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Abstract. Coverage criteria for white box testing naturally fall into
two groups: The first group are generic off-the-shelf criteria such as ba-
sic block coverage and condition coverage which are applied in the same
uniform way to different source code. Although generic criteria are sup-
ported by industrial strength tools, simple experiments reveal that the
tools disagree on standard notions such as condition coverage. The sec-
ond group are code specific coverage criteria which are either defined
on the fly during program development, or consciously designed to re-
flect requirements specific to the application and architecture. For the
second group, there is a notable lack of tool support. In this paper, we
aim to solve the problems of both groups – lack of precision and lack
of adequate tool support – in a unified framework: We describe a spec-
ification language which designates coverage targets in the source code
as building blocks for formal coverage criteria. On the one hand, our
language FQL facilitates the precise specification of coverage criteria on
the basis of a clean and intuitive semantics; on the other hand, we show
how to apply the query-driven program testing paradigm presented at
VMCAI 2009 for efficient test case generation with the help of a model
checker. Experimental results demonstrate the practical feasibility of our
framework.

1 Introduction

In industrial development practice, most testing efforts follow a source code
oriented white box approach; in scope, they range widely from quick and local
program exploration tasks to certification eligible and coverage achieving testing
procedures. As today’s agile development processes are typically driven by incre-
mental refactoring and refinement steps, we need testing tools which facilitate
the specification and generation of test suites in accordance with the increments
of the source code.

In a predecessor paper [1] we have argued that the diversity of requirements
calls for a clear separation between the test specification formalism and the test
case generation engine. Similar as in databases, the specification formalism needs
a simple and intuitive semantics, and should rely on an evolving standard which

⋆ Supported by DFG grant FORTAS – Formal Timing Analysis Suite for Real Time
Programs (VE 455/1-1).



can be extended by new features over time. The test case generation engine on
the other hand should be viewed as a backend which can be implemented using
different approaches and platforms to achieve optimal performance. Thanks to
this database analogy we are speaking of query-driven test case generation.

To bootstrap the query-driven approach, we first developed an efficient test
case generation backend for C. In [1] we presented two algorithms – iterative
constraint strengthening (ICS) and groupwise constraint strengthening (GCS)
– which employ bounded model checking and incremental SAT solving [2] for
efficient enumeration of complex test cases. Using an informal prototype of the
specification language, we demonstrated the good practical performance of our
backend. The current paper continues this work with a systematic account of
the query language FQL and its query engine FShell.

Although natural in retrospect, it came as a surprise to us that the spec-
ification language turned out to be the most subtle scientific challenge in this
project. The main problem lies in the big variety of natural test strategies some
of which rely on the syntax of the program, and some of which relate to pro-
gram semantics. Having considered multiple approaches we converged to the
FQL framework presented in the current paper. We believe that our concepts
provide a solid foundation for future development.

Like for a database query language the requirements for FQL combine us-
ability, semantics, and efficiency:

(a) Precise Semantics. To the best of our knowledge, there is no commonly
established and precise formalism for whitebox testing. This lack of precision
in testing undermines the precise meaning of certification standards such
as [3].
To illustrate the problem, we use three commercial test tools CoverageMe-
ter [4], CTC++ [5], and BullseyeCoverage [6] to check for condition coverage
on the C program shown in Listing 1.

1void foo(int x) {
2 int a = x > 2 && x < 5;
3 if (a) { 0; } else { 1; }
4}

Listing 1. Sample program

We compiled the C program using the
tool chain of each coverage analysis
tool and then ran the programs with
two test cases, namely with x = 1

and with x = 4.

In this example, CoverageMeter and CTC++ reported 100% coverage
whereas BullseyeCoverage evaluated the test suite to achieve coverage to
a degree of 83%. The difference occurs because BullseyeCoverage treats not
only the variable a in line 3 as condition but also x>2 and x<5 in line 2.

(b) Expressive Power. In addition to generic criteria such as basic block cov-
erage or condition coverage, FQL should support user defined coverage crite-
ria which refer to program constructs, program regions or paths in a similar
manner as programmers reason about and work with programs.

(c) Encapsulation of Language Specifics. Most standard coverage criteria
can be easily translated between imperative programming languages such as
C or ADA. Therefore, specifications in FQL should be maximally agnostic to
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the programming language at hand. To this end, FQL should provide a clear
and concise binding concept with the underlying programming language, and
not hardwire programming language specific constructs.

(d) Tool Support for Real World Code. FQL must have a good trade-off
between expressive power and feasibility. In particular, common coverage
specifications should lend themselves to efficient test case generation algo-
rithms in a natural way.

(e) Simplicity. FQL should be usable in day-to-day work by programmers with-
out specific training in formal methods.

The FQL language concept presented in this paper attempts to resolve these
requirements. The semantics of FQL is based on a graph presentation of the
program called the control flow automaton (CFA). A CFA is essentially a control
flow graph where the edges are labeled with commands and (in our case) also with
other parser annotations. For example, Figure 2(a) shows the CFA of Listing 2,
which is part of a quicksort implementation.

FQL coverage criteria are based on the notion of target graphs, i.e., those
fragments of the source code that are relevant for a given testing target. For
instance, a natural target graph for basic block coverage contains one edge for
each basic block in the program, see Figure 2(b). FQL enables the programmer
to describe target graphs in a simple and flexible formalism. For instance, the
query

> cover EDGES(@BASICBLOCKENTRY)

achieves basic block coverage by requesting a test suite which contains all edges of
the above mentioned target graph. Table 1 demonstrates how standard coverage
criteria can be expressed in FQL using different target graphs for decisions. We
will present these in detail in Section 2.1. FQL also provides many constructs
to fine-tune coverage requirements by extracting and combining target graphs.
For example, the query

> cover EDGES(@BASICBLOCKENTRY)->EDGES(@BASICBLOCKENTRY)

requests test cases that pass through each pair of basic blocks (in the sense
of a Cartesian product), whenever this is feasible. In many scenarios, this is a
powerful approximation of path coverage, which is usually infeasible. The basic

Criterion FQL Query

Basic Block cover EDGES(@BASICBLOCKENTRY)

Decision cover EDGES(@DECISIONEDGE)

Condition cover EDGES(@CONDITIONEDGE)

Predicate Complete(P ) cover STATES(ID,P)

Multiple Condition cover PATHS(@CONDITIONGRAPH,1)

Path(k) cover PATHS(ID,k)

Table 1. Common coverage criteria
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form of queries can be modified by restricting the program scope and requiring
certain code locations to be reached in all test cases. For instance, the query

