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Abstract. We present the first static resource analysis of timed concur-
rent object programs. Instead of measuring the total resource consump-
tion over a complete execution, we measure the resource consumption at
different moments in time, that is, the resource consumption over time.
To obtain such a measure we perform a program transformation that
generates a program without time whose resource consumption corre-
sponds to the resource consumption of the timed program during time t.
The transformed program can then be analyzed with a combination of
existing tools. These provide upper bounds that safely approximate the
resource consumption of all possible behaviors of the program at all pos-
sible times. We implemented a prototype of the approach and evaluated
it on a complex program to demonstrate its feasibility.

1 Introduction

The use of static analysis to infer upper bounds on the resource consumption of
software systems is a very active area of research. Many tools have been recently
developed [7, 8, 10, 11, 15]. However, most effort has been focused on the analysis
of sequential programs. There is some initial research that tries to apply resource
analysis techniques to distributed and concurrent systems [1, 2, 12]. In contrast
to sequential systems, in a concurrent system it is not only important to estimate
the amount of consumed resources but also when they are consumed. If we have
a set of tasks to be executed, a system will behave differently, depending on
whether the tasks are scheduled simultaneously, sequentially, etc. Some aspects
of this richer concept of resource consumption are already explored in [2, 12].

We propose a novel approach for measuring concurrent resource consumption
based on a discrete time model. We present a static analysis that infers upper
bounds of the resource consumption over time. These upper bounds are expressed
as a function of the entry parameters of the program and the elapsed time
and allow to explore how resource consumption varies in a given program as
time advances. In our program the explicit aspects of time are captured in two
primitives, await duration(t) and until (t′), that suspend a task for a certain period
of time t or until the absolute time has reached t′. The main advantage of this
approach is that, by simply placing these time primitives at different locations
inside a program, we can obtain different kinds of behavior and analyze their
resource consumption.



The target of our analysis is a language based on concurrent objects. In this
language, each object owns a processor and executes in parallel with others.
Each object contains a set of tasks and only one task per object can be exe-
cuted at any given time, while the scheduling of tasks is non-deterministic and
non-preemptive. Communication and synchronization among objects is based
on asynchronous message passing and future variables. The language is inspired
by ABS [13] and the time primitives are (slightly simplified) taken from [6, 14].
However, the presented approach could be easily adopted to other concurrency
models based on creating and joining tasks.

To the best of our knowledge, our paper presents the first static resource anal-
ysis that analytically derives sound symbolic upper bounds for timed concurrent
programs. The analysis generates a set of upper bounds that summarize analyt-
ically the resource consumption of a program over time. The main contributions
of this work are:

– We define the novel concept of resource consumption over time (Sec. 3).
– We develop a sound program transformation that generates an untimed pro-

gram from a timed program (Sec. 4).
– We show how we can analyze the resulting untimed program with a combi-

nation of existing tools and how the results can be interpreted (Sec. 5).
– We illustrate the flexibility of the timed approach by inferring the peak cost

of an example borrowed from [2] (Sec. 6).

2 Timed Concurrent Programs

We adopt a lightweight object-oriented language. A program P consists of a set
of classes, each of them defines a set of fields and a set of methods. The set
of types includes the class names, the integer (Int) primitive type, the set of
future variable types fut(T ) and Unit. The latter is the default return type of
methods (like V oid in C). The notation T is used as a shorthand for T1, ...Tn,
and similarly for other names. Pure expressions (p) have no side effects. A pure
expression is local (naming convention pl) if it does not depend on any field.
The abstract syntax of class declarations CL, method declarations M , types T ,
variables v (x for local variables), and statements s is:

CL ::=class C {T f ;M} M ::=T m(T x){s; return p} v ::=x | this .f
s ::=s; s | v = e | if (p) s else s | while(p) s

await x? | await duration(pl) | until (pl) | release | cost p
e ::=new C(p) | x!m(p) | x.get | p T ::=C | Int |fut(T ) | Unit

We assume that all methods have a single return instruction at the end of the
method. If the method returns Unit, the return instruction is empty return.
Each object encapsulates a local heap which is not accessible from outside this
object, i.e., fields are always accessed using the this object, and any other object
can only access such fields through method calls. We assume that each program
includes a method called main(z) with a set of initial parameters z, from which
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c l a s s Hndset ( ts , smss ) {
Uni t no rma lBehav io r (mx , dur , t c ) {

i f (now ( )>t c && now ( )<t c +20)
midnightWindow (mx , dur , t c ) ;

e l s e {
t s ! c a l l ( dur ) ;
await durat ion (1 ) ;
no rma lBehav io r (mx , dur , t c ) ;

}}
Uni t midnightWindow (mx , dur , t c ) {

i f (now ( ) >= tc+20) {
norma lBehav io r (mx , dur , t c ) ;
} e l s e {

I n t i = 0 ;
whi le ( i < mx) {

smss ! sendSMS ( ) ;
i = i + 1 ;

}
await durat ion (1 ) ;
midnightWindow (mx , dur , t c ) ;

}}
}

c l a s s PhoneSvr{
Uni t c a l l ( dur ) {

whi le ( dur>0) {
cost 1 ;
dur = dur−1;
await durat ion (1 ) ;

}}
}

c l a s s SMSSvr{
Uni t sendSMS ( ) {

cost 1 ;
}

}

Uni t main (mx , dur , t c ) {
SMSSvr sms=new SMSSvr ( ) ;
PhoneSvr t s=new PhoneSvr ( ) ;
Hndset hs=new Hndset ( ts , sms ) ;
hs ! no rma lBehav io r (mx , dur , t c ) ;
}

Fig. 1. A timed program

execution will start. The main method does not belong to any class and has no
fields. The concurrency model is as follows: each object has a lock that is shared
by all the tasks that belong to the object. Data synchronization is by means of
future variables (denoted y): an await y? instruction is used to synchronize with
the result of executing a task y=x!m(p), where await y? is suspended until the
result assigned to the future variable y is available (i.e., the task is finished).
During suspension the object’s lock is released so that another pending task
on that object can take it. In contrast to await, the expression y.get blocks its
object (no other task of the same object can run) until y is available. Finally,
the instruction release releases the object’s lock unconditionally.

Time is a discrete magnitude. A timed program has a global clock common to
all concurrent components. The current time can be accessed through the pure
expression now() (which simply reads the value of the clock). Time is advanced
through the primitive await duration(pl) which releases the object’s lock until
time has advanced pl units (relative time progress) or until (pl) which releases
the object’s lock until time is at least pl (absolute time progress). Time only
advances when no task can progress any further.

2.1 Explicit Cost Model

We adopt the standard approach to obtain a parametric cost model. We intro-
duce a new statement cost p where p is a pure expression of integer type. When
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a statement cost p is executed, the result of evaluating p determines the amount
of resources consumed. The choice of the cost model (where the cost statements
are introduced) determines the resources that we want to observe. For exam-
ple, if we introduce a statement cost 1 after every instruction, we will infer an
upper bound on the number of executed instructions. Or we could add a cost
instruction to each new C instruction to measure the number of objects created.
Both time and cost annotations can be introduced automatically according to
the underlying architecture, network topology, or any other given criterion.

Example 1. Fig. 1 illustrates an example of a timed program with cost anno-
tations. The return instructions have been omitted given that all the methods
return Unit. The parameter types have also been omitted (they are all integers).
The program contains 3 classes: A phone server PhoneSvr that might process
calls of different duration. Each call lasts calltime time units and consumes one
resource per time unit; An SMS server SMSSvr that can process SMSs. Each
SMS is processed instantly consuming a resource unit. And the class Hndset that
models a possible behavior of the clients. In particular, it simulates a scenario
where the servers are receiving calls. The duration of calls is given by the param-
eter dur. At time tc, the behavior changes and we enter the midnight window
where we receive mx SMS per time unit. This exceptional behavior lasts until
time is tc+20 when it changes back to normal. This behavior is modelled by two
mutually recursive methods normalBehavior and midnightWindow. Finally, the main
method creates an SMS server sms, a phone server ts and calls normalBehavior.

