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Abstract—To achieve anonymous and censorship-resistant
overlay communication, darknets restrict overlay links to
trusted parties. Efficient data retrieval in such a restricted
topology requires a decentralized addressing scheme. We pro-
pose a greedy embedding algorithm, which is used to realize
efficient routing and content addressing for darknets. The
embedding guarantees success of greedy routing using compact
address representations. Evaluation on trust graphs obtained
from PGP’s web of trust shows that our embedding enables
much more efficient routing than existing darknet embeddings.
Though, content addressing based on the embedding exhibits
unbalanced load.

I. INTRODUCTION

Anonymous, censorship-resistant communication allows
to publish opinions and ideas in the Internet without fear
of retribution. This is especially important in societies that
limit the basic right of freedom of speech.

An approach to realize anonymous, censorship-resistant
publication and data sharing is the darknet paradigm. Promi-
nent examples of overlay communication systems following
this paradigm are the Darknet mode of Freenet [1], [2] or
GNUnet [3].

In a darknet, identity-revealing direct network commu-
nication only occurs between nodes with a mutual trust
relationship outside the system. Communication between
untrusted nodes has to be done indirectly via friend-to-friend
links. In other words, the network topology is a subgraph
of the social graph resulting from the trust relationships
between the participants. Compared to popular anonymous
communication systems like Tor [4], the restriction of
identity disclosure to trusted participants aims at providing
additional protection against network attacks, identification
and prosecution.

There are various approaches for content distribution and
routing in darknets. The simplest use flooding, e.g. Turtle
[5], sometimes enhanced with probabilistic forwarding as
in OneSwarm [6]. Flooding scales linearly in the network
size and is therefore problematic in large-scale networks.
The R5N algorithm [3] of GNUnet combines random walks
and a recursive variant of Kademlia routing. It requires a
high number of replications. MCON [7] and X-Vine [§]
both construct a virtual DHT overlay on top of the friend-
to-friend topology connecting virtual DHT neighbors via
tunnels over (multiple) friend-to-friend links. This approach

requires keeping and maintaining a lot of state information.

An alternative to realize an efficient darknet routing is
to use greedy routing on top of an addressing scheme
as it is done successfully in standard DHTs. Darknets,
however, are topology-restricted, in contrast to DHTSs, which
allow arbitrary connections between peers. Therefore, the
addressing scheme has to adapt to the network topology via
an network embedding procedure which assigns each node
an address. These addresses can then be used by a local
routing algorithm like greedy routing.

In more precise terms, a network embedding is a map
from the set of nodes of a network into a metric space,
assigning each node a point (address) in the metric space. A
greedy embedding guarantees that greedy routing works in
the embedded graph for any source-destination node pair, i.e.
for every source-destination node pair holds that the source
has a neighbor which is closer to the destination in the metric
space [9] (first defined by Papadimitriou et al. [10]).

Greedy embeddings have been proposed in the context
of wireless adhoc / sensor network routing, e.g. [10],
[11], [12], and Inter-AS routing [13]. In our work they
are applied to the problem of darknet routing with focus
on the following requirements: The embedding algorithm
needs to be decentralized, relying only on neighborhood
information. Scalability is important for realizing systems
with a large number of participants. This translates into
requiring first of all short routing paths, but also low address
description complexity, low message complexity, and a low
runtime. Furthermore, the embedding should enable content
addressing. This means that data items and nodes share an
address space, each data item is mapped to a node which is
responsible for this data item and the data item can be found
by routing to its address. The load resulting from content
addressing should be balanced, i.e. each node should be
responsible for roughly the same number of data items.

These requirements are a subset of all requirements we
deem necessary to be adhered to by a comprehensive darknet
embedding approach. Main issues, which have to be handled
in future work, are network dynamics, robustness against
failures and attack resilience.

In this paper, we present Prefix Embedding, a simple,
scalable, decentralized, greedy embedding algorithm for
darknets, which improves upon existing greedy embeddings
in terms of the coding length of the address representations.



We show by simulations that the algorithm achieves routing
lengths close to the shortest paths, considerably shorter
than any state-of-the-art darknet embedding algorithm. We
point out how the algorithm can be modified for content
addressing, at slight performance costs. The load distribution
of the content addressing scheme is evaluated.