> in @FUNC(partition) cover EDGES(@BASICBLOCKENTRY)

passing ID*.@5{j > 5}.ID*

requests basic block coverage only inside function partition with the additional
assertion that j > 5 holds after executing the statement in line 5 of the program.

language dependent language independent

C Source FQL Query

CFA

Query
Dispatching

Coverage
Criterion

Backends under development

VMCAI 2009

C Frontend Query Parsing

FQ
L

Se
m
an

tic
s

Target
G
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ICS GCS

Fig. 1. FQL language layers

In the rest of the paper, we describe how FQL resolves the requirements (a)
to (e). FQL achieves criteria (a), (b), and (e) by virtue of the detailed syntax and
semantics provided in Sections 2 and 3. The encapsulation of language specifics
required in criterion (c) is achieved by our use of target graphs which provide an
intermediate layer between language specific and language independent aspects
of test case generation, cf. Figure 1. Finally, to achieve criterion (d), we are
focusing on C as a concrete programming language. We chose C mainly for two
reasons, first, the availability of high quality software model checkers such as
CBMC [7], and second, the practical importance of C for embedded and safety-
critical software. In Section 4, we describe the query dispatcher, which integrates
FQL with the backend of [1], and in Section 5, we substantiate the feasibility of
the FQL framework with experimental results on real world C code.

2 Overview of FQL

In this section we give an overview of our query language FQL, the FShell

query language. FQL enables the programmer to describe target graphs in a
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simple flexible formalism. It provides constructs to choose edge- or path-coverage
or combinations of these. We illustrate these language features on several exam-
ples, before we describe the mathematical framework and the semantics of FQL

in detail in Section 3.

2.1 Target Graphs and Filter Functions

A target graph is a fragment of a CFA that precisely describes the edges and
paths to be covered by a test suite. For example, a target graph for basic block
coverage contains the first edge of each basic block. Figure 2(b) depicts an ex-
ample of such a target graph obtained from the CFA in Figure 2(a). Edges not
contained in the target graph are grayed out. Given a CFA A, we denote this
target graph by basicblockentry(A). basicblockentry is called a filter function. Fil-
ter functions extract CFA edges based on annotations added to the CFA A while
parsing the source code. For example, we annotate the first edge of each basic
block as “basic block entry edge”.

As filter functions map CFAs to (fragments of) CFAs, we first introduce
control flow automata more formally. By Op we denote a finite set of operations
that correspond to the statements occurring in the source code. These operations
are either skip, assignments, assumptions, function calls or function returns.
Control flow statements such as if (i>=j) in line 9 of Listing 2 are modeled by
assumptions: in Figure 2(a) 〈i>=j〉 denotes the assumption that i≥j holds and
〈!(i>=j)〉 denotes the assumption of the opposite.

Let An denote the set of possible parsing annotations. We assign a subset
of An to each individual transition. These annotations include source file names
and line numbers, but also more detailed information such as basic block entries
or decisions.

Definition 1 (Control Flow Automaton). A control flow automaton (CFA)
A is a tuple 〈L,E, I〉, where L is a finite set of program locations, E ⊆ L×Lab×L
is the set of edges that are labeled with pairs of operations and annotations from
Lab = Op× 2An, and I ⊆ L is the set of initial locations of A. L(A) denotes the
set of all maximal paths in A, and LB(A) ⊆ L(A) denotes the set of bounded
paths in A where no program location in p ∈ LB(A) occurs more than B > 0
times.

We denote the set of control flow automata with CFA and can now define
filter functions.

Definition 2 (Filter Functions on CFAs). A filter is a function f : CFA →
CFA which, on input of a CFA A = 〈L,E, I〉, computes a target graph f(A) =
〈L′, E′, I ′〉 where L′ ⊆ L and E′ ⊆ E, such that L′ does not contain isolated
nodes. The set I ′ ⊆ L′ of initial elements is determined by f .

Filter functions encapsulate the interface to the programming language.
Hence, to instantiate this concept, we have to fix some terminology partially
specific to C.
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Fig. 2. Control flow automaton of partition (Listing 2) and target graphs
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1 int partition (int a [], int left , int right) {
2 int v, i , j , t ;
3 v = a[right ];
4 i = left − 1;
5 j = right;
6 for (;;) {
7 while (a[++i] < v) ;
8 while (j > left && a[−−j] > v) ;
9 if ( i >= j) break;

10 t = a[i ];
11 a[ i ] = a[j ];
12 a[ j ] = t;
13 }
14 t = a[i ];
15 a[ i ] = a[right ];
16 a[ right ] = t;
17 return i;
18 }

Listing 2. Example source code (sort.c)

Basic Blocks We refer to a basic block as a subgraph of the CFA that represents
a maximal sequence of source statements which can only be entered at the first of
them and exited at the last of them [8]. In case such a basic block only consists of
a conditional statement, we introduce a skip statement in order to have a unique
edge representing the basic block. Such an additional skip statement occurs in
Figure 2 on the edges leaving states 80.

Conditions If a node has more than one successor, then the node refers to a
condition, e.g., node 9 referring to i>=j. The edges leaving a condition node
are called condition edges which are in this case the edges to the nodes 10 and
14. In the C programming language, Boolean expressions are evaluated with
short-circuit semantics, i.e., aggregated Boolean expressions which involve sev-
eral conditions are only evaluated until their combined result is determined. For
example, if the first condition j>left in evaluating (j>left && a[−−j]>v) occur-
ring in while statement of line 8 turns out to be false, then a[−−j]>v is never
evaluated. The control flow automaton induced by a Boolean expression is called
the corresponding condition graph. For example, the while statement of line 8
induces the network of nodes 80 to 84 and includes the conditions j>left and
a[−−j]>v. In particular, the condition graph does not only consist of the condi-
tion edges but also of all other computations which are necessary to evaluate the
Boolean expression. For example, the condition graph of (j>left && a[−−j]>v)

includes the transition 82 to 83 which performs the operation j:=j−1.
Therefore, every aggregated Boolean expression induces a non-trivial control-

flow to abort the evaluation as soon as possible. Note that aggregated Boolean
expressions may occur outside conditional statements—imposing non-trivial
control-flow in apparently unconditional code, e.g., line 2 of the program in
Listing 1 does not evaluate x<5 if x>2 already evaluated to false.
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Decisions The Boolean expression controlling a condition statement (in case
of C an if, switch, while, or for statement—and every statement involving the
conditional operator ?:) is called a decision. As any other Boolean expression, a
decision is potentially involving several conditions. If there is more than one edge
for one of the possible outcomes of the decision, we let them all pass through
a dedicated new state which has only a single outgoing edge labeled with skip
statement. This edge is then used to represent the corresponding outcome of
the overall decision. For example in Figure 2, the node 84 has been introduced
to collect all false outcomes of the while statement in line 8 and the edge from
84 to 9 is therefore used represent the false outcome of this decision (this edge
must be inserted as well as unique basic block entry edge for the if statement
following in line 9).