2.2 Operational Semantics

A program state S is a set S = Ob ∪ T ∪ {clk(t)} where Ob is the set of all
created objects, T is the set of tasks (including finished tasks) and clk(t) is the
global clock with the current time t. The associative and commutative union
operator on states is denoted by white-space. An object is a term ob(o, a, lk)
where o is the object identifier, a is a mapping from the object fields to their
values, and lk the identifier of the active task that holds the object’s lock or ⊥
if the object’s lock is free. Only one task can be active (running) in each object
and hold its lock. All other tasks are pending to be executed, or finished if they
terminated and released the lock. A task is a term tsk(tk , o, l, s) where tk is
a unique task identifier, o identifies the object to which the task belongs, l is
a mapping from local (possibly future) variables to their values, and s is the
sequence of instructions to be executed or s = ε(val) if the task has terminated
and the return value val is available. Created objects and tasks never disappear
from the state in the semantics.

Given a program P with a main method main(z) and a set of initial values val,
the execution of a program starts from the initial state S0 (val) = {obj(0, f,⊥),
tsk(0, 0, buildLoc(val,main), body(main)), clk(1)} where we have an initial ob-
ject with identifier 0 with a free lock ⊥. f is an empty mapping (since main

has no fields). The local state is generated by buildLoc(val,main) that maps
the main method parameters z to the given entry values val and the rest
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(activate)

ob(o, a,⊥)
. . . . . . . .

tsk(tk , o, l, {take; s})
. . . . . . . . . . . . . . . . .

→ ob(o, a, tk)
. . . . . . . .

tsk(tk , o, l, s)
. . . . . . . . . .

(release)

ob(o, a, tk)
. . . . . . . .

tsk(tk , o, l, {release; s})
. . . . . . . . . . . . . . . . . . .

→ ob(o, a,⊥)
. . . . . . . .

tsk(tk , o, l, {take; s})
. . . . . . . . . . . . . . . . .

(assignment)

val = eval(p, a, l), l′ ] a′ = (l ] a)[v → val]

ob(o, a, tk)
. . . . . . . .

tsk(tk , o, l, {v = p; s})
. . . . . . . . . . . . . . . . . .

→ ob(o, a′, tk)
. . . . . . . . .

tsk(tk , o, l′, s)
. . . . . . . . . . .

(cost)

c = eval(p, a, l)

ob(o, a, tk) tsk(tk , o, l, {cost p; s})
. . . . . . . . . . . . . . . . . .

c→ tsk(tk , o, l, s)
. . . . . . . . . .

(await1)

l(y) = tk1, (lk = tk ∨ lk = ⊥)

ob(o, a, lk)
. . . . . . . .

tsk(tk , o, l, {await y?; s})
. . . . . . . . . . . . . . . . . . . .

tsk(tk1, o1, l1, ε(v))
→ ob(o, a, tk)

. . . . . . . .
tsk(tk , o, l, s)
. . . . . . . . . .

(await2)

l(y) = tk1, s1 6= ε(v)

ob(o, a, tk)
. . . . . . . .

tsk(tk , o, l, {await y?; s})

tsk(tk1, o1, l1, s1))→ ob(o, a,⊥)
. . . . . . . .

(return)

val = eval(p, a, l)

ob(o, a, tk)
. . . . . . . .

tsk(tk , o, l, {return p})
. . . . . . . . . . . . . . . . . .

→ ob(o, a,⊥)
. . . . . . . .

tsk(tk , o, l, ε(val))
. . . . . . . . . . . . . .

(get)

l(y) = tk1, l
′ = l[x→ v]

ob(o, a, tk) tsk(tk , o, l, {x=y.get; s})
. . . . . . . . . . . . . . . . . . . .

tsk(tk1, o1, l1, ε(v))
→ tsk(tk , o, l′, s)

. . . . . . . . . . .

(New-Object)

fresh(o′), l′ = l[x→ o′]
a′ = initAtts(eval(p, a, l), C)

ob(o, a, tk) tsk(tk , o, l, {x = new C(p); s})
. . . . . . . . . . . . . . . . . . . . . . . . .

→ tsk(tk , o, l′, s)
. . . . . . . . . . .

ob(o′, a′,⊥)

(Async-Call)

l(x) = o1 6= null , l′ = l[y → tk1],
fresh(tk1), l1 = buildLoc(eval(p, a, l),m)

tsk(tk , o, l, {y = x!m(p); s})
. . . . . . . . . . . . . . . . . . . . . .
ob(o, a, tk)→ tsk(tk , o, l′, s)

. . . . . . . . . . .
tsk(tk1, o1, l1, body(m))

Fig. 2. Semantics

of local variables to default values. The initial time is one. Given a method
M ::=T m(T x){s; return p}, the function body(M) returns {take; s; return p} i.e.
the sequence of statements of the method preceded by an auxiliary instruction
take that fetches the lock.

Execution proceeds from S0 by applying non-deterministically the semantic
rules depicted in Figs. 2 and 3. We omit the rules for if and while as they are
standard, they can be found in the App. B. The operational semantics is given
in a rewriting style where a step is a transition of the form ab

c→ b ′ n, where
the dotted underlining indicates that term b is rewritten into b′; we look up the
term a but do not modify it and hence it is not included in the subsequent state;
term n is newly added to the state; and c is the cost of the transition according to
the cost model. We omit c if it is zero. For simplicity, we assume that only local
variables are assigned in the rules New-Object,Async-Call and Get. Fields can
still be modified with the rule Assignment. Transitions are applied according to
the rules as follows.
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(await duration)

t′ = t

tsk(tk , o, l, {await duration(pl); s}). . . . . . . . . . . . . . . . . . . . . . . . . . . .
ob(o, a, tk) clk(t)

→ tsk(tk , o, l, {until (pl + t′); s})
. . . . . . . . . . . . . . . . . . . . . . . .

(until2)

t′ = eval(pl, l), t
′ > t

tsk(tk , o, l, {until (pl); s}). . . . . . . . . . . . . . . . . . . .
ob(o, a, tk)
. . . . . . . .

clk(t)

→ ob(o, a,⊥)
. . . . . . . .

tsk(tk , o, l, { untilp (pl); s}). . . . . . . . . . . . . . . . . . . . .
(until1)

t′ = eval(pl, l), t
′ ≤ t

ob(o, a, tk) tsk(tk , o, l, {until (pl); s}). . . . . . . . . . . . . . . . . . . .
clk(t)→ tsk(tk , o, l, s)

. . . . . . . . . .

(until3)

t′ = eval(pl, l), t
′ ≤ t

ob(o, a,⊥)
. . . . . . . .

tsk(tk , o, l, { untilp (pl); s}). . . . . . . . . . . . . . . . . . . . .
clk(t)→ ob(o, a, tk)

. . . . . . . .
tsk(tk , o, l, s)
. . . . . . . . . .

(tick)

canAdv, t′ = t+ 1

clk(t)
. . . .

→ clk(t′)
. . . . .