In Section II, the related work on embeddings is presented,
with a focus on their applicability for darknets. Afterwards,
Prefix Embedding is described in Section III and analyzed
theoretically. Evaluations with regard to routing performance
and load balancing are done in Section IV. Section V
concludes and points out directions for future work.

II. RELATED WORK

Heuristic embeddings, which only approximate greedy
embeddings, are introduced in the first part of this section.
Greedy embedding techniques stemming from different ap-
plication areas are discussed in the second part.

A. Heuristic Embeddings

Several iterative embedding algorithms for darknets solely
based on local interactions between the nodes have been
devised, like Swapping [14], LMC [15], and spectral graph
drawing [16].

Swapping: The swapping algorithm has been applied to
friend-to-friend embedding in the darknet mode of Freenet
[2]. Swapping is based on the idea that the darknet topology
is assumed to resemble a Kleinberg small-world topology
[17] in one dimension. Starting from a random address
assignment the embedding is iteratively adapted in form of
a Metropolis-Hastings algorithm [14]. An iteration of the
algorithm consists of pairing two nodes by a random walk
and swapping their addresses with a probability depending
on the current addresses in their direct neighborhood.

LMC: Swapping is extremely vulnerable to misbehaving
overlay participants spreading incorrect address information
[18], [15]. In the Local Markov Chain (LMC) algorithm,
nodes choose an address uniformly at random rather than
exchanging address information via a random walk. The new
address is then accepted with a probability determined by the
addresses of direct neighbors according to the Metropolis-
Hastings algorithm.

Decentralized Spectral Graph Drawing: Dell’ Amico pro-
poses a decentralized version of the spectral graph draw-
ing algorithm by Koren [19] for embedding small-world
networks. The embedding problem in one dimension is
formulated as minimizing a stress function representing eu-
clidean distances between adjacent nodes under constraints
ensuring that the embedding does not collapse into a single
point. This problem is solved by an iterative eigenvector
computation. Dell’ Amico’s embedding algorithm executes a
variant of this eigenvector computation in a decentralized
manner and for multiple dimensions in parallel. A single
iteration of the eigenvector computation can be interpreted

geometrically as moving each node to the midpoint between
its old coordinates and the centroid of its neighbors.

Further Heuristic Embeddings: Several heuristic embed-
ding algorithms for greedy-like routing have been proposed
in the context of wireless adhoc / sensor networks. The
NoGeo [20] and GSpring algorithms [21] model edges
between nodes as ideal springs and use a spring-force
model to compute an embedding into the euclidean plane.
The resulting embeddings are not guaranteed to be greedy.
Furthermore, both approaches use variants of flooding to
determine perimeter nodes on which the embedding is based.

In the context of general routing, heuristic embeddings
have been employed as well. Ban et al. [22] apply variants
of multidimensional scaling to model the node distances
in different classes of networks (e.g. citation networks,
Internet-AS networks). The resulting embedding is not
greedy and the computation relies on landmark nodes. FPC
[23] uses a spring-force approach and applies it to a two-
hop neighborhood around each node to embed scale-free
networks (attracting forces act between one-hop neighbors
and repelling forces act between two-hop neighbors). As the
resulting embedding is not greedy, additional source routing
techniques are used to guarantee routing functionality.

The main disadvantage of heuristic embedding algorithms
is that the resulting embedding is in general not greedy. For
guaranteeing success, the routing algorithm has to be mod-
ified. However, routing paths might be considerably longer
than in case of greedy embeddings. Another drawback of
these approaches is that the number of necessary iterations
of the embedding algorithm is high and can often only be
determined empirically.

B. Greedy Embeddings

Most greedy embedding procedures (e.g. [24], [11], [12],
[25], [13], [26]) construct a greedy embedding for a span-
ning subgraph (typically a spanning tree) of the network.
Adding edges does not destroy the greediness property,
which is why a greedy embedding of a spanning subgraph
is a greedy embedding for the full graph as well [11].

If one constructs a greedy embedding along a spanning
tree, message delivery is guaranteed along the spanning tree
edges. The additional edges can be used as short-cuts. While
these constructions guarantee to find a path, they do not
guarantee to find the shortest path. But an upper bound for
the routing stretch can be given as twice the spanning tree
depth, as this is the length of the longest possible greedy
path in the spanning tree [13].

