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ABSTRACT

We study discriminative clustering for market segmentation
tasks. The underlying problem setting resembles discrimi-
native clustering, however, existing approaches focus on the
prediction of univariate cluster labels. By contrast, market
segments encode complex (future) behavior of the individ-
uals which cannot be represented by a single variable. In
this paper, we generalize discriminative clustering to struc-
tured and complex output variables that can be represented
as graphical models. We devise two novel methods to jointly
learn the classifier and the clustering using alternating op-
timization and collapsed inference, respectively. The two
approaches jointly learn a discriminative segmentation of
the input space and a generative output prediction model
for each segment. We evaluate our methods on segmenting
user navigation sequences from Yahoo! News. The proposed
collapsed algorithm is observed to outperform baseline ap-
proaches such as mixture of experts. We showcase exem-
plary projections of the resulting segments to display the
interpretability of the solutions.
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Market segmentation reveals divisions in a given market,
where a market refers to a population of interest such as
people, customers, or organizations. A market segment is a
subset of a market that is characterized by similar demands
and/or needs based on qualities of a given product such as
price or function.

Every segment is required to meet the following criteria.
(i) It is homogeneous within the segment, so that individuals
within the same segment exhibit common needs and can be
targeted jointly with the same marketing strategy. (ii) It is
easily distinguishable from other segments to guarantee that
different segments have different demands and (iii) serves as
a blueprint for distinct targeting strategies. The require-
ments are often summarized as homogeneity, identifiability,
and interpretability (19).

Besides frequently deployed self-organizing maps (SOMs)
(13; 7), market segmentation matches the problem setting
of model-based clustering approaches. Clustering techniques
either minimize the within-cluster similarity (1; 14), maxi-
mize the between-cluster similarity (7), or optimize a combi-
nation of both (18), and thus aim to produce homogeneous
and identifiable solutions. Once segments have been com-
puted, new customers need to be assigned to one of the
subgroups to advertise the product accordingly.

Unfortunately, mapping new instances to an existing clus-
tering is often difficult in practice. Intuitively, the new cus-
tomer should be grouped to the closest segment with respect
to some similarity measure. Closeness can for instance be
computed as the distance in feature space to the median or
the nearest member of a segment (11; 4). However, often at
the time of classifying a new instance, not all features are
known. Even using the similarity measure that is used by
the clustering method itself on all features is frequently ob-
served to perform surprisingly inaccurate, see e.g., (20) and
Section 4. Other difficulties are for instance distribution-
based clusterings, such as Expectation Maximization (6),
which assign probabilities for cluster-memberships. By do-
ing so, customers are probabilistically related to every seg-
ment. Converting this soft assignment into a hard assign-
ment by taking a maximum a posteriori or winner-takes-all
decision is often suboptimal if the memberships deviate from
a point distribution, in which case more than one segments
are likely candidates (14).

Optimally, the segmentation is therefore learned together
with a classifier that discriminatively maps new instances
to clusters; a problem setting which is also known as dis-
criminative clustering (5; 20; 24; 8). The idea is to have
the clustering provide the labels for the classifier which is



trained in a supervised manner. The joint optimization al-
ters the clustering so that the segments can be easily dis-
criminated from each other by the classifier. Combining the
two criteria thus guarantees concise clusterings and accu-
rate classifiers. Existing approaches focus on clustering a
population and predicting a cluster label for a new instance.
By contrast, market segmentation is more complex. In mar-
ket segmentation tasks, we need to differentiate between the
data that characterizes individuals and the data that charac-
terizes their future behavior. The clustering clearly needs to
take all available information into account to generate mean-
ingful segments. However, the classifier does not have access
to future events and needs to take a decision on the available
information such as gender, income, etc. This observation
renders existing approaches to discriminative clustering too
restrictive for market segmentation tasks.

In this paper we generalize discriminative clustering for
market segmentation tasks using the structured prediction
framework. We differentiate between attributes of a cus-
tomer and her interests/behavior. Attributes are a priori
available features of individuals of the population such as
gender or income. Her behavior is a collection of interact-
ing variables describing a segment. As segments need to be
interpretable, we model the output data as a complex and
structured variable which can be represented as a graphical
model. The distinction allows for learning a classifier only on
the attributes, computing the clustering on both attributes
and behavior, and finally summarizing the segments only in
terms of the behavior.

We devise two solutions which are based on the regular-
ized empirical risk minimization framework. The first is a
straightforward adaptation of mixtures of experts. Classi-
fier and clustering are optimized using an alternating strat-
egy where we fix one component while optimizing the other.
The second solution uses approximations and integrates out
parameters of the classifier using collapsed inference for effi-
ciency. Both approaches use generative models for the out-
put structure and, in contrast to conventional discriminative
clustering approaches, do not involve trade-off parameters
for classification accuracy and cluster consistency (class bal-
ance) because the optimization problems are not prone to
trivial and degenerate solutions.

