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Abstract

Symbolic Execution is a precise static program analysis technique for software testing and verification.
In the course of the analysis, programs are transformed into symbolic execution trees containing up to
exponentially many branches in the number of branch points. We address this so-called “path explosion
problem” in the context of program verification by proposing a general lattice-based framework for
join operations that allows for the merging of branches during symbolic execution. Several concrete
join techniques are presented as instances of this framework and are implemented for the deductive
verification system KeY. We show that our operations indeed reduce the number of states and branches
significantly for certain examples, and apply a join technique to information flow analysis in a short case
study to demonstrate that state joining can increase the precision of analyses in principle.

Zusammenfassung (German Abstract)

Symbolische Ausführung ist eine präzise Technik zur statischen Analyse von Programmen im Bereich des
Testens und der Verifikation von Software. Im Zuge der Analyse werden Programme in symbolische Aus-
führungsbäume transformiert, welche bis zu exponentiell viele Zweige (in Abhängigkeit von der Zahl
der Verzweigungspunkte) enthalten. Wir gehen dieses sogenannte “Pfadexplosionsproblem” im Kontext
der Programmverifikation an, indem wir ein allgemeines verbandsbasiertes Rahmenwerk für Verbin-
dungsoperationen angeben, welches die Zusammenführung von Zuständen während der symbolischen
Ausführung erlaubt. Verschiedene konkrete Verbindungstechniken werden als Instanzen dieses Rahmen-
werks vorgestellt und implementiert für das deduktive Verifikationssystem KeY. Wir zeigen, dass unsere
Operationen für gewisse Beispiele tatsächlich die Zahl der Zustände und Abzweigungen signifikant re-
duzieren, und wenden eine Verbindungstechnik auf den Bereich der Informationsflussanalyse an, um zu
demonstrieren, dass die Zusammenführung von Zuständen prinzipiell dazu in der Lage ist, die Präzision
von Analyseverfahren in diesem Bereich zu erhöhen.
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1 Introduction

1.1 Motivation

Symbolic Execution [Bur74; Kin76] is a method to systematically explore all execution paths in a pro-
gram for all possible input values. In contrast to concrete execution, symbolic execution treats input
values as symbols. Whenever the execution depends on the unknown concrete value of a program
variable, it splits into subbranches that are thereupon followed independently (→ Figure 1.1). The re-
sult is a symbolic execution tree, consisting of symbolic execution states, which resembles the unrolled
control flow graph. Since its inception in the 1970s, symbolic execution has been employed in two
fundamentally different scenarios: (i) The state exploration for the purpose of, for instance, test case
generation or debugging [BEL75; Kin76; God12; JMN13; CS13], and (ii) the formal verification of pro-
grams against functional properties [Bur74; DE82; BHS07]. The strength of symbolic execution is its
precision. However, there are some drawbacks: First, “classic” symbolic execution is not capable of, for
instance, fixpoint iteration for unbounded loops, and relies on repeated loop unwinding. Extensions
allow for the manual specification of loop invariants to facilitate the termination of such executions.
Thus, symbolic execution techniques usually lack full automation. Second, the splits of the tree at
branch points where the execution depends on concrete values cause an up to exponential increase
of the tree size (“path explosion problem”) (see, for example, [CS13]). Existing approaches in litera-
ture addressing the path explosion problem in a debugging / testing context often use subsumption
techniques to stop execution of redundant paths [APV06; BCE08; Jaf+12; JMN13; CJM14] or employ
guided search strategies for finding good test cases faster [BS08; Xie+09]. In a verification context,
these techniques are not applicable since the complete symbolic execution tree has to be considered to
prove the desired properties.

Abstract Interpretation [CC77; Cou01] is a static analysis method in which concrete values are ab-
stracted to suitable values of a chosen abstract domain. The analysis follows the control flow of a
program; in particular, and in contrast to symbolic execution, branches are merged at places where
the control flow converges. Thereby, abstract values are joined according to the join operation of the
abstract domain. Systems based on abstract interpretation can achieve full automation [Cou+05], in
particular because of their capability of performing a fixpoint iteration for (unbounded) loops. The ab-
straction, on the other hand, induces a natural loss of precision. A wrong choice of the abstract domain
can render it impossible to prove certain kinds of properties.

An obvious idea for tackling the path explosion problem in a verification context is to take up ideas of
abstract interpretation by joining branches of symbolic execution trees at suitable points. In the course
of this, the underlying data structure for symbolic execution is transformed from a tree to a Directed
Acyclic Graph (DAG). Several approaches [HSS09; Kuz+12; Sen+14] realize this by using if-then-else
constructs to merge symbolic execution states. All these approaches preserve the precision of symbolic

i f (a < 0) {
b = −a ;

} else {
b = a ;

}

a = 0;

a := 5
b := 0

a := 5
b := 5

a := 0
b := 5

b = a;

a = 0;

a := a0
b := b0

a := a0
b := −a0

a := 0
b := −a0

a := a0
b := a0

a := 0
b := a0

b = -a;

a = 0;

b = a;

a = 0;

Figure 1.1: Concrete Execution vs. Symbolic Execution
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execution and propose different kinds of optimizations. However, they are inflexible regarding their
restriction to a fixed kind of join technique, considering that standard abstract interpretation systems
allow for an arbitrary selection of abstract domains.

KeY [BHS07] is a deductive verification system for first-order Java Dynamic Logic. During the verifi-
cation process, Java programs are executed symbolically by the means of special calculus rules, resulting
in so-called updates representing the effects of the analyzed program. Afterward, properties about the
program can be proven by first-order reasoning (augmented by the treatment of updates) with a sequent
calculus. The proof procedure works in a semi-automatic fashion: Powerful automatic strategies in KeY
significantly reduce the amount of interaction, which might though be required for instance in the case
of difficult existential quantifiers or for the specification of loop invariants. The system, in its role as a
symbolic execution engine, is the foundation of further applications like symbolic debuggers [Häh+10]
and visualizers [HHB14].

In this thesis, we propose a novel framework for embedding join operations into symbolic execution
in the context of software verification. Our goal is to contribute to solving the path explosion problem
and, by making symbolic execution more flexible, to open it up to new kinds of program analyses built
thereupon.

1.2 Outline

Chapter 2 contains preliminaries for the remainder of the thesis. In Chapter 3, we define the notion
of concretizations of symbolic execution states and a partial order relation called weakening between
symbolic execution states. In the tradition of [CC77], we base our framework upon lattice structures
induced by join operations. Besides basic lattice properties, the join operations are required to satisfy
two additional correctness properties. We define a join rule for operations conforming with the lattice
framework and formally prove a corresponding soundness theorem. Furthermore, we specify concrete
join operations based on, e.g., if-then-else constructs and lattice-based abstraction in the sense of ab-
stract interpretation, and show that these operations conform with our framework. We implemented
the presented operations in the KeY system; the implementation is outlined in Chapter 4. In Chapter 5,
we report the results of a first evaluation of our implementation. Our experiments show that joining
branches in KeY proof trees reduces the number of nodes and branches in the tree for several example
programs, hence our approach indeed constitutes a step towards solving the path explosion problem.
A small application to information flow analysis suggests that branch joining might be able to improve
the precision of information flow analyses based on symbolic execution, or could serve as a basis for
new analyses. Chapter 6 provides a comparison to related work as well as an outlook on possible future
improvements and extensions of our system.
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2 Preliminaries

This chapter introduces basic mathematical notions employed in the thesis, selected important concepts
concerning the syntax and semantics of Java Dynamic Logic (Java DL), which is the logic that our
formalisms are based on, and some fundamentals on Symbolic Execution (SE).

2.1 Basic Definitions

Definition 2.1 (Power Set and Star Operation). For a set A, the power set (i.e., set of all subsets) 2A

is defined as 2A := {S : S ⊆ A}. We denote by An the set of tuples in A× A× · · · × A
︸ ︷︷ ︸

n times

, where × is the

Cartesian set product, by A∗ the set
⋃

n≥0 An, and by A+ the set
⋃

n≥1 An. ◊

Definition 2.2 (Projection of Tuples). For sets A1, . . . , An, let a = (a1, . . . , an) ∈ A1 × · · · × An be a tuple
of length n. Then we denote by proji (a) the i-th projection of a, i.e. proji (a) := ai . For sets of tuples
A⊆ A1 × · · · × An, we define proji (A) :=

�

proji (a) : a ∈ A
	

. ◊

Lattices and Semilattices
The concept of a lattice can be defined in two seemingly different ways: (i) as a partially ordered set
(“poset”) with special properties, namely the existence of unique least upper and greatest lower bounds,
and (2) as a structure / algebra with operations t (join) and u (meet) for computing least upper and
greatest lower bounds. As shown in [Grä78, Theorem 1], these definitions are actually equivalent.
From a poset lattice, one can construct an equivalent algebra lattice by defining a u b := inf {a, b} and
a t b := sup {a, b}; from an algebra lattice, one can construct a poset lattice by defining a � b iff
a u b = a (or equivalently, a � b iff a t b = b). The restriction of an algebra lattice to only one of
the operations u and t yields the notion of a semilattice, that is a join-semilattice or a meet-semilattice,
depending on the included operation. We subsequently provide a definition of semilattices as structures
following [Grä78].

Definition 2.3 (Semilattice). A semilattice (A,◦) consists of a non-empty set A and one binary operation
◦, such that the properties (L1), (L2) and (L3) are satisfied for a, b, c ∈ A:

(L1) Idempotency: a ◦ a = a.

(L2) Commutativity: a ◦ b = b ◦ a

(L3) Associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c) ◊

Control Flow Graphs
A Control Flow Graph (CFG) [All70] is a directed graph capturing the control flow relationships in a
program. The CFG serves as a basis for many kinds of program analyses like abstract interpretation
[CC77]. It consists of a unique entry node START and other nodes called basic blocks comprising a
linear sequence of program instructions. The edges of the graph correspond to the control flow of the
underlying program. Edges arising from conditional branchings in the control flow are labeled with the
corresponding branch condition.

Example 2.4. Figure 2.1 shows the CFG for the simple Java program of Listing 2.1. The boxes are basic
blocks, the last block y = 0; is a “program terminating block”. ◊

2.2 Dynamic Logic

Java Dynamic Logic (Java DL) extends (typed) first-order logic by including Java programs as well as
syntactic elements capturing state changes in the language. For programs, there exist two modalities:
〈p〉ϕ expresses that the program p terminates and afterward the formula ϕ holds, whereas [p]ϕ ex-
presses the weaker condition that if p terminates, the formula ϕ holds afterward. State changes can
be declared by so-called (syntactic) updates which roughly correspond to substitution functions. Sub-
sequently, we introduce syntactic and semantic concepts of Java DL which are used in this thesis. For
all notions in this section that are mentioned but not explicitly defined, we refer to [Ben11] (the main
source for the fundamental definitions) and [BHS07, Chapter 3].
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1 x = 0;
2 while ( z < y ) {
3 z = z + y ;
4 x++;
5 }
6 y = 0;

Listing 2.1: Example Java program

START x = 0;
z = z + y;

x++;
y = 0;

z< y

¬z< y

z< y

¬z< y

Figure 2.1: CFG for Listing 2.1.

2.2.1 Java DL Syntax

Subsequently we provide the definitions for the syntactic categories of signatures, terms, formulae, and
updates of Java DL. All definitions originate from [Ben11], but may be slightly simplified and shortened.
For the complete definitions, please consult [Ben11].

A Java DL signature is basically a signature of typed first-order logic with subtyping, equipped with
a Java program Prg. As in first-order logic, the language of Java DL is parametric in a signature which
defines the primitives from which terms and formulae may be built.

Definition 2.5 (Java DL Signature). A signature is a tuple Σ = (T ,�, PV, LgV,Func, Pred,α, Prg) con-
sisting of (i) a finite set of types T such that Any, Boolean, Int, Null, LocSet, Field, Heap, Object ∈ T , also
containing all reference types of Prg, (ii) a partial order �⊆ T × T on T , called the subtype relation,
as depicted in Figure 2.2, (iii) an infinite set LgV of logical variables, (iv) an infinite set PV of program
variables such that all local variables a of type T in Prg also appear as a ∈ PV with type A, where A= T
if T is a reference type, A= Boolean if T = boolean, and A= Int if T ∈ {byte,short,int}, (v) an infinite
set Func of function symbols, (vi) an infinite set Pred of predicate symbols, (vii) a static typing function
α such that α (v ) ∈ T for v ∈ PV ∪ LgV, α ( f ) ∈ T ∗ × T for f ∈ Func, and α (p) ∈ T + for p ∈ Pred,
and (viii) a program Prg in the intersection between Java and Java Card, i.e. a set of Java classes and
interfaces.

We require that the following symbols are present in every signature for each type A ∈ T : heap ∈
PV, castA ∈ Func, selectA ∈ Func, store ∈ Func, create ∈ Func and created ∈ Func, with α (castA) =
(Any, A), α (selectA) = ((Heap, Object, Field) , A), α (store) = ((Heap, Object, Field, Any) , Heap), α (create) =
((Heap, Object) , Heap), α (created) = Field. ◊

The distinction between rigid and non-rigid predicate and function symbols prevailing in [BHS07]
is dropped. In this framework, rigid symbols had the same interpretation in all states, whereas non-
rigid symbols could change their meaning between state transitions. Since general non-rigid functions
and predicates became obsolete in the more recent framework of [Ben11], program variables are now
contained in the dedicated set PV as the henceforth only non-rigid function symbols.

One of the main results of [Ben11] is the integration of an explicit model of the Java heap as the value
of a special program variable heap into Java DL. A heap structure is logically represented as a term
consisting of nested store expressions; for instance, the update heap := store

�

heap, o, f , 2
�

changes the
initial heap by setting the field o. f to 2. The result is again a heap expression that can be the input of
further store expressions.

In the following, if not otherwise specified, we assume an underlying signature Σ = (T ,�, PV, LgV,
Func,Pred,α, Prg) for the program of interest Prg as given.
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Any

Boolean Int Object LocSet

. . . . . .

Field Heap . . .

Null

Figure 2.2: Structure of Java DL type hierarchies. Source: [Ben11]

From now on, we expect all Java / Java Card programs in Java DL to be “legal” fragments. Instead
of giving a complete formal definition of legal syntax and semantics for Java programs, which would go
beyond the scope of this thesis, we refer to the Java Language Specification [Gos+05]. For the complete
definition, see [Ben11, Definition 5.2].

Subsequently, we define the syntax of Java DL terms, formulae and updates by a BNF specification.

Definition 2.6 (Java DL Syntax). The sets TermsA
Σ of terms of type A, FormΣ of formulae and UpdΣ of

updates are defined by the following grammar:

TermsA
Σ

::= x
�

� a
�

� f
�

Terms
B′1
Σ , . . . , Terms

B′n
Σ

�

�

�

if (FormΣ) then
�

TermsA
Σ

�

else
�

TermsA
Σ

� �

�

�

UpdΣ
	

TermsA
Σ

FormΣ ::= true
�

� false
�

� p
�

Terms
B′1
Σ , . . . , Terms

B′n
Σ

�

�

� ¬FormΣ
�

� FormΣ ∧ FormΣ
�

�

FormΣ ∨ FormΣ
�

� FormΣ→ FormΣ
�

� FormΣ↔ FormΣ
�

�

∀A x; FormΣ
�

� ∃A x; FormΣ
�

� [p]FormΣ
�

� 〈p〉FormΣ
�

�

�

UpdΣ
	

FormΣ

UpdΣ ::= skip | a := TermsA′
Σ

�

� UpdΣ ‖ UpdΣ
�

�

�

UpdΣ
	

UpdΣ

for any variable x ∈ LgV s.th. α (x) = A, any program variable a ∈ PV s.th. α (a) = A, any function
symbol f ∈ Func s.th. α ( f ) = ((B1, . . . , Bn) , A) and predicate symbol p ∈ Pred s.th. α (p) = (B1, . . . , Bn),
where B′1 � B1, . . . , B′n � Bn, any legal program fragment p in the context of Prg, and any type A′ ∈ T
with A′ � A. The set TermsΣ of (arbitrarily typed) terms is defined as TermsΣ :=

⋃

A∈T TermsA
Σ. As usual,

we call a Java DL term, formula and update closed if it contains no free (unbound) logic variables. ◊

The terms of Java DL are similar to terms of first-order logic, except for program variables (“non-
rigid constant symbols”) and the if-then-else constructs, which are additions. Informally, a term
if (ϕ) then (t1) else (t2) evaluates to t1 if ϕ holds and to t2 otherwise. A further peculiarity of Java DL
is the concept of updates that are employed to syntactically represent the effect of terminating program
executions. The KeY system (symbolically) executes the statements of given Java programs and records
the effect in an update, until the end of the program is reached (→ Section 2.3). Intuitively, an elemen-
tary update a := t assigns the value of the term t to the program variable a; a parallel update U1 ‖ U2
executes the updates U1 and U2 in parallel. Curly braces transform updates into update applications.
Example 2.11 demonstrates the evaluation of updates.

Subsequently, we introduce a generalized notion of substitutions that allows, besides the usual sub-
stitution of free variables, also the substitution of constant symbols. Following [Rüm03], this concept
can be characterized as nullary f -substitution. We need this extended definition to allow for the substi-
tution of Skolem constants by quantifiable variables: In our join methods in Chapter 3, we sometimes
introduce fresh Skolem constants in the spirit of a universally quantified variable; for faithfully using
those as preconditions in sequents, we need to quantify over them.

Definition 2.7 (Substitution). Let ϕ ∈ FormΣ be a Java DL formula. By ϕ [t ′ /t ], where t, t ′ ∈ TermsA
Σ

for any type A, and t is either a logic variable or a constant, we denote the formula resulting from a
substitution of t by t ′ in ϕ. If t ∈ LgV is a logic variable, we only substitute unbound instances of t,
i.e. those that are not in the scope of an existential or universal quantifier for that variable. ◊

For convenience, we also introduce the following tuple notation.
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Notation 2.8 (Tuple Notation). We abbreviate tuples of variables or constants (x1, x2, . . . , xn) by x and
call n the length of the tuple. By ∀/∃xϕ we understand ∀/∃x1; . . .∀/∃xn;ϕ; the notation ϕ

�

t
�

t ′
�

denotes ϕ
�

t1

�

t ′1
� �

. . .
�

. . .
� �

tn

�

t ′n
�

. ◊

2.2.2 Java DL Semantics

Java DL syntax elements are interpreted by Kripke structures which, simply speaking, allow for con-
structing transition systems with first-order models as vertices. A given Kripke structure assigns the
same meaning to all function or predicate symbols; however, it may differ in the interpretation of the
program variables. Whenever the value of a program variable is changed, the Kripke structure proceeds
to another state. Together with variable assignments, Kripke structures interpret arbitrary Java DL for-
mulae (of suitable signatures) of our language. The following definitions again originate from [Ben11];
some of those only occur in a shortened, simplified form subsequently.