In the following the embedding algorithms are classified
according to the metric spaces used for the embeddings.

Hyperbolic Embeddings: Kleinberg [11] proposed the
first greedy embedding algorithm for arbitrary graphs into
the hyperbolic plane. Given the maximum degree d of a
rooted spanning tree the algorithm computes the embedding
by mapping the spanning tree to an infinite tree of degree



d which is the dual tree of a plane tiling by d-gons.
Although a node address from the hyperbolic plane consists
of just two coordinates the description complexity is linear
in the network size n as the description complexity of each
coordinate is linear [25], [13].

For the hyperbolic greedy embedding algorithm by
Cvetkovski et al. [12], knowledge of the maximum degree
in the spanning tree is not necessary. Still the coordinates
have linear description complexity [13].

The problem of linear description complexity is tackled
by Maymounkov [9] and Eppstein et al. [27]. Maymounkov
computes greedy embeddings into three-dimensional hyper-
bolic spaces using polylogarithmic description complexity.
Eppstein et al. embed into the hyperbolic plane using loga-
rithmic description complexity. Whereas the algorithms due
to Kleinberg and Cvetkovski et al. can be computed in a
decentralized manner, the algorithms by Maymounkov and
Eppstein et al. rely on heavy-path decompositions of the
embedded graphs, which make them hard to decentralize.

Euclidean Embeddings: A greedy embedding into high-
dimensional euclidean spaces is proposed by Westphal
and Pei [25]. Their algorithm makes use of the Johnson-
Lindenstrauss Lemma and random projections. The greedi-
ness of the embedding is guaranteed with high probability
if the embedding space has sufficiently high dimension.

A similar approach is sketched by Maymounkov in [9].

Maximum Norm Embeddings (Tree isometries): Linial et
al. [24] propose an isometric embedding of distances in a
rooted spanning tree into high dimensional spaces equipped
with the maximum norm!. As any tree isometry is a greedy
embedding of the tree, one can obtain a greedy embedding of
an arbitrary graph by constructing an isometry of a spanning
tree. To ensure that only O(log n) embedding dimensions are
needed, the algorithm requires the computation of central
nodes of the spanning (sub)trees encountered during the
embedding, which makes it hard to decentralize.

The PIE embedding algorithm due to Herzen et al. [13]
is based on an isometric embedding of the distances on a
rooted spanning tree of the graph similar to the approach
by Linial et al. The algorithm can be decentralized as it
embeds the nodes traversing the spanning tree from the
root to the leaves. Assuming a logarithmic depth of the
spanning tree, the description complexity of the embedding
is polylogarithmic.

Custom Metric Embeddings: Flury et al. [28] construct
greedy embeddings with O(logn) routing stretch and poly-
logarithmic description complexity using a custom min-max
metric. Their algorithm relies on the computation of a tree
cover of the graph based on global topology information and
is therefore not applicable to darknets.

Zhang et al. [26] compute greedy embeddings by enu-
merating nodes in a depth-first search (DFS) traversal of

' An embedding is isometric when it preserves the node distances given
by the network metric.

a spanning tree of the graph and assigning each node its
DFS enumeration indices as coordinates. They define a
custom semi-metric on the resulting coordinates for distance
computations. The description complexity of the embedding
depends linearly on the maximum node degree. Due to the
DFS traversal, the embedding is not complete until all edges
have been traversed sequentially.

In summary, most greedy embeddings can either not be
applied in the darknet scenario or require a linearly growing
description complexity. An exception is PIE, a decentralized
embedding offering a polylogarithmic description complex-
ity. For that reason, Prefix Embedding presented in Section
IIT mainly adapts the idea of PIE to routing and content
addressing in the darknet scenario.

III. PREFIX EMBEDDING

Prefix embedding follows the standard approach of em-
bedding a spanning tree of the graph. More precisely, it
is an isometric embedding of the hop count metric on the
embedded spanning tree. It can be considered an adoption of
the PIE algorithm [13] to unweighted graphs, reducing the
size of the address representations. Furthermore, it simplifies
realization of content addressing.

After introducing the algorithm in Section III-A, it is
proven in III-B that the resulting embedding is indeed
greedy. In Section III-C, the algorithm is analyzed with
regard to its complexity properties. In Section III-D variants
of the algorithm for fixed-size address spaces are given. We
close this part with a description of our content addressing
scheme.