Use cases of our methods contain traditional market seg-
mentation tasks. Consider for instance a company that aims
at promoting a new product or a hotel chain that intends to
lure visitors with special offers. Our methods not only com-
pute a meaningful segmentation of the customers but also
allow for devising appropriate targeting strategies from the
graphical models. Moreover, our method serves as discrim-
inative clustering for structured variables, where the task is
not to output a single class/cluster label but the average
structure for every segment. The differentiation between
attributes and behavior increases the range of applications
that can be addressed. A special – but still novel – case is
obtained when attributes and behavior partially overlap.

Empirically, we study our methods on another interesting
use case: Segmenting user navigation sessions on the Web
for displaying segment-specific website layouts. We experi-
ment on a large click log from Yahoo! News. The attribute
data is assembled from meta-information about the session
such as the timestamp, the referrer domain, and the first
page request. The behavior consists of subsequent naviga-
tion actions given by click sequences. The generative rep-

resentation of the behavior data is interpretable and can be
easily transformed into segment-specific layouts.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses the relationship of our problem setting with
previously studied settings and methods. In Section 3 we
derive two algorithms to optimize the empirical counterpart
of the expected segmented log-likelihood. Section 4 reports
on empirical results using a large click log from a commercial
news provider and Section 5 concludes.

2. RELATED WORK
Market segmentation tasks are often solved using neural

networks such as self-organizing maps (13; 7). Kiang et al.
(13) for instance extend self-organizing maps to group cus-
tomers according to their attitude towards different commu-
nications modes. D’Urso and de Giovanni (7) use the natu-
ral clustering property of self-organizing maps together with
dissimilarity measures which capture temporal structure of
the data. In general, clustering data with self-organizing
maps and variants thereof inherently implements the homo-
geneity assumption of market segmentation. However, clas-
sifying new instances into the clustering is often difficult and
it is not possible to output generative models to summarize
the resulting clusters. Additionally, the optimization crite-
rion of self-organizing maps is highly sensitive to the actual
initialization and usually converges to different local optima.

Related to market segmentation is the task of estimating
a mixture model for observations (6). Introducing selector
variables encoding probabilistic cluster-memberships, maxi-
mizing the log-likelihood by marginalizing over the selector
is usually straightforward. The selector can be modeled in a
data-dependent or data-independent fashion but the prob-
abilistic nature of the cluster-memberships render a direct
application for market segmentation tasks impossible.

Discriminative clustering simultaneously computes a seg-
mentation of the data at hand and a classifier that discrim-
inates the resulting clusters well. Existing approaches in-
clude projections into lower-dimensional subspaces (5), joint
optimization of max-margin classifiers and clusterings (20;
24), the optimization of scatter metrics (21), and the max-
imization of an information theoretic criterion to balance
class separation and classifier complexity (8). Sinkkonen
et al. (17) aim to find clusters that are homogeneous in
auxiliary data given by additional discrete variables. The
above mentioned approaches do not predict any output vari-
able but focus on the discrete cluster variable. Moreover, in
our generalized problem setting, instances are represented as
input-output pairs. The classifier discriminates the clusters
given only the input, whereas the cluster parameters need to
accurately estimate the outputs of the contained instances.
Previous work on discriminative clustering does not split in-
stances into two parts. They represent instances as a single
input which consequently allows the classifiers to access the
whole example at decision time. The same assumption is
commonly being made in market segmentation studies that
involve model-based clustering approaches, (9; 16; 22) but
prohibits a natural solution for market segmentation tasks.

This problem setting can be seen as an alteration of the
setting which the Mixture of Experts approach (10; 12) aims
to solve, where the behavior y is predicted given the at-
tributes x as a mixture model where the mixture component
weights depend again on x. In our case, mixture component
weights have to be always point distributions as demanded



by the application. Framing the distribution of y given the
mixture component as a pure generative model allows us to
derive a more efficient algorithm than that of the Mixture
of Experts approach.

Zhao et al. (23) proposed a maximum-margin cluster-
ing for multivariate loss functions. Minimizing the complex
losses allows for capturing structural differences that cannot
be expressed in terms of standard misclassification rates.
In principle, by defining a loss function that captures the
differences of two clusterings, one could possibly solve mar-
ket segmentation tasks as their approach implicitly favors
clusterings that are easily discriminable. However, the loss
function cannot be expressed in terms of the contingency ta-
ble of the two clusterings, and the decoding problem in the
inner loop of the algorithm, that is finding the most violated
constraint, becomes intractable in practice.