Fig. 3. Time semantics

Activate: A task that has a take statement obtains its object’s lock if it is free.
Release: release unconditionally yields the object’s lock so any other task of the
same object can take it. The instruction take is added to the pending instructions.
Assignment: The variable v gets assigned to the result of evaluating the pure
expression p given the current state a and l (denoted eval(p, a, l)). The notation
l′ = l[v → val] denotes that the mapping l′ is equal to l for all values except v
where l′(v) = val. We assume local variables and fields are always different. If
v is a local variable, l is updated l′ = l[v → val]. If v is a field, a is updated
a′ = a[v → val]. We express that as l′ ] a′ = (l ] a)[v → val].
Cost: c resource units are consumed where c is the result of evaluating the
expression p in the current state. As the object o is not modified, it is not
included in the resulting state.
Await1: The (local) future variable we are waiting for points to a finished task
and the await is completed. The finished task t1 is only looked up but it does
not disappear from the state as its return value may be needed later on. To
complete the await, the object’s lock must be free or in the task tk . As a result
of applying the rule, the task tk obtains (or keeps) the object’s lock.
Await2: If the task we are awaiting for is not finished, We release the lock.
Return: When return is executed, the return value val is stored (by adding
the instruction ε(val)) so that it can be obtained by the future variables that
reference the task. Besides, the lock is released and will never be taken again by
that task. Consequently, that task is finished.
Get: An x = y.get instruction waits for the (local) future variable but without
yielding the lock. It stores the value associated with the future variable y in x.
New-Object: An active task tk in object o creates an object o′ of type C, its
fields are initialized with default values and the given parameters eval(p, a, l)
(initAtts) and o′ is introduced to the state with a free lock.
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Async Call: A method call creates a new task (the initial state is created by
buildLoc using the calling values eval(p, a, l)) with a fresh task identifier t1 which
is associated to the corresponding future variable y in l′.
Await duration: It generates an until (pl + t′) instruction that substitutes the
original await duration(pl) where t′ is a constant with the current time of the
clock.
Until1: If the current time is greater or equal than the time we are waiting for
and the task has the object’s lock, we complete the until (pl) instruction. The
time we are waiting for is the result of evaluating the pure local expression pl.
We write eval(pl, l) to emphasize that pl does not depend on the object’s state.
Until2: If we have not reached the time we are waiting for, we release the lock.
we substitute untilp (pl) for until (pl). untilp (pl) will be able to take back the lock.
Its behavior is analogous to the auxiliary instruction take with respect to release.
Until3: If the current time is greater or equal than the time we are waiting for
and the lock is free, we complete the instruction untilp (pl) and obtain the lock.
Tick: The rule tick makes the time advance one unit. It is only applicable if
no task can progress. This behavior reflects the run-to-completion policy and is
enforced by the function canAdv. The latter is true only when no other semantic
rule can be applied to any task of the current state.

3 Cost over Time

The traditional definition of cost used in static resource analysis is concerned
with the total amount of resources consumed during the complete execution of
a program. Given program P and input values val, we can define the cost of a
trace as follows:

Definition 1 (Cost of a trace). Let tr(val) = S0(val)
c0→ S1

c1→ · · · be a
(possibly infinite) execution trace where val are the input values of the main
method and ci the cost of the semantic transition leading to state Si+1. The cost
of executing tr(val) is Costtr(val) =

∑
i ci i.e. the sum of the costs of the all

transitions in the trace tr.

Let T RP be the set of all possible traces of a program for all possible input
values, we define an upper bound of such a program:

Definition 2 (Upper bound). Let T be the types of the input parameters of
a program P, an upper bound function is defined as ub : T → R. ub(x) is a
valid upper bound of P iff for all input values val and traces tr(val) ∈ T RP :
Costtr(val) ≤ ub(val).

A conditional upper bound is an upper bound ub with a precondition such that
the upper bound is only valid when the input parameters satisfy the precondition.

The main problem with this upper bound definition is that it does not give
any information on how and when the resources are consumed. In the example
from Fig. 1 the total resource consumption is not bounded since it consists of an
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Fig. 4. Resource consumption profiles of the model from Fig. 1 which coincide with
their inferred upper bounds

infinite execution that consumes a non-zero amount of resources at each iteration.
For programs with timed behavior, we are interested in their consumption over
time, that is, the maximum possible amount of resources consumed at a moment
in time t.

Example 2. In Fig. 4, we show the resource consumption over time of our pro-
gram from Fig. 1 given different possible input parameters. We generated values
by executing the program with specific input values, and derived concrete values
from our analytically obtained upper bounds. In all three cases, the upper bounds
are precise. The first parameter of main determines the height of the midnight
window, the second the duration of the calls, and the third when the midnight
window takes place. Note that when a call is started, its cost is distributed in
time. In the third profile, we can see how at the start of the midnight window
there are still some calls in progress which cause an extra peak in resource con-
sumption. On the other hand, when the midnight window ends, it takes some
time until the cost goes back to 5 as calls are started one at a time.

Definition 3 (Cost of a trace in time). Let tr(val) = S0(val)
c0→ S1

c1→ · · ·
be an execution trace as above. The cost of executing such a trace at time tg
is the sum of the cost of all transitions where the time is tg. Costtr(val)(tg) =∑
i|clk(tg)∈Si+1

ci.

The goal of our analysis is to approximate (safely) the behavior of systems
over time by obtaining a set of (conditional) upper bounds that are parametrized
by the time we want to observe.

Definition 4 (Time-parametrized upper bound). Let T be the types of the
input parameters of a program P. A time-parametrized upper bound function has
type ub : (T ,N) → R. Then ub(x, tg) is a valid time-parametrized upper bound
of P iff for all input values val, tg ∈ N and tr(val) ∈ T RP : Costtr(val)(tg) ≤
ub(val, tg).
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1 : α(cost c) ⇒ if (tg==now()) cost c;
2 : α(y = x!m(v)) ⇒ y = x!m(v, tg)
3 : α(s1; s2) ⇒ α(s1);α(s2)
4 : α( if (p) s1 else s2) ⇒ if (p) α(s1) else α(s2)
5 : α(while(p) s) ⇒ while(p) α(s)
6 : α(s) ⇒ s otherwise

Fig. 5. Transformation over the statements

4 Program Transformation

To analyze timed programs we use a sound program transformation that gen-
erates untimed programs which can be analyzed by standard tools. In a first
step (Sec. 4.1) we transform a given program P into a program Ptg such that
the resource consumption of P at time tg is the same as the total resource con-
sumption of Ptg. Then we perform a second transformation (Sec. 4.2) that safely
models the advance of time.

4.1 Cost Model Specialization

To achieve the desired effect, every method (including the main method) is
equipped with an extra parameter tg that holds the time we want to observe.
We assume tg is disjoint with the existing variable names. The statements of
each method are transformed using the function α defined in Fig. 5. A method
declaration T m(T x){s; return p; } becomes T m(T x, Int tg){α(s); return p; }.

The function α defined in Fig. 5 works as follows: (1) we substitute every cost
statement by a conditional statement that only consumes resources if the current
time is tg; (2) tg is added to the method calls as a parameter; (3),(4) and (5) the
tranformation of non-atomic statements is the transformation of the statements
that compose them; and (6) the remaining statements are not modified.

To prove soundness of the transformation, we define the concept of extended
local state and α-equivalent state.

Definition 5 (Extended local state). Let l be a local state of a task, then
ltg = l + [tg → y] is a mapping where for every x ∈ Dom(l), l(x) = ltg(x) and
ltg(tg) = y. We call ltg an extended local state of l with tg.

Definition 6 (α-equivalent state). Define an extended execution state Sα:
Sα = {e | e ∈ S ∧ e 6= tsk(tk , o, l, s)}∪

{tsk(tk , o, l + [tg → tgo], α(s)) | tsk(tk , o, l, s) ∈ S}
We apply the transformation α to all the pending statements of all the tasks in S
and take their extended local state. The objects and the clock remain unchanged;
tg0 denotes the unique initial value of the variable tg throughout the execution.