A. Prefix Embedding Algorithm
The embedding algorithm works as follows:

e Choose a root node and assign an empty coordinate
vector to the root.

« Compute a spanning tree starting from the root node
(using breadth-first search) and traverse it on the fly.

o During the tree traversal, every node enumerates its
children and assigns each child its coordinates. The
coordinates of a child are the parent’s coordinates con-
catenated with one additional coordinate corresponding
to the child’s index assigned during the enumeration.

The resulting embedding for a tree with depth 3 is

displayed in Fig. 1.

B. Proof of Greediness

We use greedy routing with a custom distance metric
based on prefix matching. The distance between two nodes
s and t is defined as

dist(s,t) = |s| + |t| — 2 * |matchingpre fiz(s,t)]

where |s| is defined as the length (number of coordinates)
of the coordinate vector of s and matchingprefiz(s,t) is
the common prefix of the coordinate vectors of s and ¢.



Figure 1.  An example of embedding a tree of maximum degree 4,
resulting in 2-bit coordinates. 8 bits are used for content addressing,
meaning that every file address consists of four coordinates. The file
with address (1,2, 3, 3) is stored at the leaf (1,2), whereas the file with
address (1,0, 2, 3) is stored at the internal node (1, 0), which has only two
successors in the tree.

Similarly to [13], we show that using the above distance
metric, Prefix Embedding produces not only a greedy, but
an isometric embedding of the hop count metric on the tree.
Consider the hop count distance hop(s,t) from a source
node s to a target node ¢. Then hop(s,t) is the distance
from the source to the least common ancestor node (lca)
in the tree plus the distance from the lca to the target.
So we can write: hop(s,t) = hop(s,lca) + hop(lca,t).
hop(s,lca) equals |s| — |lca| as lca is an ancestor of
s in the tree and one coordinate is added per level of
the tree. The address of the Ilca as least common an-
cestor of s and t is matchingprefixz(s,t). Therefore,
hop(s,lca) = |s|—|matchingpre fix(s,t)| and analogously
hop(lca,t) = |t|—|matchingprefixz(s,t)|. In consequence,
hop(s,t) = hop(s,lca) + hop(lca,t) = |s| + |t| — 2 *
|matchingprefixz(s,t)| = dist(s,t).

C. Complexity Analysis

1) Address Description complexity: The number of co-
ordinates of a node address is bounded by the tree depth
and the magnitude of each coordinate is bounded by
the maximum degree of the tree, so that at maximum
treedepth * log maxdegree bits are needed for one node
address. The maximum degree is bounded by the number of
nodes, so the description complexity is O(treedepthxlogn)
bits. Assuming that darknets being social networks have the
small-world property [29] the diameter is approximately in
O(logn). Hence, the depth of the tree is in O(logn), and
the description complexity is O(log®n) bits.

2) Message Complexity: Assuming that a spanning tree
of the graph is precomputed and corresponding local infor-
mation stored at each node, the total number of messages
needed for an embedding of a graph is n—1, one message per
edge of the spanning tree. If the spanning tree is computed
on the fly during the embedding, O(e) messages are needed
for the embedding (e being the number of edges in the
network), as a node has to probe its neighbors to learn if
they are already embedded.

3) Runtime: The runtime considered as the number of
time-units from the start of the embedding until all nodes
are embedded is dominated by network delays, therefore

only message delays are counted.

In prefix embedding, subtrees of any spanning tree node
can be traversed in parallel. Therefore, the embedding is
completed after the longest/slowest root-to-leave path of
the tree has been traversed. The time (sum of delays) for
traversing this root-to-leave path is in O(treedepth) assum-
ing uniform constant edge costs/message delays. Assuming
a small-world network this is again in O(logn).

D. Prefix Embedding in Fixed-Sized Address Spaces

To achieve concise address representations and facilitate
content addressing using a fixed-size address space the basic
embedding algorithm needs to be adapted.