Also related to our problem setting are multi-view clus-
tering approaches, where the data is split into two disjoint
feature sets, which are sometimes also called views. Bickel
and Scheffer (2) present an intertwined Expectation Maxi-
mization algorithm to compute the maximum likelihood so-
lution for one view using the expectations provided by its
peer view. The two data views are modeled generatively
and the algorithm maximizes the joint marginal likelihood.
By contrast, we aim to find a discriminative classifier on the
input view and instead of maximizing the marginal likeli-
hood of the output view we seek to maximize the likelihood
conditioned on a hard cluster assignment.

3. DISCRIMINATIVE SEGMENTATION
We now present our main contribution, the generalization

of discriminative clustering for structured output variables
to solve market segmentation problems. We introduce the
problem setting in the next section and present a straightfor-
ward solution in terms of mixtures of experts in Section 3.2.
An efficient approximation is devised in Section 3.3 and Sec-
tion 3.3.3 discusses scalability issues.

3.1 Preliminaries
We are given a sampleM from a market where individuals

are represented by tuples (x, y) ∈ X ×Y encoding attributes
x and behavior y. Attributes x may encompass individual
features like gender, income, etc while the expressed historic
behavior is captured by y ∈ Y and represented as a graph-
ical model. The behaviors y are governed by a family of
distributions denoted by P (y|θ) with natural parameter θ.

In our running example on segmenting user navigation on
the Web, attributes x encode meta-information about the
session such as the timestamp, the referrer domain, and the
first page request and is represented as a feature vector.
The behavior y encodes sequences of the subsequent Web
navigation and can for instance be represented as a Markov-
chain where nodes correspond to pageviews and connecting
edges visualize clicks.

We aim to find an appropriate segmentation of the mar-
ket M. Formally, the goal is to find a classifier h : X →
{1, . . . , k} that maps attributes x to one of k clusters, pa-
rameterized by θ = (θ1, . . . , θk), where the θj are chosen to
maximize the likelihood of the observed behaviors y of the
respective segment. The number of clusters k is assumed
to be given by the application at hand, because it consti-
tutes a trade-off between predictive power and effort spent
for developing multiple market strategies. As h and θ are

not independent they need to be optimized jointly. Hence,
over all classifiers h and parameter collections θ, we aim at
maximizing the expected risk functional R that is defined in
terms of the segmented log-likelihood

R(h,θ) =

∫

logP (y|θh(x))dP (x, y). (1)

Since the true joint distribution P (x, y) is unknown, we re-
place Equation (1) by its empirical counterpart on the finite
market sample of size n given by M = {(xi, yi)}

n
i=1

R̂(θ, h) =
n
∑

i=1

logP (yi|θh(xi)). (2)

Directly maximizing Equation (2) in terms of the compo-
nent parameters θ and the classifier h is infeasible, since the
objective function is not only highly non-convex and non-
continuous but an NP-hard problem because of combinato-
rial assignments. However, if the classifier h was fixed, the θj
could be optimized directly, as h provides the segmentation
and for each segment j optimal parameters θ̂j are trivially
computed by

θ̂j = argmax
θ

∑

i:h(xi)=j

logP (yi|θ). (3)

For many common distribution families, the maximum like-
lihood estimates P (y|θ) can be computed easily by counting
or averaging over the observations in the segment, respec-
tively. Vice versa, keeping the segment parameters θ1, . . . , θk
fixed, learning the classifier h results in a standard multi-
class classification scenario. Using linear models, h can be
written as

h(x) = argmax
j∈{1,...,k}

w"
j x, (4)

where each segment has its own weight vector wj . In the re-
mainder, we will use h and w = (w1, . . . , wk)

" interchange-
ably. The next section exploits this observation and presents
a joint alternating optimization scheme.

3.2 An Alternating Optimization Scheme
A straightforward approach to solve market segmentation

problems is to alternate the optimization of the classifier
and the clustering while fixing the other, respectively. As
shown in Equation (3), keeping the classifier fixed allows to
apply standard maximum likelihood techniques to compute
the natural parameters of the segments. We thus focus on
deriving the classifier h for a fixed clustering. We make
use of the maximum-margin framework and deploy a re-
scaled variant of the hinge loss to deal with uncertain cluster-
memberships (or class labels).

Algorithm 1 Alternating Optimization

1: Input: (x1, y1), . . . , (xn, yn),λ > 0, k > 1
2: Initialize θ randomly
3: repeat
4: E-step: w ← argminw′,ξ≥0

λ
2 ‖w

′‖2 + 1
n

∑n
i=1 ξi

5: s.t. (w′
j∗
i
−w′

j)
"x ≥ 1− ξi

s(y)

6: M-step: θ ← argmaxθ′

∑

j

∑

i:h(xi)=j logP (yi|θ
′)

7: until convergence



The idea is as follows. Intuitively, an individual (x, y)
should be assigned to the segment that realizes the high-
est log-likelihood with respect to y. However, two or more
segments might be competing for the instance and realize
similar log-likelihoods, in which case a winner-takes-all de-
cision is prohibitive. We thus treat the difference of the log-
likelihoods between the most likely segment j∗ and cluster
j′ )= j∗ as a misclassification score, given by

s(y) = logP (y|θj∗)− logP (y|θj′). (5)