Definition 2.9 (Java DL Kripke Structure). A Java DL Kripke Structure KΣp
= (D,δ, I , S,ρ) consists

of (i) a set D of semantical values, called the domain, (ii) a dynamic typing function δ : D → T ,
which gives rise to the subdomains DA = {x ∈ D : δ (x)� A} for all types A ∈ T , (iii) an interpretation
function I mapping every function symbol f ∈ Func with α ( f ) = ((A1, . . . , An) , A) to a function I ( f ) :
DA1 , . . . , DAn → DA and every predicate symbol p ∈ Pred with α (p) = (A1, . . . , An) to a relation I (p) ⊆
DA1 ×· · ·×DAn , (iv) a set S of states, which are functions σ ∈ S mapping every program variable a ∈ PV
with α (a) = A to a value σ (a) ∈ DA, and (v) a function ρ that associates with every program fragment
p a transition relation ρ (p) ⊆ S2 s.th. (σ1,σ2) ∈ ρ (p) iff p, when started in σ1, terminates normally
(i.e., not by throwing an exception) in σ2 [Gos+05]. We consider Java programs to be deterministic,
so for all program fragments p and all σ1 ∈ S, there is at most one σ2 s.th. (σ1,σ2) ∈ ρ (p). We require
that every Kripke structure satisfies the following:

• S is the set of all functions mapping program variables to properly typed values (it is therefore
completely determined by D and δ)

• DBoolean = {tt, ff}, DInt = Z, DNull = {null}, DHeap = DObject × DField→ DAny

• I (true) = tt, I (false) = ff

• I (castA) (x) =



















x if x ∈ DA

null if x /∈ DA and A� Object
; if x /∈ DA and A= LocSet
ff if x /∈ DA and A= Boolean

• I (selectA) (h, o, f ) = I (castA) (h (o, f )) for all h ∈ DHeap, o ∈ DObject, f ∈ DField

• I (store) (h, o, f , x) (o′, f ′) =

¨

x if o = o′, f = f ′ and f 6= I (created)
h (o′, f ′) otherwise

for all h ∈ DHeap, o, o′ ∈ DObject, f , f ′ ∈ DField, d ∈ DAny

• I (create) (h, o) (o′, f ) =

¨

tt if o = o′, o 6= null and f = I (created)
h (o′, f ) otherwise

for all h ∈ DHeap, o, o′ ∈ DObject, f ∈ DField. ◊

For the same reasons why we did not formalize the syntactical correctness of Java programs, we
also omit a definition of the semantics of Java programs. Instead, a “black box” function ρ is utilized to
capture the behavior of legal program fragments p. The symbolic execution rules of the Java DL calculus
provide a formalization of the Java semantics. Listing all those rules would go beyond the scope of this
thesis.

Kripke structures allow for the definition of the semantics of Java DL terms, formulae and updates
based on a valuation function val.

Definition 2.10 (Java DL Semantics). Given a Kripke structure KΣ = (D,δ, I , S,ρ), a state σ ∈ S and
a variable assignment β : LgV → D (where for x ∈ LgV with α (x) = A we have β (x) ∈ DA), we
evaluate every term t ∈ TermsA

Σ to a value val(KΣ,σ,β) (t) ∈ DA, every formula ϕ ∈ FormΣ to a truth
value val(KΣ,σ,β) (ϕ) ∈ {tt, ff}, and every update u ∈ UpdΣ to a state transformer val(KΣ,σ,β)(u) : S→ S as
defined in [Ben11, Figure 5.2].

We write (KΣ,σ,β) |= ϕ for val(KΣ,σ,β) (ϕ) = tt. A formula ϕ ∈ FormΣ is called logically valid,
in symbols |= ϕ, iff (KΣ,σ,β) |= ϕ for all Kripke structures KΣ, all states σ ∈ S, and all variable
assignments β . Furthermore, we write (KΣ,σ) |= ϕ if (KΣ,σ,β) |= ϕ holds for all variable assignments
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β; in particular, we write (KΣ,σ) |= ϕ for closed formulae ϕ. For closed terms t without program
variables we write valKΣ (t). ◊

The following example illustrating the semantics of Java DL updates originates from [RRR13].

Example 2.11 (Update Semantics). Consider the formula
�

i := j+ 1
	

i ≥ j. Evaluating
�

i := j+ 1
	

i ≥ j in a state σ is identical to evaluating the subformula i ≥ j in a state σ′ which
coincides with σ except for the value of i that is evaluated to the value of val(KΣ,σ,β)

�

j+ 1
�

. Evaluation
of the parallel update i := j ‖ j := i in a state σ leads to the successor state σ′ that is identical to σ
except that the values of i and j are swapped. The parallel update i := 3 ‖ i := 4 has a conflict as i
is assigned different values. In such a case the last occurring assignment i := 4 overrides all previous
ones of the same location variable. Evaluation of the formula

�

i := j
	�

j := i
	

ϕ in a state σ results in
evaluating ϕ in a state where i has the value of j in σ, and j remains unchanged. The update skip, the
empty update, does not change the interpreting state. ◊

Definition 2.12 (Update Normal Form). An update is in normal form if it has the shape U1 ‖ · · · ‖ Un,
n≥ 0, where each Ui is an elementary update and there is no conflict between Ui and U j for any i 6= j.

◊

2.3 Symbolic Execution

Symbolic Execution (SE), in contrast to concrete execution, treats program variables, in particular pro-
gram inputs, as symbols – as long as they are not assigned concrete values. Whenever the execution
depends on the concrete, but unknown, value of a variable (in an if statement, for instance), execution
splits into subbranches. Thus, the result of the symbolic execution of a program is a Symbolic Execution
Tree (SET) in which each node represents a symbolic execution state. An SET resembles an “unrolled”
CFG and may in principle, for instance in the presence of loops, be infinite. SE states track changes
made to program locations in course of the execution (the symbolic state), as well as the constraints on
(symbolic) values that lead to the execution of the current path (the path condition). Those notions are
defined subsequently, following [Kin76; Häh+10; JH14; HHB14].

Definition 2.13 (Symbolic Execution State). A Symbolic Execution State is a triple (U , C ,ϕ) consisting
of (1) the symbolic state U ∈ UpdΣ, an update in normal form with only closed terms as right sides,
tracking changes made to program variables, (2) a set of closed Java DL formulae C ∈ 2FormΣ encoding
the current path condition, and (3) a Java DL formula ϕ ∈ FormΣ usually containing a modality, which
we call the program counter, representing the Java code that remains to be executed after that state. ◊

We denote the (underspecified) set of all symbolic execution states for a given program Prg by
SEStatesPrg. Symbolic execution of a program yields an SET consisting of SE states in SEStatesPrg.
Complete symbolic execution trees for a program p with desired post condition ϕ are finite acyclic
trees whose root is labeled with the node (U0, C0, [p]ϕ) or (U0, C0, 〈p〉ϕ), and whose leaves only con-
tain the empty program counter (i.e., the formula true). Every child node is generated from its parent
according to the semantics of the symbolically executed program statement.

Example 2.14. Figure 2.3 shows the partial Symbolic Execution Tree for the Java program in Listing 2.1.
Program counters are abstracted as line number pointing to the next statement to execute, where the
special number −1 refers to the end of the program. The tree is infinite, since it is unknown whether
the initial value of z is smaller than that of y, and, e.g., whether z is initially greater or equal than 0
(in this case, z+ y< y would be false). An alternative to the unwinding steps used in the tree are loop
invariants, which would make the tree finite. ◊

Symbolic Execution in KeY
The KeY theorem prover is based upon a sequent calculus. A sequent is a pair of sets of formulae
Γ ,∆ ⊆ 2FormΣ , the antecedent and the succedent, of the form Γ =⇒ ∆. Its semantics is defined by
∧

ϕ∈Γ ϕ →
∨

ψ∈∆ψ. A sequent calculus rule has one conclusion and zero or more premises. It is ap-
plied to a sequent s by matching its conclusion against s. The instantiated premises are then added
as children of s, thus generating a proof tree [RRR13]. The rules in the KeY calculus not concerning
symbolic execution correspond to usual rules of a sequent calculus for first-order logic like the calcu-
lus LK by Gentzen [Gen64]. In addition to those, the calculus of KeY contains a large set of rules
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(skip,;, 1)

(x := 0,;, 2)

�

x := 0,
�

z≥ y
	

, 6
�

�

x := 0 ‖ y := 0,
�

z≥ y
	

,−1
�

�

x := 0,
�

z< y
	

, 3
�

�

x := 0 ‖ z := z+ y,
�

z< y
	

, 4
�

�

x := 1 ‖ z := z+ y,
�

z< y
	

, 2
�

�

x := 1 ‖ z := z+ y,
�

z< y,z+ y≥ y
	

, 6
�

�

x := 1 ‖ z := z+ y ‖ y := 0,
�

z< y,z+ y≥ y
	

,−1
�

�

x := 1 ‖ z := z+ y,
�

z< y,z+ y< y
	

, 3
�

. . .

Figure 2.3: Partial Symbolic Execution Tree for Listing 2.1.

dedicated to the treatment of modalities, that is of Java code. Ultimately, KeY transforms modalities
into updates, and thus may be seen as a symbolic interpreter of Java code. Figure 2.4 shows some
example calculus rules for symbolic execution. A sequent containing at least one modality corresponds
to an SE state: Consider the sequent Γ =⇒ {U}ϕ,∆. We transform the sequent into the canonical
form Γ ∪ {¬ψ :ψ ∈∆} =⇒ {U}ϕ by shifting all formulae of the succedent except for {U}ϕ to the
antecedent; the resulting sequent is logically equivalent to the original one. This sequent uniquely cor-
responds to the SE state (U , Γ ∪ {¬ψ :ψ ∈∆} ,ϕ). Note that in principle, there could be other formulae
in ∆ that we could have chosen instead of {U}ϕ as a source for the extraction of the symbolic state
and program counter; ¬{U}ϕ would then become a part of the path condition. Thus, a sequent may
be mapped to several different SE states. However, for most cases resulting from correctness proofs of
Java programs, the desired mapping can be uniquely determined, since there is only one formula in the
succedent which contains a modality.

Notation 2.15. We write `ϕ to express that the sequent =⇒ ϕ is provable within the sequent calculus
of KeY. For sets of formulae ∆, `∆ means that =⇒

∧

∆ is provable, where

∧

{ϕ1,ϕ2, . . . ,ϕn} := ϕ1 ∧ϕ2 ∧ · · · ∧ϕn.

Equivalently,
∨

∆ represents the formula resulting from a disjunction of the contained elements.
Furthermore, we write ϕ ≡ψ to express that ϕ is logically equivalent to ψ, i.e. ϕ is true in a model

(KΣ,σ,β) iff ψ is true in (KΣ,σ,β). Again, Γ ≡∆ means
∧

Γ ≡
∧

∆ for sets of formulae Γ ,∆. ◊
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Γ =⇒ {U} {a := t} [π ω]ϕ,∆
assignLocal

Γ =⇒ {U} [π a= t; ω]ϕ,∆

Γ =⇒ {U}
�

heap := store
�

heap, o,f, t
�	

[π ω]ϕ,∆
assignField

Γ =⇒ {U} [π o.f= t; ω]ϕ,∆

Γ =⇒ {U} if
�

exp
.
= true

�

then ([π p1 ω]ϕ) else ([π p2 ω]ϕ) ,∆
conditional

Γ =⇒ {U} [π if (exp) p1 else p2; ω]ϕ,∆

Γ =⇒ {U}
�

π if (exp) {p′;while (exp) p} ω
�

ϕ,∆
unwindLoop

Γ =⇒ {U} [π while (exp) p; ω]ϕ,∆

Γ =⇒ {U} [π method− frame(result= r, this=o) :
{ body (m, A) } ω]ϕ,∆

Γ =⇒ {U} exactInstanceA (o) ,∆
expandMethod

Γ =⇒ {U} [π r=o.m(); ω]ϕ,∆

Γ =⇒ {U}ϕ,∆
emptyModality

Γ =⇒ {U} []ϕ,∆

Figure 2.4: Selected rules of the KeY calculus for symbolic execution
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3 A Lattice Model for Symbolic Execution

The problem to be solved in this thesis and particularly in this chapter is the merging of two branches in
a symbolic execution tree, the last states of which have the same program counter. Figure 3.1 illustrates
this situation, Figure 3.2 shows an example in KeY/Java DL syntax for joining two nodes after an if-
statement. Our goal is to join SE nodes (U1, C1,ϕ) and (U2, C2,ϕ) with the same program counter ϕ to
a new state (U∗, C∗,ϕ) that we call join state. This gives rise to two orthogonal questions:

(1) How and when during symbolic execution of a program can we detect suitable branches to join?
(2) What are the characteristics of sensible instantiations for U∗ and C∗, and how can we construct

them?
Question (1) addresses the integration of our techniques into the symbolic execution process; it would
be desirable to automate the joining of branches such that a user presses “play” whereupon KeY outputs
a DAG with suitable branches having been joined. A complete generation of the SET with subsequent
pruning and joining steps is undesirable: amongst the disadvantages of this naive approach is the
obvious performance overhead. Thus, branch joining should ideally be incorporated into the proof
generation process. We refer to this question in Section 4.4. Question (2) concerns the actual joining
of two branches, the computation of join states from two parents. In particular, we propose a general
lattice framework for symbolic execution, with the property that join techniques conforming with our
formal framework preserve the soundness of the KeY calculus. Subsequently, we fix the foundations of
our framework by narrowing the gap between Symbolic Execution and Abstract Interpretation.

3.1 Concretization and Weakening

Symbolic Execution can be regarded, at least to some extent, as a case of Abstract Interpretation [CC77].
Each SE state describes a potentially infinite set of concrete states; only if all locations are set to concrete
values, i.e. do not depend on symbolic input values, is the set of described concrete states a singleton set.
However, abstract interpretation demands a complete semilattice with join operation, partial order, least
and top element, which is usually not defined for SE states. Subsequently, we define a concretization
function from SE states to concrete states, as well as a partial order relation between SE states. In
Section 3.3, we furthermore define join operations on SE states, which allows us to stipulate lattice
structures also for symbolic execution.

Definition 3.1 (Concrete Execution States). A concrete execution state is a pair (σ,ϕ) consisting of (i)
a Kripke state σ : PV → D s.th. if σ (a) = x and α (a) = A, it holds that δ (x) = A, and (ii) a Java DL
formula ϕ, the program counter, usually containing a modality with the program that remains to be
executed p. We denote the set of all concrete execution states for a program Prg by ConcrStatesPrg. ◊

We now can introduce a concretization function from SE states to concrete states based on the valu-
ation function val (→ Definition 2.10).

Definition 3.2 (Concretization Function). Let sSE = (U , C ,ϕ) ∈ SEStatesPrg. The concretization function
concr maps sSE to a set of concrete states in 2ConcrStatesPrg where

concr (sSE) :=
¦

�

σ′,ϕ
�

: σ′ = val(KΣ,σ) (U) (σ)

∧ KΣ = (D,δ, I , S,ρ) is a Kripke structure∧ (KΣ,σ) |= C
©

If the program counter ϕ is clear from the context, we also write σ′ ∈ concr (sSE) for (σ′,ϕ) ∈ concr (sSE).
◊

For each possible value that a term, that is the right side in the symbolic state for a program variable x,
can attain in any Kripke structure under the given constraints C , the concretization as defined above
contains an assignment function mapping x to exactly this value. Thus, the set concr (sSE) contains
exactly the concrete states that are described by the SE state sSE.

Definition 3.2 facilitates the natural definition of a partial order relation between SE states: A weak-
ening relation expressing that one state describes more concrete states than another one.
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(skip, true, ϕ0))

...

(U,C, ϕif )

...

(U1, C1, ϕ)

(U∗, C∗, ϕ)

...

(U2, C2, ϕ)

...

...

1

Figure 3.1: Joining two branches in an abstract SET after an if statement.

Γ0 =⇒ [s0; p0]ϕ,∆0

...

Γ =⇒ {U} [if(b){s′1}else{s′2} p′]ϕ,∆

...

Γ1 =⇒ {U1} [s; p]ϕ,∆

Γ∗ =⇒ {U∗} [s; p]ϕ,∆

...

Γ2 =⇒ {U2} [s; p]ϕ,∆

...

...

1

Figure 3.2: Joining two branches in a KeY proof tree after an if statement.
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Definition 3.3 (Weakening Relation). Let s1, s2 ∈ SEStatesPrg be two SE states. We say that s2 is weaker
than, or a weakening of, s1 and write s1 ® s2 if and only if concr (s1) ⊆ concr (s2). ◊

Note that Definition 3.3, along with Definition 3.2, implies that a state s2 can only be a weakening of
a state with satisfiable path condition s1 if they have the same program counters. If the path condition of
s1 is unsatisfiable, concr (s1) equals the empty set; therefore, any state will be a weakening of a state with
unsatisfiable path condition, in particular including states with a different program counter. Usually, we
assume that all path conditions are satisfiable. The following example illustrates this concept.

Example 3.4. Consider the SE state sSE :=
�

x := y,y> 0,ϕ
�

. The set of concretizations for sSE is
concr (s) = {(σ,ϕ) : σ (z)> 0}. One intuitive weakening of sSE is obtained by weakening the constraint
on the program variable y such that the value 0 is also covered, resulting in s′SE =

�

x := y,y≥ 0,ϕ
�

.
Indeed it holds for the set of concretizations of s′SE, concr

�

s′SE

�

= {(σ, p) : σ (z)≥ 0}, that concr
�

s′SE

�

⊇
concr (sSE), so s′SE is a weakening of sSE. Note that s′′SE =

�

x := y,y≥ 0,ϕ′
�

, for ϕ 6= ϕ′, is not weaker
than sSE. ◊

Lemma 3.6 shows that the relation ® is actually a partial order relation. We slightly generalized the
antisymmetry condition in the lemma, since strict syntactical equality on SE states is too strong. Assume
that the symbolic state of a state s1 contains the elementary update x := t, whereas the symbolic state
s2 contains the elementary update x := if (true) then (t) else (t ′). s1 and s2 are obviously syntactically
different, whereas all Kripke models map the program variable x to the value of the same term t.
Therefore, we use the equality of the concretizations of the states, as defined below, rather than the
syntactical equality.