1) Bounded-Degree Embedding: In the following, let the
degree of a node v in a rooted tree ¢ denote the number of
children of v in t. The first embedding variant for fixed-size
address spaces requires a bound on the maximum degree in
the spanning tree, which might mean that not all nodes can
be included in the tree. Assume we have an address space
with addresses of fixed length s bits (e.g. s = 160). We
bound the maximum number of children of a node in the
spanning tree to a power of two, 2°, and therewith fix the
number of bits b per coordinate (e.g. when using 5 bits per
coordinate, a tree of depth 32 with 32 children per inner
node fits into a 160 bit address space). In case a node has
less than 2° children, still b bits are used per coordinate.

2) Virtual Tree Embedding: An alternative, which allows
more flexible node degrees in the spanning tree, is to
represent one node as a set of several virtual nodes. A high-
degree node in the spanning tree can be modeled with a tree
of virtual nodes of low degree (cf. Fig. 2). In the following
this low degree is set to 2, so that the virtual trees are binary
trees. Each node is solely assigned the address of the root
node of its virtual tree.

This scheme has the disadvantage of losing the isometric
property of the embedding as several virtual nodes are
represented by the same physical node. The distances given
by the embedding are upper bounds on the number of
nodes on the path between any source-destination pair. For
example, in Fig. 2, there is a path of length 3 between
(0,1,1) and (1,0), but the distance is 5.

The binary trees of virtual nodes representing a physical
node are constructed as balanced as possible, i.e. if a node
has c children, the first 2xc—201982 €] receive an address with
[log, c| additional coordinates, the others receive [log, ¢| —
1 additional coordinates. The construction ensures that no
child address is a prefix of any other child address.

As the resulting embedding is not strictly greedy, greedy
routing is extended: In case there is no neighbor with a
smaller distance to the target the message is forwarded to
the parent in the spanning tree. To see that this guarantees
routing success consider a source-destination pair (s,t). As
in Section III-B the path from s to ¢ in the spanning tree
can be split into two subpaths from s to the least common
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Figure 2. The tree from Fig. 1 using virtual trees. The squares represent
the actual physical nodes, the ellipses the virtual nodes. Physical nodes with
more than two children, i.e. the root and its second child, are represented
by a virtual subtree of minimal size needed to address all children.

ancestor node, lca and from the lca to ¢t. The path from s
up the tree to the lca can be further split into the path from
s to the child ¢ of the lca and the one-hop path from c to
the lca. Greedy routing up the tree on the sub-path from
s to c succeeds as for each child-parent edge holds that
they have the same common prefix with ¢ but the parent
has less coordinates. For the one hop from c to the lca,
greedy routing might fail, as ¢ might have a longer common
prefix with ¢ than its parent lca. This failure is handled by
forwarding to the parent. On the sub-path down the tree from
the lca to t greedy routing is again guaranteed to succeed
as each for parent-child edge the parent address is a shorter
prefix of ¢’s address than the child address.

E. Content Addressing

To address a content item in a publication system based
on prefix embedding, we assign bit strings to the data items
and interpret them as tree coordinate vectors. The node with
the longest matching prefix is then responsible for the data
item. Formally, let F' be the set of possible file identifiers,
V the set of nodes. Then the function r : F© — V maps a
file address f to v € V, so that dist(v,r(f)) is minimized.

It remains to map the bit strings to tree coordinate vectors.
Using the variants of Prefix Embedding from Section III-D,
the mapping is straightforward: Split the bit string in blocks
of fixed size and map the blocks from left to right to
single coordinates of a node address. The block size can
be computed from the bound on the node degree (in case of
bounded-degree embedding) or the predefined virtual node
degree (in case of virtual tree embedding). Fig. 1 shows the
mapping of two files with 8 bit addresses into a tree of depth
3 using 2 bit coordinates from a bounded-degree embedding.

One problem of such a content addressing scheme is load

balancing as some nodes might be responsible for much
larger slices of the address space than other nodes. In the
following, the embedding variants are analyzed with regard
to the number of bits each node is responsible for. Assume
that file addresses consist of s bits and are distributed
uniformly (e.g. due to generation by a hash function). Note
that the level of a node is defined as the distance to the root.

If Prefix Embedding is used with a fixed number b of bits
per level of the spanning tree, a node u on level L with
c children in the tree is responsible for 25~ (L+10 . (20 _
c¢) possible file addresses, i.e., all addresses for which u’s
address is a prefix, but not the address of any child of .
This means w is responsible for s — (L +1)-b+1log,(2° —¢)
bits.