We use the function α for two purposes: the function defines the transforma-
tion over the original program and, at the same time, we use it to establish a
relation between execution states of the original and transformed program.
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1 : τ(y = x!m(p)) ⇒ y = x!m(p, time)
2 : τ(until (pl)) ⇒ release; time = max(pl, time);
3 : τ(await duration(pl)) ⇒ release; time = max(time+ pl, time);
4 : τ(await y?) ⇒ await y?; time = max(time, y.time);
5 : τ( untilp (t)) ⇒ take; time = max(t, time);
6 : τ(s1; s2) ⇒ τ(s1); τ(s2)
7 : τ( if (p) s1 else s2) ⇒ if (p) τ(s1) else τ(s2)
8 : τ(while(p) s) ⇒ while(p) τ(s)
9 : τ(s) ⇒ s otherwise

Fig. 6. Second transformation over the statements

Theorem 1 (Soundness). Given a program P and its transformed program
Ptg, for every trace tr(val) ∈ T RP whose final state is S, there is a trace
tr ′(val, tg0) ∈ T RPtg

whose final state is Sα and Costtr(val)(tg0) = Costtr ′(val,tg0)
.

This states that each behavior of the original program can be simulated by
the transformed program. In addition, the transformed program Ptg captures
the amount of the total cost consumed at time tg0 (the input parameter).

Proof idea By induction on the length of a trace. We show that for each step
S

c→ Snew in P, there is a step or a sequence of steps in the transformed program
between α-equivalent states Sα

c1→ S1
c2→ · · · cm→ Sαnew. Moreover, the cost

∑m
i=1 ci

is c if clk(tg0) ∈ S and 0 if clk(t′) ∈ S for t′ 6= tg0. We can apply the same
semantic rules in the original and the transformed program for all cases except
for rule (Cost) and reach an α-equivalent state (the addition of the variable tg
does not affect the behavior). For rule (Cost) we show that the cost is consumed
only if the time is equal to tg (thanks to the conditional statement) and the
resulting state is an α-equivalent state. A detailed proof is in App. B.1. ut

Corollary 1. An upper bound of Ptg is a time-parametrized upper bound of P.

4.2 Rendering Time Explicit

Now we eliminate timing behavior from our programs. That transformation takes
a program Ptg and generates etPtg (explicit time program). The program etPtg
does not contain any timing constructs. The transformation adds a new param-
eter time to each method of the program (disjoint from all existing variable
names). We transform the program in such a way that the local variable time
of every task coincides with the global clock whenever the task is executing.

After the execution of each method the value of variable time is returned
together with its original return value. For the technical realization we as-
sume that future variables now store a pair of values. The original value is
accessed with y.get and the time value with y.time. A method declaration
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Transformed call Transformed normalBehavior

1 c a l l ( dur , tg , t ime ) {
2 whi le ( dur>0) {
3 i f ( tg==time )
4 cost 1 ;
5 dur= dur−1;
6 r e l e a s e ; t ime=max(

t ime+1, t ime ) ;
7 }
8 re tu rn t ime }

9 norma lBehav io r (mx , dur , tc , tg , t ime ) {
10 i f ( t ime>t c && time<t c +20)
11 midnightWindow (mx , dur , tc , tg , t ime ) ;
12 e l s e {
13 t s ! c a l l ( dur , tg , t ime ) ;
14 r e l e a s e ; t ime=max( t ime+1, t ime ) ;
15 norma lBehav io r (mx , dur , tc , tg , t ime ) ;
16 }
17 re tu rn t ime }

Fig. 7. Some methods of the transformed program

T m(T x){s; return p} becomes (T, Int) m(T x, Int time){τ(s); return (p, time)}.
Methods that did not return a value now return time.

Method statements are transformed using the function τ defined in Fig. 6.
(1) Whenever a method is called, the current time is passed as a parameter.
Hence, new tasks have a local time that starts when the task is created. For
the until (pl) (2) and await duration(pl) (3) statements the lock is released and
time is updated. (4) When we execute an await y? we compare the current
local time and the time returned by the future and keep the maximum. (5)
untilp (t) is an auxiliary statement used when the lock of the task has been
released. We substitute it by the auxiliary instruction take generated by release

and then update the time value. This way the transformations of until (pl) and
untilp (t) are coherent. Note that untilp (t) cannot appear in a program because
it is an auxiliary instruction. However, by defining its transformation, we can
use τ to define τ -equivalent execution states and prove the soundness of the
transformation (see Def. 8 and Thm. 4.2). (6) (7) and (8) the tranformation
of non-atomic statements is the transformation of the statements that compose
them. (9) The remaining statements are not modified. Finally, every reference
to now() is substituted by a reference to the new local variable time.

Example 3. In Fig. 7 we show some of the transformed methods. Every method
has two additional parameters tg and time; the references to now() have been
substituted by time (lines 3 and 10); The await duration(1) instructions have
been replaced by a release followed by an update of the variable time (lines 6
and 14); the methods return the time (lines 8 and 17) and the cost statement in
method call is wrapped into a conditional statement (line 3).

This transformation is valid for non-blocking programs. Intuitively, a program
is blocking if we can have a situation where a task is waiting for the completion
of another without releasing its object’s lock (only possible with y.get instruc-
tions). In that case, other tasks in the same object could be delayed in time
although they are ready to execute because they cannot access the lock. A suf-
ficient condition to guarantee that a program is non-blocking is that every y.get
instruction is preceded by an await y?. Given that condition, the task related to
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y is guaranteed to be finished when y.get is reached and the y.get instruction
will be completed immediately without blocking.

Definition 7 (Non-blocking program). A program P is non-blocking iff for
every reachable state S, if tsk(tk , o, l, y.get; s) ∈ S such that l(y) = tk1, then
tsk(tk1, o1, l1, ε(v)) ∈ S.

Similar to the previous transformation we can define a τ -equivalent execution
state of S by applying the transformation to all the pending statements of all
the tasks in S, obtaining their extended local state and removing the clock. The
objects remain unchanged. A necessary condition for a state to be τ -equivalent is
that the values of the local variables time in all the tasks that hold the object’s
lock correspond to the global clock. The tasks without the lock may have an
outdated time value (smaller or equal than the global clock).

Definition 8 (τ-equivalent state). Let S be a state of the original program
with clk(t) ∈ S. Then a τ -equivalent state Sτ to S is defined as:
Sτ = {ob(o, a, lk) | ob(o, a, lk) ∈ S}∪

{tsk(tk , o, l + [time→ Ttk ], {τ(s); return (p, time)})
| tsk(tk , o, l, {s; return p}) ∈ S}

where Ttk represents the current time of each task. We require that Ttk ≤ t for
all tasks and Ttk = t for the tasks that have the lock.

Theorem 2 (etPtg Simulates Ptg). Given a non-blocking program Ptg and its
transformed program etPtg, then for every trace tr(val) ∈ T RPtg with states

S1..n there is a trace tr ′(val, 1) ∈ T RetPtg
that contains the τ -equivalent states

Sτ1..n, in the same order, Sτn being the final state of tr ′ and Costtr(val)(tg) =

Costtr ′(val,1). Note that tr ′ can have intermediate states that do not have an
equivalent in tr. Additionally, consecutive states in tr might have a single τ -
equivalent state in tr ′.

Proof idea By induction on the length of a trace. The base case is trivial. In
the inductive step, we assume that we have a trace tr ∈ T RPtg

of length n and
a trace tr′ ∈ T RetPtg

such that tr′ contains n τ -equivalent states to the ones
appearing in tr in the same order (tr′ can have additional intermediate states).
The cost of tr and tr′ is equal. We prove that for any step from the final state
of tr S

c→ Snew, there is a step or sequence of steps in the transformed program
that reaches a τ -equivalent state with the same resource consumption.