For the conceptual discussion and the subsequent examples, we now list some
of the most important filter functions implemented in FShell. In these descrip-
tions we will use two additional functions on CFA edges. For a set E of edges,
we define the set of start locations start(E) = {ℓ | (ℓ, l, ℓ′) ∈ E}. Analogously,
we define the set of end locations end(E) = {ℓ | (ℓ′, l, ℓ) ∈ E}.

– basicblockentry(A) consists of all the edges in A which correspond to the
first statement of a basic block. Figure 2(b) shows the target graph for
basicblockentry(A), referring to Listing 2. Given the set E of edges in
basicblockentry(A), the set of initial locations is start(E), which are marked
with double circles in Figure 2(b).

– conditionedge(A) consists of all those edges which correspond to a specific
outcome of a condition in A. Given the set E of edges in conditionedge(A),
the set of initial locations is start(E).

– conditiongraph(A) consists of all condition graphs induced by the evaluation
of a Boolean expression in A. Therefore, conditiongraph(A) is the superset
of conditionedge(A) which contains not only the condition edges but also all
the computations interconnecting them.
The set of initial locations consists of the entry locations of these subgraphs
corresponding to the entry locations of the represented decisions—i.e., the
locations where the program execution starts to evaluate these Boolean ex-
pressions. Figure 2(c) shows the target graph for conditiongraph(A).

– decisionedge(A) consists of all those edges which correspond to a specific
outcome of a decision in A (e.g., for an if-statement, there is a true- and
a false-edge). Given the set E of edges in decisionedge(A), the set of initial
locations is start(E).

– stmttype[types](A) consists of all those edges which correspond to the exe-
cution of all statements of types types, where we allow for types all kinds of
statements occurring in C, e.g., stmttype[if, switch, for,while, ? : ] selects all
computations performed by conditional statements.

– file[file](A) contains all parts of A induced by the contents of file file. The
set of initial locations is the set of entry locations of the graphs representing
the functions contained in file.

– line[n](A) contains all parts of A annotated with line n. Given the set E of
edges in line[n](A), the set of initial locations is start(E).
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– func[fct](A) contains all parts of A corresponding to function fct. The set
of initial locations is the singleton set containing the entry location of fct.

– id(A) is the identity function, i.e., id(A) = A.

For each of the above stated filter functions FQL provides corresponding
primitives, e.g., @BASICBLOCKENTRY or @CONDITIONEDGE. For frequently used ex-
pressions we also provide short hands. For example, to select edges for line 8, we
use @8 instead of @LINE(8).

In order to express targets like “cover all conditions in line 8” we add set
theoretic operations: INTERSECT(@CONDITIONEDGE, @8) applied to Listing 2 results
in a target graph with four edges, corresponding to the true/false evaluations
of the comparisons j > left, and a[j] > v. These set theoretic operations
amount to corresponding operations on the sets of (initial) nodes and edges of
the target graphs. For a more complete list of primitives and operations present
in FQL see Section 3.6.

Target graphs and filter functions are essential concepts to achieve the first
three design goals stated in Section 1: (a) they explicitly define what test targets
are, (b) they allow the flexible combination of their target graphs, and (c) they
encapsulate the specifics of a programming language.

2.2 Predicated CFA

In the above example we only considered purely syntactical properties of the
program under scrutiny. Assume, however, that we need to reason about specific
variable valuations, or a range of variable valuations. For example, we want to
test the presented algorithm with left ≤ 1 ∧ right ≤ 1, left ≤ 1 ∧ right > 1,
left > 1 ∧ right ≤ 1, and left > 1 ∧ right > 1.

To achieve this, we add predicates to a CFA: Given a set of n predicates we
replace each program location by 2n predicated program locations that represent
all possible valuations of the predicates at the original CFA location. For the
above example, we therefore add the predicates left ≤ 1 and right ≤ 1.

Definition 3 (Predicated CFA). Given a CFA A = 〈L,E, I〉 and predi-
cates φ1, . . . , φk over program variables, the predicated CFA A[φ1, . . . , φk] =
〈L′, E′, I ′〉 is defined by L′ = L× {0, 1}k, I ′ = I × {0, 1}k, and

E′ =
{

((ℓ, ī), l, (ℓ′, ī′)) | ī, ī′ ∈ {0, 1}k ∧ (ℓ, l, ℓ′) ∈ E
}

.

L(A[φ1, . . . , φk]) and LB(A[φ1, . . . , φk]) are defined analogously to the unpred-
icated case, where LB(A[φ1, . . . , φk]) refers to the set of maximal paths in
A[φ1, . . . , φk] where no predicated program location occurs more than B > 0
times.

Note, a predicated CFA A[φ1, . . . , φk] includes 2k2

edges for every edge in A, i.e.,
A[φ1, . . . , φk] is derived from structural properties only and does not originate
from predicate abstraction where we would skip semantically infeasible edges.
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A predicated CFA shares the structural properties of a CFA, in particular,
the edges of a predicated CFA are again labeled with pairs of operations and an-
notations. The filter functions described above can thus be immediately applied
to predicated CFAs as well, because adding predicates does not alter operations
or annotations. We canonically extend the application of filter functions from
CFAs to predicated CFAs. We define the application of a filter function f to a
predicated CFA A[φ1, . . . , φk] as the predication of the target graph f(A), i.e.,
f(A[φ1, . . . , φk]) = f(A)[φ1, . . . , φk].

While operations and annotations are not affected by adding predicates, pro-
gram locations now in addition carry information about predicate valuations:
each node (ℓ, ī) with ī = (i1, . . . , ik) ∈ {0, 1}k asserts that φj holds at a loca-
tion ℓ, iff ij = 1.

In FQL, we denote predicates using a C-style notation and delimit predicate
expressions by curly braces. For example, the predicates left ≤ 1 and right ≤ 1
are given by {left <= 1}, {right <= 1}.

2.3 Path Monitors

In addition to target graphs, which induce sets of test goals, we need a formalism
to describe paths. To this end, we introduce path monitors. Semantically, a path
monitor is a path predicate, i.e., a property which can evaluate to true or false
on a given path. We then require that each test case satisfies the predicate given
by the monitor. Syntactically, we use regular expressions to describe these path
predicates. We call these expressions path monitor expressions.