Definition 3.5 (Equality of Concretizations). The equivalence relation
concr
= ⊆ SEStatesPrg×SEStatesPrg is

defined by s1
concr
= s2 ⇐⇒ concr (s1) = concr (s2). ◊

It is obvious that
concr
= is an equivalence relation, since it employs the usual equality = on sets in a

straightforward manner. Using
concr
= , we can formulate the subsequent lemma.

Lemma 3.6. The relation ®∈ SEStatesPrg × SEStatesPrg is a partial order relation. ◊

Proof. We have to show the following properties of ®, for s, s1, s2, s3 ∈ SEStatesPrg:

(1) reflexivity: s ® s

(2) antisymmetry: s1 ® s2 ∧ s2 ® s1→ s1
concr
= s2

(3) transitivity: s1 ® s2 ∧ s2 ® s3→ s1 ® s3

All properties follow from ordinary set theory. Property (1) follows from concr (s) = concr (s) and,
therefore, concr (s) ⊆ concr (s). For (2), assume that s1 ® s2 and s2 ® s1, i.e. concr (s1) ⊆ concr (s2) and
concr (s2) ⊆ concr (s1). From that, we obtain concr (s1) = concr (s2). For (3), assume that s1 ® s2 and
s2 ® s3, i.e. concr (s1) ⊆ concr (s2) and concr (s2) ⊆ concr (s3). Then concr (s1) ⊆ concr (s3) follows from
the transitivity of the subset relation.

Having defined a semantic condition for two SE states being in the weakening relation, we now aim
for a corresponding logical representation. This condition is then employed in the implementation part
(→ Section 4.3) to facilitate automatic proofs of the weakening relation between two SE states with
support of the KeY system.

Definition 3.7 (Logical Representation of Weakening). Let s1 = (U1, C1,ϕ1) ∈ SEStatesPrg and s2 =
(U2, C2,ϕ2) ∈ SEStatesPrg be two symbolic execution states. We say that s2 is logically weaker than, or
a logical weakening of, s1 and write s1 ®log s2, if the following formula ϕ®log

is provable for s1 and s2,
where c are the new constants introduced in s2 (and not contained in s1), x are all program variables
contained in U1, U2, C1 and C2, v is a tuple of fresh logical variables of the same length and types as c,
and P is a new predicate of suitable type:

ϕ®log
:=

¨

∀v ;
��∧

C2→ {U2} P (x)
�

[v /c ]
�

→
�∧

C1→ {U1} P (x)
�

ϕ1 = ϕ2

false otherwise
◊
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Note that we claim provability instead of the mere truth of the formula ϕ®log
. Since logical weakening

is meant to be used in the KeY system, it is important that the formula can actually be proven.
Subsequently, we establish two lemmas as well as a proposition following from those, which provide

affirmations about the relation between semantic and logical weakening. As we will see, logical weak-
ening is an equivalent of semantic weakening. The conditions on the path condition of the second SE
state s2 in the lemmas correspond to the property (SEL5) introduced later in Definition 3.12.

Lemma 3.8. Let s1 = (U1, C1,ϕ1) and s2 = (U2, C ∧ Cax,ϕ2) ∈ SEStatesPrg be two SE states such that
`
∧

C1 → C and ` ∃v ; (Cax [v /c ]) where c is a tuple of Skolem constants introduced in s2 (and not
present in s1 and C). Then, semantic weakening implies logical weakening, i.e., it holds that

s1 ® s2 =⇒ s1 ®log s2 ◊

Proof. We have to show that ϕ®log
is provable. Consider the following proof:

∀v ; ((C ∧ Cax→ {U2} P (x)) [v /c ]) ,
∧

C1 =⇒ {U1} P (x)
→R

∀v ; ((C ∧ Cax→ {U2} P (x)) [v /c ]) =⇒
∧

C1→ {U1} P (x)
→R

=⇒ ∀v ; ((C ∧ Cax→ {U2} P (x)) [v /c ])→
�∧

C1→ {U1} P (x)
�

To close the proof under the assumption that C1 is satisfiable, we have to find suitable instantiations for
the variables v . Let Σ1 ⊆ Σ2 be two signatures, where Σ2 results from Σ1 by adding the constants c,
and Σ1 is a suitable signature for s1 without the constants c. Furthermore, let

�

KΣ1
,σ′

�

be an arbitrary
Java DL model satisfying C1. Obviously, σ = val�KΣ1 ,σ′

� (U1) (σ′) ∈ concr (s1), and by s1 ® s2, σ ∈
concr (s2). We expand KΣ1

to a structure KΣ2
in the signature Σ2 by choosing the interpretation of the

constants c in KΣ2
such that val�KΣ2 ,σ′

� (U2) (σ′) = σ and
�

KΣ2
,σ′

�

|= Cax. Satisfying the condition
�

KΣ2
,σ′

�

|= Cax is possible due to ` ∃v ; (Cax [v /c ]). The condition val�KΣ2 ,σ′
� (U2) (σ′) = σ can be

satisfied since otherwise, s1 ® s2 would not hold in general. Now let d := IKΣ2
(c). Then there are closed

terms t of the signature Σ1 such that valKΣ2

�

t
�

= d due to val�KΣ2 ,σ′
� (U2) (σ′) = σ. We now continue

our proof (we omit ∀v ;
��∧

C2→ {U2} P (x)
�

[v /c ]
�

after the ∃L application as well as {U1} P (x) in the
first and second leaf branch, and implicitly eliminate the conjunction from

∧

C1 in the antecedent):

C1 =⇒ C C1 =⇒ Cax

�

t
�

c
�

∧R
C1 =⇒ (C ∧ Cax)

�

t
�

c
�

, {U1} P (x) C1, ({U2} P (x))
�

t
�

c
�

=⇒ {U1} P (x)
→L

(C ∧ Cax→ {U2} P (x))
�

t
�

c
�

,
∧

C1 =⇒ {U1} P (x)
∃L

∀v ; ((C ∧ Cax→ {U2} P (x)) [v /c ]) ,
∧

C1 =⇒ {U1} P (x)
...

The branch C1 =⇒ C can be closed since `
∧

C1 → C . Furthermore, we can close the second branch
C1 =⇒ Cax

�

t
�

c
�

since, due to our reasoning above, any model satisfying C1 also satisfies Cax

�

t
�

c
�

for the chosen terms t. For the remaining branch, let us assume that the model
�

KΣ2
,σ′

�

interprets the
predicate P such that ({U2} P (x))

�

t
�

c
�

(otherwise, we could close the branch), i.e.

�

KΣ2
, val�KΣ2 ,σ′

� (U2)
�

σ′
�

�

|= P (x) .

Since we chose val�KΣ2 ,σ′
� (U2) (σ′) = σ, it holds that

�

KΣ2
, val�KΣ1 ,σ′

� (U1)
�

σ′
�

�

|= P (x)

⇐⇒
�

KΣ2
,σ′

�

|= {U1} P (x)

which is furthermore, since U1 is in the old language Σ1, equivalent to
�

KΣ1
,σ′

�

|= {U1} P (x) . There-
fore, we can also close the third branch of the proof.
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In the above proof, there are some potential incompleteness issues since we sometimes argue for the
provability of a sequent using its truth. At these places, we make use of the relative completeness of
the KeY calculus. In a complete calculus, all formulae that are valid can actually be proven within the
calculus. Since the logic of KeY supports arithmetic, the calculus is inherently incomplete by Gödel’s
first incompleteness theorem. However, by the rules for arithmetic implemented in KeY, it is possible to
prove almost any arithmetical statement that occurs in practice [BHS07].

Lemma 3.9. Let s1 = (U1, C1,ϕ1) and s2 = (U2, C ∧ Cax,ϕ2) ∈ SEStatesPrg be two SE states such that
`
∧

C1 → C and ` ∃v ; (Cax [v /c ]) where c is a tuple of Skolem constants introduced in s2 (and not
present in s1 and C). Then, logical weakening implies semantic weakening, i.e. it holds that

s1 ®log s2 =⇒ s1 ® s2. ◊

Proof. We assume s1 ®log s2, i.e., the formula ϕ®log
is provable for s1, s2 according to Definition 3.7. Let

σ ∈ concr (s1); we have to show that σ ∈ concr (s2). Since σ ∈ concr (s1), there is a model (KΣ,σ′) |= C1.
Furthermore, {U1} P (x) is satisfiable, but not valid. Any proof of ϕ®log

must therefore find instantiations

t for v such that, after an application of the implication left rule, the proof

C1 =⇒
�∧

C2

� �

t
�

c
�

, {U1} P (x) C1, ({U2} P (x))
�

t
�

c
�

=⇒ {U1} P (x)
→L

C1,
�∧

C2

� �

t
�

c
�

→ ({U2} P (x))
�

t
�

c
�

=⇒ {U1} P (x)

can be closed. Consider the right branch

C1, ({U2} P (x))
�

t
�

c
�

=⇒ {U1} P (x)

or equivalently

({U2} P (x))
�

t
�

c
�

=⇒
∧

C1→ {U1} P (x)

Since the succedent is not valid, it must hold that for any model satisfying C1, there are instantiations t
for the new constants such that the right sides of U1, under the constraints C1, are instances of the right
sides of U2, namely those resulting from the substitution U2

�

t
�

c
�

. In particular, σ = val(KΣ,σ′) (U1) (σ′)
must also be contained in concr (s2).

Remark 3.10. Consider the left branch→ L application in Lemma 3.9:

C1 =⇒
�
∧

C2

� �

t
�

c
�

, {U1} P (x) .

Since C1 is satisfiable, {U1} P (x) is not valid, and
∧

C2 is equivalent to a formula C ∧ Cax such that
C1 → C and ` ∃v ;

�

Cax

�

t
�

c
��

, the formula {U1} P (x) is irrelevant for a proof of the sequent and we
obtain, since the c do not occur in C1, the w.r.t. provability equivalent sequent

C1 =⇒ C ∧
�

Cax

�

t
�

c
��

.

Therefore, either (Cax)
�

t
�

c
�

must be provable or C1 must imply (Cax)
�

t
�

c
�

. This characterizes both
situations occurring in our join operations introducing new constants: One of those introduces axioms
like c ≥ 0 which are, after the substitution and instantiation, provable without C1. The other one
constructs Cax as a conjunction of formulae of the form

�
∧

C1→ ci
.
= {U1}xi

�

∧
�
∧

C ′→ ci
.
=
�

U ′
	

xi

�

that are only provable based on the knowledge of C1 (and C ′). ◊
The following proposition, an easy conclusion from the Lemmas 3.8 and 3.9, provides an equivalence

result for semantic and logical weakening.

Proposition 3.11 (Weak Equivalence of Semantic and Logical Weakening). Let s1 = (U1, C1,ϕ1) and
s2 = (U2, C ∧ Cax,ϕ2) ∈ SEStatesPrg be two SE states such that `

∧

C1→ C and ` ∃v ; (Cax [v /c ]) where c
is a tuple of Skolem constants introduced in s2 (and not present in s1 and C). Then, semantic and logical
weakening coincide, i.e. it holds that

s1 ® s2 ⇐⇒ s1 ®log s2. ◊

Proof. The proposition follows immediately from Lemmas 3.8 and 3.9.

Proposition 3.11 facilitates the implementation of checks in the KeY system verifying the soundness
of the implemented join rules for every application. The concrete details of the implementation are
outlined in Section 4.3.
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3.2 The General Lattice Model

The core of our formal framework for embedding join operations into symbolic execution is a family
of join-semilattices parametric in a join operation. The partial order induced by the join operation is
constrained by the semantic weakening relation (→ Definition 3.3).

Definition 3.12 (Induced Join-Semilattices of SE States). Let ṫ : SEStatesPrg×SEStatesPrg→ SEStatesPrg
be an operation on SE states. Then, we call the family of structures

LPrg :=
n

�

Sϕ, ṫ
�

ϕ

�

�

�

�

U , C ,ϕ′
�

∈ Sϕ ⇐⇒
��

U , C ,ϕ′
�

∈ SEStatesPrg and ϕ′ = ϕ
�

o

the induced family of join-semilattices for ṫ, each structure (S, ṫ)ϕ ∈ LPrg the induced join-semilattice for
ṫ and ϕ, and the relation

� ⊆ SEStatesPrg × SEStatesPrg where

a � b ⇐⇒

¨

a ṫ b
concr
= b and

a, b have the same program counter

the induced partial order relation for ṫ, if the properties (SEL1) to (SEL5) are satisfied for a =
(U1, C1,ϕ) , b = (U2, C2,ϕ) , c = (U3, C3,ϕ) ∈ SEStatesPrg:

(SEL1) Idempotency: a ṫ a
concr
= a.

(SEL2) Commutativity: a ṫ b
concr
= b ṫ a

(SEL3) Associativity: (a ṫ b) ṫ c
concr
= a ṫ (b ṫ c)

(SEL4) Correctness: a � b implies a ® b

(SEL5) Conservativity: a � b implies that C2 is logically equivalent

to a formula C ∧ Cax, where `
∧

C1→ C ,

C does not contain uninterpreted Skolem

constants not occurring in a and, if c are

all uninterpreted Skolem constants in Cax not

contained in a, the formula ∃v ; (Cax [v /c ]) is provable. ◊

Note that we could replace ® in (SEL4) by ®log by Proposition 3.11. The properties (SEL1) to (SEL3)
are obviously desirable for any join operation. If we join two states, we usually do not want lose
precision by strictly weakening program variables that evaluate to the same value in both states; this
motivates the idempotency property. Likewise, we do not want the order of the join to influence the
result, which motivates the commutativity and associativity properties. However, these properties are
also standards for the definition of a semilattice (→ Definition 2.3). Property (SEL4) makes use of the
semantic weakening relation (→ Definition 3.3). We call this property “correctness” since it allows,
along with (SEL5), for proving the correctness Theorem 3.16.

The subsequent lemma that is employed in the proof of the correctness theorem concerns the inter-
play between a join operation and its corresponding induced partial order relation.

Lemma 3.13. Let a, b ∈ SEStatesPrg be two SE states with the same program counter, and let ṫ be an
idempotent and associative join operation with the induced partial order relation �. Then, for any a, b ∈
SEStatesPrg with the same program counter, it holds that a � b if and only if there is a state c with the same
program counter as a, b such that b = a ṫ c. ◊

Proof. The direction “ =⇒ ” follows from a choice of c := b. By definition of �, it holds that a � b iff
a ṫ b

concr
= b. “⇐= ”: By the reflexivity of the equivalence relation

concr
= , we have a ṫ c

concr
= a ṫ c. Then

by idempotency of ṫ, we obtain (a ṫ a) ṫ c
concr
= a ṫ c, and then by associativity a ṫ (a ṫ c)

concr
= a ṫ c.

Since a ṫ c = b, we have a ṫ b
concr
= b, and therefore a � b.

Note that in the above proof, we made use of the idempotency and associativity properties of the
induced join-semilattices. So, besides the intuitive motivation why those properties are desirable, those
standard lattice properties also play a vital role for the proof of the central soundness theorem. The
following lemma is needed in the proof of the soundness theorem.
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Lemma 3.14. Let Σ1 ⊆ Σ2 be two signatures, where Σ2 results from Σ1 by the addition of new constants
c. Let ϕ ∈ FormΣ1

be a Java DL formula that is true in all models of the set

M1 :=
�

KΣ2
:
�

KΣ2
, s
�

|= C ∧ Cax

	

× S,

where C ∈ FormΣ1
, Cax ∈ FormΣ2

such that ` ∃v ; (Cax [v /c ]) and S is a set of Kripke states in the signature
Σ1. Then ϕ is also true in all models in the set

M2 :=
�

KΣ1
:
�

KΣ1
, s
�

|= C
	

× S ◊

Proof. Assume that ϕ does hold in the set M1, but does not hold for all formulae in M2. Let
�

KΣ1
,σ
�

∈M2 be a model such that
�

KΣ1
,σ
�2ϕ. From a proof of ∃v ; (Cax [v /c ]), we obtain a tu-

ple t as instantiations of v for which Cax

�

t
�

c
�

holds in all models in Σ1. Then we can expand KΣ1
to a

structure KΣ2
in the signature Σ2 where the constants c are interpreted according to the terms t. Since

�

KΣ2
,σ
�

still satisfies C , it holds that
�

KΣ2
,σ
�

|= C ∧ Cax; since however ϕ is in the old language of Σ1,
and therefore its interpretation in

�

KΣ2
,σ
�

equals that of
�

KΣ1
,σ
�

, we still have
�

KΣ2
,σ
�2ϕ, which is a

contradiction to
�

KΣ2
,σ
�

∈M1.

Our proposed join rule, having one premise and more than one conclusion, is a defocusing rule in
the sense of [CS00; Fin05]. Its application on two sequents therefore effectively renders a proof tree
into a DAG and thereby realizes the main goal of this thesis. Subsequently, before introducing the main
theorem, we provide a definition for defocusing rules.

Definition 3.15 (Defocusing Rule). Let S, S1, . . . , Sn be sequents in the language of Java DL. A defocus-
ing rule is a rule of the form

S

S1 S2 . . . Sn

We designate defocusing rules by the double bar separating the premise from the conclusions. ◊

Theorem 3.16 (Correctness of Joins with Induced Join-Semilattices). Let LPrg be an induced family of
join-semilattices for a join operation ṫ with the induced partial order relation �. The (defocusing) join rule

join by ṫ
C∗ =⇒ {U∗}ϕ

Γ1 =⇒ {U1}ϕ,∆1 Γ2 =⇒ {U2}ϕ,∆2

((1) , (2) hold)

where
(1) (U∗, C∗,ϕ) = s1 ṫ s2
(2) s1 = (U1, Γ1 ∪ {¬ψ :ψ ∈∆1} ,ϕ), s2 = (U2, Γ2 ∪ {¬ψ :ψ ∈∆2} ,ϕ) ∈ SEStatesPrg

is sound, i.e. if C∗ =⇒ {U∗}ϕ is valid, then both Γ1 =⇒ {U1}ϕ,∆1 and Γ2 =⇒ {U2}ϕ,∆2 are valid.
◊

Proof. Under the assumption of the validity of C∗ =⇒ {U∗}ϕ, we have to show the validity of Γ1 =⇒
{U1}ϕ,∆1 and Γ2 =⇒ {U2}ϕ,∆2, respectively (we consider from now on only the first conclusion of
the rule; the proof for the second one is analogous). From

s∗ := (U∗, C∗,ϕ) = s1 ṫ s2

we obtain s1 � s∗ by Lemma 3.13. Therefore, by property (SEL4) of Definition 3.12, we also obtain
s1 ® s∗, i.e. concr (s1) ⊆ concr (s∗). Let (KΣ,σ) be an arbitrary model, and let

C1 := Γ1 ∪ {¬ψ :ψ ∈∆1} .

