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Abstract 

This paper investigates the utility of an unsupervised part-

of-speech (PoS) system in a task oriented way. We use PoS 

labels as features for different supervised NLP tasks: Word 

Sense Disambiguation, Named Entity Recognition and 

Chunking. Further we explore, how much supervised tagging 

can gain from unsupervised tagging. A comparative 

evaluation between variants of systems using standard PoS, 

unsupervised PoS and no PoS at all reveals that supervised 

tagging gains substantially from unsupervised tagging. 

Further, unsupervised PoS tagging behaves similarly to 

supervised PoS in Word Sense Disambiguation and Named 

Entity Recognition, while only chunking benefits more from 

supervised PoS. Overall results indicate that unsupervised 

PoS tagging is useful for many applications and a veritable 

low-cost alternative, if none or very little PoS training data is 

available for the target language or domain.  
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1. Introduction 
Even if, in principle, supervised approaches reach the 

best performance in many NLP tasks, in practice it is not 

always easy to make them work in applicative settings. In 

fact, supervised systems require to be trained on a large 

amount of manually provided annotations. In most of the 

cases this scenario is quite unpractical, if not infeasible. In 

the NLP literature the problem of providing large amounts 

of manually annotated data is known as the knowledge 

acquisition bottleneck. A promising direction to tackle this 

problem is to provide unlabeled data together with labeled 

texts, which is called semi-supervised learning. 

The underlying idea behind our approach is that 

syntactic similarity of words is an inherent property of 

corpora, and it can be exploited to help a supervised 

classifier to build a better categorization hypothesis, even if 

the amount of labeled training data provided for learning is 

very low. 

Previous work on distributional clustering for word 

class induction was mostly not evaluated in an application-

based way. [4] and [7] state that their clustering examples 

look plausible. [17], [5] and [8] evaluate their tagging by 

comparing it to predefined tagsets. Notable exceptions to 

this are [20], where distributional clustering supports a 

supervised PoS tagger (see Section 3.1), and the 

incorporation of an unsupervised tagger into a NER system 

in [9] (see Section 4.3).  

This is, to our knowledge, the first comprehensive 

study on the utility of distributional word classes for a 

variety of NLP tasks. As the same unsupervised tagger is 

used for all tasks tested, we show the robustness of the 

system across tasks and languages. 

In this work, the unsupervised PoS tagger as described 

in [2] is evaluated by testing performance of applications 

equipped with this tagger. Section 2 is devoted to a short 

description of the tagger; Section 3 lays out the systems the 

tagger has been incorporated into. In Section 4, evaluation 

results examine the competitiveness of the unsupervised 

tagger, Section 5 concludes. 

2. Unsupervised PoS tagging 
Unlike in standard (supervised) PoS tagging, the 

unsupervised variant relies neither on a set of predefined 

categories, nor on any labeled text. As a PoS tagger is not 

an application of its own right, but serves as a 

preprocessing step for systems building upon it, the names 

and the number of syntactic categories is very often not 

important.  

The basic procedure behind our unsupervised PoS 

tagging is as follows: (i) (soft) clusters of contextually 

similar words are identified, each class is assumed being a 

different PoS, and (ii) words belonging to more than one 

class are disambiguated by considering the context in which 

they are located. The clustering methodology at the basis of 

the first step is motivated by the fact that words belonging 

to the same syntactic classes can be substituted in the same 

context producing grammatical sentences as well, leading 

us to adopt contextual similarity features for clustering.  

For a detailed description of the unsupervised PoS 

tagger system, we refer to [2]. Increased lexicon size up to 

some 50,000 words is the main difference between this and 

other approaches (cf. Section 1.1), that typically operate 

with 5,000 clustered words.  The tagsets obtained with this 

method are usually more fine-grained than standard tagsets 

and reflect syntactic as well as semantic similarity.  

In [2], the tagger output was directly evaluated against 

supervised taggers for English, German and Finnish via 

information-theoretic measures. While it is possible to 



relatively compare the performance of different components 

of a system or different systems along this scale, it does 

only give a poor impression on the utility of the 

unsupervised tagger’s output. Therefore, an application-

based evaluation is undertaken here. 

 

Corpus BNC CLEF Wortschatz 

Language English Dutch German 

Size (Tokens) 100M 70M 755M 

Nr. of Tags 344 418 511 

Lexicon Size 25706 21863 74398 

Table 2: Three corpora used for the induction of tagger 

models. BNC = British National Corpus, for CLEF see [14], 

Wortschatz is described in [15] 

To induce tagger models, three different corpora are 

used in our experiments. Table 2 lists some corpus 

characteristics as well as quantitative data of the respective 

tagger model. 