For the rules that are applied to a task with a lock and that are not affected
by τ we apply the same rule to the transformed program and obtain the desired
state. The fact that the program is non-blocking implies that when we apply
(Tick), all the locks must be free. If we apply (Tick) in Ptg, all the local variables
time become outdated but as the tasks do not have the lock, the state in tr′ is
still τ -equivalent. For the rules (Await1), (Until1), (Until2), and (Until3) we
have to prove that the assigned time in tr′ corresponds to the clock in tr. The idea
is that since the rules are applicable (the awaited task is finished or the awaited
time is reached), the clock cannot advance before they are applied (this is only
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valid for non-blocking programs). Therefore, max(time, v.time), max(pl, time)
and max(t, time) yield the correct value of the clock and the reached state in
tr′ is τ -equivalent. Similarly, since the rule (Activate) is applicable (a release

or task creation), the clock cannot have advanced and the variable time is not
outdated. The statement await duration(d) can be reduced to until (t + d). A
detailed proof can be found in App. B.2. ut

Corollary 2. An upper bound of etPtg is an upper bound of Ptg.

Note that theorem states the soundness of the transformation but not its
completeness. The transformation is in fact not complete. That is, the trans-
formed program can have additional behaviors that are not present in the origi-
nal program. In particular, if we have an until (pl) statement, it is possible that
when executed eval(pl, l) ≤ t and the semantic rule Until1 is applied. This rule
does not release the lock. However, the corresponding transformed program will
always release the lock τ(until (pl)) = release; time = max(pl, time);. The trans-
formed program could then schedule another pending task whereas the original
program cannot do the same. However, we do not expect any additional loss
of precision for this reason because the later analyses already conservatively
approximate a possible release of the lock in any instruction that contains a
conditional release (such as await y?).

5 Analyzing Untimed Programs

We are able to apply existing tools for resource analysis on transformed programs
to obtain an upper bound or a set of upper bounds, but it is crucial to ensure
high precision of the analysis (cf. Fig. 4). To achieve this we combine the frontend
of the resource analyzer COSTABS [1] with the more recent solver CoFloCo1

[10]. The input of COSTABS is an untimed ABS program (i.e., a superset of
the language in Sect. 2) and generates a set of cost equations that characterize
the cost of the program and can be solved by CoFloCo. Cost equations are
non-deterministic recurrence equations annotated with constraints.

Example 4. COSTABS+CoFloCo generates 15 conditional upper bounds for the
main method of our example. We show some of them, the complete data from
the example can be found in App. A.

# Upper Bound Precondition
6 tg (mx ≥ 1 ∧ tg ≥ 2 ∧ dur ≥ tg + 1 ∧ tc ≥ tg + 1)

8 mx+ tc (mx ≥ 1∧tc ≥ 1∧tg ≥ tc+2∧dur ≥ tg+1∧tc+18 ≥ tg)∨(dur =
tg ∧ mx ≥ 1 ∧ tc ≥ 2 ∧ tc + 18 ≥ dur ∧ dur ≥ tc + 2) ∨ (tg =
tc+ 19∧mx ≥ 1∧ tg ≥ 20∧ dur ≥ tg + 1)∨ (tg = tc+ 1∧mx ≥
1 ∧ tg ≥ 2 ∧ dur ≥ tg + 1)

12 tg − tc− 19 (mx ≥ 1∧tc ≥ 1∧tg ≥ tc+21∧tg ≥ dur+tc∧dur+tc+18 ≥ tg)

15 mx+ dur + tc− tg (mx ≥ 1∧tg ≥ dur+1∧tg ≥ tc+2∧tc+18 ≥ tg∧dur+tc ≥ tg+2)

1 Other resource analysis tools could be used as long as they admit a parametric cost
model, i.e., it is must be possible to establish the cost at each program point.

13



10 20 30 40 50 60
0
5

10
15
20
25
30
35
40

T ime

C
os
t

1 6 5 8 15 13 9 12 4
Upper Bound #

main(20, 30, 20)

Fig. 8. A resource consumption profile generated to observe other upper bounds
1Uni t m(p , q , r , s , n ) {
2 awa i t d u r a t i o n ( nondet ) ;
3 t h i s ! r ( r ) ;
4 whi le (n>0){
5 t h i s ! p ( p ) ;
6 y=t h i s ! q ( q ) ;
7 await y ? ;
8 awa i t d u r a t i o n ( nondet ) ;
9 awa i t d u r a t i o n (1 ) ;

10 n=n−1;
11 } t h i s ! s ( s ) ;
12}

13Uni t r /p/q/ s ( c ) {
14 awa i t d u r a t i o n ( nondet ) ;
15 cost c ;
16}

# Upper bound Precondition

1 max(s, q) + r + n ∗ p n ≥ 3 ∧ tg ≥ n
2 q + r + (tg + 1) ∗ p tg ≥ 2 ∧ n ≥ tg + 2

Fig. 9. A timed model annotated to obtain peak cost

In Fig. 4, we could observe the precision of the upper bounds that correspond
to the resource consumption in simulations for concrete inputs. By examining the
upper bounds, we can get a good approximation of the different behaviors of the
program. Preconditions can be useful to see under which conditions a program
behaves differently. In particular, we can generate test data from preconditions
that generate a certain behavior. We used this idea to create execution patterns
of our example that were not observed in the initial simulations, for example
upper bound #15 in Fig. 8. The upper bounds here are also tight and the
intervals where each upper bound is valid are annotated with its number.

6 Inferring Peak Cost

In Fig. 9, we introduce a new example to illustrate how explicit time primitives
can be used for the purpose of modelling peak cost. The example is an adaptation
of the running example from [2]. In the original example, the methods r,p,q and
s are left unspecified. We assume they have all the same implementation and
consume the amount c of resources which is given by the input parameter. With
peak cost we mean the following: at any time tg there is a set of pending tasks
that could be executed simultaneously. Let C(tg) be the sum of the cost of these
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tasks at tg. Then the peak cost is the maximum value that C(tg) attains. In [2]
the notion of simultaneity is defined based on synchronization points await y?
(line 7). In order to emulate the behavior that corresponds to peak cost analysis,
we simply make time advance one unit right after each synchronization point
(line 9 in gray). In addition, with this concept of simultaneity, tasks do not
need to start executing immediately but can be delayed an indefinite amount of
time. We can model that by inserting a non-deterministic await duration(nondet)
whenever a method starts or restarts to execute (lines 2, 8 and 14).

After adding these annotations we apply our analysis and obtain upper
bounds of the peak cost. On the right side of Fig. 9 we display the two main
conditional upper bounds (we leave out some border cases) computed by our
analysis. The first one corresponds to the result obtained by [2] and captures
that there can be n pending instances of task p to be executed simultaneously,
but only one instance of q as the program waits for each instance to finish before
calling the next one. This is the peak cost for executing the complete program
as reflected in the precondition tg ≥ n. The second upper bound gives more fine-
grained information on how the tasks might accumulate in the loop as time tg
passes. This kind of analysis cannot be obtained with the method of [2], because
it involves analyzing timed behavior.

7 Related Work, Conclusions and Future Work

To the best of our knowledge, we present the first resource analysis for timed
concurrent object-oriented programs. The analysis is based on an inexpensive
program transformation into untimed programs. The untimed programs can be
analyzed with existing tools for resource analysis [7, 8, 10, 11, 15] so our analysis
directly benefits from any improvement of these techniques. Because the timing
behavior is parametric, our analysis opens multiple possibilities for reasoning
about concurrent programs. For instance, we could generate timing annotations
according to a network model and observe how processing power is consumed.

The most closely related work is about resource analysis of concurrent objects
[1, 2]. The main focus of [1] is on how to deal with shared memory in concurrent
applications and they propose the notion of cost centers as a way of computing
the cost of different components (objects) separately. In contrast, our approach
analyzes cost over time—it can be seen as a layer on top of their analysis. As
mentioned in Sec. 6, paper [2] does not measure total cost but peak cost, i.e., the
maximum cost a component can consume at any given time. The crucial differ-
ence is that in our analysis the cost is determined by the explicit time behavior,
whereas [2] abstracts away from timed behavior and uses the maximal degree
of parallelism obtained from a May-Happen-in-Parallel analysis [3]. Because we
have explicit time primitives, we can infer upper bounds that depend on time.
Additionally, we can infer peak cost parametrized with time (see Sec. 6). The
authors of paper [12] define a type system to infer upper bounds on two cost
models (work and depth) for functional programs. work is the total cost of the
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program and depth is similar to the maximum time that can be reached in any
part of the program if we make time advance each time resources are consumed.