We assume that (KΣ,σ) |= C1; otherwise, we are done. We therefore need to show that

(KΣ,σ) |= {U1}ϕ.
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Due to the validity of C∗ =⇒ {U∗}ϕ, we know that ϕ holds for all models in

§

�

K ′
Σ′ ,σ

′′
�

: σ′′ = val�K′
Σ′

,σ′
� (U∗)

�

σ′
�

∧
�

K ′
Σ′ ,σ

′
�

|= C∗
ª

=
�

K ′
Σ′ :

�

K ′
Σ′ ,σ

′
�

|= C∗
	

× proj1 (concr (s∗))

where Σ′ ⊇ Σ results from Σ by adding the new constants introduced in s∗. Since concr (s1) ⊆ concr (s∗),
we particularly know that ϕ is true in all models contained in the set

�

K ′
Σ′ :

�

K ′
Σ′ ,σ

′
�

|= C∗
	

× proj1 (concr (s1)) .

Due to (SEL5), C∗ is logically equivalent to a formula C ∧ Cax, where C1→ C . Therefore,

�

K ′
Σ′ :

�

K ′
Σ′ ,σ

′
�

|= C∗
	

=
�

K ′
Σ′ :

�

K ′
Σ′ ,σ

′
�

|= C ∧ Cax

	

⊇
�

K ′
Σ′ :

�

K ′
Σ′ ,σ

′
�

|= C1 ∧ Cax

	

,

so ϕ is true in all models of the set

�

K ′
Σ′ :

�

K ′
Σ′ ,σ

′
�

|= C1 ∧ Cax

	

× proj1 (concr (s1))

From Lemma 3.14, we obtain that ϕ is also modeled by the elements of the seemingly bigger set

�

K ′Σ :
�

K ′Σ,σ′
�

|= C1

	

× proj1 (concr (s1)) =: M

Obviously, it holds that
�

KΣ, val(KΣ,σ) (U1) (σ)
�

∈M. Therefore,

�

KΣ, val(KΣ,σ) (U1) (σ)
�

|= ϕ

which is equivalent to (KΣ,σ) |= {U1}ϕ.

Remark 3.17 (Considerations on the Join Rule). An integration of the join rule defined in Theorem 3.16
into an existing sequent calculus bears the problem that existing soundness proofs would no longer be
valid, considering that they are based on the assumption of rules having only one conclusion. Usually,
this only affects the top level part of the soundness proof, since the proofs for individual rules are
constructed independently. Still, we circumvent this complication by proposing the following weakening
rule “weaken by join” with only one conclusion:

C∗ =⇒ {U∗}ϕ
weaken by join

Γ1 =⇒ {U1}ϕ,∆1

where C∗ and U∗ are computed including a sequent Γ2 =⇒ {U2}ϕ,∆2 as in Theorem 3.16.
The “weaken by join” rule is accordingly also sound. When the rule is applied to two leaves
Γ1 =⇒ {U1}ϕ,∆1 and Γ2 =⇒ {U2}ϕ,∆2 of a proof tree, we can append the subtree T following
C∗ =⇒ {U∗}ϕ in the first branch unchanged to the second branch. Figure 3.3 visualizes this scenario.
The effect is similar to an employment of the actual defocusing join rule: We only have to construct one
proof subtree for the such “joined” branches, although we use this tree at two places. In the implemen-
tation of our framework, we actually close the second branch to avoid redundancy (→ Section 4.3). ◊

To simplify proofs of property (SEL4) in the subsequent section, we introduce the following simple
lemma, which allows us to show property (SEL4) by proving the implication a ṫ b = c =⇒ a ® c.

Lemma 3.18. Let a, b, c ∈ SEStatesPrg be two SE states with the same program counter, and let ṫ be an
idempotent (SEL1) and associative (SEL3) join operation with the corresponding partial order relation �.
Then, if a ṫ b = c =⇒ a ® c, it holds that a � c =⇒ a ® c. ◊

Proof. We obtain the equivalence a ṫ b = c ⇐⇒ a � c from Lemma 3.13. Therefore, it follows from
a ṫ b = c =⇒ a ® c that a � c =⇒ a ® c.
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C∗ =⇒ {U∗}ϕ
Γ2 =⇒ {U2}ϕ,∆2

T

C∗ =⇒ {U∗}ϕ
Γ1 =⇒ {U1}ϕ,∆1

T

. . .

...

Figure 3.3: Double application of the weakening rule

"Full Anonymization" "Abstract Weakening",
Abstract Subsumption

"If-Then-Else",
Subsumption

| | |
− precision + precision

Figure 3.4: Design space for join operators

3.3 Constructing Join Nodes

In this section, we study instantiations of operators ṫ : SEStatesPrg × SEStatesPrg → SEStatesPrg inducing
families of join-semilattices.

Figure 3.4 illustrates the design space for the operators ṫ. The mentioned subsumption techniques
are referred to in Section 6.1. Subsequently, we discuss techniques ranging from zero precision (forget-
ting the symbolic states) to full precision (remembering all values in the symbolic states), also compris-
ing methods in between those border cases.

Remark 3.19. For the join techniques presented subsequently, we assume that the considered program
variables are deterministically ordered according to some fixed, e.g. alphabetic, total order. Further-
more, we also assume that the generation of fresh constants for given program variables is deterministic.
This may be accomplished by appending a numeric postfix to the name of the given variable and incre-
menting this number until the such generated symbol does not occur in the SE states that are joined.
This property ensures that the names of fresh constants do not depend on the order of the input states,
and thus simplifies some of our proofs. ◊

3.3.1 Full Anonymization

The most radical way of constructing a join node inducing a family of join-semilattices of SE states is
to completely “forget” the symbolic state of the parent nodes that are to be joined for variables that
are assigned different values. In this technique, the value of a program location is set to a fixed, but
unknown value. Technically, this is realized by the introduction of a fresh constant (of suitable type).
The technique marks the zero-precision border of the design space for join operations.

Technique 3.20 (Full Anonymization Join Method). Given (U1, C1,ϕ) and (U2, C2,ϕ) ∈ SEStatesPrg for
any program Prg with program variables x1,x2, . . . ,xn ∈ PV, the join operation ṫfresh : SEStatesPrg ×
SEStatesPrg→ SEStatesPrg is defined by

(U1, C1,ϕ) ṫfresh (U2, C2,ϕ) :=
�

(U1, C1)�fresh (U2, C2) , (U1, C1)>fresh (U2, C2) ,ϕ
�
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where (U1, C1)>fresh (U2, C2) := C1∨C2 and (U1, C1)�fresh (U2, C2) := {x1 := t1 ‖ x2 := t2 ‖ · · · ‖ xn := tn}
with

t i :=

¨

{U1}xi if ` (C1→ {U1} P (xi))↔ (C2→ {U2} P (xi)) (?)
ci otherwise

for fresh constant symbols ci ∈ Func of suitable types that are not contained in U1, U2, C1, C2,ϕ, and a
fresh, uninterpreted predicate symbol P. ◊

The following proposition assures that joins using Technique 3.20 are sound in the KeY calculus by
Theorem 3.16.

Proposition 3.21. Technique 3.20 induces a family of join-semilattices of SE states, i.e. the operation ṫfresh
and its associated partial order relation � satisfy the axioms (SEL1) to (SEL5) of Definition 3.12. ◊

Proof. (SEL1) Let a = (U , C ,ϕ) ∈ SEStatesPrg. Then, a ṫfresh a = (U∗, C ∨ C ,ϕ). In U∗, each pro-
gram variable xi is set to the term to which it evaluates in U , since (C → {U} P (xi)) ↔
(C → {U} P (xi)) is always provable. Because of this and idempotency of disjunction, we
have a ṫfresh a

concr
= a in both directions of

concr
= .

(SEL2) Let a = (U1, C1,ϕ) , b = (U2, C2,ϕ) ∈ SEStatesPrg. We prove

a ṫfresh b =:
�

U∗1 , C∗1 ,ϕ
� concr
=
�

U∗2 , C∗2 ,ϕ
�

:= b ṫfresh a

by showing

σ ∈ concr
�

a ṫfresh b
�

⇐⇒ σ ∈ concr
�

b ṫfresh a
�

.

It holds that

σ ∈ concr
�

a ṫfresh b
�

⇐⇒ there is
�

KΣ,σ′
�

,
�

KΣ,σ′
�

|= C1 ∨ C2 and σ = val(KΣ,σ′)

�

U∗1
� �

σ′
�

⇐⇒
�

KΣ,σ′
�

|= C2 ∨ C1

⇐⇒ σ′′ := val(KΣ,σ′)

�

U∗2
� �

s′
�

∈ concr
�

b ṫfresh a
�

.

Therefore it suffices to show that for every xi:

�

KΣ,σ′
�

|=
�

U∗1
	

P (xi)↔
�

U∗2
	

P (xi) ,

for a suitable new predicate P, i.e. that the right sides for xi are equivalent in (KΣ,σ′). This is
trivially the case for equal new constants ci as right sides. Note that a right side in U∗1 is a fresh
constant iff the corresponding right side in U∗2 is a fresh constant, since the bi-implication in
(?) is commutative; furthermore, new constants are assumed to be deterministically gener-
ated (→ Remark 3.19). In the other case, that is if (?) is provable, the equivalence obviously
also holds.

(SEL3) Let a = (U1, C1,ϕ) , b = (U2, C2,ϕ) , c = (U3, C3,ϕ) ∈ SEStatesPrg. We have to show that

�

a ṫfresh b
�

ṫfresh c
concr
= a ṫfresh

�

b ṫfresh c
�

,

that is

σ ∈ concr
��

a ṫfresh b
�

ṫfresh c
�

⇐⇒ σ ∈ concr
�

a ṫfresh

�

b ṫfresh c
��

.

Let

a ṫfresh b :=
�

U∗1 , C1 ∨ C2,ϕ
�

b ṫfresh c :=
�

U∗2 , C2 ∨ C3,ϕ
�

�

a ṫfresh b
�

ṫfresh c :=
�

U∗∗1 , (C1 ∨ C2)∨ C3,ϕ
�

a ṫfresh

�

b ṫfresh c
�

:=
�

U∗∗2 , C1 ∨ (C2 ∨ C3) ,ϕ
�
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and σ ∈ concr
��

a ṫfresh b
�

ṫfresh c
�

. Therefore, there is a model (KΣ,σ′) such that (KΣ,σ′) |=
(C1 ∨ C2)∨ C3 and σ = val(KΣ,σ′)

�

U∗∗1

�

(σ′). Obviously, it holds that (KΣ,σ′) |= C1 ∨ (C2 ∨ C3)
due to associativity of disjunction, thus it holds that

val(KΣ,σ′)

�

U∗∗2

� �

σ′
�

∈ concr
�

a ṫfresh

�

b ṫfresh c
��

.

It remains to show that val(KΣ,σ′)

�

U∗∗2

�

(σ′) = val(KΣ,σ′)

�

U∗∗1

�

(σ′). Let x be in x1,x2, . . . ,xn.
Consider two cases: (i) The right side for x in U∗∗1 is

�

U∗1
	

x. Then, the terms {U1}x, {U2}x,
{U3}x and also

�

U∗1
	

x must be equivalent in every model due to the definition of t i . The
right side in U∗∗1 is therefore {U1}x which we know is equivalent to

�

U∗1
	

x. (ii) The right side
for x in U∗∗1 is a Skolem constant. Then, by (?),

�

U∗1
	

x and {U3}x are not logically equivalent
terms. Thus, either {U1}x and {U2}x are not equivalent, or both are not equivalent to {U3}x.
In both of these cases, {U1}x and

�

U∗2
	

x cannot be equivalent, and therefore the right side
for x in U∗∗2 is also the same constant.

(SEL4) Since we already proved idempotency and associativity, it suffices to show

a ṫfresh b = c =⇒ a ® c

for any a = (U1, C1,ϕ), b = (U2, C2,ϕ), c = (U∗, C1 ∨ C2,ϕ) ∈ SEStatesPrg by Lemma 3.18.
Assuming a ṫfresh b = c, we thus have to show that concr (a) ⊆ concr (c). Let σ ∈ concr (a),
i.e. there is a model (KΣ,σ′) |= C1 such that σ = val(KΣ,σ′) (U1) (σ′). Let K ′Σ be an expansion
of KΣ by the new constants ci such that IK′Σ

(ci) = σ (xi). Since C1 is in the old language,
�

K ′Σ,σ′
�

|= C1 and thus
�

K ′Σ,σ′
�

|= C1 ∨ C2. Therefore, we have

val(K′Σ,σ′) (U
∗)
�

σ′
�

∈ concr (c) .

It suffices to show that, for all i = 1,2, . . . , n:

val(K′Σ,σ′) (U
∗)
�

σ′
�

(xi) = val(KΣ,σ′) (U1)
�

σ′
�

(xi) .

We distinguish the following two cases:

Case “(?) is provable”. In this case,

val(K′Σ,σ′) (U
∗)
�

σ′
�

(xi) = val(K′Σ,σ′) (xi := {U1}xi)
�

σ′
�

(xi)

=

�

x 7→

¨

σ′ (x) if x 6= xi

val(K′Σ,σ′) ({U1}xi) otherwise

�

(xi)

= val(K′Σ,σ′) ({U1}xi)

= val(K′Σ,σ′) (U1)
�

σ′
�

(xi)

= val(KΣ,σ′) (U1)
�

σ′
�

(xi) .

where the last equation is true since U1 is in the language without the constants.

Case “otherwise”. Then,

val(K′Σ,σ′) (U
∗)
�

σ′
�

(xi) = val(K′Σ,σ′) (xi := ci)
�

σ′
�

(xi)

=

�

x 7→

¨

σ′ (x) if x 6= xi

val(K′Σ,σ′) (ci) otherwise

�

(xi)

= val(K′Σ,σ′) (ci) = IK′Σ
(ci)

def.
= σ (xi)

= val(KΣ,σ′) (U1)
�

σ′
�

(xi) .

(SEL5) We have to show that C∗ ↔ (C ∧ Cax), where
∧

C1 → C and ∃v ; (Cax [v /c ]), for c =
c1, c2, . . . , cn being the constants introduced in c and v being a tuple of suitable fresh logi-
cal variables, is provable. By definition, C∗ =

�∧

C1 ∨
∧

C2

�

. We choose C :=
∧

C1 ∨
∧

C2

and Cax := true. Obviously,
∧

C1→
�∧

C1 ∨
∧

C2

�

, and true is trivially provable.
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3.3.2 If-Then-Else

The “If-Then-Else” technique is a “classic” of state joining for symbolic execution (see, e.g., [HSS09;
Kuz+12; Sen+14]) that retains the full precision of the analysis. We realize the technique by employing
the if-the-else construct of Java DL (→ Definition 2.6). An alternative way is the introduction of fresh
Skolem constants for the symbolic states that are constrained by implications in the path condition. We
discuss this approach in the subsequent subsection.

Technique 3.22 (If-Then-Else Join Method). Given (U1, C1,ϕ) and (U2, C2,ϕ) ∈ SEStatesPrg for any pro-
gram Prg with program variables x1,x2, . . . ,xn ∈ PV, the join operation ṫite : SEStatesPrg × SEStatesPrg →
SEStatesPrg is defined by

(U1, C1,ϕ) ṫite (U2, C2,ϕ) := ((U1, C1)�ite (U2, C2) , (U1, C1)>ite (U2, C2) ,ϕ)

where (U1, C1)>ite (U2, C2) :=
�∧

C1

�

∨
�∧

C2

�

and (U1, C1)�ite (U2, C2) := {x1 := t1 ‖ · · · ‖ xn := tn}
with

t i :=

¨

{U1}xi if ` (C1→ {U1} P (xi))↔ (C2→ {U2} P (xi)) (?)
if
�∧

C1

�

then ({U1}xi) else ({U2}xi) otherwise

for a fresh, uninterpreted predicate symbol P. ◊

Remark 3.23 (Incompatible Path Conditions). For our join techniques, and in particular for the tech-
niques 3.22 and 3.25, we assume that two path conditions C1 and C2 of different branches in a tree
are generally incompatible. This assumption is reasonable since splits in symbolic execution should
only occur when the execution depends on the concrete value of a variable; in this case, a case distinc-
tion takes place. If C1 and C2 are the path conditions for those case distinction branches, it holds that
`
∧

C1 → ¬
∧

C2, as well as the contraposition `
∧

C2 → ¬
∧

C1. The assumption could be problem-
atic when If-Then-Else joins are applied to an SET where other branches are joined with rules violating
these constraints. Since our proposed join rules either use the canonical disjunction of path conditions
for the path conditions of join nodes, or a strengthening of that (in particular, they respect the property
(SEL5)), we are confident that this issue can be excluded. ◊

Proposition 3.24. Technique 3.22 induces a family of join-semilattices of SE states, i.e. the operation ṫite
and its associated partial order relation � satisfy the axioms (SEL1) to (SEL5) of Definition 3.12. ◊

Proof. (SEL1) The proof for (SEL1) is similar to the corresponding case in the proof of Proposi-
tion 3.21.

(SEL2) Under the assumption `
∧

C1 → ¬
∧

C2, the terms if
�∧

C1

�

then ({U1}x) else ({U2}x) and
if
�∧

C2

�

then ({U2}x) else ({U1}x) are logically equivalent. Based on this observation, the
proof of (SEL2) is similar to the corresponding case in the proof of Proposition 3.21.

(SEL3) Under the assumption `
∧

C1 → ¬
∧

C2, the proof of (SEL3) is similar to the corresponding
case in the proof of Proposition 3.21.

(SEL4) Since we already proved idempotency and associativity, it suffices to show

a ṫite b = c =⇒ a ® c

for any a = (U1, C1,ϕ), b = (U2, C2,ϕ), c = (U∗, C1 ∨ C2,ϕ) ∈ SEStatesPrg by Lemma 3.18.
Assuming a ṫite b = c, we thus have to show that concr (a) ⊆ concr (c). Let σ ∈ concr (a),
i.e. there is a model (KΣ,σ′) |= C1 such that σ = val(KΣ,σ′) (U1) (σ′). Since furthermore,
(KΣ,σ′) |= C1 ∨ C2, it holds that

val(KΣ,σ′) (U
∗)
�

σ′
�

∈ concr (c) .