3. Supervised NLP Systems 
In this section, the systems that are used for evaluation are 

described: a simple Viterbi trigram tagger as used in [2], the 

supervised WSD system of [10], and the simple NER and 

chunking systems we set up.  

In the design of all of these systems, the task is 

perceived as a machine learning exercise: the PoS tagger 

component provides some of the features that are used to 

learn a function that assigns a label to unseen examples, 

characterized by the same set of features as the examples 

used for training.  

The systems were chosen to cover a wide range of 

machine learning paradigms: Markov chains in the PoS 

tagging system, kernel methods in the WSD system and 

Conditional Random Fields (CRFs, see [11]) for NER and 

chunking. 

3.1 PoS Tagger 
The tagger employed in [2] is a very simple trigram tagger 

that does not use parameter re-estimation or smoothing 

techniques. It was designed to be trained from large 

amounts of unlabeled data, arguing that increasing training 

data will lead to better results than increasing model 

complexity, cf. [1]. For training, the frequency of tag 

trigrams and the number of times each word occurs with 

each tag are counted and directly transformed into 

(transition) probabilities by normalization.  

The sequence of tags for a chunk of text is found by 

maximizing the probability of the joint occurrence of tokens 

T=(ti) and categories/tags C=(ci) for a sequence of length n: 

∏
=

−−=
n

i

iiiiiplain tcPcccPCTP
1

21 )|(),|(),( . 

In the unsupervised case, the transition probabilities 

P(ci|ci-1,ci-2) are only estimated from trigrams where all 

three tags are present. In the supervised case, tags are 

provided for all tokens in the training corpus. The 

probability P(ci|ti)
 1 is obtained from the tagger’s lexicon 

and equals 1 if ti is not contained. 

For the incorporation of unsupervised tags, another 

factor P(ci|ui) is introduced that accounts for the fraction of 

times the supervised tag ci was found together with the 

unsupervised tag ui in the training text, which has been 

tagged with the unsupervised tagger before: 
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Notice that only the unsupervised tag at the same 

position influences the goal category in this simple 

extension. Using surrounding unsupervised tags would be 

possible, but was not carried out. More elaborate strategies, 

like morphological components as in [3] or the utilization 

of a more up-to-date tagger model, are not considered here. 

The objective is to examine the influence of unsupervised 

tags, not to construct a state of the art PoS tagger. 

A somewhat related strategy is described in [20], where 

a hierarchical clustering of words was used for reducing the 

error rate of a decision-tree-based tagger up to 43%, 

achieving 87% accuracy on a fine-grained tagset. However, 

the improvements were reached by manually adding rules 

that made use of the cluster IDs yielded by a word 

clustering method and this approach therefore caused extra 

work as opposed to narrowing down the acquisition 

bottleneck. 

3.2 Word Sense Disambiguation (WSD) 
For performing WSD, we used a state of the art supervised 

WSD methodology based on a combination of syntagmatic 

and domain kernels [10] in a Support Vector Machine 

classification framework.  

Kernel WSD basically takes two different aspects of 

similarity into account: domain aspects, mainly related to 

the topic (i.e. the global context) of the texts in which the 

word occurs, and syntagmatic aspects, concerning the 

lexical-syntactic pattern in the local contexts. Domain 

aspects are captured by the domain kernel, while 

syntagmatic aspects are taken into account by the 

syntagmatic kernel.  

For our experiments, we substitute the sequences of 

PoS required by the syntagmatic kernel by using 

                                                                 

1 Although [6] report that using P(ti|ci) instead leads to superior 

results in the supervised setting, we use the ‘direct’ lexicon 

probability, which does not require smooting and re-estimation. 

For the purely unsupervised setting, this does not affect results 

negatively, as a much larger training corpus levels out the 

effects measured in [6]. 



unsupervised PoSs, comparing the results obtained with 

different combinations.  

3.3 Named Entity Recognition and Chunking 
For performing chunking and NER, we perceived these 

applications as a tagging task. For both tasks, we train the 

MALLET tagger2.  

The tagger operates on a different set of features for 

our two tasks. In the NER system, the following features are 

accessible, time-shifted by -2, -1, 0, 1, 2: a) Word itself, b) 

PoS-tag, c) Orthographic predicates and d) Character 

bigram and trigram predicates. 

In the case of chunking, features are only time-shifted by -1, 

0, 1 and consist only of: a) Word itself and b) PoS-tag. 