In case of virtual tree embedding, a node with a degree of
at least 2 in the spanning tree balances its children in such
a way that it is not responsible for any part of the address
space. Only leaves and nodes of degree 1 are responsible
for parts of the address space. In case of a leaf node, the
node is responsible for all addresses which have the node
address as prefix, that are 25—L addresses. In case of a node
of tree degree 1, the node is responsible only for half of
these, 25~ L1 addresses or s — L — 1 bits.

IV. EVALUATION

In this section, Prefix Embedding is evaluated with regard
to routing performance and load balancing, using existing
darknet embeddings for comparison.

A. Setup

For the evaluation, darknets are modeled as simple undi-
rected graphs. Embedding and routing are done on static
graphs without taking network dynamics into account. As
network topologies for the evaluation, four snapshots of
PGP’s web of trust? are used, but due to space constraints,
we focus on one snapshot from January Ist, 2011. The
results for the other graphs are very similar.

In PGP’s web of trust, an edge from PGP user A to
B indicates that A signed B’s public key. This can be
interpreted as a trust relationship (namely that A trusts in B),
so that PGP web of trust topologies were used previously
for the evaluation of darknet routing algorithms in [14],
[16]. As darknets are based on mutual trust, we remove
trust relationships without reciprocation from the raw web
of trust graph. Afterwards, the giant component of the graph
is extracted to ensure a connected topology. The resulting
graph has 33317 nodes, an average degree of 8.3, a median
degree of 2, maximal degree of 992, an average shortest path
length of 6.15, and a diameter of 25.

All results are averaged over 30 runs, the Graph-Theoretic
Network Analyzer (GTNA)? is used as framework for the
evaluation.

Zhttp://www.lysator.liu.se/~jc/wotsap/wots2/
3http://www.p2p.tu-darmstadt.de/research/gtna/



Setup Heuristic Embeddings: For comparison, three
heuristic darknet embeddings are used: Sandberg’s swapping
algorithm, LMC and Dell’Amico’s spectral graph drawing,
as described in Section II-A. All algorithms are round-
based: In each iteration of swapping and LMC, a random
node is chosen to execute the address adaptation algorithm,
whereas in each iteration of spectral graph drawing the
addresses of all nodes are adapted. The parameters for the
algorithms are taken from the respective papers: In case of
swapping and LMC, 60007 iterations are used, where n is
the number of nodes. The length of the random walks in
the swapping algorithm is set to 6. For the spectral graph
drawing algorithm 200 iterations and address spaces of 10
and 100 dimensions are used. Because of the non-greediness
of the embeddings, routing is done with Freenet’s distance-
directed depth first search [1] using a time-to-live counter
ttl of 200.

Setup Prefix Embedding: Prefix Embedding is evaluated
without any degree constraints as well as with maximum de-
grees of 16,32, 64,128 in the spanning tree, corresponding
to b = 4,5,6,7 bits per coordinate. The isometric embed-
ding as well as the virtual tree embedding are evaluated.

For the load balancing evaluation, file addresses are
assumed to have 160 bits, corresponding to common hash
lengths. Note that content addressing in case of unrestricted
degrees is only possible if virtual trees are used.

The basic embedding algorithm works with any spanning
tree. But the bounded-degree variant of the algorithm (Sec-
tion III-D) requires a bounded-degree spanning tree. There
is no guarantee that such a tree exists in the network and
even if it exists, its computation is NP-hard. For this reason
we evaluate three simple tree construction schemes, which
do not guarantee that the computed tree spans the graph:

1) RND: execute a breadth-first search (BFS) from a

root chosen uniformly at random, add maximally 2°
children randomly, but deterministically, from the set
of neighbors that are not part of the tree.

2) HD: like RND, but choose the root uniformly at

random from the 1% of nodes with the highest degree.

3) FAT: choose the root uniformly at random from the

1% of nodes with the highest degree, in case a node
has more than 2° neighbors that are not part of the
tree, choose the 2° with the highest degree.

For isometric Prefix Embedding, greedy routing is used
whereas for virtual tree embedding extended greedy routing
as described in Section III-D2 is used.