We use filter functions to match (sets of) edges of a CFA. In analogy to
regular expressions, FQL provides operators for alternatives (“+”), concatena-
tion (“.”), and the Kleene star (“*”). For example, we use the specification
@3.ID*.@10.ID*.@17 to describe paths which start with the first statement of
the procedure in line 3, pass through any edge of the program zero or more
times (“ID*”) but pass line 10 at least once, and reach the return statement in
line 17. The idiom .ID*. occurs frequently. In FQL, therefore also “->” may be
used instead of .ID*., which shortens the above expression to @3->@10->@17.

Because we have the full power of filter functions available, we can
also easily express the property that line 10 must not be reached with
@3.COMPLEMENT(@10)*.@17. We can use COMPLEMENT to ensure that no test case
ever enters some function unimplemented: COMPLEMENT(@CALL(unimplemented))*.
In a similar vein, we can also express API usage rules expressible using regular
expressions. For example, the path monitor expression

(COMPLEMENT(@CALL(free))+(@CALL(malloc)->@CALL(free)))*

requests that if free is ever called, it must be preceded by a call to malloc.

To loop at least four times through lines lines 6–12, we use a path
monitor expression (@6->@12) >= 4, which uses the additional bounded rep-
etition operator. Assuming a C program that implements an API for list
manipulation, we can ask for test cases that insert into a list no more
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than ten times and afterwards call a sorting algorithm: @CALL(insert) <= 10.

COMPLEMENT(@CALL(insert))*. @CALL(sort)

In addition to these syntactic restrictions, pre- and postconditions over
program variables can be added. For example, a path monitor expression
{j>5}@6->@8{j==left} asserts that line 6 is reached with j > 5 and j = left
must hold after executing the statements in line 8. We can thereby also express
invariants: ({j>0}ID)* requires that j > 0 holds before executing any statement.
For Listing 2, we can request that partition is never called with a null pointer
as the first argument: @CALL(partition){a != NULL}

Note that there is no technical reason to restrict path monitors to regular
languages. Future extensions of FQL may well include, e.g., context free features
such as brace matching.

2.4 Simple Coverage Queries

Given a—possibly predicated—CFA, we apply filter functions to obtain a target
graph. This subgraph of the CFA then has three natural interpretations to obtain
a set of test goals. We can choose to cover either (i) all states, (ii) all edges, or
(iii) all paths in the target graph. In the first and second case, the states and
edges induce a tractably sized set of test goals. The third case possibly yields an
exponential number of test goals in an acyclic graph. If the target graph contains
cycles, the number of paths would not even be bounded. We therefore require
the explicit specification of a bound that limits the number of recurrences of a
node in each path.

1 if ((x > 10
2 && y < 100)
3 || (x < y))
4 { ... }
5else

6 { ... }

4

2

1

3

6

〈x > 10〉

〈!(x > 10)〉

〈!(y < 100)〉

〈y < 100〉

〈x < y〉

〈!(x < y)〉

Fig. 3. Edge- vs. path-coverage

Figure 3 illustrates the difference between state-, edge-, and path-coverage.
The CFA is acyclic and has five control flow paths. Two test cases such as
(x = 11, y = 99) and (x = 10, y = 10) suffice to cover all states occurring in
the CFA. To cover all edges, one needs at least three test cases, e.g., picking
(x = 11, y = 100) in addition to the two cases used for state coverage. Finally,
in case of path coverage, at least five test cases are necessary.

In FQL, we use the keywords STATES, EDGES, and PATHS to choose the inter-
pretation of the target graph. Taking Figure 2 as example, the query
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> cover STATES(ID)

asks to cover all states in Figure 2(a), whereas

> cover EDGES(@BASICBLOCKENTRY)

asks for a test suite that covers the edges of the target graph shown in Fig-
ure 2(b). The query

> cover PATHS(@CONDITIONGRAPH, 1)

requests a test suite that covers the feasible paths in the target graph depicted
in Figure 2(c), where no test goal requires that a CFA node is visited more than
once.

An edge- or path-coverage expression may be prefixed or followed by predi-
cates over program variables. This enables the specification of pre- or postcon-
ditions that must hold on each coverage target. For example, the query

> cover {left>1}PATHS(@CONDITIONGRAPH, 1){j>=left}

requests that in all test cases, left > 1 holds before entering a path in the
condition graph and j > left holds when leaving the condition graph.

While pre- and postconditions require predicates to hold at specific points
of program execution, predicated CFAs allow testing with respect to a set of
predicates at all program locations. Therefore FQL is capable of expressing
predicate complete coverage [9] (cf. Table 1). In FQL, we specify predicated
CFAs by adding the set of predicates to an edge- or path-coverage expression.
For example, to request a test suite that achieves basic block coverage with
respect to the predicates left ≤ 1 and right ≤ 1, we use the FQL query

> cover EDGES(@BASICBLOCKENTRY, {left<=1}, {right<=1})

2.5 Coverage Sequences

Edge- and path-coverage specifications already give us a powerful tool to describe
test goals. In fact, this suffices to define several generic coverage criteria, as
shown in Table 1. In many practical situations, however, we would like to request
coverage of several targets by a single program execution. This is best compared
to debugging sessions, where the developer sets several breakpoints and seeks
executions that touch upon all of these.

In FQL, we therefore provide coverage sequences. Coverage sequences con-
catenate a list of distinct state-, edge-, or path-coverage specifications to a new
set of test goals. This new set is made up from the cross product of the subgoals.
Reconsider the example from Figure 3. A query

> cover EDGES(@1)->EDGES(@3)

requests coverage of all edges in line 1 combined with each edge in line 3. Since
both lines induce two individual edges each, a matching test suite contains at
least four test cases, e.g., (x = 11, y = 100), (x = 10, y = 10), (x = 100, y = 100),
and (x = 10, y = 11).

Furthermore, we use path monitors to precisely describe the permissible ex-
ecution steps between each pair of concatenated coverage specifications. In the
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above example we used “->” to state that any execution between the test goals of
the two edge coverage expressions is permissible. If, conversely, executions must
be restricted, “-[ P ]>” with a path monitor expression P is used. As such, “->”
is only a shorthand for -[ID*]>. For a more complex example with a non-trivial
path monitor, assume that the function partition is called multiple times and
that we want to test behavior of partition for each individual calling context.
If we consider condition coverage as sufficient to exercise the entire behavior of
a procedure, then we can use the query

> cover EDGES(@CALL(partition))

-[COMPLEMENT(@EXIT(partition))*]>

EDGES(INTERSECT(@FUNC(partition), @CONDITIONEDGE))

where we require to cover each combination of a call to partition and a condition
edge within partition with a single test case, such that this test case does not leave
partition between the selected call and the chosen condition edge. Without the
path monitor COMPLEMENT(@EXIT(partition))*, the specification would permit a
test case which leaves and reenters partition through some other calling context—
corrupting the goal of the specification to cover all condition edge for all calling
contexts.