It suffices to show that, for all i = 1, 2, . . . , n:

val(KΣ,σ′) (U
∗)
�

σ′
�

(xi) = val(KΣ,σ′) (U1)
�

σ′
�

(xi) .

We distinguish the following two cases:
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Case “(?) is provable”. In this case,

val(KΣ,σ′) (U
∗)
�

σ′
�

(xi) = val(KΣ,σ′) (xi := {U1}xi)
�

σ′
�

(xi)

=

�

x 7→

¨

σ′ (x) if x 6= xi

val(KΣ,σ′) ({U1}xi) otherwise

�

(xi)

= val(KΣ,σ′) ({U1}xi)

= val(KΣ,σ′) (U1)
�

σ′
�

(xi)

Case “otherwise”. Then,

val(KΣ,σ′) (U
∗)
�

σ′
�

(xi) =

val(KΣ,σ′)

�

xi := if
�
∧

C1

�

then ({U1}xi) else ({U2}xi)
� �

σ′
�

(xi) =
�

x 7→

¨

σ′ (x) if x 6= xi

val(KΣ,σ′)

�

if
�∧

C1

�

then ({U1}xi) else ({U2}xi)
�

otherwise

�

(xi) =



x 7→







σ′ (x) if x 6= xi

val(KΣ,σ′) ({U1}xi) x= xi ∧ val(KΣ,σ′)

�∧

C1

�

= tt
val(KΣ,σ′) ({U2}xi) otherwise



 (xi) =

val(KΣ,σ′) ({U1}xi) =

val(KΣ,σ′) (U1)
�

σ′
�

(xi) .

(SEL5) We have to show that C∗ ↔ (C ∧ Cax), where
∧

C1 → C and ∃v ; (Cax [v /c ]), is provable,
which is equivalent to Cax being provable since ṫite does not introduce new constants. By
definition, C∗ =

�∧

C1 ∨
∧

C2

�

. We choose C :=
∧

C1 ∨
∧

C2 and Cax := true. Obviously,
∧

C1→
�∧

C1 ∨
∧

C2

�

, and true is trivially provable.

3.3.3 If-Then-Else by additional Path Condition Constraints

An alternative to the If-Then-Else approach discussed in Section 3.3.2 is the realization of constraints
of program variables by the introduction of fresh Skolem constants along with additional constraints
in the path conditions of join states. While being logically equivalent (under the assumption `

∧

C1 →
¬
∧

C2 of Remark 3.23), this technique has a different runtime behavior when implemented in KeY
(→ Section 5.1). Since the path condition of a state is usually contained in the antecedent of the corre-
sponding sequent in the SET, we also refer to this technique as “If-Then-Else-Antecedent”.

Technique 3.25 (If-Then-Else with PC Constraints Join Method). Given (U1, C1,ϕ) and (U2, C2,ϕ) ∈
SEStatesPrg for any program Prg with program variables x1,x2, . . . ,xn ∈ PV, the join operation ṫite2 :
SEStatesPrg × SEStatesPrg→ SEStatesPrg is defined by

(U1, C1,ϕ) ṫite2 (U2, C2,ϕ) := ((U1, C1)�ite2 (U2, C2) , (U1, C1)>ite2 (U2, C2) ,ϕ)

where (U1, C1)�ite2 (U2, C2) := {x1 := t1 ‖ x2 := t2 ‖ · · · ‖ xn := tn} with

t i :=

¨

{U1}xi if ` (C1→ {U1} P (xi))↔ (C2→ {U2} P (xi))
ci otherwise

and (U1, C1)>ite2 (U2, C2) :=
�∧

C1 ∨
∧

C2

�

∧
∧

C ite
i where

C ite
i :=







true if ` (C1→ {U1} P (xi))↔ (C2→ {U2} P (xi))
�∧

C1→ ci
.
= {U1}xi

�

∧ otherwise
�∧

C2→ ci
.
= {U2}xi

�

for a fresh, uninterpreted predicate symbol P and fresh Skolem constants c1, c2, . . . , cn of appropriate
types that are not contained in U1, U2, C1, C2,ϕ. For the “otherwise” case, we assume `

∧

C1 → ¬
∧

C2
(→ Remark 3.23). ◊
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Proposition 3.26. Technique 3.25 induces a family of join-semilattices of SE states, i.e. the operation ṫite2
and its associated partial order relation � satisfy the axioms (SEL1) to (SEL5) of Definition 3.12. ◊

Proof. We omit the proofs of (SEL1) to (SEL3) which are basically obvious when following the argu-
ments in the corresponding proofs of the techniques discussed above.

For (SEL4), it suffices to show

a ṫite2 b = c =⇒ a ® c

for any a = (U1, C1,ϕ), b = (U2, C2,ϕ), c = (U∗, C1 ∨ C2,ϕ) ∈ SEStatesPrg by Lemma 3.18. Assuming
a ṫite2 b = c, we thus have to show that concr (a) ⊆ concr (c). We again assume that `

∧

C1 → ¬
∧

C2.
Let σ ∈ concr (a), i.e. there is a model (KΣ,σ′) |= C1 such that σ = val(KΣ,σ′) (U1) (σ′). Let K ′Σ be an
expansion of KΣ by the new constants ci such that IK′Σ

(ci) = σ (xi). Since C1 is in the old language,
�

K ′Σ,σ′
�

|= C1 (which is a direct consequence of Herbrand’s theorem),
�

K ′Σ,σ′
�

|= C1∨C2 and
�

K ′Σ,σ′
�

|=
∧

C ite
i . Therefore, we have

val(K′Σ,σ′) (U
∗)
�

σ′
�

∈ concr (c) .

It suffices to show that, for all i = 1,2, . . . , n:

val(K′Σ,σ′) (U
∗)
�

σ′
�

(xi) = val(KΣ,σ′) (U1)
�

σ′
�

(xi) .

We distinguish the following two cases:

Case “(?) is provable”. In this case,

val(K′Σ,σ′) (U
∗)
�

σ′
�

(xi) = val(K′Σ,σ′) (xi := {U1}xi)
�

σ′
�

(xi)

=

�

x 7→

¨

σ′ (x) if x 6= xi

val(K′Σ,σ′) ({U1}xi) otherwise

�

(xi)

= val(K′Σ,σ′) ({U1}xi)

= val(K′Σ,σ′) (U1)
�

σ′
�

(xi)

(†)
= val(KΣ,σ′) (U1)

�

σ′
�

(xi) .

where (†) is true since U1 is in the language without the constants.

Case “otherwise”. Then,

val(K′Σ,σ′) (U
∗)
�

σ′
�

(xi) = val(K′Σ,σ′) (xi := ci)
�

σ′
�

(xi)

=

�

x 7→

¨

σ′ (x) if x 6= xi

val(K′Σ,σ′) (ci) otherwise

�

(xi)

= val(K′Σ,σ′) (ci) = IK′Σ
(ci)

def.
= σ (xi)

= val(KΣ,σ′) (U1)
�

σ′
�

(xi) .

For (SEL5), we have to show that C∗ ↔ (C ∧ Cax), where
∧

C1 → C and ∃v ; (Cax [v /c ]), for
c = c1, c2, . . . , cn and v is a tuple of suitable fresh logical variables, is provable. By definition,
C∗ =

�∧

C1 ∨
∧

C2

�

∧
∧

C ite
i . We choose C :=

∧

C1 ∨
∧

C2 and Cax :=
∧

C ite
i . Obviously,

∧

C1 →
�∧

C1 ∨
∧

C2

�

. ∃v ; (Cax [v /c ]) equals

∃v ;
�
∧
��
∧

C1→ vi
.
= {U1}xi

�

∧
�
∧

C2→ vi
.
= {U2}xi

�	�

.

This formula is easily provable for the instantiation

vi :=

¨

{U1}xi if C1 is provable

{U2}xi otherwise
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leq geq

neg poszero

⊥

Figure 3.5: Abstract domain for sign analysis

3.3.4 Abstract Weakening

Abstract Interpretation [CC77] is a static analysis technique that allows for the construction of fully au-
tomatic proof methods [Cou+05]. Our General Lattice Framework, along with the technique proposed
subsequently, at least partly closes the gap between symbolic execution and abstract interpretation
by facilitating joins based on abstract domain lattices. We first define the notion of abstract domain
elements.

Definition 3.27 (Abstract Domain Element). An Abstract Domain Element is a function defAx : TermsΣ→
FormΣ mapping Java DL terms of appropriate types to closed formulae. ◊

Intuitively, an abstract domain element models an infinite set of defining axioms for Java DL terms.
If an axiom is true for a given term, then this term is described by the corresponding abstract domain
element. This rather technical, syntactical definition is beneficial for the application in branch joining.
Note that we restrict abstract elements / domains to those that can be characterized in Java DL.

Definition 3.28 (Abstract Domain Lattice). An Abstract Domain Lattice is a join-semilattice AT = (AT ,t)
with the induced partial order relation v for a countable set AT of abstract domain elements accepting
terms of some fixed type T ∈ T as arguments. We impose the following requirements on AT and v:

(1) AT includes two elements ⊥ (t) = false and > (t) = true
(2) For a, b ∈ AT with a v b, it holds that `a (t)→ b (t) for any term t of type T .
(3) For all a ∈ AT except for ⊥, it holds that ` ∃v ; a (v ). ◊

Example 3.29. A well-known example for an abstract domain lattice also used in [BHW09] is the
lattice Asgn

int =
�

Asgn
int,t

�

for sign analysis visualized in the Hasse diagram of Figure 3.5. Asgn
int is defined

as Asgn
int = {⊥, neg, zero,pos, leq, geq,>} where ⊥ (t) := false, neg (t) := t < 0, zero (t) := t

.
= 0,

pos (t) := t > 0, leq (t) := t ≤ 0, geq (t) := t ≥ 0 and > (t) := true. The join operator t and its induced
partial order relation v are defined like depicted in the Hasse diagram. Intuitively, geq, for instance,
represents the positive integers including zero, while pos represents the positive integers without zero;
> represents all integers, whilst ⊥ does not represent any integer. ◊

For the definition of the following technique, we assume that there are only program variables of the
same type T ∈ T . However, the technique is easily generalized to multiple types by demanding the
existence of one abstract domain lattice per type; moreover, it is possible to define “hybrid” approaches
using, for instance, the “If-Then-Else” join technique whenever there is no abstract domain lattice for a
given type.

Technique 3.30 (Abstract Weakening Join Method). Let AT = (AT ,t) be an abstract domain lattice.
Given (U1, C1,ϕ) and (U2, C2,ϕ) ∈ SEStatesPrg for any program Prg with program variables x1,x2, . . . ,xn ∈
PV of type T , the join operation ṫabstr : SEStatesPrg × SEStatesPrg→ SEStatesPrg is defined by

(U1, C1,ϕ) ṫabstr (U2, C2,ϕ) := ((U1, C1)�abstr (U2, C2) , (U1, C1)>abstr (U2, C2) ,ϕ)

where (U1, C1)�abstr (U2, C2) := {x1 := t1 ‖ x2 := t2 ‖ · · · ‖ xn := tn} with, for a fresh, uninterpreted
predicate symbol P and fresh Skolem constants c1, c2, . . . , cn of appropriate types that are not contained in
U1, U2, C1, C2,ϕ,

t i :=

¨

{U1}xi if ` (C1→ {U1} P (xi))↔ (C2→ {U2} P (xi))
ci otherwise
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and (U1, C1)>abstr (U2, C2) :=
�∧

C1 ∨
∧

C2

�

∧
∧

Cabs
i where

Cabs
i :=

¨

true if ` (C1→ {U1} P (xi))↔ (C2→ {U2} P (xi))
�

defAx1 t defAx2

�

(ci) otherwise

and, for k ∈ 1,2, defAxk ∈ AT is an abstract domain element such that `Ck → defAxk ({Uk}xi) is provable
and there is no element defAx′k ∈ AT with defAx′k 6= defAxk and defAx′k v defAxk. ◊

The constraints on defAxk state that those elements must be least ones in the abstract domain lat-
tice. Note that there does not necessarily exist a unique such element; in this case, any element for
which there is no suitable strictly smaller one suffices. For countable lattices with a given enumeration
e1, e2, . . . , en, . . . of the domain elements such that for 0 ≤ i < l, it does not hold that el v ei , defAxk
is computable. Such an enumeration can always be constructed for finite domains by a BFS traver-
sal of the lattice starting from the smallest element. For the sign analysis domain, the enumeration is
⊥, neg, zero,pos, leq, geq,>. Generally, infinite domains should support widening [CC77] to ensure that
suitable abstractions can be computed.

Proposition 3.31. Technique 3.30 induces a family of join-semilattices of SE states, i.e. the operation ṫabstr
and its associated partial order relation � satisfy the axioms (SEL1) to (SEL5) of Definition 3.12. ◊

Proof. We omit the proofs of the rather obvious properties (SEL1) to (SEL3).
For (SEL4), it suffices to show

a ṫabstr b = c =⇒ a ® c

for any a = (U1, C1,ϕ), b = (U2, C2,ϕ), c = (U∗, C1 ∨ C2,ϕ) ∈ SEStatesPrg by Lemma 3.18. Assuming
a ṫabstr b = c, we thus have to show that concr (a) ⊆ concr (c). Let σ ∈ concr (a), i.e. there is a model
(KΣ,σ′) |= C1 such that σ = val(KΣ,σ′) (U1) (σ′). Let K ′Σ be an expansion of KΣ by the new constants ci

such that IK′Σ
(ci) = σ (xi). Since C1 is in the old language,

�

K ′Σ,σ′
�

|= C1 and
�

K ′Σ,σ′
�

|= C1 ∨ C2. By

`Ck → defAxk ({Uk}xi), k = 1, 2, we know
�

K ′Σ,σ′
�

|= defAx1 ({U1}xi) and, by

val(K′Σ,σ′) ({U1}xi) = val(K′Σ,σ′) (U1)
�

σ′
�

(xi) = val(KΣ,σ′) (U1)
�

σ′
�

(xi) = σ (xi) = IK′Σ
(ci) ,

�

K ′Σ,σ′
�

|= defAx1 (ci). Due to Definition 3.28, it thus holds that
�

K ′Σ,σ′
�

|=
�

defAx1 t defAx2

�

(ci) and
so
�

K ′Σ,σ′
�

|=
∧

Cabs
i . Therefore, we have

val(K′Σ,σ′) (U
∗)
�

σ′
�

∈ concr (c) .

It suffices to show that, for all i = 1, 2, . . . , n:

val(K′Σ,σ′) (U
∗)
�

σ′
�

(xi) = val(KΣ,σ′) (U1)
�

σ′
�

(xi) .

We distinguish the following two cases:

Case “(?) is provable”. In this case,

val(K′Σ,σ′) (U
∗)
�

σ′
�

(xi) = val(K′Σ,σ′) (xi := {U1}xi)
�

σ′
�

(xi)

=

�

x 7→

¨

σ′ (x) if x 6= xi

val(K′Σ,σ′) ({U1}xi) otherwise

�

(xi)

= val(K′Σ,σ′) ({U1}xi)

= val(K′Σ,σ′) (U1)
�

σ′
�

(xi)

(†)
= val(KΣ,σ′) (U1)

�

σ′
�

(xi) .

where (†) is true since U1 is in the language without the constants.
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Case “otherwise”. Then,

val(K′Σ,σ′) (U
∗)
�

σ′
�

(xi) = val(K′Σ,σ′) (xi := ci)
�

σ′
�

(xi)

=

�

x 7→

¨

σ′ (x) if x 6= xi

val(K′Σ,σ′) (ci) otherwise

�

(xi)

= val(K′Σ,σ′) (ci) = IK′Σ
(ci)

def.
= σ (xi)

= val(KΣ,σ′) (U1)
�

σ′
�

(xi) .

For (SEL5), we have to show that C∗ ↔ (C ∧ Cax), where
∧

C1 → C and ∃v ; (Cax [v /c ]), for
c = c1, c2, . . . , cn and v is a tuple of suitable fresh logical variables, is provable. By definition,
C∗ =

�∧

C1 ∨
∧

C2

�

∧
∧

Cabs
i . We choose C :=

∧

C1 ∨
∧

C2 and Cax :=
∧

Cabs
i . Obviously,

∧

C1 →
�∧

C1 ∨
∧

C2

�

. ∃v ; (Cax [v /c ]) equals

∃v ;
�
∧
��

defAx1 t defAx2

�

(vi) : i = 1,2, . . . , n
	�

.

This formula is provable due to (2) of Definition 3.28, since neither defAx1 nor defAx2 are ⊥, because
otherwise `Ck → defAxk ({Uk}xi) would not hold for satisfiable Ck.

3.3.5 Heap Treatment

All of the above discussed join technique are in principle able to deal with heap structures. Since heaps
are modeled in KeY as program variables of the special type Heap, the techniques 3.20, 3.22 and 3.25
are able to treat heaps without special adaptations; Technique 3.30 would depend on a domain for
the type Heap. However, the joining of whole heap expressions to, e.g., if-then-else expressions, leads
to long terms and potential redundancies which may result in a suboptimal treatment of those by the
automatic strategies of the KeY system. We therefore treat heaps in a “zip” procedure: Assume, for
example, that we want to join two heap expressions

store(store(create(heap,s_2),s_2,<initialized>,TRUE),s_2,num,mul(num_0,-1))

and
store(store(create(heap,s_2),s_2,<initialized>,TRUE),s_2,num,num_0),

where num is negative in the corresponding first state and positive in the second. Instead of just connect-
ing the whole terms by if-then-else, we simultaneously go deeper inside the expressions, as long as the
top functions are equal (e.g., two “store” applications) and have the syntactically same expressions for
objects / fields as targets, and apply join operators on stored values that differ. When two different top
level functions are reached (e.g., a “create” and a “store” occurrence) or (syntactically) different objects
/ fields are targeted, we use if-then-else as a fallback. For the above example and a join with the sign
lattice abstraction, the resulting heap expression is

store(store(create(heap,s_2),s_2,<initialized>,TRUE),s_2,num,geq),
where the constant geq is constrained by the formula geq >= 0 in the antecedent. We define this
procedure formally in Definition 3.32.