These scores can be incorporated in a support vector ma-
chine by re-scaling the hinge loss and act like example-de-
pendent costs (3). The re-scaled hinge loss becomes a convex
upper bound of the difference of the log-likelihoods,

$(x) = s(y)max
(

0, 1− (wj∗ − wj′)
"x

)

. (6)

Stacking up w = (w1, . . . , wk)
" and ξ = (ξ1, . . . , ξn)

", we
arrive at the following maximum-margin optimization prob-
lem

min
w,ξ≥0

λ
2
‖w‖2 +

1
n

n
∑

i=1

ξi

s.t. (wj∗
i
−wj)

"x ≥ 1−
ξi

s(y)
,

for 1 ≤ i ≤ n, j ∈ {1, . . . , k}, j )= j∗, j∗i = argmaxj P (yi|θj),
and regularizaion parameter λ > 0.

Hence, Equation (2) can be optimized by randomly initial-
izing θ and subsequently alternating between optimizing w
and θj while fixing the respective peer. Algorithm 1 instan-
tiates the pseudo-code as a member of the Expectation Max-
imization framework. The alternating optimization scheme
can also be interpreted as an adaptation of the EM algorithm
for a mixture of experts (12). The classifier h, given as the
weight vectors wj , corresponds to the gating networks. In
contrast to the conventional mixture of experts model, it
is trained using an SVM to output deterministic decisions,
instead of soft decisions. The generative distribution over
behaviors differs from the expert networks only in the fact
that in our problem setting the prediction of the behavior y
is not allowed to depend directly on the attributes x, only
via the cluster assignment.

A major drawback of the alternating approach is however
the discrete assignment of individuals to only a single seg-
ment, even during the intermediate optimization steps. As
a consequence, the algorithm is prone to degenerate solu-
tions and poor local optima. Additionally, the optimization
is expensive in terms of computational time as it requires
the computation of a multi-class SVM until convergence in
every step.

3.3 Collapsed Optimization
We now present an efficient approximation of the discrim-

inative segmentation problem by using a continuous relax-
ation to the original problem formulation. We first show that
the parameters of the classifier can be computed in closed-
form so that the joint optimization problem depends only
on the segment parameters. Second, we devise an EM-like
algorithm (6) to optimize the remaining objective.

3.3.1 Eliminating the Classifier Parameters
As the discrete cluster assignments cause many difficul-

ties, we now replacing them by soft assignments using an

adjustable soft-max function. The parameter ρ controls the
degree of reproducing the maximum, that is for ρ → ∞ we
precisely obtain the maximum operator. Incorporating the
soft-max in Equation (2) yields the optimization problem

max
θ,w

n
∑

i=1

log
k

∑

j=1

P (yi|θj)
exp(ρw"

j xi)
∑

j′ exp(ρw
"
j′xi)

, (7)

which still contains the mutually dependent variables θ and
w. To obtain an efficiently solvable optimization problem,
we express the objective as a continuous function of w so
that w can be eliminated using collapsed inference. Instead
of the hinge loss in Equation (6), we employ another tight
convex upper bound in terms of the squared loss,

$(x) = (logP (y|θj)− w"
j x)2.

Implicitly, introducing the squared loss converts the classi-
fier into a regressor that aims at predicting the log-likelihood
for an individual (x, y) and the j-th segment as accurate
as possible. Assuming the log-likelihoods were predicted
perfectly, the parameters w would not only be optimal for
the regression but also for Equation (2) as the classifier h
in Equation (4) would still return the most likely segment.
Changing the loss function also has the advantage that now
the optimal solution for w can be computed analytically.
The corresponding regularized optimization problem is also
known as regularized least squares regression (RLSR) or
ridge regression and is given by

min
w

λ
2
‖w‖2 +

n
∑

i=1

k
∑

j=1

(

logP (yi|θj)− w"
j xi

)2
, (8)

for λ > 0. Setting the derivative with respect to w to zero
and solving for wj , we obtain the optimal solution that can
be computed in closed-form

wj = X"(XX" + λI)−1π(θj), (9)

where X ∈ R
n×d contains the stacked attribute vectors and

π(θj) = (logP (y1|θj), . . . , logP (yn|θj))
" is the vector of log-

likelihoods for the j-th segment. The computation of the
inner product

w"
j x = π(θj)