2.6 FQL Queries

All of the above examples of cover-clauses already pose valid FQL queries. We
can thereby define several well known coverage criteria (cf. [10, 9]), as already
shown in Table 1. Therein, predicate complete coverage is parametrized by a
set P of predicates given as C-expression as in {j>=left}. Furthermore, path
coverage takes the bound k as limit to the number of occurrences of the same
state.

Our definition of condition coverage presumably matches the implementation
of BullseyeCoverage, because the filter function cover EDGES(@CONDITIONEDGE)

captures all conditional edges, even outside decisions. To achieve condition cov-
erage, as defined by CoverageMeter and CTC++, it appears to be sufficient to
use

> cover EDGES(INTERSECT(@CONDITIONEDGE,

@STMTTYPE(if,switch,for,while,?:)))

i.e., to ignore conditional evaluation outside decisions.

Restricting Program Paths We have already seen the application of path moni-
tors in coverage sequences. To restrict the set of paths permissible in a test suite,
however, we add the passing clause to an FQL query. For example, to achieve
basic block coverage with test cases which satisfy the assertion j > 5 before
entering the loop in line 6 in Listing 2, we use the query:

> cover EDGES(@BASICBLOCKENTRY) passing ID*.@5{j>5}.ID*
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Default Scope of Analysis FQL provides the prefix in to restrict queries to a
subset of the program under scrutiny. The following query

> in @FUNC(partition) cover EDGES(@CONDITIONEDGE)

passing ID*.@3->@10->@17.ID*

asks for a test suite that achieves condition coverage in function partition with
paths that must reach line 10 at least once, i.e., that swapping takes place at
least once.

3 FQL Semantics

In the previous section we developed the syntax of FQL which enables us to
specify coverage criteria in reference to the (predicated) CFA. For a program
represented as CFA, an FQL query describes a coverage criterion as a finite set
of test goals. Each test goal requires to either cover a state, an edge, a path or a
sequence thereof answering a corresponding state coverage, edge coverage, path
coverage, or coverage sequence specification.

In order to be able to speak about the semantics of programs, and, hence,
about feasibility of test goals, we introduce transition systems (Section 3.1) and
relate CFAs to them (Section 3.2). Then, in Section 3.3, we formalize our notions
of test case, test suite and coverage criterion. In Section 3.6, we translate FQL

queries to sets of test goals using the concepts defined in Section 3.4.

3.1 Transition Systems

We model the semantics of a program by a transition system:

Definition 4 (Transition System). A transition system T is a triple 〈S,R, I〉
consisting of the state space S, the transition relation R ⊆ S × S, and the
nonempty set of initial states I ⊆ S. The individual states in S consist of the
program counter and a complete description of all stack and heap contents.

The feasibility of a test goal can be determined only with respect to the se-
mantics of a program, i.e., the set of all possible program executions. To formalize
the notion of program execution, we introduce state sequences and paths:

Definition 5 (State Sequence, Path). Given a transition system T =
〈S,R, I〉, a state sequence is a finite word π = 〈s1, . . . , sn〉 ∈ S∗ of states
si ∈ S. We write s ∈ π = 〈s1, . . . , sn〉, iff s = si for some 1 ≤ i ≤ n. The
sequence π is a path, if s1 ∈ I and 〈si, si+1〉 ∈ R holds for all 1 ≤ i < n. We
denote with L(T ) ⊆ S∗ the set of paths induced by T .

We use state predicates to describe properties of individual program states
and we use path and path set predicates in our specification of coverage criteria.

Definition 6 (State, Path, & Path Set Predicates). Given T = 〈S,R, I〉,
a state predicate p is a predicate on the state space S, a path predicate φ is
a predicate over the set S∗, and a path set predicate Φ is a predicate over the
sets of paths 2S

∗

. We write s |= p iff a state s ∈ S satisfies p, π |= φ iff a state
sequence π ∈ S∗ satisfies φ, and Γ |= Φ iff a path set Γ ⊆ S∗ satisfies Φ.
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We call a state predicate p, a path predicate φ, or a path set predicate Φ feasible
over T , iff, respectively, there exists a state s ∈ S with s |= p, a path π ∈ L(T )
with π |= φ, and a path set Γ ⊆ L(T ) with Γ |= Φ. Frequently, we are looking
for a path (path set) which contains a state (a path) which satisfies a given state
(path) predicate—leading to an implicit existential quantification:

Definition 7 (Implicit Existential Quantification). To evaluate a state
predicate p over a path π, we implicitly interpret p to be existentially quanti-
fied, i.e., π |= p abbreviates ∃s ∈ π.s |= p. Analogously, a path predicate φ is
existentially evaluated over a path set Γ , i.e., Γ |= φ iff ∃π ∈ Γ.π |= φ.

Following the definition, we find that a state predicate p can also be interpreted
over a path set Γ applying the existential quantification twice, i.e., Γ |= p iff
∃π ∈ Γ.∃s ∈ π.s |= p. Note, that a path π satisfies a state predicate p and its
negation ¬p, if there exist two states s, s′ ∈ π with s |= p and s′ |= ¬p (in this
case, s 6= s′ must hold).

3.2 Transition Systems Induced by CFAs

In this section, we relate CFAs to transition systems by interpreting program
locations, and sequences thereof as state and path predicates, respectively. Then,
we define the transition system that represents the semantics of the program
given by the CFA. We consider a CFA as a special case of a predicated CFA where
no predicates are given and only program location information are considered.

We define the set S of concrete states as the set of evaluations of program
counter, stack and heap. Given a predicated CFA A[φ1, . . . , φk] = 〈L,E, I〉, we
interpret a program location (ℓ, ī) as a state predicate:

s |= (ℓ, ī) ⇔ loc(s) = ℓ and
∧

1≤j≤k

s |= φj ⇔ ij = 1,

where loc maps a state s to its program counter value ℓ. Furthermore, we treat
a sequence p = 〈(ℓ1, ī1), . . . , (ℓn, īn)〉 ∈ L∗ as a path predicate:

π |= p⇔ π = 〈s1, . . . , sn〉 and
∧

1≤j≤n

sj |= (lj , īj).