Definition 3.32 (General Heap Treatment). The function

joinHeaps : TermsHeap
Σ × TermsHeap

Σ × SEStatesPrg × SEStatesPrg→ 2FormΣ × TermsHeap
Σ

is defined inductively over the structure of heap terms as follows:

joinHeaps (h1, h2, s1, s2) :=



































(;, h1) if h1 = h2

(C ∪ ((s1, v1)> (s2, v2)) , if h1 = store
�

h′1, o, f , v1

�

and

store (h′, o, f , (s1, v1)� (s2, v2))) h2 = store
�

h′2, o, f , v2

�

(C , create (h′, o)) if h1 = create
�

h′1, o
�

and

h2 = create
�

h′2, o
�

(;, if (C1) then (h1) else (h2)) otherwise
where

• joinHeaps
�

h′1, h′2, s1, s2

�

= (C , h′) – the recursive step,
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• C1 is the path condition of s1, and
• � : SEStatesPrg × TermsT

Σ × SEStatesPrg × TermsT
Σ→ TermsT

Σ and
> : SEStatesPrg × TermsT

Σ × SEStatesPrg × TermsT
Σ → 2FormΣ are families of join operators for com-

puting join values resp. additional path condition constraints for terms of types T . ◊

The second component of the result of joinHeaps is a term of type Heap, the joined heap, while the
first component contains the set of formulae constraining introduced Skolem constants, if any. Instances
of operators > and � in the above definition could return, for the example of abstract weakening, a
defining axiom for a fresh Skolem constant and the constant itself, respectively. The difference to the
operators >abstr and �abstr defined on SE states consists in the restriction to consider exactly one term
instead of all right sides of contained program variables; otherwise, they work analogously. For the
“otherwise” case, we also could have chosen the introduction of a fresh Skolem constant of type Heap
as a basis for joining heaps by techniques 3.20 (full anonymization) or 3.25 (if-then-else-antecedent).

While this general approach does not really consider special characteristics of objects, there are meth-
ods in literature focusing on heap structures. Anand et al. [APV06] propose a technique for lists and
arrays building upon shape analysis techniques [SRW02]. They contract list elements to so-called “sum-
mary nodes”, which facilitates the joining of branches whenever such an abstraction “subsumes” another
leaf in the SET. We refer to this in Section 6.1.
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4 Implementation

Based on our theoretical framework presented in Chapter 3, we implemented support for joining
branches of proof trees in the KeY system. The implementation consists of five components: (1) An
abstract class JoinRule following the template method pattern and a class JoinRuleUtils comprising
a set of commonly used static methods for join operations, (2) a framework for abstraction based on
finite lattices, (3) a class CloseAfterJoin for closing partner goals after a join, (4) a macro for run-
ning proof steps on a sequent containing Java code until a potential join point is reached, and (5) an
implementation of four sample join rules specializing JoinRule. Subsequently, we elaborate on these
components.

4.1 JoinRule and JoinRuleUtils

The class JoinRule is responsible for all tasks accumulated during the joining of branches in KeY proof
except for the actual computation of a join state for two given symbolic execution states. Its implemen-
tation follows the template method pattern: Concrete join rules must implement the abstract method
joinValuesInStates(LocationVariable,SymbolicExecutionState,Term,SymbolicExecutionState,

Term,Services) for joining two terms in their respective SE states. JoinRuleUtils comprises a quite
large set of static methods that are used by join classes. These methods can be categorized into simple
auxiliary methods, methods related to general logic (syntax, provability, simplification, and calculus-
related), and methods closely related to join operations. The UML class digram in Figure 6.1 visu-
alizes the dependencies between the two general join classes and the concrete join rules; Figure 6.2
offers a more detailed view into the structure of JoinRule and JoinRuleUtils. Listing 4.1 shows
an excerpt of the implementation of JoinRule. In particular, JoinRule checks whether joining is
applicable for a given position in a sequent; for investigating whether this is the case, the method
JoinRule.findPotentialJoinPartners(Goal, PosInOccurrence) searches the goals of the proof
tree for potential partner goals. For enabling the user to choose partners among the candidates, the
dialog class JoinPartnerSelectionDialog is used. After the join partner selection, the node on which
the rule is being applied is joined with the partners in a loop (lines 27 – 33 in Listing 4.1). Since join op-
erations are required to be commutative and associative (→ Definition 3.12), the order of the join does
not matter; therefore, concrete join classes inheriting from JoinRule only need to specify a method
for joining values in two SE states. After the join, the rule CloseAfterJoin (→ Section 4.3) is applied
on the partner goals. The method joinStates(...) may be overridden for join operations requiring
special behavior; the same holds for the method joinHeaps(...) realizing the procedure described in
Definition 3.32.

Listing 4.1: Excerpt of the JoinRule implementation
1 public abstract c lass JoinRule extends J o i n R u l e U t i l s implements Bu i l t I nRu l e {
2 // . . .
3
4 @Override
5 public f i n a l ImmutableList<Goal> apply ( Goal goal , f i n a l S e r v i c e s s e r v i c e s ,
6 RuleApp ruleApp ) throws RuleAbortExcept ion {
7
8 // . . .
9 ImmutableList<Pair<Goal , PosInOccurrence>> j o i n P a r t n e r s =

10 f i n d J o i n P a r t n e r s (newGoal , pio ) ;
11
12 // . . .
13 // Conver t s e q u en t s to SE s t a t e s
14 ImmutableList<Symbol icExecut ionState> j o i n P a r t n e r S t a t e s = ImmutableSLList . n i l ( ) ;
15 for ( Pair<Goal , PosInOccurrence> j o i n P a r t n e r : j o i n P a r t n e r s ) {
16 Tr ip le<Term , Term , Term> par tnerSESta te =
17 sequentToSETriple ( j o i n P a r t n e r . f i r s t , j o i n P a r t n e r . second , s e r v i c e s ) ;
18
19 j o i n P a r t n e r S t a t e s = j o i n P a r t n e r S t a t e s . prepend (new Symbol icExecut ionState (
20 par tnerSESta te . f i r s t , par tnerSESta te . second , j o i n P a r t n e r . f i r s t . node ( ) ) ) ;
21 }
22
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23 Symbol icExecut ionStateWithProgCnt th i sSES ta t e =
24 sequentToSETriple (newGoal , pio , s e r v i c e s ) ;
25
26 // The j o i n loop
27 Symbol icExecut ionState j o ined S ta t e = new Symbol icExecut ionState (
28 th i sSES ta t e . f i r s t , t h i sSES ta t e . second , goal . node ( ) ) ;
29
30 for ( Symbol icExecut ionState s t a t e : j o i n P a r t n e r S t a t e s ) {
31 jo inedS ta t e = j o i n S t a t e s ( jo inedSta te , s t a t e , t h i sSES ta t e . th i rd , s e r v i c e s ) ;
32 jo inedS ta t e . setCorrespondingNode ( goal . node ( ) ) ;
33 }
34
35 Term resu l tPa thCond i t i on = jo ined S ta t e . second ;
36 re su l tPa thCond i t i on = t r y S i m p l i f y ( s e r v i c e s . ge tProof ( ) , re su l tPa thCond i t ion , true ) ;
37
38 // . . .
39 // C l o s e par tne r g o a l s
40 for ( Pair<Goal , PosInOccurrence> j o i n P a r t n e r : j o i n P a r t n e r s ) {
41 c lo seJo inPar tne rGoa l (
42 newGoal . node ( ) ,
43 j o i n P a r t n e r . f i r s t ,
44 jo inedSta te ,
45 sequentToSEPair ( j o i n P a r t n e r . f i r s t , j o i n P a r t n e r . second , s e r v i c e s ) ,
46 th i sSES ta t e . t h i r d ) ;
47 }
48
49 // . . .
50 return newGoals ;
51 }
52
53 protected Symbol icExecut ionState j o i n S t a t e s (
54 Symbol icExecut ionState s ta te1 ,
55 Symbol icExecut ionState s ta te2 ,
56 Term programCounter ,
57 S e r v i c e s s e r v i c e s ) {
58
59 // . . .
60 for ( Loca t i onVar i ab l e v : progVars ) {
61 // . . .
62
63 Pair<HashSet<Term>, Term> jo inedVa l =
64 j o i n V a l u e s I n S t a t e s (v , s ta te1 , r ightS ide1 , s ta te2 , r ightS ide2 , s e r v i c e s ) ;
65
66 newElementaryUpdates = newElementaryUpdates . prepend (
67 tb . elementary (
68 v ,
69 jo inedVa l . second ) ) ;
70
71 newPathCondition = tb . and(
72 newPathCondition ,
73 tb . and( jo inedVa l . f i r s t ) ) ;
74
75 // . . .
76 }
77 // . . .
78
79 }
80
81 // . . .
82
83 protected abstract Pair<HashSet<Term>, Term> j o i n V a l u e s I n S t a t e s (
84 Loca t ionVar i ab l e v ,
85 Symbol icExecut ionState s ta te1 ,
86 Term valueInState1 ,
87 Symbol icExecut ionState s ta te2 ,
88 Term valueInState2 ,
89 S e r v i c e s s e r v i c e s ) ;
90
91 // . . .
92 }
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CloseAfterJoin
Γ2 =⇒ {U2}ϕ,∆2

W

. . .

L
C∗ =⇒ {U∗}ϕ
Γ1 =⇒ {U1}ϕ,∆1

T

. . .

...
linked

Figure 4.1: Visualization of CloseAfterJoin rule. L is the linking node, W contains the proof obligation
corresponding to the logical weakening formula.

4.2 The Abstraction Framework

Our implemented lattice abstraction framework (UML diagram in Figure 6.3) centers around three
classes. The abstract class AbstractDomainElement represents an element of an abstract lattice
domain. Basically, an abstract domain element encapsulates a defining axiom that can be ob-
tained by calling the method getDefiningAxiom(Term, Services). An abstract domain inher-
its from the class AbstractDomainLattice: Most importantly, it has to implement the methods
join(AbstractDomainElement, AbstractDomainElement) and iterator(). The abstract join rule
JoinWithLatticeAbstraction uses iterator() to obtain an ordered enumeration of abstract do-
main elements; for each element, it checks whether its defining axiom holds for the concrete
term that is to be abstracted. The such determined abstract elements are joined with the method
join(AbstractDomainElement, AbstractDomainElement). We implemented two abstract domains
based on this framework: the sign lattice domain for integers and a simple domain for booleans. Note
that this framework is designed to cope with finite and quite small domains only. It probably has to be
extended to support more complicated abstract domains (→ Section 6.1).

4.3 The Partner Goals Closing Rule

As we pointed out in Remark 3.17, the defocusing join rule with two conclusions bears theoretical com-
plications. Since furthermore the tree structure is strongly incorporated in the KeY system, a real DAG
representation is definitely difficult to achieve. Instead of applying the weakening rule of Remark 3.17
twice and re-using the computed proof subtree of one of the branches (→ Figure 3.3), we apply the
special rule CloseAfterJoin to partner goals of a join operation (UML diagram: Figure 6.4). The rule
adds two sub branches to a partner goal. One of these branches contains a single node linking the
partner goal to the corresponding join node. We added a field linkedNode to the Node class for the
purpose of establishing this connection. If the join node is closed, an action is triggered that closes all of
its linked nodes. The second branch added after the partner goal contains a proof obligation expressing
that the join node is logically weaker than its partner node (→ Definition 3.7). Recall that by Proposi-
tion 3.11, logical weakening is equivalent to semantic weakening. Thus, this measure, assuming that
the quite simple condition (SEL5) of Definition 3.12 is obeyed, ensures that proofs are not rendered
unsound even for join methods with implementation failures, or such methods for which the conformity
with the axioms of Definition 3.12 has not been theoretically proven. A visualization of the result of a
CloseAfterJoin application, based upon Figure 3.3, is shown in Figure 4.1. The node after the sequent
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Γ1 =⇒ {U1}ϕ,∆1 is the join node, the node corresponding to the sequent Γ2 =⇒ {U2}ϕ,∆2 is the
partner node. The logical weakening formula is added to the node W , whereas the node L links to the
join node. The subtree T does appear only once and is not, as in Figure 3.3, appended to the partner
node.

Listing 4.2 shows the part of the method CloseAfterJoin.apply(Goal, Services, RuleApp)
which is responsible for linking partner nodes to their join nodes. Whenever the proof tree is ex-
tended or pruned, the state of the join node is checked. In the case that the join node has been deleted
from the tree, the linked node is marked as independent again. Thus, the proof is still sound, which it
would not necessarily be if we did ultimately close partner goals after a join. If the branch of the join
node has been closed, the linked goal after the partner node is also being closed.

Listing 4.2: Linking of partner nodes to join nodes
s e r v i c e s . ge tProof ( ) . addProofTreeL i s tener (new ProofTreeAdapter () {

@Override
public void proofGoalsChanged ( ProofTreeEvent e ) {

i f ( joinNode . i sC lo sed ( ) ) {
// The j o i n e d node has been c l o s e d ; now a l s o c l o s e t h i s node .
s e r v i c e s . ge tProof ( ) . c loseGoal ( l inkedGoal ) ;

}
}

@Override
public void proofPruned ( ProofTreeEvent e ) {

i f ( ! proofContainsNode ( e . getSource ( ) , joinNodeF )) {
// The j o i n e d node has been pruned ; now mark t h i s node
// as not l i n k e d and s e t i t to automat ic again .
l inkedGoal . node ( ) . setLinkedNode ( nul l ) ;
l inkedGoal . setEnabled ( true ) ;

}
}

} ) ;

4.4 Macro for Execution until Join Points

For applying join rules on suitable nodes in a proof, it is clearly undesirable to generate proofs com-
pletely by hand or to prune automatically generated proofs with the intention to create a situation
where joining is possible. In our implementation, we did not establish an inclusion of our join rules
into the automatic Java DL strategies; this could be an object to future work. However, we created
the macro FinishSymbolicExecutionUntilJoinPointMacro (→ Figure 6.5) which, after started on a
sequent containing Java code, allows the execution of a parent strategy only until a previously regis-
tered break point has been reached. Whenever a Java block is seen that contains either an if block, a
while loop with a break, or a try-catch block, the respective next statement afterward is added to the
set of break points. Thus, the macro behaves like the given parent strategy, but might stop the proof
procedure at points facilitating an application of join rules. This induces a semi-automatic proof strategy
consisting of a repeated execution of the macro interleaved with manual applications of join rules on
the generated proof nodes (→ Section 5.1). The creation of a fully automatic strategy / macro based
on this procedure could be a first step into the direction of proof generation with automatic join rule
applications in KeY.

Listing 4.3 contains an excerpt of the method isApprovedApp(RuleApp, PosInOccurrence, Goal)
which decides whether a proposed rule application is permissible or not. In line 4, execution is stopped
whenever a breakpoint is reached; in line 10, breakpoints are searched for and registered.

4.5 Sample Join Rule Implementations

We implemented concrete join rules based on our implemented framework and the techniques 3.20,
3.22, 3.25, and 3.30. The techniques for heap joining follow Definition 3.32. As depicted in the
UML diagram of Figure 6.1, all join classes depend on JoinIfThenElse, in particular on the meth-
ods for creating if-then-else terms (→ Figure 6.6). The classes JoinWithLatticeAbstraction and
JoinIfThenElseAntecedent use if-then-else as fall back for heap joining; JoinIfThenElseAntecedent
further employs the method createDistFormAndRightSidesForITEUpd(LocationVariable, ...) for
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Listing 4.3: FinishSymbolicExecutionUntilJoinPointMacro: Registering join points and deciding about
continuation of execution

1 @Override
2 public boolean isApprovedApp ( RuleApp app , PosInOccurrence pio , Goal goal ) {
3 i f ( ! hasModal i ty ( goal . node ( ) ) ) { return fa l se ; }
4 i f ( hasBreakPoint ( goal . sequent ( ) . succedent ( ) ) ) { return fa l se ; }
5
6 i f ( pio != nul l ) {
7 JavaBlock theJavaBlock = getJavaBlockRecurs ive ( pio . subTerm ( ) ) ;
8
9 // . . .

10 breakpo in t s . addAl l ( f i n d J o i n P o i n t s (( StatementBlock ) theJavaBlock . program ( ) ) ) ;
11
12 // . . .
13 }
14
15 return super . isApprovedApp (app , pio , goal ) ;
16 }

Listing 4.4: Step two of distinguishing formulae simplification (Part 1)
1 public s t a t i c Term t r y S i m p l i f y (
2 f i n a l Proof parentProof , f i n a l Term term , boolean coun tD i s junc t i ons ) {
3 t ry {
4 Term s i m p l i f i e d = s i m p l i f y ( parentProof , term ) ;
5
6 i f ( countAtoms ( s i m p l i f i e d ) < countAtoms ( term ) &&
7 ( coun tD i s junc t i ons ( s i m p l i f i e d , f a l se ) < countD i s junc t i ons ( term , f a l se ) ) ) {
8 return s i m p l i f i e d ;
9 }

10 } catch ( Proof InputExcept ion e ) {}
11
12 return term ;
13 }

obtaining the shortest distinguishing formula given two path conditions. We briefly elaborate on this
simplification and another one for optimizing the structural complexity of disjunctive path conditions.

Simplified Distinguishing Formulae
This is an optimization of Technique 3.22 aimed to increase the proof performance by generating shorter
if-then-else terms. Given two SE states (U1, C1,ϕ) and (U2, C2,ϕ), and assuming that C1 and C2 are
contradicting, the terms

if
�
∧

C1

�

then ({U1}x) else ({U2}x) and

if
�
∧

C2

�

then ({U2}x) else ({U1}x)

are equivalent. The implementation chooses the shortest of those after having applied two steps of
simplifications on the path conditions. The first step includes removing all common atoms from the
path conditions, since they are not needed for distinguishing the states. In the second step, a side proof
is run on the path conditions. If the conjunction of the open goals in the resulting proof is simpler
regarding the number of atoms and disjunctions, this conjunction is chosen as distinguishing formula.
Otherwise, the result of the first step is returned. The listings 4.4 and 4.5 show the corresponding code
for this simplification step.