Timed automata [4] have been widely used in the analysis of timed systems.
In particular, they have been applied to concurrent object-oriented programs [9],
however, with a different focus: to transform such programs into timed automata
to check their schedulability. Priced timed automata [5] model systems with
both time and resources, but they differ from our setting in crucial ways, having
continuous time and no input parameters. They also focus on different properties,
such as minimum-cost reachability.

Our current analysis does not support blocking programs. When we have
a blocking program, there can be extra delays in tasks after instructions that
release an object’s lock (await y?, release, and await duration(t)). These extra
delays depend on the blocking instructions that might interleave with such tasks
and they must be taken into account to update the time variable correctly. How
to approximate blocking programs safely and precisely is left to future work.

References

1. E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, and G. Puebla. Cost Anal-
ysis of Concurrent OO programs. In Proc. of APLAS’11, volume 7078 of LNCS,
pages 238–254. Springer, Dec. 2011.

2. E. Albert, J. Correas, and G. Román-Dı́ez. Peak Cost Analysis of Distributed
Systems. In 21st International Static Analysis Symposium (SAS’14), volume 8723
of LNCS, pages 18–33. Springer-Verlag, 2014.

3. E. Albert, A. Flores-Montoya, and S. Genaim. Analysis of may-happen-in-parallel
in concurrent objects. In H. Giese and G. Rosu, editors, FORTE, volume 7273 of
LNCS, pages 35–51. Springer-Verlag, 2012.

4. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

5. G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn,
and F. Vaandrager. Minimum-cost reachability for priced time automata. In
M. Di Benedetto and A. Sangiovanni-Vincentelli, editors, HSCC, volume 2034 of
LNCS, pages 147–161. Springer, 2001.

6. J. Bjørk, F. Boer, E. Johnsen, R. Schlatte, and S. Tapia Tarifa. User-defined
schedulers for real-time concurrent objects. Innov. Syst. Softw. Eng., 9(1):29–43,
Mar. 2013.

7. M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Alternating runtime
and size complexity analysis of integer programs. In TACAS, 2014.

8. Q. Carbonneaux, J. Hoffmann, and Z. Shao. Compositional certified resource
bounds. In PLDI, 2015. To Appear.

9. F. de Boer, T. Chothia, and M. Jaghoori. Modular schedulability analysis of
concurrent objects in creol. In F. Arbab and M. Sirjani, editors, FSEN, volume
5961 of LNCS, pages 212–227. Springer, 2010.
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The appendix is provided for the reviewers’ convenience, it is not part of the paper

A Complete Solution of the Example

We analyzed the example program with the following precondition: dur ≥ 1 ∧
mx ≥ 1∧ tc ≥ 1∧ tg ≥ time = 1. It determines that dur mx and tc are positive,
the initial time is 1 and that the time we want to observe (tg) is positive. We
added the precondition to avoid analyzing uninteresting cases (such as when
tg < time at the beginning of the program). The complete results of the analysis
are in Fig. 10.

# Upper Bound Precondition

1 1 (dur = 1 ∧ tc = tg ∧ mx ≥ 1 ∧ tc ≥ 2) ∨ (dur = 1 ∧ mx ≥
1 ∧ tc ≥ 1 ∧ tg ≥ tc + 21) ∨ (dur = 1 ∧mx ≥ 1 ∧ tg ≥ 2 ∧ tc ≥
tg + 1) ∨ (tc + 20 = tg ∧ 20 ≥ dur ∧ mx ≥ 1 ∧ dur ≥ 1 ∧ tc ≥
1) ∨ (tg = 1 ∧mx ≥ 1 ∧ dur ≥ 1 ∧ tc ≥ 1)

2 2 (dur = 2 ∧ mx ≥ 1 ∧ tg ≥ 3 ∧ tc ≥ tg + 1) ∨ (dur = 2 ∧ tc =
tg ∧mx ≥ 1∧ tc ≥ 3)∨ (dur = 21∧ tc+ 20 = tg ∧mx ≥ 1∧ tc ≥
2)∨ (dur = 2∧mx ≥ 1∧ tc ≥ 1∧ tg ≥ tc+21)∨ (dur = 21∧ tc =
1 ∧ tg = 21 ∧mx ≥ 1) ∨ (dur = 2 ∧ tg = 2 ∧mx ≥ 1 ∧ tc ≥ 2)

3 mx (mx ≥ 1∧dur ≥ 1∧tc ≥ 1∧tc+18 ≥ tg∧tg ≥ dur+tc)∨(tc+19 =
tg ∧ 19 ≥ dur ∧mx ≥ 1 ∧ dur ≥ 1 ∧ tc ≥ 1)

4 dur (tc = tg ∧mx ≥ 1 ∧ dur ≥ 3 ∧ tc ≥ dur + 1) ∨ (mx ≥ 1 ∧ dur ≥
3 ∧ tc ≥ 1 ∧ tg ≥ dur + tc + 19) ∨ (mx ≥ 1 ∧ dur ≥ 3 ∧ tg ≥
dur+1∧ tc ≥ tg+1)∨ (dur = tg∧mx ≥ 1∧ dur ≥ 3∧ tc ≥ dur)

5 tc (tg = tc ∧mx ≥ 1 ∧ tg ≥ 2 ∧ dur ≥ tg + 1)

6 tg (mx ≥ 1 ∧ tg ≥ 2 ∧ dur ≥ tg + 1 ∧ tc ≥ tg + 1)

7 mx+ 1 (dur + tc = tg + 1 ∧mx ≥ 1 ∧ tc ≥ 2 ∧ tg ≥ tc + 2 ∧ tc + 18 ≥
tg) ∨ (dur = 2 ∧ tc + 1 = tg ∧mx ≥ 1 ∧ tc ≥ 2) ∨ (tc = 1 ∧ tg =
dur∧20 ≥ tg∧mx ≥ 1∧tg ≥ 3)∨(dur = 20∧tc+19 = tg∧mx ≥
1 ∧ tc ≥ 2) ∨ (dur = 2 ∧ tc = 1 ∧ tg = 2 ∧mx ≥ 1)

8 mx+ tc (mx ≥ 1∧tc ≥ 1∧tg ≥ tc+2∧dur ≥ tg+1∧tc+18 ≥ tg)∨(dur =
tg ∧ mx ≥ 1 ∧ tc ≥ 2 ∧ tc + 18 ≥ dur ∧ dur ≥ tc + 2) ∨ (tg =
tc+ 19∧mx ≥ 1∧ tg ≥ 20∧ dur ≥ tg + 1)∨ (tg = tc+ 1∧mx ≥
1 ∧ tg ≥ 2 ∧ dur ≥ tg + 1)

9 dur − 19 (tc + 20 = tg ∧ mx ≥ 1 ∧ dur ≥ 22 ∧ tc + 19 ≥ dur) ∨ (dur =
tg∧mx ≥ 1∧ tc ≥ 2∧ dur ≥ tc+21)∨ (dur+ tc = tg+1∧mx ≥
1 ∧ dur ≥ 22 ∧ tc ≥ 2) ∨ (dur = tc + 20 ∧ dur = tg ∧ mx ≥
1∧dur ≥ 22)∨ (mx ≥ 1∧ tg ≥ dur+1∧ tg ≥ tc+21∧dur+ tc ≥
tg + 2) ∨ (tc = 1 ∧ dur = tg ∧mx ≥ 1 ∧ dur ≥ 22)

10 tc+ 1 (tg = tc+ 20 ∧mx ≥ 1 ∧ tg ≥ 21 ∧ dur ≥ tg + 1)