"(XX" + λI)−1Xx

can effectively be sped-up by precomputing the linear trans-
formation of the attributes. Introducing auxiliary variables
x̄ given by

x̄ = (XX" + λI)−1Xx,

allows to efficiently rewrite the inner product as w"
j x =

π(θj)"x̄. Further note that x̄ depends only on inner prod-
ucts of individual attributes. Hence, the kernel trick can be
applied to incorporate non-linearity. Introducing a Mercer
kernel κ, the auxiliary matrix X̄ can be written in terms
of the corresponding kernel matrix K with elements Kij =
{κ(xi, xj)}ij as (K + λI)−1K. The classifier can then be
expressed in terms of a set of dual multipliers α and the ker-
nel function as h(x) = argmaxj

∑

i αjiκ(xi, xj). The dual
multipliers can be obtained explicitly as a function of the
component parameters as

αj(θj) = π(θj)
"(K + λI)−1. (10)

Substituting the obtained observations in Equation (7)
results in a simplified optimization problem that does no



longer depend on w and that has only the θj as free param-
eters,

max
θ

n
∑

i=1

log
k

∑

j=1

P (yi|θj)
exp(ρπ(θj)

"x̄i)
∑

j′ exp(ρπ(θj)
"x̄i)

. (11)

3.3.2 Optimizing the segment parameters
The optimization problem in Equation (11) can be solved

with an EM-like algorithm (6) using auxiliary variables zi,j ≥
0, with

∑

j zi,j = 1, encoding the belief that the i-th exam-
ple belongs to the j-th cluster. EM-like algorithms consist
of two phases which assign instances to generating segments
(E-step) and maximize the segment parameters with respect
to the associated instances (M-step), respectively. In the E-
step, it therefore suffices to identify the auxiliary variables
with the true posterior probabilities given the current θ,

zi,j ∝ P (yi|θj)
exp(ρπ(θj)

"x̄i)
∑

j′ exp(ρπ(θj)
"x̄i)

.

Following the general EM framework, we express the empir-
ical risk functional in Equation (11) in terms of the expec-
tations zi,j . This allows us to effectively pull the logarithm
into the sum over segments for the M-step; we arrive at the
optimization problem

max
θ

∑

i

∑

j

zi,j log

[

P (yi|θj)
exp(ρπ(θj)

"x̄i)
∑

j′ exp(ρ π(θj)
"x̄i)

]

,

which can be rewritten as

max
θ

∑

i,j

zi,j

[

ρπ(θj)
"x̄i − log

∑

j′

exp(ρπ(θj′)
"x̄i) + logP (yi|θj)

]

.

The above Equation is to be maximized with respect to θ.
Compared to conventional M-steps for mixture model esti-
mation problems, θ appears not only in P (yi|θj), but also
in what are usually the segment weights for each example.
This renders the objective function non-concave and, conse-
quentially, there is no exact analytical solution.

As a remedy, we derive an approximation that is linear and
non-decreasing in the π(θj), rendering the objective concave
in θj and thus analytically solvable for common choices of
P (y|θj). We begin with approximating the normalization
term Z(θ) = log

∑

j′ exp(ρπ(θj′)
"x̄i) by its first-order Tay-

lor expansion around the current θold which is given by

Z(θ) ≈
∑

j′

tij′ρπ(θj′)
"x̄i + C, (12)

where the tij′ =
exp(ρπ(θold

j′
)#x̄i)

∑
j exp(ρπ(θold

j
)#x̄i)

are the Taylor coeffi-

cients and C is a constant. Substituting Equation (12) into
the objective function of the M-step and collecting the coef-
ficients gives us

argmax
θ

∑

i

∑

j

logP (yi|θj)

[

zi,j + ρ
∑

i′

x̄i′i

(

zi′,j)−

∑

j′

zi′,j′ ti′j′
)

]

, (13)

Algorithm 2 Collapsed Optimization Algorithm

1: Input: (x1, y1), . . . , (xn, yn),λ
2: ρ← 1, t← 1, initialize θ(0) randomly
3: repeat
4: E-step: Q(zi = j)← P (zi = j|xi, yi, ρ,λ,θ

(t−1))
5: M-step: θ(t) ← argmaxθ

∑

i

∑

j Q(zi = j)×
6: logP (yi, zi = j|xi, ρ,λ,θ)
7: ρ← ρ× 1.1, t← t+ 1
8: until convergence
9: θ̂ = argmaxθ R̂(θ,α(θ))

10: α← α(θ̂)

which is a linear function of logP (yi|θj). For increasing ρ,
the Taylor coefficients for each instance approach a point dis-
tribution exponentially fast, i.e. ti· → (0, . . . , 0, 1, 0, . . . , 0)".
The same holds for the auxiliary variables zi,j , which ap-
proach tij . Thus, the second summands of the coefficients
in Equation (13) approach zero, and hence for large ρ all the
logP (yi|θj) have either positive or very small negative coef-
ficients. We clip coefficients below zero to guarantee that the
objective function is non-decreasing in the log P (yi|θj) and
obtain an approximation that approaches the exact solution
with increasing ρ.