Setup - Metrics: The metrics for routing performance
and load balancing are computed as follows. The routing
performance is sampled by routing from each node in
the address space to 5 distinct nodes chosen uniformly at
random from all nodes with an address. The routing is
considered failed if the source is not part of the address
space or the target is not found in ¢¢l hops. The average
routing length is taken as the average over all queries, as is

the cumulative hop distribution, i.e. for each x, the fraction
of queries needing at most x hops was sampled. Variances
are small, and are not given for a clearer presentation.

To evaluate the load balancing, we measure the distribu-
tion of the sizes of the address space slices assigned to single
nodes by the embedding, i.e. for each x the fraction of nodes
responsible for x bits of the address space is sampled.

B. Routing Performance

Expectations: Prefix Embedding is guaranteed to have a
routing success rate of 1 when the degree is unrestricted.
In case of a degree restriction, the success rate corresponds
to the fraction of successfully embedded nodes, which is
expected to increase with the maximal degree. The success
rate of the heuristic embeddings is expected to be consider-
ably below 1, because non-greedy embeddings result in very
long routes in some cases, where the address information is
misleading.

The routing paths are expected to be much shorter in
case of a greedy embedding, as there are no loops and
backtracking parts. An increase of the maximal degree as
well as the usage of FAT trees might decrease the length of
the path slightly, since the tree depth is bound to decrease.

Using virtual trees is expected to lead to a longer path
length, because the tree embedding is no longer isometric,
which might mislead the routing algorithm.

Results: The main purpose of a good embedding is that
a routing algorithm should find short paths between all
nodes. Comparing Prefix Embedding with other darknet
embeddings shows that it is significantly better than heuristic
embeddings. The maximal path length (Fig. 3a) for Prefix
Embedding using RND trees and no restrictions on the
degree is 26, whereas for the heuristic embeddings only
about 56% (Spectral d = 100), 42% (Spectral d = 10),
22% (LMC), and 14% (Swapping) are successful within 200
hops.

The influence of the different spanning tree construction
algorithms (with unlimited degree) can be seen from Fig.
3b. FAT trees lead to a reduced average path length of about
6.84 steps in contrast to 7.03 steps for HD and 7.23 steps for
RND trees, whereas the average shortest path length is 6.15.
The routing performance decreases when virtual trees are
introduced. Still, the average routing path length is between
7.28 for FAT trees and 7.71 for RND trees, meaning it is
about 1.5 hops above the optimal solution.

Fig. 3c displays the effect of degree restriction on the
number of embedded nodes and the path length distribution
for FAT trees. For 4 bit coordinates, corresponding to a
maximal degree of 16, only 92% of the nodes are embedded,
for 5, 6 and 7 bit coordinates, it is about 96%, 98% and
99%, respectively. Restricting the degree in the tree leads to
longer routes, since the tree height is increased. Comparing
the routing length of the isometric embedding with virtual
trees (for FAT trees), using virtual trees has a slightly lower
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Routing Performance: a) compares Prefix Embedding with unlimited degree with heuristic embeddings, b) shows the influence of various

spanning tree constructions on both with and without virtual trees and c¢) shows the influence of restricting the degree

average path length of 7.28 than the 4 bit case (7.43 hops),
but takes on average longer than the isometric embedding
with 5 bit (7.16), 6 bit (7.02), and 7 bit coordinates (6.94).
For random spanning trees the success rates are slightly
higher, whereas the paths are slightly longer, as can be seen
in Fig. 3b.

C. Load Balancing

Expectations: The load distribution is not uniform, since
the number of bits a node is responsible for depends on its
tree level and the number of children it has: A node having
the maximal degree in the tree, is not responsible for any
file address whereas a root node having less than half of
the maximal degree is responsible for more than half of the
address space.

Virtual trees are bound to lead to a more uniform load
distribution, since the nodes on the first levels are not
responsible for any addresses, assuming they have at least
two children. Only leaf nodes and nodes with degree one
are responsible for parts of the address space in virtual tree
embeddings. If the spanning trees are relatively balanced,
most of these nodes should be deeper in the tree, meaning
they are responsible for less bits. However, the fraction Fj
of nodes not responsible for any file address is expected to
be higher in virtual tree embedding compared to isometric
embedding.