11 tg +−19 (mx ≥ 1 ∧ tc ≥ 1 ∧ tg ≥ tc+ 21 ∧ dur ≥ tg + 1)

12 tg − tc− 19 (mx ≥ 1∧tc ≥ 1∧tg ≥ tc+21∧tg ≥ dur+tc∧dur+tc+18 ≥ tg)
13 mx+ dur − 19 (tc + 19 = tg ∧ mx ≥ 1 ∧ dur ≥ 21 ∧ tc + 18 ≥ dur) ∨ (dur =

tc+ 19 ∧ dur = tg ∧mx ≥ 1 ∧ dur ≥ 21)

14 mx+ dur − 1 (tc+1 = tg∧mx ≥ 1∧dur ≥ 3∧tc ≥ dur)∨(dur = tc+1∧dur =
tg ∧mx ≥ 1 ∧ dur ≥ 3)

15 mx+ dur + tc− tg (mx ≥ 1∧tg ≥ dur+1∧tg ≥ tc+2∧tc+18 ≥ tg∧dur+tc ≥ tg+2)

Fig. 10. Complete results
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(if-true)

eval(p, a, l) = true

tsk(tk , o, l, { if (p) s1 else s2; s})
. . . . . . . . . . . . . . . . . . . . . . . . . .
ob(o, a, tk)→ tsk(tk , o, l, s1; s)

. . . . . . . . . . . . .

(if-false)

eval(p, a, l) = false

tsk(tk , o, l, { if (p) s1 else s2; s})
. . . . . . . . . . . . . . . . . . . . . . . . . .
ob(o, a, tk)→ tsk(tk , o, l, s2; s)

. . . . . . . . . . . . .
(while-true)

eval(p, a, l) = true

ob(o, a, tk) tsk(tk , o, l, {while(p) s1; s})
. . . . . . . . . . . . . . . . . . . . . .

→ tsk(tk , o, l, {s1;while(p) s1; s)
. . . . . . . . . . . . . . . . . . . . . . . .

(while-false)

eval(p, a, l) = false

ob(o, a, tk) tsk(tk , o, l, {while(p) s1; s})
. . . . . . . . . . . . . . . . . . . . . .
→ tsk(tk , o, l, s)

. . . . . . . . . .

Fig. 11. Semantic rules for if and while

B Proofs

In order to perform the proofs according to the semantics, we include the se-
mantic rules for if and while in Fig. 11.

B.1 Proof of Theorem 1

Proof. We perform the proof using induction on the length of the trace:

Base case The cost in a trace of length 0 in both P and Ptg is zero. Let S0(val) be
the initial state of P, Sα0 (val) corresponds to the initial state of Ptg by definition.

Inductive case The induction hypothesis is: For every trace tr of length n, there
is a trace tr ′ such that Costtr(val)(tg0) = Costtr ′(val,tg0)

and the final states of

tr and tr ′ are S and Sα.
Let us have a trace tr1 = tr

c→ Snew of length n+1. By induction hypothesis,
we know the last state of tr is S and there is a trace tr ′ such that its last state
is Sα and Costtr(val)(tg0) = Costtr ′(val,tg0)

. We have to prove that for any step

S
c→ Snew there is a step or sequence of steps that reaches the transformed state

Sαnew: Sα
c1→ S1

c2→ · · · cm→ Sαnew and the cost
∑m
i=1 ci is c if clk(tg0) ∈ S or 0 if

clk(t′) ∈ S t′ 6= tg0.
If we perform any step that does not consume resources from S to Snew, we

can perform the same step in Sα and obtain Sαnew (See Figs.2 and 3). None of the
original instructions refers or modifies tg so the extended states do not have any
effect in the executions of the original instructions. The pending instructions,
locks, tasks and objects coincide. From these, the only transformed statement
is the method call. The addition of tg as a parameter guarantees that the local
state of the new method in Sαnew is the extended local state of the new method
in Snew.

If we perform a step (Cost) in S and obtain Snew, we distinguish two cases:
If clk(t) ∈ S t = tg0, then we can apply (If-True) followed by (Cost) to Sα

and obtain Sαnew. the cost of the first step is 0 and the cost of the second step is
eval(c, l+[tg → tg0], a). The cost in the original program is eval(c, l, a). Because
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c cannot contain references to tg, eval(c, l, a) = eval(c, l + [tg → tg0], a). If
otherwise (clk(t) ∈ S such that t 6= tg0), we can apply (If-False) and obtain
Sαnew. The cost is 0 as expected.

B.2 Proof of Theorem 4.2

The theorem 4.2 is valid for well formed non-blocking (See def.7) programs.
A program is well formed as long as it cannot have runtime failures such as
calling a method on an object reference that points to null . In order to prove
theorem 4.2, we require the following auxiliary result:

Lemma 1. Given a well formed non-blocking program, if canAdv is true in a
state S, all the object’s locks are free: ∀ ob(o, a, lk) ∈ S, lk = ⊥.

Proof (Lemma 1). If canAdv is true in S, no other rule but (Tick) can be
applied. Suppose there is a task tsk(tk ,m, o, l, s) ∈ S that has the object’s lock.
Considering the rules applicable to each statement of a task with the object’s
lock: (Await1) and (Await2), (Until1) and (Until2), (If-True) and (If-False)

and (While-True) and (While-False) have complementary conditions (at least
one of them has to be applicable). From the rest of the rules, only (Get), and
(Async-Call) have conditions that need to be satisfied.

– If s = {y = x!m(p; s′)} and (Async-Call) cannot be applied, l(x) = null

and the program is not well formed.
– If s = {x = y.get; s′)} and (Get) cannot be applied, the program is blocking

ut

Proof (Theorem 4.2). We prove the theorem using induction on the length of
the trace in the original program: For a trace of length 0, the initial states of
Ptg and etPtg are defined as S and Sτ respectively. clk(1) ∈ S and the initial
and only task in etPtg is tsk(tk , o, l + [time→ 1], τ(body(main))) so the initial
state of etPtg is τ -equivalent to S. The cost of both traces is 0.

The induction hypothesis is: For every trace tr of Ptg of length n with states
S1..n, there is a trace tr ′ that contains the τ -equivalent states Sτ1..n, Sτn is the
final state and Costtr(val) = Costtr ′(val,1).

Let us have a trace tr1 = S1 → · · · → Sn
c→ Snew of length n + 1. The

sub-trace tr = S0 → · · · → Sn has length n so we know there is a trace that
contains Sτ1..n such that its last state is Sτn, and Costtr(val) = Costtr ′(val,1). We

have to prove that for any step Sn
c→ Snew there is a step or sequence of steps

that reaches a τ -equivalent state Sτnew: Sτn
c1→ S′1

c2→ S′2
c3→ · · · cm→ Sτnew, and the

cost
∑m
i=1 ci is c.

We consider each of the semantic rules that can be applied to Sn:

– For rules (New-Object), (Release), (Async-Call), (Await2), (Return),
(Get), (Return), (Assignment), (Cost), (If-True), (If-False), (While-True)

and (While-False), applied to a task tsk(tk , o, l, s). We can apply the same
rule to the τ -equivalent task tsk(tk , o, l + [time → t], τ(s)) ∈ Sτn (where
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clk(t) ∈ Sn) and obtain S′. eval will yield the same result in both Sn and
Sτn and neither the clock clk(t) ∈ Sn nor the values of time in the tasks of
Sτn change, therefore S′ = Sτnew.
If we apply (Cost), the cost is the same in both programs (eval yields the
same result). Otherwise the cost in 0.
For the rule (Async-Call), we create a new task tsk(tk1, o1, l1, body(m1)) ∈
Snew and a corresponding task tsk(tk1, o1, l1 + [time → t], τ(body(m1))) ∈
S′ that contains a local variable time. The value of time is received form
the calling task and is equal to the clock l1[time → t](time) = l[time →
t](time) = t.