Optimized Path Conditions
Further optimizations take place in the creation of the disjunctive path condition. Instead
of choosing the canonical

∧

C1 ∨
∧

C2 for the path condition of a join node, the method
JoinRuleUtils.createSimplifiedDisjunctivePathCondition(Term, Term, Services) performs a
two-step simplification to generate a more concise path condition. In step one, complementary elements
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Listing 4.5: Step two of distinguishing formulae simplification (Part 2)
1 private s t a t i c Term s i m p l i f y ( Proof parentProof , Term term )
2 throws Proof InputExcept ion {
3 f i n a l S e r v i c e s s e r v i c e s = parentProof . g e t S e r v i c e s ( ) ;
4 f i n a l App lyS t ra tegy In fo in fo = tryToProve ( term , s e r v i c e s , true ) ;
5
6 t ry {
7 // The s i m p l i f i e d formula i s the c o n j u n c t i o n o f a l l open g o a l s
8 ImmutableList<Goal> openGoals = in fo . ge tProof ( ) . openEnabledGoals ( ) ;
9 f i n a l TermBuilder tb = s e r v i c e s . getTermBuilder ( ) ;

10 i f ( openGoals . isEmpty ( ) ) { return tb . t t ( ) ; }
11 else {
12 ImmutableList<Term> g o a l I m p l i c a t i o n s = ImmutableSLList . n i l ( ) ;
13 for ( Goal goal : openGoals ) {
14 Term goa l Imp l i c a t i on = sequentToFormula ( goal . sequent ( ) , s e r v i c e s ) ;
15 g o a l I m p l i c a t i o n s = g o a l I m p l i c a t i o n s . append ( goa l Imp l i c a t i on ) ;
16 }
17
18 return tb . and( g o a l I m p l i c a t i o n s ) ;
19 }
20 } f i n a l l y {
21 S i d e P r o o f U t i l . d i sposeOrStore (
22 " S i m p l i f i c a t i o n of "
23 + ProofSaver . pr in tAnyth ing ( term ,
24 parentProof . g e t S e r v i c e s ( ) ) , i n f o ) ;
25 }
26 }

of
∧

C1 and
∧

C2 are removed, i.e. if C1 ≡ ψ1 ∧ϕ and C2 ≡ ψ2 ∧¬ϕ, the result will be ψ1 ∨ψ2. This
simplification is admissible since we assume that

∧

C1↔¬
∧

C2, and the sequent

(ψ1 ∧ϕ)↔¬ (ψ2 ∧¬ϕ) =⇒ ((ψ1 ∧ϕ)∨ (ψ2 ∧¬ϕ))↔ (ψ1 ∨ψ2)

formalizing this simplification is valid (which can be proven by hand or, for instance, in KeY). Since
we also assume

∧

C1 ↔¬
∧

C2 in the proof of Proposition 3.24, which is justified for the reason that
it holds in symbolic execution without joins and our join rules do not violate it, the assumption is also
applicable at this place. Intuitively, the removal of contradicting conjuncts in joined path conditions is
sensible since the condition that made symbolic execution split is no longer relevant after all of the such
generated branches are joined again. The measure of removing it from the resulting path condition
by syntactic checks spares KeY having to apply a potentially large number of rules for obtaining the
same result. Finally, in the second step, we apply a distributivity law to further simplify the structure of
the formula. We decided not to include the automatic simplification described in the above paragraph
for optimized path conditions, since our experiments showed that the time overhead induced by this
process is out of proportion to the achieved results.

Sign Lattice and Boolean Abstraction
For showing the feasibility of performing an abstract interpretation with KeY by the means of
our theoretical and implemented framework, we implemented a join rule JoinWithSignLattice
for joining states based on the sign domain (→ Example 3.29). The rule itself is very simple
(→ Figure 6.3): It just returns an instance of SignAnalysisLattice for the Integer sort, and an in-
stance of BooleanLattice for the Boolean sort. For other sorts, it returns null; in this case, the super
class JoinWithLatticeAbstraction generates an if-then-else expression for the corresponding values.
The core of the implementation are the classes realizing the abstract domains and their elements. Fig-
ure 6.7 shows the UML diagram for the sign analysis abstract domain lattice, Figure 6.8 for the Boolean
domain. We created abstract classes representing the respective domain element types, and one con-
crete class for each domain element. Note that our framework does not require one class per abstract
element; it would also be possible to define a single concrete class the objects of which are capable of
remembering the elements they represent and of returning the right defining axioms. Since the domain
element classes like Neg and Leq are all singletons, there is no substantial difference; this choice is just
a matter of style. For extending our framework to more complex abstract domains (see, e.g., [Cou01;
Cou+05]), we suppose that our abstraction framework will have to be extended to allow for more
flexibility.
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5 Evaluation and Case Study

Incorporating joins during symbolic execution can increase as well as decrease the length of proofs based
on chosen parameters for proof generation and the concrete scenario. In Section 5.1, we investigate
this impact for a set of example programs. Section 5.2 concerns the benefits of if-then-else joins for
increasing the precision of an information flow analysis.

5.1 Performance Evaluation

We evaluate the performance of our implementation using four simple and two more complex Java
programs: (1) A method containing an if-then-else block for computing the absolute of an integer
(→ Listing 5.1), (2) a method computing the absolute of an integer inside an object, returning a new
object (→ Listing 5.2), (3) a method computing the quotient of two integers, catching a potential ex-
ception arising from a division by zero (→ Listing 5.3), (4) a method comprising a while loop with a
break statement for finding an element in an integer array (→ Listing 5.4), (5) an integer multiplication
method (→ Listing 5.5) also used, in a slightly different form, in [HSS09], and (6) a method computing
the greatest common divisor of two integers (→ Listing 5.6). The examples (1) to (4) serve as basic
representatives for the cases where merges typically may take place, the most obvious amongst those
being if-then-else and try-catch blocks. Example (4) allows for a merge of the “break” sub branch in
the “preserves invariant” branch with the “use case” branch; those branches arise after an application of
the loop invariant rule. Example (2) demonstrates that the implementation is also capable of handling
heaps. The contract of Example (5) is proven using loop unwinding; for this reason, we restrict the
range of the input values. The chosen bound 5 is rather arbitrary and quite low, but that is just for
convenience of the proof; any concrete value at this place would allow for proving the contract with
unwinding. The chosen join points, for this example, reside at the beginning of the while loop. Exe-
cution is split after the if statement in the body of the loop, therefore an alternative, earlier join point
would be at line 16 in the listing. We chose the point two statements later to minimize the number
of manual interactions with the proof. The gcd Example (6) involves a normalization before calling a
helper method: the input variables are converted into their absolutes in lines 8 and 9 in the listing. In
the proof, the method gcdHelp is integrated by its method contract.

Table 5.2 shows the experimental results for the example programs under chosen execution strategies.
The recorded parameters comprise the number of nodes in the resulting proof of the respective method
contract as well as the corresponding numbers of branches (excluding the branches / nodes for the
logical weakening check after joins), rule and one step simplifier applications, joins, and the necessary
number of manual user interactions for the proof. In the last column, the improvement of the respective
strategy over the baseline strategy (fully automatic proof with/without one step simplification) is listed.
Improvements of at least 2% are highlighted in green, declines of at least 2% in red; small changes are
of gray color. The employed strategies are explained in Table 5.3. The “canonical” strategies, join-ite,
join-ite2 and join-sign, involve a repeated symbolic execution until the next join point with the macro
we developed for this purpose (→ Section 4.3), followed by a join of applicable leaf nodes; it should
be possible to derive fully automatic strategies from this procedure in a quite straightforward manner.
For the multiplication and gcd examples, we make use of specialized, less canonical strategies that are
better suited for those two examples.

For the simple examples (1) to (4) with activated one step simplifier, joining branches with if-then-else
techniques is clearly not beneficial. Those examples highly benefit from one step simplifier applications
which are not applicable in that way after a join operation. Consider the abs example (2) with the join-
ite2 strategy: In this case, the proof with join is about 23% longer than the corresponding automatic
proof. The proof splits into two branches corresponding to the sign of the input variable. In the proof
with join, the “num ≥ 0” branch is 11 nodes shorter. However, the “num < 0” branch in the automatic
proof can be closed quite quickly due to some very efficient one step simplifier applications: The goal
∆,num ≤ −1 =⇒ Γ ,num ∗ −1 ≥ 0 in the automatic proof corresponds to the more complicated goal
∆′,num ≤ −1 → result_1 = num ∗ −1,num ≤ −1 ∨ result_1 = num =⇒ Γ ,result_1 ≥ 0 in the
proof with join. Therefore, the automatic proof can be closed in one step after the usage of the class
invariant axiom for SimpleMath, whereas its counterpart with join needs another 37 steps including a
cut over the sign of num. These observations also explain why joining with if-then-else methods is less
disadvantageous, and sometimes even beneficial, for the very same examples with deactivated one step
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Example Strategy # Nodes /
# Branches

# Rule Apps
/ # OSS

Apps

# Joins # User
Inter-

actions

Improvement
of # Nodes
to baseline

div auto 185 / 9 415 / 52 0 0 –
div join-ite 196 / 9 394 / 51 1 1 -5.95%
div join-ite2 193 / 8 394 / 51 1 1 -4.32%
div auto-no-OSS 401 / 9 400 / 0 0 0 –
div join-ite-no-

OSS
380 / 9 379 / 0 1 1 5.24%

div join-ite2-no-
OSS

374 / 6 374 / 0 1 1 6.73%

abs auto 78 / 5 155 / 18 0 0 –
abs join-ite 79 / 5 136 / 16 1 1 -1.28%
abs join-ite2 96 / 5 153 / 21 1 1 -23.08%
abs join-sign 63 / 4 122 / 14 1 1 19.23%
abs auto-no-OSS 158 / 5 157 / 0 0 0 –
abs join-ite-no-

OSS
138 / 5 137 / 0 1 1 12.66%

abs join-ite2-no-
OSS

155 / 5 154 / 0 1 1 1.90%

absObj auto 211 / 10 451 / 52 0 0 –
absObj join-ite 219 / 11 418 / 45 5 2 -3.79%
absObj join-ite2 249 / 11 448 / 51 5 2 -18.01%
absObj join-sign 190 / 9 389 / 43 5 2 9.95%
absObj auto-no-OSS 444 / 10 443 / 0 0 0 –
absObj join-ite-no-

OSS
396 / 11 395 / 0 5 2 10.81%

absObj join-ite2-no-
OSS

426 / 11 425 / 0 5 2 4.05%

find auto 695 / 21 1496 / 114 0 0 –
find join-ite 702 / 19 1466 / 107 1 1 -1.01%
find join-ite2 702 / 19 1466 / 107 1 1 -1.01%
find auto-no-OSS 1438 / 21 1437 / 0 0 0 –
find join-ite-no-

OSS
1427 / 19 1426 / 0 1 1 0.76%

find join-ite2-no-
OSS

1421 / 19 1420 / 0 1 1 1.18%

multiply auto 1062 / 28 1576 / 189 0 0 –
multiply mult1 888 / 25 1284 / 158 1 2 16.38%
multiply mult1-ite2 915 / 25 1308 / 158 1 2 13.84%
multiply mult2 (timeout) 1 2 N/A
multiply mult3 1044 / 26 1426 / 178 2 4 1.69%

gcd auto 8371 / 37 10312 / 675 0 0 –
gcd gcd-ite 8048 / 32 8923 / 609 2 2 3.86%
gcd gcd-ite2 7315 / 31 8084 / 624 2 2 12.61%
gcd auto-no-OSS 9103 / 34 9102 / 0 0 0 –
gcd gcd-ite2-no-

OSS
7197 / 29 7196 / 0 2 2 20.94%

Table 5.2: Performance evaluation for the example programs div, abs, absObj, find, multiply, and gcd
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Strategy Name Description
auto Full usage of KeY’s automated proof search function.

join-ite Repeatedly run symbolic execution until join point using the
FinishSymbolicExecutionUntilJoinPointMacro and join applicable brancehs by
if-then-else until symbolic execution is finished; then proceed automatically.

join-ite2 Like join-ite, but with joins using the if-then-else-antecedent rule.
join-sign Like join-ite, but with joins using sign lattice abstraction.

mult1 Deactivate loop treatment and start automatic strategy. Unwind the while
loop once, and use “Full Auto Pilot” macro (applied on the sequent, with
deactivated loop treatment). Two occurrences of while loops occur. Join the
two branches by if-then-else join, automatically proceed from there.

mult1-ite2 Like mult1, but with joins using the if-then-else-antecedent rule.
mult2 Like mult1, but with using the automatic strategy instead of the “Full Auto

Pilot” macro.
mult3 Like mult1, but with one additional unwinding and join step.
gcd-ite Two times execution until join point with

FinishSymbolicExecutionUntilJoinPointMacro followed by an if-then-else join,
then start of automatic proof engine. The method gcdHelp is included by
contract.

gcd-ite2 Like gcd-ite, but with joins using the if-then-else-antecedent rule.
*-no-OSS Strategy “*” with deactivated OneStepSimplifier.

Table 5.3: Strategies used in performance evaluation.

simplification. An investigation of the abs example without one step simplification shows that in the
“num ≥ 0” branch, 31 nodes are saved, while in the “num < 0” branch the additional nodes for case
distinctions are furthermore partly compensated due to some rule applications that previously appeared
redundantly. Another reason for the negative results of the simple examples is the late occurrence of the
join. When joining directly before the last statement, there is not much code left for which a redundant
execution can be avoided; the price for the more complicated expressions after the join cannot be
compensated by saving redundancy.

The more extensive examples (5) and (6) show that it is possible to achieve shorter proofs even
with the general if-then-else / if-then-else-antecedent join rules and usage of one step simplification.
The gcd example is furthermore the only case where if-then-else-antecedent shows better results than
the if-then-else method. The largest improvement in our measurements for the if-then-else methods
could be measured in the gcd example (6) for the difference between automatic execution without one
step simplifier and the gcd-ite2-no-OSS strategy: An improvement of 20.94% in the number of nodes
of the proofs. This even exceeds the abs example (2) with the specialized join method by sign lattice
abstraction.

For the multiply example (5), we discovered that joins with if-then-else might disturb the automatic
strategies of KeY such that the proof procedure does not terminate; KeY was, in the case of the strategy
mult2 making use of the “Play” button starting automatic execution, not able to derive the terminating
condition for the while loop, resulting in endless unwinding operations. However, when using the
macro “Full Auto Pilot” on the whole sequent, the proof did indeed terminate, in this case even with
an improvement over the number of nodes and branches when performing one join operation. We
discovered that the sequent before the join is more complicated when using the automatic strategy than
when using the “Full Auto Pilot” macro. A closer evaluation of this problem might be in the scope of
future work.

5.2 Case Study: Information Flow Analysis

Information flow between variables in a program is the transmission of some kind of information from
one program variable to another one. Certain types of flows may be undesirable, an observation that
motivates imposing information flow policies on programs. For instance, information about a secret
password should not be leaked to a program variable that is communicated to the outside, maybe
over a network connection. We investigate a simple class of policies that involve a partitioning of
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Listing 5.1: The abs example – If block
1 /*@ p u b l i c normal_behavior
2 @ ensur e s \ r e s u l t >= 0;
3 @*/
4 public in t abs ( in t num) {
5 in t r e s u l t ;
6
7 i f (num < 0) {
8 r e s u l t = −num;
9 } else {

10 r e s u l t = num;
11 }
12
13 return r e s u l t ; // j o i n po in t
14 }

Listing 5.2: The absObject example – Join with heaps
1 /*@ p u b l i c normal_behavior
2 @ ensur e s \ r e s u l t .num >= 0;
3 @*/
4 public SimpleMath absObject () {
5 SimpleMath r e s u l t = new SimpleMath ( ) ;
6
7 i f (num < 0) {
8 r e s u l t .num = −num;
9 } else {

10 r e s u l t .num = num;
11 }
12
13 return r e s u l t ; // j o i n po in t
14 }

Listing 5.3: The div example – Exceptional control flow
1 /*@ p u b l i c normal_behavior
2 @ ensur e s d i v i s o r != 0 ==> \ r e s u l t == d i v i d e n t / d i v i s o r ;
3 @ ensur e s d i v i s o r == 0 ==> \ r e s u l t == I n t e g e r . MAX_VALUE ;
4 @*/
5 public in t div ( in t div ident , in t d i v i s o r ) {
6 in t r e s u l t ;
7
8 t ry {
9 r e s u l t = d iv iden t / d i v i s o r ;

10 } catch ( Ar i thmet i cExcept ion e ) {
11 r e s u l t = In tege r .MAX_VALUE;
12 }
13
14 return r e s u l t ; // j o i n po in t
15 }
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Listing 5.4: The find example – While loop with break statement
1 /*@ p u b l i c normal_behavior
2 @
3 @ ensur e s ((\ e x i s t s i n t i ; i >= 0 && i < arr . l e n g t h ; arr [ i ] == toF ind )
4 @ ==> arr [\ r e s u l t ] == toF ind ) &&
5 @ ((\ f o r a l l i n t i ; i >= 0 && i < arr . l e n g t h ; arr [ i ] != toF ind )
6 @ ==> \ r e s u l t == −1);
7 @ a s s i g n a b l e \ noth ing ;
8 @*/
9 public in t f i nd ( in t [] arr , in t toFind ) {

10 in t curPos = 0;
11
12 /*@ l o o p _ i n v a r i a n t
13 @ (\ f o r a l l i n t i ; i >= 0 && i < curPos ; arr [ i ] != toF ind ) &&
14 @ curPos >= 0;
15 @
16 @ d e c r e a s e s arr . l e n g t h − curPos ;
17 @ a s s i g n a b l e curPos ;
18 @*/
19 while ( curPos < ar r . length ) {
20 i f ( a r r [ curPos ] == toFind ) {
21 break ;
22 }
23
24 curPos = curPos + 1;
25 }
26
27 i f ( curPos < ar r . length ) { // j o i n po in t
28 return curPos ;
29 } else {
30 return −1;
31 }
32 }

Listing 5.5: The multiply example – Loop unrolling
1 /*@ p u b l i c normal_behavior
2 @ r e q u i r e s x0 >= 0 && y0 >= 0;
3 @ r e q u i r e s x0 < 5 && y0 < 5; // bounds f o r s u c c e s s f u l unwinding
4 @ ensur e s \ r e s u l t == x0 * y0 ;
5 @*/
6 in t mul t ip ly ( in t x0 , in t y0 ) {
7 in t x = x0 ;
8 in t y = y0 ;
9 in t z = 0;

10
11 while ( x != 0) { // j o i n po in t
12 i f ( x % 2 != 0) {
13 z += y ;
14 }
15
16 x = x / 2;
17 y = y * 2;
18 }
19
20 return z ;
21 }
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Listing 5.6: The gcd example – Normalization before method call
1 /*@ p u b l i c normal_behavior
2 @ ensur e s (a != 0 || b != 0) ==>
3 @ (a % \ r e s u l t == 0 && b % \ r e s u l t == 0 &&
4 @ (\ f o r a l l i n t x ; x > 0 && a % x == 0 && b % x == 0;
5 @ \ r e s u l t % x == 0)) ;
6 @*/
7 public s t a t i c in t gcd ( in t a , in t b) {
8 i f (a < 0) a = −a ;
9 i f (b < 0) b = −b ; // j o i n po in t

10
11 in t big , smal l ; // j o i n po in t
12 i f (a > b) {
13 big = a ;
14 smal l = b ;
15 } else {
16 big = b ;
17 smal l = a ;
18 }
19
20 return gcdHelp ( big , smal l ) ;
21 }

program variables into two classes “high” and “low”, disallowing a flow from variables classified “high”
to variables classified “low”, such that a “low” observer cannot infer information about the initial values
of the “high” variables.