Per system, three experiments were carried out, using 

standard PoS features, unsupervised PoS features and no 

PoS features. 

4. Evaluation 
The systems are tested in a standard way on annotated 

resources. For supervised PoS tagging, we evaluate on the 

German NEGRA corpus [18]. The English lexical sample 

task (fine-grained scoring) of Senseval-3 [12] is chosen for 

WSD. For NER, the Dutch dataset of CoNLL-2002 [16] is 

employed, and the evaluation set for English chunking is 

the CoNLL-2000 dataset [19]. The supervised PoS tags for 

WSD, NER and chunking were provided in the respective 

datasets.  

Supervised PoS tagging is measured in accuracy, which 

is obtained through dividing the number of correctly 

classified instances by the total number of instances. For 

NER and chunking, results are reported in terms of the F13 

measure. WSD performance is measured using the scorer 

provided by Senseval-3. All evaluation results are 

compared in a pair wise fashion using the approximate 

randomization procedure of [13] as significance test. 

4.1 Unsupervised PoS for supervised PoS 
To evaluate the influence of unsupervised tags on a 

supervised tagger, training sets of varying sizes were 

selected randomly from the 20,000 sentences of NEGRA 

corpus, the remainder was used for evaluation. We compare 

the performance of the plain Viterbi tagger with the 

performance of the tagger using unsupervised tags (cf. 

formulae in section 3.1), which were obtained by tagging 

the NEGRA corpus with a tagger model induced on the 

Wortschatz corpus, which is 2,000 times larger. Results are 

reported in tagging accuracy, averaged over three different 

                                                                 

2 http://mallet.cs.umass.edu 
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splits per training size each. Figure 1 shows the learning 

curve. 

Results indicate that supervised tagging can clearly 

benefit from unsupervised tags: already at 20% training 

with unsupervised tags, the performance on 90% training 

without the unsupervised extension is surpassed. At 90% 

training, error rate reduction is 27.8%, indicating that the 

unsupervised tagger grasps very well the linguistically 

motivated syntactic categories and provides a valuable 

feature to either reduce the size of the required annotated 

training corpus or to improve overall accuracy. Despite its 

simplicity, the unsupervised extension does not fall too 

short of the performance of [3], where an accuracy of 0.967 

at 90% training on the same corpus is reported. 
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%  1 10 20 40 60 80 90 

plain 0.713 0.857 0.888 0.913 0.925 0.933 0.934 

unsu. 0.857 0.926 0.937 0.946 0.949 0.952 0.953 

Figure 1: Learning curve for supervised PoS tagging with and 

without using unsupervised PoS tags (accuracy) 

4.2 Unsupervised PoS for WSD 
The modularity of the kernel approach makes it possible to 

easily compare systems with different configurations by 

testing various kernel combinations. To examine the 

influence of PoS tags, two comparative experiments were 

undertaken. 

 

Figure 2: Comparative evaluation on Senseval scores for WSD 

and learning curve. No differences are significant at p<0.1 

The first experiment uses only the PoS kernel, i.e. the PoS 

labels are the only feature visible to the learning and 

classification algorithm. In a second experiment, the full 

system of [10] is tested against replacing the original PoS 

kernel with the unsupervised PoS kernel and omitting the 
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PoS kernel completely. Figure 2 summarizes the results in 

terms of accuracy.  

Results show that PoS information generally contribu-

tes to a small extent to WSD accuracy in the full system. 

Using the unsupervised PoS tagger results in a slight 

performance increase, improving over the state of the art 

results in this task, that have been previously achieved by 

[10]. However, the learning curve suggests that it does not 

matter whether to use supervised or unsupervised tagging. 

From this, we conclude that supervised tagging can 

safely be exchanged in kernel WSD with the unsupervised 

variant. Replacing the only preprocessing step that is 

dependent on manual resources in the system of [10], state 

of the art supervised WSD is proven to not being dependent 

on any linguistic preprocessing at all. 

4.3 NER Evaluation 
To evaluate the performance on NER, we employ the 

methodology as proposed by the providers of the CoNLL-

2002 dataset. We provide no PoS information, supervised 

PoS information and unsupervised PoS information to the 

system and measure the difference in performance in terms 

of F1. Table 3 summarizes the results for this experiment 

for selected categories using the full train set for training 

and evaluating on the test data. 