– (Activate) applied to a task tsk(tk , o, l, {take; s}) ∈ Sn with ob(o, a,⊥) ∈ Sn
and with a clock clk(t) ∈ Sn. The corresponding task in Sτn is

tsk(tk , o, l + [time→ t′], {take; τ(s)})

We apply (Activate) and we have to prove that t = t′ so the new state will
have the task

tsk(tk , o, l + [time→ t], τ(s))

and will be τ -equivalent Sτnew. The take statement can be only generated
by a previous application of (Release) or (Async-Call) (Remember that
body(m) adds a take before the statements of m).

• If (Release) was applied, Let Srelease be the state from where (Release)

was applied and trfrag = Srelease → · · · → Sn the sub-trace of tr from
that state until Sn. canAdv cannot be true in trfrag. If canAdv was true,
by the lemma 1 we would conclude that all the locks are free. However,
if the lock of o is free, (Activate) would be applicable which contradict
the conditions of canAdv. Consequently, no (Tick) step can be part of
trfrag and clk(t) ∈ Srelease.
We have an τ -equivalent state Sτrelease. In Sτrelease tk has the lock and
therefore its local state has l(time) = t. Because the value of l(time) in
a task cannot decrease, we know that t′ ≥ t. By induction hypothesis
t′ ≥ t. Therefore, t′ = t and the resulting state is τ -equivalent.

• If (Async-Call) was applied, Let SafterCall be the state after (Async-

Call) was applied and trfrag = SafterCall → · · · → Sn the sub-trace of
tr from that state until Sn. We can reason as before that no (Tick) step
can be part of trfrag and clk(t) ∈ SafterCall.
In the τ -equivalent state SτafterCall the task tk has just been created

from another task tk ′ that has the lock. The value of l(time) in tk is
received from the value in tk ′ and therefore it must be t. With that and
the induction hypothesis, we can conclude that t′ = t as before.

– (Await1) applied to a task tsk(tk , o, l, {await y?; s}) ∈ Sn with ob(o, a, lk) ∈
Sn and with a clock clk(t) ∈ Sn. The corresponding task in Sτn is

tsk(tk , o, l + [time→ t′], {await y?; time = max(time, y.time); τ(s)})
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We apply (Await1) followed by (Assignment). If we prove that the maximum
value max(time, y.time) is t, then, the new state will have the task

tsk(tk , o, l + [time→ t], τ(s))

and will be τ -equivalent Sτnew.
We distinguish two cases whether the task has the lock lk = tk or not lk = ⊥.
• If the task has the lock, the local time t′ is equal to the global time t = t′

(by induction hypothesis). The value y.time was evaluated with the local
time of the finished task in a previous step so y.time ≤ t (y.time cannot
be modified). Therefore, max(time, y.time) will yield t.

• If the task does not have the lock, there has to be an step (Await2) in the
trace tr where the task lost the lock. Let Slost be the state from where
(Await2) was executed and trfrag = Slost → · · · → Sn the sub-trace of tr
from that state until Sn. In Slost, the waited task l(y) cannot be finished
(since (Await2) is applied), so there has to be an intermediate step in
trfrag where such task is finished (the (Return) rule is applied). Let
Sreturn be the state from where (Return) was executed and trfrag2 =
Sreturn → · · · → Sn the sub-trace of trfrag from that state until Sn.
canAdv cannot be true in trfrag2. If canAdv was true, by the lemma 1
we would conclude that all the locks are free. However, if the lock of o
is free, (Await1) would be applicable which contradict the conditions of
canAdv. Consequently, no (Tick) step can be part of trfrag2.
We have an τ -equivalent state to Sreturn where (Return) is applied and
y.time receives the value t ((Return) is applied to a task that has the
lock). Therefore, max(time, y.time) will yield t.

– (Until 1) applied to a task tsk(tk , o, l, {until (pl); s}) ∈ Sn with ob(o, a, tk) ∈
Sn and with a clock clk(t) ∈ Sn. The corresponding task in Sτn is

tsk(tk , o, l + [time→ t], {release; time = max(time, pl); τ(s)})

The result of pl is t′ = eval(pl, l). If we can apply (Until 1), then t′ ≤ t so
max(time, t′) will yield t (the task has the lock so the variable time has the
right time value t). We can apply (Release), (Activate) and (Assignment).
The evaluation of pl in the step (Assignment) yields the same result t′ (which
is ≤ t) as l + [time→ t] has not been modified. We obtain

tsk(tk , o, l + [time→ t], τ(s)) ∈ S′

Therefore, the new state is τ -equivalent S′ = Sτnew.
– (Until 2) applied to a task tsk(tk , o, l, {until (pl); s}) ∈ Sn with ob(o, a, tk) ∈
Sn and with a clock clk(t) ∈ Sn yields tsk(tk , o, l, { untilp (pl); s}), ob(o, a,⊥) ∈
Snew. The corresponding task in Sτn is

tsk(tk , o, l + [time→ t], {release; time = max(time, pl); τ(s)})

We can perform (Release) and obtain a state S′

tsk(tk , o, l+ [time→ t], {take; time = max(time, pl); τ(s)}), ob(o, a,⊥) ∈ S′
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We have that τ( untilp (pl); s) = take; time = max(time, pl); τ(s) so S′ is
τ -equivalent to Snew (S′ = Sτnew).

– (Until 3) applied to a task tsk(tk ,m, o, l, { untilp (pl); s}) ∈ Sn in an ob-
ject ob(o, a,⊥) ∈ Sn where eval(pl.l) = t′. This configuration can only be
obtained if there is a previous step (Until 2) for the same task in the
trace tr . Let Slost be the state from where (Until 2) was executed and
trfrag = Slost → · · · → Sn the sub-trace of tr from that state until Sn. In
Slost, eval(pl, l) = t′ > t where clk(t) ∈ Slost so there has to be an intermedi-
ate step in trfrag where t ≥ t′ becomes true. This can only happen through
a (Tick) step (the evaluation of pl cannot change since the task tk does not
have the lock).
Let SAfter T ick be the state immediately after applying (Tick) that reaches
the awaited time t = t′. Let trfrag2 = SAfter T ick · · · → Sn be the sub-trace
of trfrag from SAfter T ick until Sn. canAdv cannot be true in trfrag2. If it
was true, by corollary 1 all the locks should be free and (Until 1) would be
applicable to tsk(tk , o, l, { untilp (pl); s}) which contradicts the definition of
canAdv. Consequently, t′ = t for clk(t) ∈ SAfter T ick..n.
The corresponding task in Sτn is

tsk(tk , o, l + [time→ t′′], {take; time = max(time, pl); τ(s)})

where t′′ ≤ t. We can apply (Activate) and (Assignment) and obtain S′

with
tsk(tk , o, l + [time→ t′], τ(s)) ∈ S′

The result ofmax(time, pl) is t′ which coincides with t. Therefore, S′ = Sτnew.
– (Await Duration) applied to a task tsk(tk , o, l, {await duration(pl); s}) ∈ Sn

with clk(t) ∈ Sn produces tsk(tk , o, l, {until (pl + t); s}) ∈ Snew. The corre-
sponding task in Sτn is

tsk(tk , o, l + [time→ t], {release;max(time+ pl, time); s})

which corresponds (because time will evaluate to t) to

tsk(tk , o, l + [time→ t], {release;max(t+ pl, time); s})

which is the τ -equivalent version of tsk(tk , o, l, {until (pl + t); s}) ∈ Snew.
Therefore, Sτn is τ -equivalent to Snew.

– When (Tick) is applied to Sn with clk(t), we obtain Snew with clk(t + 1).
Given the lemma 1, no task has the lock. By induction hypothesis, all tasks in
Sτn have tsk(tk , o, l+ [time→ t′], s) such that t′ ≤ t which implies t′ ≤ t+ 1.
Therefore, Sτn is τ -equivalent to Snew.
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