Results: Though having a worse routing performance, vir-
tual trees offer a better load balancing. Given the embedding
algorithm (ALG), the number of bits per coordinate (b),
and the spanning tree algorithm (ST), Table I displays the
maximum, mean, median, and non-zero minimum number
of bits a node is responsible for, as well as the fraction
Fy. Note that content addressing without degree restrictions
(b = — in Table I) is only possible when using virtual trees.
For comparison, the virtual tree embedding is also evaluated
using degree restrictions. As example, Table I shows the case
b = 6, respectively a bound of 64 for the degree in the tree.

In Table I one can see that when a random node is selected
as a root, this node is on average responsible for nearly the
whole address space. The maximum load is only slightly

Table I
DISTRIBUTION OF SIZES OF ADDRESS SPACE SLICES: NUMBER OF BITS
ALG ST | b max mean | median min Fo
ISOM | RND | 6 159.82 | 119.84 123.39 57.20 | 0.02
ISOM HD | 6 154.00 | 130.84 135.99 69.60 | 0.02
ISOM FAT | 6 15398 | 131.23 135.99 69.40 | 0.02
VIRT RND | 6 158.00 | 112.00 136.20 | 117.40 | 0.18
VIRT RND | — | 157.83 | 113.46 13477 | 114.83 | 0.16
VIRT HD | 6 154.00 | 114.74 139.70 | 121.83 | 0.18
VIRT HD | — | 153.17 | 116.60 138.70 | 119.50 | 0.16
VIRT FAT | 6 153.60 | 114.66 139.60 | 119.07 | 0.18
VIRT FAT | — | 153.33 | 115.12 136.17 | 113.90 | 0.16

decreased in case of virtual tree embeddings, for which the
node with the maximum address space slice is on average
responsible for a quarter of the address space (158 bits). The
results clearly indicate that a low degree node high up in
the tree leads to a highly unbalanced load distribution. This
is improved considerably by using higher degree nodes as
root, but FAT trees do not further reduce the maximum load
compared to HD trees. The later is presumably a result from
the very low number of high degree nodes, some children
of the root have not the required degree and are hence
responsible for large address space slices. Using virtual trees
without a fixed number of bits per level, the maximum load
is slightly reduced but still on average one node out of the
33317 nodes is responsible for more than 153 bits (1/128
of the address space) in case of FAT and HD trees and
157 bits (1/8 of the address space) in case of RND trees.
As expected, for virtual tree embeddings the fraction Fj is
much higher than for isometric embeddings. Consequently,
the average number of bits is lower, while the median and
minimum are higher.

V. CONCLUSION AND FUTURE WORK

We introduced a darknet routing approach and content
addressing scheme based on Prefix Embedding, a greedy
network embedding technique. As greedy embedding Prefix
Embedding guarantees success of greedy routing. It requires
only modest address representation sizes (O(log? n) bits in
case of networks with O(log n) diameter), a low number of
messages and low runtime for the embedding.



In the evaluation using PGP’s web of trust, greedy routing
on networks embedded with heuristic embeddings exhibits
low success rates and very long routing paths. On the
contrary, Prefix Embedding guarantees routing success and
routing paths are very short compared to the heuristic paths
and close to the shortest paths in the network.

Prefix embedding and the spanning tree embeddings in
general impose a hierarchy over the nodes and introduce
the need to select a root node. This is a drawback com-
pared to heuristic embeddings, which do not assign special
importance to any node.

Content addressing on top of the embedding exhibits
unbalanced load. Appropriately constructed spanning trees
and virtual tree embeddings mitigate the imbalances some-
what but they remain an issue. Strategies to handle these
imbalances are to be analyzed in future work. Furthermore,
our simple load model needs to be made more realistic.

Having seen that our approach offers very goods routing
performance in a static environment, it remains to analyze it
in dynamic, possibly malicious environments. The mainte-
nance of the embedding under network dynamics caused by
churn needs to be considered. This is especially urgent for
greedy embeddings as they rely on data structures spanning
the whole network like spanning trees. We plan to investi-
gate measures for handling network dynamics and evaluate
variants of prefix embedding using event-based simulation.
Attack resilience is another important problem for most
of the embedding approaches, greedy or not. Embeddings
often allow an attacker to influence the addresses of nodes
in his neighborhood. Hence, methods for detecting attacks
and restricting an attacker’s influence are needed. One of
the main goals of a darknet is protecting the participants
against prosecution by hiding their identity. This raises the
question how much information about participating nodes an
attacker can gain from observing and maybe manipulating
an embedding and its messages.
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