential hS can be assigned
a vote that was cast with the highest priority in the hash chain characterised
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by hS . As the votes are published in plaintext, after discarding the votes over-
written by votes cast with highest priorities, the rest of the votes can be tallied.

Security and Functionality. The scheme ensures vote secrecy for both voters
and delegates with the combination of blind signatures and anonymous channel
used for vote casting. The votes are published in plaintext, with each vote
assigned to a unique nonce that can be used by the voter to verify, that her vote
has been stored correctly. However, unless the voter verifies her vote, it can be
changed to an arbitrary value by either the VC (via replacing the vote) or by
VR (by using the voter’s credential to cast a vote herself). In the same vein, if
the voter registers herself for the election but chooses to abstain from casting
her vote, unless she verifies, a malicious VR alone can cast a vote on her behalf.

Similar to other schemes described in this chapter, the scheme in [21] does
not provide any coercion resistance. As such, the scheme assigns unique nonces
to each vote that the voter has to store until the result is published. In case a
voter provides such a nonce to the adversary, the adversary can check herself
how the voter has voted. Furthermore, in case the voter is coerced to delegate
to a specific proxy, she can send all the values h0, ..., hT to the proxy. As the
value of hA is published, the proxy can easily verify that hA = H(hT ) and
hi = H(hi−1) hold, hence, the delegation is valid. As casting another ballot
with the same value of hi, or with a value hj with i < j (i.e. with a lower
delegation priority) is not possible in the scheme, the proxy can ensure that her
vote will count by using h0 to cast it.

As the other proxy voting schemes, this scheme provides the functionality
of cancelling the delegation by casting a direct vote, and of delegation back-up
by using different priorities to delegate to different proxies.

8. Conclusion

Proxy voting constitutes a new voting mode in which voters are able to
delegate their right to vote on issues beyond their expertise. At the same time,
it also opens new attack vectors as there is a legitimate possibility to transfer
a vote to another person who could be a coercer. To address these issues we
created an Internet proxy voting scheme which focuses on coercion resistance
and is based on the well-known JCJ/Civitas scheme. It provides functionality
that enables vote delegation while at the same time ensuring the security of the
delegation.

As our extension introduces additional credentials for delegation, which
might overwhelm voters, an important part of future work would be to improve
usability of the scheme. In the future, we will consider the proposal by Neu-
mann and Volkamer [17] to address the credential handling in coercion-resistant
proxy voting.
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