The softmax factor ρ therefore constitutes a trade-off be-
tween accurately approximating the original optimization
problem of maximizing R̂(θ, h) and smoothing the objective
function to facilitate finding good local optima.

We deal with this tradeoff by starting the EM-algorithm
with ρ = 1, and multiplying it by a constant factor each iter-
ation. Preliminary experiments have shown the factor 1.1 to
work well. Due to the approximation of the hard decisions
with a soft-max, the algorithm is not guaranteed to mono-
tonically increase the true objective value. We thus select
the intermediate result with the highest objective value as
the final solution for the cluster parameters.

Algorithm 2 shows the collapsed optimization algorithm
in pseudo code. In line 2, the cluster parameters θ are ini-
tialized randomly. Line 4 performs the expectation step
of the EM-algorithm, computing the current posterior es-
timates, given the soft-max factor ρ, the cluster parame-
ters, and implicitly also the classifier h. The maximization
step in line 5 boils down to an optimization problem of the
form

∑

i

∑

j cij logP (yi|θj), which for non-negative coeffi-
cients cij can be solved analytically for many choices of dis-
tribution families. For example if P (y|θ) is a multinomial
distribution over y ∈ {1, . . . ,m} with P (y = q|θj) = θj,q,
the maximum is attained for θj,q =

∑

i cij [[yi = q]]/
∑

i cij
for all j, q, where [[·]] is the indicator function. Finally, lines
9 and 10 select the best intermediate solution in terms of
the true objective, and re-obtain the explicit classifier using
Equation (10).

3.3.3 Scalability
The computational bottlenecks of the collapsed optimiza-

tion algorithm are the computation of the x̄i, involving ma-
trix inversions and multiplications, and the computation of
the coefficients in Equation (13), where we have to sum over
all pairs of examples, leading to an overall complexity of the
algorithm of O(n2.376 + n2kT ).

For applications with a large number of examples the
super-quadratic dependence on the sample size n makes the



algorithm effectively intractable. We can alleviate this by
randomly partitioning the examples in the least-squares es-
timation in Equation (8) into s disjoint subsets S(1), . . . , S(s)

of size m. For each subset the weight vectors w(l) are esti-
mated separately, and thus within each subset the vectors
π(θj) and the transformed examples x̄ have only m compo-
nents. Consequently, in Equation (13) the inner summation
over the examples only runs over the m examples in the
subset to which example (xi, yi) belongs. Finally, we obtain
the parameters of the classifier h by averaging the weight
vectors over all subsets, wj = 1

s

∑

l w
(l)
j .

Mixing the separately learned weight vectors is identical
to the mixture weight method by Mann et al. (15) that has
been shown, theoretically and empirically, to yield results
close to learning a weight vector using all examples at once.
Note however that θ is still learned from the whole, unparti-
tioned training sample. Using the partitioned estimation for
the weight vectors, the overall complexity of the algorithm
becomes O(nm1.376 +nmkT ). For m. n, the computation
becomes tractable even for very large sample sizes n.

4. EMPIRICAL EVALUATION
In this section, we evaluate the proposed algorithm using

a large data sample from Yahoo! News United Kingdom1.
The click log contains browsing session logs, where events
from the same user are identified by their browser cookies
and sessions are split after 25 minutes of inactivity. We use
all sessions from June 2011 for training and the first week
of July 2011 for testing. Figure 1 shows the categories, such
as politics/world, politics/uk, science/space, in the training
set, averaged over the four weeks where different colors cor-
respond to different categories2.

Figure 1: Click volume of categories over time.

The goal of our study is threefold: Firstly, we aim to seg-
ment the user sessions of Yahoo! News according to their
interests expressed by clicks. Secondly, new sessions need
to be classified to one of the segments so that every seg-
ment accurately predicts subsequent clicks of the respective
user. Finally, the segments need to be interpretable to allow
for devising target strategies from the segment description.

1All processing is anonymous and aggregated
2Colors occur more than once due to the large number of
categories.

A typical targeting strategy in our Yahoo! News example
could for instance be a dynamic layout of the Web site to
advertise news articles of categories that the respective user
is probably interested in.

From a data perspective, modeling sequences of clicked
categories by Markov processes is straightforward. How-
ever, Markov processes, e.g., visualized by transition matri-
ces, are difficult to interpret as the entries encode interests
with respect to the previous category. Taking the inferred
Markov model properly into account would imply changing
the website layout within a session depending on the previ-
ous category. A simpler way to obtain interpretable clusters
is to use multinomial distributions for the output variables
of interest. We use the sequences of user clicks enriched with
the respective locations of the clicks. That is, the behavior
y consists of the multi-set of subsequently clicked categories
c and link sections s. The distribution P (y|θj) is defined as
the product of multinomial distributions

P (y|θ) =
∏

l

P (ci|µ)
∏

j

P (sj |ν),

where µ and ν are the parameter vectors governing the dis-
tributions over categories and link sections, respectively.