A common technique for a language-based analysis of information flow is based on specialized type
systems [SM06]. Such systems should necessarily be sound, i.e. they never classify insecure programs
as secure. However, they will classify certain secure programs as insecure, due to a lack of sensitivity
to the particular control-flow of a program. We subsequently propose a quite simple information flow
analysis technique based on symbolic execution which is sound for our chosen examples, but classifies
some secure examples as insecure. We then show how the if-then-else join method can be utilized to
achieve a classification as “secure” for those intuitively secure examples. Our goal is not to devise a
general sound and precise analysis technique, but to show how the precision of an example analysis
can be improved using join methods. We believe that it should be possible to similarly extend existing
approaches for information flow analysis based on symbolic execution, thereby retaining the soundness
of these systems and increasing their precision.

Algorithm 1 Information flow analysis without joins

Require: p is a Java program with program variables h classified as “high” and l classified as “low”;
P (. . . ) is a fresh predicate accepting l as inputs.

Ensure: Returns true only if p does not contain a flow from a variable in h to a variable in l.
1: problem ← <\{ try { p } catch (Exception e) {} }\> P(l)
2: Load problem into KeY and finish symbolic execution
3: G ← all leafs in the resulting SET containing P
4: for all g ∈ G do
5: Apply as many OneStepSimplifier applications on g as possible
6: Transform g to the form Γ =⇒ P (. . . ) by “negation right” applications
7: if Γ contains an atomic formula containing a variable in h or

P (. . . ) contains a term comprising a variable in h then
8: return false
9: end if

10: end for
11:

12: return true

We investigate the behavior of Algorithm 1 based on five examples, where l, res are “low” variables
and h, secret are “high” variables.
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Listing 5.7: “Exceptional Flow” Example
public c lass ExcptFlow {

private /*@ s p e c _ p u b l i c @*/ in t s e c r e t ;

public ExcptFlow ( in t s e c r e t ) {
th i s . s e c r e t = s e c r e t ;

}

/* Roughly f o l l o w i n g " RIFLE : An A r c h i t e c t u r a l
Framework f o r User−C e n t r i c In format ion−Flow S e c u r i t y "
by Vachhara jani e t a l . */

public boolean i n se cu reExcep t i ona l ( in t input ) {
i f ( input == s e c r e t ) {

work ( ) ;
}

return true ;
}

public boolean secureExcep t iona l ( in t input ) {
i f ( input == s e c r e t ) {

t ry {
work ( ) ;

} catch ( Except ion e ) {}
}

return true ;
}

/*@ p u b l i c e x c e p t i o n a l _ b e h a v i o r
@ s i g n a l s _ o n l y Runt imeExcept ion ;
@*/

public void work () {
throw new RuntimeException ( " Crashed . " ) ;

}

}

(1) if (h>0) {l=1;} else {l=2;}. This program is insecure since an attacker is able to derive from
the final value of l whether the initial value of h was positive or not. Algorithm 1 outputs false
for the program since the final goals contain formulae h >= 1 and h <= 0, respectively.

(2) if (h>0) {l=1;} else {l=2;} l=0;. This program is secure since an attacker cannot draw
any conclusions about the initial value of h since the final value of l is always 0. However,
Algorithm 1 outputs false for the program since the final goals contain formulae h >= 1 and h <=
0, respectively, as in example (1).

(3) if (h>0) {l=2; h=1;} else {l=2; h=2;}. This program is secure since an attacker cannot
draw any conclusions about the initial value of h since the final value of l is always 2. However,
Algorithm 1 outputs false for the program since the final goals contain formulae h >= 1 and h <=
0, respectively, as in example (1).

(4) ExcptFlow a = new ExcptFlow(secret); res = a.secureExceptional(input); where the
class ExcptFlow is defined according to Listing 5.7. The program is secure since the result of
the function call is always true. However, Algorithm 1 outputs false for the program since the
final goals contain formulae secret = input and !secret = input.

(5) ExcptFlow a = new ExcptFlow(secret); res = a.insecureExceptional(input); where the
class ExcptFlow is defined according to Listing 5.7. The program is insecure since the result of
the function call is true iff the input equals the secret. Algorithm 1 outputs false for the program
since the final goals contain formulae secret = input and !secret = input.

The examples show that Algorithm 1 is too restrictive. It would return true only for examples like
l=0; that are very simple concerning their control-flow. We therefore refine the algorithm to Algorithm 2
using the if-then-else join technique.
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Algorithm 2 Information flow analysis with joins

Require: p is a Java program with program variables h classified as “high” and l classified as “low”;
P (. . . ) is a fresh predicate accepting l as inputs.

Ensure: Returns true only if p does not contain a flow from a variable in h to a variable in l.
1: problem ← <\{ try { p } catch (Exception e) {} }\> P(l)
2: Load problem into KeY and finish symbolic execution
3: G ← all leafs in the resulting SET containing P
4: Apply, if possible, “if-then-else” join on P (. . . ), if necessary after OneStepSimplifier applications
5: for all g ∈ G do
6: Apply as many OneStepSimplifier applications on g as possible
7: Transform g to the form Γ =⇒ P (. . . ) by “negation right” applications
8: if Γ contains an atomic formula containing a variable in h or

P (. . . ) contains a term comprising a variable in h then
9: return false

10: end if
11: end for
12:

13: return true

The only change in Algorithm 2 is the addition of line 4, where all branches containing the P (. . . )
formulae are joined. However, this change is strong enough to increase the precision of the results for
our “secure” examples, while still classifying “insecure” examples correctly:

(1) Algorithm 2 outputs false for the program since the final goals contain formulae h >= 1 and h <=
0, respectively.

(2) Algorithm 2 outputs true for the program since the constraints h >= 1 and h <= 0 could be
eliminated during the join.

(3) Algorithm 2 outputs true for the program since the constraints h >= 1 and h <= 0 could be
eliminated during the join.

(4) Algorithm 2 outputs true for the program since the final goals no longer contain atomic formulae
secret = input and !secret = input. Instead, those atoms occur in sub formulae of a dis-
junction in the antecedent; it is not possible to directly derive information on the initial value of
secret.

(5) Algorithm 2 outputs false for the program since the final goals contain formulae secret = input
and !secret = input. After the join, the succedent of the join node consists of the interesting
formula

�

result := if
�

¬
�

secret .
= input

��

then (true) else (result)
	

P (result)

which concisely reflects the dependency between secret and result.

44



6 Related Work and Conclusion

6.1 Related Work

This thesis may be seen as a contribution to research on the path explosion problem of symbolic execu-
tion as well as in relation to other static analysis techniques like abstract interpretation. Furthermore,
joins in KeY proof trees might motivate the study of different kinds of information flow analyses based
on the KeY system.

The Path Explosion Problem of Symbolic Execution
Existing work on the path explosion problem can be divided into two distinct lines of research. A popular
approach, especially in the area of automatic test generation and bug detection, is the pruning of redun-
dant paths in symbolic execution trees by subsumption checking (e.g. [APV06; BCE08; Jaf+12; JMN13;
CJM14]). The second line of research applies state merging using if-then-else techniques (e.g. [HSS09;
Kuz+12; Sen+14]).

Pruning by Subsumption Checks
When utilizing symbolic execution for the automatic generation of test cases, the repeated exploration
of the same program statements is undesirable. A concept employed for subsumption checking that is
used, for instance, in [Jaf+12; JMN13; CJM14], is the computation of interpolants: Given two formulae
A and B (here: two path conditions) s.th. A∧ B is unsatisfiable, a Craig interpolant Ψ is a formula for
which it holds that (1) A |= Ψ, (2) Ψ ∧B is unsatisfiable, and (3) all variables in Ψ are common to A and
B. The Tracer system [Jaf+12] systematically underapproximates interpolants and stops the exploration
of paths the path conditions of which are subsumed by the interpolants of previously explored paths.
Chu et al. [CJM14] compute interpolants and continue the execution even of infeasible paths to obtain
better interpolants which they also apply in subsumption checking. The RWset system [BCE08] prunes
redundant paths by checking whether the remainder of a particular execution is capable of exploring
new behavior. A work by Anand et al. [APV06] especially addresses subsumption in symbolic execution
trees containing objects on a heap. They abstract from heap objects (in particular lists and arrays)
by summarizing elements sharing common properties using shape analysis techniques and perform
subsumption checking for the such abstracted objects. Their approach follows a trend in software
model checking which proposes underapproximation based abstractions for the purpose of falsification.
Since the intended scenario for our work is software verification, and thus proving the correctness
(validity) of properties, underapproximation is not an option.

If-Then-Else State Merging
Existing approaches for joining states in symbolic execution are usually based upon if-then-else tech-
niques similar to the techniques 3.22 and 3.25. Hansen et al. [HSS09] devise an algorithm that sym-
bolically executes a program according to its control flow graph, thereby joining states with the same
program counter using an if-then-else construct to create the new symbolic state and a disjunction of
path conditions as new path condition for the join node. They use external tools to simplify the gener-
ated path conditions. An evaluation of their approach for a set of four examples shows mixed results:
While joining is beneficial for three out of four examples, the execution time explodes for the fourth
one. Kuznetsov et al. [Kuz+12] tackle this problem by investigating how state joining based on if-then-
else constructs can be rendered “practical”: Their approach aims to automatically find an advantageous
balance between exploring fewer complex (i.e., merged) states vs. more simpler (i.e. unmerged) states.
Based on heuristics, they only merge states when this promises to reduce the exploration time. The cen-
tral idea of the MultiSE system by Sen et al. [Sen+14] is the concept of so-called “value summaries” that
map program variables to sets of guarded symbolic expressions. Value summaries are comparable to the
if-then-else expressions of KeY, but without the else part; instead of this, another guarded expression is
added to the summary. MultiSE explicitly represents the data structure induced by symbolic execution
as a DAG. Join points are identified dynamically, the system does not rely on an explicit CFG of the
program. For efficiency reasons, path conditions and guards in value summaries are implemented using
binary decision diagrams. Experiments show significant speedup of this technique compared to stan-
dard (dynamic) SE in their experiments. Compared to our framework, all these systems / approaches
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incorporate one chosen join technique based on an if-then-else construct, while our work permits a huge
set of overapproximation techniques, also covering those based on if-then-else.

Abstract Interpretation
Abstract interpretation is a static analysis technique introduced in the 1970s by Cousot and Cousot
[CC77]. The analysis is parametric in the chosen abstraction and proceeds fully automatically by the
means of a fixpoint iteration for loops. State merging, following the CFG of the analyzed program,
is inherent to the system. With ASTRÉE [Cou+05], there exists a mature system for the runtime error
detection in C programs based on abstract interpretation which has been successfully applied in industry.
Numerous abstract domains have been implemented for ASTRÉE. The system is sound and therefore
necessarily incomplete, that is it may yield false alarms. Bubel et al. [BHW09] propose a dynamic logic
with abstraction for the KeY calculus, mainly to facilitate the fully automatic discovery of loop invariants.
The idea is based on the employment of a fixpoint algorithm in the spirit of abstract interpretation until
an invariant is found. Their framework is based on partially interpreted constant symbols for each
abstract value, accompanied by dedicated calculus rules for interpreting them. They use a join rule for
while loops in side branches for the computation of invariants. Our work generalizes the abstraction and
join aspects of Bubel et al. by devising a parametric framework with a join rule for arbitrary program
statements. However, we do not cover the automatic discovery of loop invariants by fixpoint iteration. In
contrast to abstract interpretation, our work supports fully precise (if-then-else) as well as abstraction-
based state merging.

Information Flow Security
The problem of information flow security is the enforcement or assessment of information flow poli-
cies restricting the flow of information between locations in a program. Traditional techniques for the
(language-based) enforcement of such policies are based on security type systems (see [SM06] for an
overview). Those systems usually suffer from a lack of precision, that is they may classify many secure
programs as insecure; however, they can reach full automation. The previously mentioned work by
Bubel et al. [BHW09] tracks dependencies between variables to assess the validity of non-interference
properties. Their employment of abstraction promises a higher degree of automation, but is likely to
decrease the precision compared to deductive systems without abstraction (like, e.g., [BDR04; DHS05;
JH14]). However, the approach is more precise than typical security type systems. A different line of
research [SRK06; HKS06] establishes information flow security by analyzing “path conditions” com-
puted from the Program Dependence Graph (PDG) [FOW84; OO84] of the investigated program. A path
condition in this context is a generalization of the corresponding notion in symbolic execution: It is
computed between two arbitrary basic blocks of a program by accumulating control and data condi-
tions on all possible paths between the blocks. In symbolic execution, a path condition is computed
from the root node on, and mostly captures control dependencies. Snelting et al. [SRK06] establish a
straightforward theorem connecting PDGs to non-interference; Hammer et al. [HKS06] apply this result
to medium-sized Java programs in a fully automatic approach. Generalized path conditions are precise
necessary conditions for information flow between two program points. Our simple application to in-
formation flow security (→ Section 5.2) also takes path conditions (in the sense of SE) into account;
it might be interesting to study the relation between SE path conditions and the generalized concept
based on PDGs by Hammer et al. Definitely, KeY proof trees come closer to the CFG and therefore also
to the PDG of programs by incorporating our join techniques.

6.2 Conclusion and Future Work

Conclusion
We extended symbolic execution by a parametric join rule which is sound for all join operations satis-
fying, besides three basic semilattice properties, an additional correctness property and a simple con-
straint on the generated path conditions. Using our join rule, symbolic execution trees are rendered
into directed acyclic graphs. Thereby, we contribute to closing the gap between symbolic execution and
abstract interpretation and to solving the path explosion problem of symbolic execution. Four exam-
ple join rules based upon the general lattice framework, including two if-then-else based methods and
one method based on abstract domains, are theoretically defined and practically implemented for the
state-of-the-art deductive verification system KeY. We showed that the employment of join rules indeed
reduces the number of nodes and branches in KeY proof trees for a set of example programs. Further-
more, we demonstrated that branch joining could be beneficial for analysis techniques in the area of
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information flow security. We are confident that our work can support making symbolic execution more
efficient, and give rise to new analysis methods based on symbolic execution DAGs with suitable join
techniques. In addition to evaluating our join techniques on larger case studies, we identified four lines
of future work for extending and improving our system.

Performance of the Implementation
We expect that there is a significant potential for improving the performance of our implementation. On
the theoretical side, it might be rewarding to investigate whether Craig-Interpolants are employable for
generating simplified distinguishing formulae in if-then-else constructs. The generation of those invari-
ants is only easy for quantifier-free formulae [McM05; Bri+11]. Preconditions in sequents often contain
quantifiers arising from method specifications, while “pure” path conditions usually are quantifier-free.
If applicable, Craig-Interpolants could serve as efficiently computable and concise distinguishing formu-
lae. Other implemented optimization methods, e.g. for the computation of optimized path conditions,
also are likely to be improvable in terms of effectiveness and efficiency. In the case of abstraction-based
join methods, the performance of validity checks for defining axioms of abstract domain values might be
improvable be outsourcing the evaluation to a third-party Satisfiability Modulo Theories (SMT) solver.
The last point concerning performance addresses the non-termination problem for the “multiply” exam-
ple in Section 5.1. The question of why the results of the automatic strategy and the (automatic) macro
differ and why this difference actually caused the non-determination issue should be studied closer to
fix the problem and possibly generalize the gained experience to different scenarios.

Abstraction Framework
To catch up with abstract interpretation systems like ASTRÉE [Cou+05], many more abstract domains
will have to be realized for KeY. For some of those, it might be necessary to extend the flexibility of our
abstraction framework which for now is built to cope with quite small, static domains. For some applica-
tions, the implementation of abstractions specific to certain heap structures like lists or arrays (cf., e.g.,
[SRW02; APV06]) could be beneficial; so far, we only apply abstractions for integers or booleans to the
elements of suitably uniformly shaped heaps. One of the strengths of abstract interpretation systems,
the fixpoint iteration for unbounded loops, would, when implemented as a set of new rules or strategies
for the KeY system, push forward the abstraction framework very much and help to further close the
gap between symbolic execution and abstract interpretation. The work by Bubel et al. [BHW09] could
serve as a guideline here.

Usability
The major starting point for making our implemented framework more usable is the creation of new (or
the extension of existing) automatic strategies that are aware of join rules and join points. A very first
and simple idea is the repeated execution of our macro (→ Section 4.4). However, a solution integrated
into the main automatic strategies that identifies join points dynamically, such as [Sen+14], would
be desirable. Such a solution could also take into account metrics for assessing the reward of a join
operation, as in the approach by [Kuz+12]. A more technical improvement concerns the integration
of the logical weakening proof goals into proofs with joins. At the moment, we append two nodes to
partner nodes participating in a join operation (→ Section 4.3): One node linking to the join node, and
one containing the logical weakening formula. As an alternative, we plan to add this side proof goal
as a “contract target” to the meta information of a proof, in the fashion of the current treatment of
method contracts. Thus, the size of a proof containing join rule applications would not be blown up by
the proofs corresponding to logical weakening; instead, the validity of the main proof goal would be
marked as relative to the validity of the logical weakening formulae.

New Analysis Techniques
We assume that the representation of symbolic execution as a DAG, being closer to the actual control
flow of the considered programs than the tree representation, opens up symbolic execution to different
kinds of static analysis techniques. In Section 5.2, we briefly studied the area of information flow
analysis as one potential candidate for a class of such techniques. A closer investigation of the benefits
of branch joining for an existing, provably sound information flow analysis based on symbolic execution
trees would be interesting. Furthermore, we endorse the study of approaches based on generalized path
conditions [SRK06; HKS06] with respect to their application on SE DAGs.
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Large Figures

Figure 6.1: Overview of join classes
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Figure 6.2: Join rule implementation
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Figure 6.3: Lattice abstraction framework and rules
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Figure 6.4: CloseAfterJoin rule
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Figure 6.5: FinishSymbolicExecutionUntilJoinPointMacro
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Figure 6.6: If-then-else rule implementation
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Figure 6.7: Sign Analysis Lattice 54



Figure 6.8: Boolean Lattice
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