Table 3: Comparative evaluation of NER on the Dutch 

CoNLL-2002 dataset in terms of F1. All differences are not 

significant with p<0.1 

Category PER ORG LOC MISC ALL 

no PoS 0.8084 0.7445 0.8151 0.7462 0.7781 

su. PoS 0.8154 0.7418 0.8156 0.7660 0.7857 

un. PoS 0.8083 0.7357 0.8326 0.7527 0.7817 

 

The figures in table 3 indicate that PoS information is 

hardly contributing anything to the system’s performance, 

be it supervised or unsupervised. This indicates that the 

training set is large enough to compensate for the lack of 

generalization when using no PoS tags, in line with e.g. [1]. 

The situation changes when taking a closer look on the 

learning curve, produced by using train set fractions of 

differing size. Figure 3 shows the learning curves for the 

categories LOCATION and the micro average F1 evaluated 

over all the categories (ALL).  

On the LOCATION category, unsupervised PoS tags 

provide a high generalization power for a small number of 

training samples. This is due to the fact that the induced 

tagset treats locations as a different tag; the tagger’s lexicon 

plays the role of a gazetteer in this case, comprising 765 

lexicon entries for the location tag. On the combination of 

ALL categories, this effect is smaller, yet the incorporation 

of PoS information outperforms the system without PoS for 

small percentages of training. 

 

Figure 3: Learning curves in NER task in F1 

for category LOC and combined category 

This disagrees with the findings of [9], where features 

produced by distributional clustering were used in a 

boosting algorithm. Freitag reports improved performance 

on PERSON and ORGANISATION, but not on LOCATION, 

as compared to not using a tagger at all. In [9], however, a 

different training corpus for PoS induction and English 

NER data was used. 

Experiments on NER reveal that PoS information is not 

making a difference, as long as the training set is large 

enough. For small training sets, usage of unsupervised PoS 

features result in higher performance than supervised or no 

PoS, which can be attributed to its more fine-grained tagset. 

4.4 Chunking Evaluation 
For testing performance of our simple chunking system, we 

used different portions of the training set as given in the 

CoNLL-2000 data and evaluated on the provided test set. 

Performance is reported in Figure 4. 

 

Figure 4: Learning curve for the chunking task in terms of F1. 

Performance at 100% training is 0.882 (no PoS), 0.904 

(unsupervised PoS) and 0.930 (supervised PoS), respectively 

As PoS is the only feature that is used here apart from the 

word tokens themselves, and chunking reflects syntactic 

structure, it is not surprising that providing this feature to 

the system results in increased performance: both kinds of 

PoS significantly outperform not using PoS (p<0.01). 

In contrast to the previous systems tested, using the 

supervised PoS labels resulted in a significantly better 

chunking (p<0.01) than using the unsupervised labels. This 

can be attributed to the fact that both supervised tagging 

and chunking aim at reproducing the same perception of 

syntax, which does not necessarily fit the distributionally 

acquired classes of an unsupervised system.  Anyhow, the 

use of unsupervised PoS provide very useful information to 



the chunking learning process, demonstrated by the fact that 

the use of unsupervised PoS improves significantly the 

baseline provided by the system trained without PoS. 

Despite the low number of features, the chunking 

system using supervised tags compares well with the best 

system in the CoNLL-2000 evaluation (F1=0.9348). 

5. Conclusion 
To summarize our results, we have shown that employing 

unsupervised PoS tags as features are useful in many NLP 

tasks. Improvements over the pure word level could be 

observed in all systems tested. We demonstrated that 

especially if few training data or no supervised PoS tagger 

is available, using this low-cost alternative leads to 

significantly better performance and should be used beyond 

doubt. In addition, unsupervised PoS tagging can be used to 

improve supervised PoS tagging, especially as far as the 

learning curve is concerned. 

Comparing the two kinds of PoS tags tested, we 

observed that the performances achieved by the final 

systems are comparable in all tasks but chunking. In 

addition, we reported a slight improvement on WSD. 

Another conclusion is that, in general, the more 

training data is provided, the lower the gain of using PoS 

tagging in supervised NLP, either if PoS tags are supervised 

or not. Even if this result is in itself not very interesting 

from our particular point of view, being in line with 

learnability theory, it confirms our basic motivation of 

adopting unsupervised PoS tagging for minority languages 

and, in general, for all those linguistic processing systems 

working with very limited manually tagged resources but 

huge unlabeled datasets. This situation is very common in 

Information Retrieval systems, and in all applications 

dealing with highly specialized domains (e.g. 

bioinformatics). In the future we plan to apply our 

technology to a Multilingual Knowledge Extraction 

scenario working on web scale corpora. 
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