The attributes x of a session is represented as a binary
feature vector encoding the most common referrer domains,
the respective category of the first pageview, as well as fea-
tures encoding the timestamp; we use binary indicators for
every day of the week, for each hour of the day, and for each
hour of the week. For the collapsed algorithm, we use a
linear kernel and randomly partition the training data into
disjoint subsets of size 1,000 for computing the predicted
log-likelihoods.

4.1 Baselines
We compare the collapsed algorithm with three baselines,

the alternating optimization scheme in Section 3.2, a mix-
ture of experts model and a k-means based solution. The
mixture of experts model (12) minimizes the squared error
in terms of the within-cluster log-likelihoods and optimizes
the marginal likelihood

∑

i

log
∑

j

P (yi|θj)P (zi = j|x).

Instead of the prior P (z = j) we have a conditional distribu-
tion P (z = j|x) which is defined in analogy to the collapsed
algorithm as

P (z = j|x) ∝ exp(
∑

i

αj,ik(xi, x)).

The mixture of experts model is optimized with a standard
EM-algorithm and therefore provides only probabilistic clus-
ter assignments and does not take into account that sessions
need to be assigned to only a single cluster.

The third baseline is derived from the straightforward, yet
somewhat näıve, approach to segment the input space first
and only then optimize the generative model in each cluster.
The drawback of this non-iterative approach is that it does
generally not lead to homogeneous behavior within clusters
because the segments are fixed when estimating the genera-
tive models. We use k-means for finding the clustering, and
estimate segment paramters θ by maximum likelihood based
on the hard cluster assignments. The classifier h classifies a
new instance into the cluster with the nearest centroid.



In each setting, every algorithm is deployed 10 times with
random parameter initializations and in the remainder we
only report the results of the run with highest training like-
lihood.

4.2 Convergence
In this section, we evaluate the convergence behavior of

the collapsed algorithm. Recall that the collapsed algorithm
optimizes an approximate objective, where the hard clus-
ter assignments are replaced by a soft-max controlled by
an increasing factor ρ. To cancel out effects caused by the
approximation, we substitute the resulting θ into the ex-
act optimization criterion in Equation (2) and measure the
respective objective value. Note that the results do not nec-
essarily increase monotonically.

Figure 2: Objective values for the collapsed algo-
rithm (solid) and the mixture of experts baseline
(dashed), for different numbers of clusters k.

Figure 2 shows the results for different numbers of clus-
ters for the collapsed algorithm (solid curves). For compar-
ison, we also added the mixture of experts baseline (dashed
curves). As expected, the true objective value is not mono-
tonic, since both algorithms optimize an approximation to
the exact optimization criterion. The figure also shows that
the best values are obtained after at most 20 iterations.

4.3 Predictive Performance
To evaluate the performance of the collapsed algorithm,

we measure its predictive accuracy in terms of how well fu-
ture behavior can be predicted. The classifier and the seg-
mentation are learned jointly as described in Section 3 us-
ing the training set and then deployed to the test set. The
sessions in the test set are first classified by the classifier
in one of the segments which is then used to predict the
future clicks of the user. Since the final prediction is a com-
plex variable, we refrain from expressing the performance in
terms of error rates and measure the predictive log-likelihood
logP (y|θh(x)) instead. We compare the collapsed algorithm
to the alternating optimization scheme, the mixture of ex-
perts model, and the k-means based solution. We report on
averages and standard errors over 10 repetitions with differ-
ent random initializations.

Figure 3 shows the predictive performance for varying
numbers of clusters. Not surprisingly, all methods perform

Figure 3: Averaged predictive performance and
standard error.

equally worse for only a single cluster. For only a few clus-
ters, the mixture of experts baseline performs about as well
as the collapsed algorithm. We credit this finding to the
existence of easy-to-reach solutions that do not necessarily
require hard cluster assignments in the θ-steps. However,
when the number of clusters grows, the performance of the
mixture of experts approach decreases slightly while that of
the collapsed model increases. Here it becomes more and
more important to select the parameters in a way that al-
lows to discriminate well between the clusters, and thus the
collapsed algorithm outperforms the baselines significantly.
The alternating algorithm and the k-means baseline perform
significantly worse than the collapsed algorithm. Only for 20
and more clusters the alternating algorithm produces bet-
ter results than the mixture of experts model. Note that
the k-means performs worst as it does not use an alternat-
ing update schema but first learns the clustering and then
estimates the generative models using the fixed segments.

It is apparent that the predictive performance levels off
after increasing the number of clusters beyond 10. Intu-
itively, this observation can be explained by a trade-off be-
tween classification and segmentation: even if a more fine-
grained clustering would be able to predict the future behav-
ior more accurately, the classifier cannot discriminate well
between a larger number of similar clusters to identify the
best-matching segment. We observe a natural trade-off be-
tween predictive power and the effort that has to be spent
for developing and maintaining target strategies for a large
number of market segments.