Comparing (ℓ, ī) and 〈(ℓ, ī)〉, both interpreted as path predicates, it is im-
portant to note that the first variant is interpreted as an implicitly existentially
quantified state predicate, whereas the latter is a path predicate by itself (which
is therefore not implicitly existentially quantified over paths).

Next, we define the transition system induced by a CFA:

Definition 8 (Induced Transition System). The transition system
TA[φ1,...,φk] = 〈S,R, I〉 induced by A[φ1, . . . , φk] is defined by I =

⋃

(ℓ,̄i)∈I{s ∈

S | s |= (ℓ, ī)} and

R = {〈s, s′〉 | 〈s, s′〉 |= 〈(ℓ, ī), (ℓ′, ī′)〉 and s′ ∈ post(s, op),

((ℓ, ī), (op, an), (ℓ′, ī′)) ∈ E} ⊆ S × S,
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where post(s, op) denotes the states that result from applying the operation given
by op to s.

3.3 Coverage Criteria

We define a test case for a transition system T to be a single path in L(T ) and
a test suite as a subset of L(T ):

Definition 9 (Test Case and Test Suite). Let T be a transition system.
Then a test case for the set of paths L(T ) is a single path π ∈ L(T ) and a test
suite Γ is a finite subset Γ ⊆ L(T ) of the paths in L(T ).

Correspondingly, a coverage criterion imposes a predicate on test suites:

Definition 10 (Coverage Criterion). A coverage criterion Φ is a mapping
from a CFA A to a path set predicate ΦA.We call ΦA coverage predicate and
say that Γ ⊆ L(T ) satisfies the coverage criterion Φ on T iff Γ |= ΦA holds.

While our definition of coverage criteria is very general, most coverage criteria
used in practice—and all criteria expressible by FQL—are based on sets of test
goals which need to be satisfied. Typically, test goals are either state or path
predicates. This prototypical setting is accounted for in the next definition.

Definition 11 (Regular Coverage Criterion). A regular coverage criterion
Φ is a coverage criterion defined as follows:

(i) There is a mapping Φ(A) = {Ψ1, . . . , Ψk} which maps a CFA A to a set of
test goals {Ψ1, . . . , Ψk} where each Ψi is a path predicate.

(ii) This mapping induces the coverage predicate ΦTA as follows:

Γ |= ΦTA iff

k
∧

i=1

L(TA) |= Ψi ⇒ Γ |= Ψi

Intuitively, the above definition amounts to the following condition on coverage:
“For each test goal Ψi ∈ Φ(A) which is feasible in L(TA) (i.e., there exists some
path π ∈ L(TA) with π |= Ψi), the test suite Γ must contain a concrete test case
π′ ∈ L(TA) with π′ |= Ψi.”

Since all coverage criteria expressible in FQL are regular, we only deal with
regular criteria in the remaining part of the paper.

3.4 Fundamental Coverage Specifications

Below, we describe the semantical foundation for state-, edge-, and path coverage
(Section 2.4) and coverage sequences (Section 2.5). Building upon these prelim-
inaries, we will define the semantics of FQL in Section 3.6. In the following, we
denote the CFA representing the source code by A.

We start with statecov, edgecov, and pathcov specifications which are building
blocks for coverage sequences. All three specifications are parametrized with a
filter function and a set of predicates to build target graphs. The states, edges,
or paths in the target graph, respectively, induce path predicates that define the
test goals:
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Definition 12 (State Coverage). Given a filter function filter, and a possibly
empty set {φ1, . . . , φk} of state predicates, we define the state coverage criterion
statecov[filter, {φ1, . . . , φk}] as regular coverage criterion with

statecov[filter, {φ1, . . . , φk}](A) = {〈(ℓ, ī)〉 | (ℓ, ī) ∈ L}

where 〈L,E, I〉 = filter(A[φ1, . . . , φk]).

Following the discussion in Section 3.2, each location (ℓ, ī) of the target graph
filter(A[φ1, . . . , φk]) gives raise to a state predicate and each sequence of locations
induces a path predicate. Hence, it appears natural to use the set of locations
L as test goals. But when we use a state predicate as building block of a test
goal, it would be implicitly existentially quantified—leaving the path to and from
(ℓ, ī) unspecified. However, we want to precisely control how state coverage is
embedded into more complex coverage criteria: Therefore, we wrap each relevant
location (ℓ, ī) into a sequence 〈(ℓ, ī)〉 over a single location—obtaining a path
predicate which matches a state sequence of exactly one state matching the
location (ℓ, ī).

To embed this building block into meaningful coverage criteria, we use cov-
erage sequences, introduced below in Definition 15.

Definition 13 (Edge Coverage). Given a filter function filter, and a possibly
empty set {φ1, . . . , φk} of state predicates, we define the edge coverage criterion
edgecov[filter, {φ1, . . . , φk}] as regular coverage criterion with

edgecov[filter, {φ1, . . . , φk}](A) = E,

where 〈L,E, I〉 = filter(A[φ1, . . . , φk]).

As for state coverage, we follow Section 3.2 and use sequences of CFA locations
as test goals. In this case, the relevant sequences are the edges of the target
graph filter(A[φ1, . . . , φk]).

Definition 14 (Path Coverage). Given a filter function filter, a bound B >

0, and a possibly empty set {φ1, . . . , φk} of state predicates, the path coverage
criterion pathcov[filter, B, {φ1, . . . , φk}] is defined as regular coverage criterion:

pathcov[filter, B, {φ1, . . . , φk}](A)=LB(filter(A[φ1, . . . , φk]))

Therefore, in case of pathcov, for each bounded path p in the target graph
filter(A[φ1, . . . , φk]), a test goal is created.

As an example, we study state-, edge-, and path coverage for the target graph
shown in Figure 2. The coverage specification statecov[id, ∅] yields test goals for
each state in Figure 2(a):

statecov [id, ∅](A)=
{

〈3〉 , 〈4〉 , 〈5〉 , 〈6〉 ,
〈

70
〉

,
〈

71
〉

, . . . 〈17〉
}
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The coverage specification edgecov[conditiongraph, ∅] yields a set of test goals
corresponding to condition coverage. In the following, we omit edge labels for
brevity. For Figure 2(c) we have:

edgecov [conditiongraph, ∅](A) =
{〈

6, 70
〉

, 〈6, 14〉 ,
〈

71, 70
〉

,
〈

71, 80
〉

,
〈

81, 82
〉

,
〈

81, 84
〉

,
〈

82, 83
〉

,
〈

83, 80
〉

,
〈

83, 84
〉

, 〈9, 10〉 , 〈9, 14〉
}

On the other hand, pathcov[conditiongraph, 1, ∅] yields the set of test goals for
achieving multiple condition coverage. Again looking at Figure 2(c), we get:

pathcov [conditiongraph, 1, ∅](A) =
{〈

6, 70
〉

, 〈6, 14〉 ,
〈

71, 70
〉

,
〈

71, 80
〉

,
〈

81, 82, 83, 80
〉

,
〈

81, 82, 83, 84
〉

,
〈

81, 84
〉

, 〈9, 10〉 , 〈9, 14〉
}

3.5 Composite Coverage Specifications

Coverage Sequences We introduce coverage sequences to embed the test goals
produced by statecov, edgecov, and pathcov into longer paths.

Definition 15 (Coverage Sequence). Given n regular coverage criteria
Φ1, . . . , Φn and n+1 path predicates ∆0, . . .∆n, we define the coverage sequence
〈∆0, Φ1, ∆1, . . . , Φn, ∆n〉 as regular coverage criterion with

〈∆0, Φ1, ∆1, . . . , Φn, ∆n〉 (A) =
{

ψ(φ1,...,φn) | (φ1, . . . , φn) ∈ Φ1(A) × . . .× Φn(A)
}

where π |= ψ(φ1,...,φn) holds for a state sequence π iff π can be partitioned as

π =
〈

π′
0, π1, π

′
1, . . . , π

′
n−1, πn, π

′
n

〉

such that π′
i |= ∆i holds for 0 ≤ i ≤ n and

such that πi |= φi holds for 1 ≤ i ≤ n.

In a coverage sequence, the path predicates ∆0, . . . , ∆n and individual cov-
erage criteria Φ1, . . . , Φn are interleaved to define for each element of the cross
product Φ1(A) × Φ2(A) × · · · × Φn(A) a test goal. Such a test goal requires a
path to first match ∆0, then to satisfy a test goal from Φ1(A), then to match
∆1, and so forth until the path matches ∆n.

We use coverage sequences of the form 〈true, Φ, true〉, where Φ is given in
terms of statecov, edgecov, or pathcov, to obtain test goals that achieve coverage
of the sets of states, edges, or paths in a natural way: as true matches every state
sequences, the paths to and from the elements to be covered are not restricted.
Such specifications allow to apply more efficient algorithms to generate cover-
ing test suites (see Section 4). For these reasons and to simplify notation, we
introduce the following shorthand:

Definition 16 (Simple Coverage Sequences). Given a regular coverage cri-
terion Φ, we write 〈Φ〉 as a short hand for the coverage sequence 〈true, Φ, true〉.
We call such coverage sequences simple.
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We briefly study (simple) coverage sequences on the above example. To
obtain a test suite that achieves multiple condition coverage, we specify
〈pathcov[conditiongraph, 1, ∅]〉. A test case fulfilling the test goal ψ〈81,82,83,80〉 is
then, e.g.,

〈

3, . . . , 70, 71, 80, 81, 82, 83, 80, 81, 9, . . . , 17
〉

,

which is partitioned as
〈

3, . . . , 70, 71, 80
〉

|= true
〈

81, 82, 83, 80
〉

|=
〈

81, 82, 83, 80
〉

〈

81, 9, . . . , 17
〉

|= true.

Further Composite Operators Given regular coverage criteria Φ,Φ1, and Φ2, and
a state predicate φ, we define the composite regular coverage criteria Φ1 \ Φ2,
Φ1 ∪ Φ2, Φ1 ⊓ Φ2, start−in(Φ, φ), and end−in(Φ, φ). For ⊗ ∈ {\,∪}, Φ1 ⊗ Φ2 is
defined by (Φ1 ⊗ Φ2)(A) = Φ1(A) ⊗ Φ2(A). By (Φ1 ⊓ Φ2)(A) we denote the set
of path predicates ϕ with π |= ϕ iff there are ψ1 ∈ Φ1(A) and ψ2 ∈ Φ2(A) such
that π |= ψ1 and π |= ψ2. Intuitively, a test goal ϕ ∈ (Φ1 ⊓ Φ2)(A), represents
the set of paths that results from the intersection of the sets of paths that satisfy
a ψ1 ∈ Φ1(A) and a ψ2 ∈ Φ2(A), respectively, i.e., {π | π |= ϕ} = {π | π |= ψ1}∩
{π | π |= ψ2}. For the definition of start−in(Φ, φ) and end−in(Φ, φ), we use the
path predicates starts−in(ψ, φ), and ends−in(ψ, φ), where ψ is a path predicate
and φ is a state predicate. π |= starts−in(ψ, φ) holds for a state sequence π

iff π is nonempty, π |= ψ, and s |= φ holds for the first state s ∈ π. The
path predicate ends−in(ψ, φ) is defined analogously, but, s |= φ holds for the
last state s ∈ π. Then, start−in(Φ, φ)(A) = {starts−in(ψ, φ) | ψ ∈ Φ(A)} and
end−in(Φ, φ)(A) = {ends−in(ψ, φ) | ψ ∈ Φ(A)}.

3.6 Semantics of FQL Queries

Table 2 summarizes the semantics of FQL: Tables 2(a)-(d) show the semantics
of FQL expressions and Table 2(e) presents the semantics of FQL queries. On
the left hand side of each table we show the expression and query, respectively,
and on the right hand side we give the translation into our formal framework.

Filter Function Expressions In Table 2(a), a denotes a file name, k a non-negative
integer, f a C function identifier, and types is a set of C statement types. A filter
function expression F given on the left hand side of the table is translated into
the filter function FJF K given on the right hand side.