The execution time of the collapsed algorithm for a solu-
tion with 10 clusters is within the range of 3 hours, compared
to about an hour each for the mixture of experts and the
k-means baselines. The alternating optimization however
takes about 11 hours which renders its application infeasi-
ble in practice.

4.4 Discussion
Market segmentation aims at grouping similar individu-

als of a population together that share the same needs or
that have similar demands. The goal is to target individu-
als within the same segment jointly e.g., to advertise a new
product. To this end, the segments need to be interpretable



Figure 5: Click volumes of categories over time for the four clusters.

Cluster 1 Cluster 2

Cluster 3 Cluster 4

Figure 4: Visualization of click frequencies for the
five most frequent link locations using four clusters.

to derive a concise description of the segments that can be
converted into a segment-specific targeting strategy.

In our collapsed algorithm, generative models in each seg-
ment encode the contained behavior and interest. The flex-
ibility of the probabilistic inference machinery allows us to
project the behavior onto discriminative variables to visu-
alize different characteristics of the clusters. In this section
we give two examples for such projections to visualize dif-
ferently distributed user behavior across the clustering. For
simplicity, we use a solution with four clusters.

The first example shows a visualization of segment-specific
user clicks in terms of their location on the Web page. In-
cluding the location of clicks is necessary for altering the lay-
out dynamically as changes in frequently clicked areas will
have impact the behavior more than substituting a redun-
dant and less clicked widget. We focus on the five modules
of the Web site that receive the highest number of clicks in
the data.

Figure 4 shows the results. Segments 2, 3, and 4 exhibit
very similar click behavior in terms of the clicked modules.
By contrast, cluster 1 differs significantly in the usage of the
Web components. On average, users in cluster 1 prefer the
location visualized in black over the alternatives compared

to users in the other segments. This observation could be ex-
ploited to directly devise target strategies. While members
of cluster 2–4 should be addressed by changing the content
of the modules visualized in gray or dark blue, users in the
first segment could also be triggered by the module encoded
in black.

Analogously, the behavior could be projected on the cat-
egories to visualize the respective distribution of categories
for each segment. However, we choose to show a more inter-
esting projection for lack of space. The incorporation of the
timestamps of the sessions allows us to visualize the clus-
ters in time. As the feature representation of timestamps
encompasses one week, Figure 5 shows the average category
distribution across the days of the week where different col-
ors correspond to different categories.3

Apparently, the clusters do not only differ in terms of the
categories but also specialize on certain periods in time be-
cause the segments are optimized using all available data,
that is, attribute and behavior encoding variables. The first
cluster clearly specializes on Sundays and is characterized by
a clean topic distribution. The three other cluster also pos-
sess dominant categories but focuses more on working days
than on weekends. Cluster 4 contains the most diverse set of
categories and acts like a basin for categories that are not as
easy to discriminate. Here it becomes obvious that a solu-
tion with only four clusters may not be optimal for the task
at hand. When we increase the maximal number clusters,
the category distribution of clusters becomes cleaner that is
less categories are likely. Additionally, clusters adapt better
to specialized periods such as working days or weekends for
larger k.

Taking various such projections into account describes
segments from different angles and helps to find a concise
targeting strategy. For instance, knowing the articles that
are likely to be read in an ongoing session helps to address
the respective user in various ways including displaying ads.
Incorporating context informations such as the click behav-
ior of the segments, finally allows for tailoring web pages to
each segment and to increase the overall user experience.

5. CONCLUSION
We studied discriminative clustering for structured and

complex response variables that can be represented as gen-
erative models. The problem setting matches market seg-
mentation tasks where populations are to be segmented into
disjoint groups. Solving market segmentation-like problems
appropriately not only involves a clustering of the individu-
als but also learning a classifier that discriminates well be-

3Colors are again reused due to the large number of cate-
gories.



tween the segments, for instance to allow for classifying new
customers to one of the groups. The two components need
to be learned jointly and have access to different pieces of
information about the individuals: the classifier needs to
group individuals on the basis of a priori available infor-
mations while the clustering aims at grouping people with
similar (future) needs or behavior.

We devised two algorithms based on alternating optimiza-
tion and collapsed inference, respectively. Empirical results
showed that the collapsed variant is not only more efficient
but also predicts accurately the click behavior of users for
Yahoo! News. The generative nature of the clustering led
to interpretable clusters. We showed how projections of the
clustering on only a few variables allowed for targeting the
detected segments individually and contributed to user un-
derstanding.

Our approach is not restricted to Yahoo! News and can
generally be applied to arbitrary market segmentation tasks
and other Web sites to improve the overall user experience.
As our approach is orthogonal to personalized approaches,
future work will study the integration of both frameworks.
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