As a prerequisite we define set theoretic operations on filter functions. Given
an operation ⊗ ∈ {∪,∩, \} and filter functions f1 and f2, we define the filter
function f1 ⊗ f2:

(f1 ⊗ f2)(〈L,E, I〉) = 〈L′, E′, I ′〉,

where E′ = E1⊗E2, L
′ = start(E′)∪end(E′), and I ′ = I1⊗I2 with 〈L1, E1, I1〉 =

f1(〈L,E, I〉) and 〈L2, E2, I2〉 = f2(〈L,E, I〉). We define the composition f1 ◦ f2
of two filter functions f1 and f2 as (f1 ◦ f2)(A) = f1(f2(A)).
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(a) Semantics of filter function expressions

Filter Function Expr. F FJF K

ID id

COMPLEMENT(F1) id \FJF1K
UNION(F1, F2) FJF1K ∪ FJF2K
INTERSECT(F1, F2) FJF1K ∩ FJF2K
SETMINUS(F1, F2) FJF1K \ FJF2K
COMPOSE(F1, F2) FJF1K ◦ FJF2K
@FILE(a) file[a]
@LINE(x) line[x]
@FUNC(f) func[f ]
@BASICBLOCKENTRY basicblockentry

@CONDITIONEDGE conditionedge

@DECISIONEDGE decisionedge

@CONDITIONGRAPH conditiongraph

@STMTTYPE[types] stmttype[types ]

(b) Semantics of coverage expressions

Coverage Expr. G GJGK

STATES(F, Φ) statecov[FJF K, Φ]
EDGES(F, Φ) edgecov[FJF K, Φ]
PATHS(F, B, Φ) pathcov[FJF K, B, Φ]
SETMINUS(G1, G2) GJG1K \ GJG2K
UNION(G1, G2) GJG1K ∪ GJG2K
INTERSECT(G1, G2) GJG1K ⊓ GJG2K
{φ}G1 start−in(GJG1K, φ)
G1{φ} end−in(GJG1K, φ)

(c) Semantics of path monitor expressions

Path Monitor Expr. P PJP K

F one−of(FJF K)
{φ}P1 restrict−start(PJP1K, φ)
P1{φ} restrict−end(PJP1K, φ)
P1+P2 PJP1K ∨ PJP2K
P1.P2 PJP1K ⊙ PJP2K

P1<=k PJP1K
≤k

P1>=k PJP1K
≥k

P1* PJP1>=0K

(d) Semantics of coverage sequence expressions

Coverage Seq. Expr. C CJCK

G 〈true,GJGK, true〉
G0 . . .-[Pn]>Gn 〈true,GJG0K, . . . ,

PJPnK,GJGnK, true〉

(e) Semantics of FQL queries

FQL Query Q QJQK

cover C CJCK
in F cover C CJF ⊚ CK
cover C passing P restrict(CJCK,PJP K)
in F cover C passing P restrict(CJF ⊚ CK,PJF ⊚ P K)

Table 2. FQL semantics
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Coverage Expr. G F ⊚ G

STATES(F ′, Φ) STATES(COMPOSE(F ′, F), Φ)

EDGES(F ′, Φ) EDGES(COMPOSE(F ′, F), Φ)

PATHS(F ′, Φ) PATHS(COMPOSE(F ′, F), Φ)

UNION(G1, G2) UNION(F ⊚ G1, F ⊚ G2)

INTERSECT(G1, G2) INTERSECT(F ⊚ G1, F ⊚ G2)

SETMINUS(G1, G2) SETMINUS(F ⊚ G1, F ⊚ G2)

{φ}G1 {φ}(F ⊚ G1)
G1{φ} (F ⊚ G1){φ}

Path Monitor Expr. P F ⊚ P

F ′ COMPOSE(F ′, F)

{φ}P1 {φ}(F ⊚ P1)
P1{φ} (F ⊚ P1){φ}
P1+P2 (F ⊚ P1)+(F ⊚ P2)
P1.P2 (F ⊚ P1).(F ⊚ P2)
P1<=k (F ⊚ P1)<=k
P1>=k (F ⊚ P1)>=k
P1* (F ⊚ P1)*

Cov. Seq. Expr. C F ⊚ C

G0 . . .-[Pn]>Gn (F ⊚ G0) . . .-[F ⊚ Pn]>(F ⊚ Gn)
Table 3. Definition of F ⊚ ·

Filter functions are the open interface of FQL to language dependent as-
pects of source code and FShell supports more filter functions than listed in
Table 2(a), e.g., @CALL or @EXIT, which are omitted because of space limitations.

Coverage Expressions Table 2(b) gives the coverage expressions of FQL and
their translations to coverage criteria. In addition to state-, edge- and path-
coverage expressions, we add expressions for composite coverage criteria as de-
fined in Section 3.5 (excluding coverage sequences). In the table, Φ denotes a
possibly empty set of state predicates, and φ denotes a state predicate.

Path Monitor Expressions The semantic function PJ.K, defined in Table 2(c),
maps a path monitor expression to a path monitor specification, i.e., a func-
tion that maps a CFA to a path predicate. one−of(filter) is defined by
one−of(filter)(A) =

∨

e∈E e with 〈L,E, I〉 = FJF K(A), i.e., one−of(filter)(A)
yields a path predicate that requires a state sequence to match at least one
edge in the target graph FJF K(A). restrict−start(p, φ) is a path monitor speci-
fication with restrict−start(p, φ)(A) = starts−in(p(A), φ), and restrict−end(p, φ)
is defined by restrict−end(p, φ)(A) = ends−in(p(A), φ). Given two path monitor
specifications p1 and p2, p1 ∨ p2 is defined by (p1 ∨ p2)(A) = p1(A)∨ p2(A). The
path monitor specification p1⊙p2 has the semantics that π |= (p1⊙p2)(A) holds
for a state sequence π iff π can be partitioned into two state sequences π1 and π2

with π1 |= p1(A) and π2 |= p2(A). Before defining p≤k, we define pk: π |= pk(A)
holds for a state sequence π iff π can be partitioned into k-many subsequences
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πi such that πi |= p(A) holds for all 1 ≤ i ≤ k. Note, p0(A) requires π to be the
empty sequence. Then, π |= p≤k(A) is equivalent to ∃0 ≤ i ≤ k.π |= pi(A), and
π |= p≥k(A) is equivalent to ∃i ≥ k.π |= pi(A).

Coverage Sequence Expressions Table 2(d) shows the translation of coverage
sequence expressions to coverage sequences.

FQL Queries Using the above FQL expressions, we build FQL queries. In the
definition of the semantics of FQL queries we use F ⊚E which is defined in Ta-
ble 3 and essentially composes every filter function expression inside a coverage,
path monitor, and coverage sequence expression E with the filter function ex-
pression F , such that E is applied to the target graph resulting from F . An FQL

query then defines a coverage criterion via the semantic mapping QJ.K shown in
Table 2(e). Given a regular coverage criterion Φ and a path monitor specification
p, restrict(Φ, p) denotes a mapping from CFAs to regular coverage criteria where
restrict(Φ, p)(A) yields a predicate ψ for every path predicate ϕ ∈ Φ(A) such
that π |= ψ holds for a path sequence π iff π |= ϕ and π |= p(A) holds.

We exemplify these definitions on the following query

> in @FILE("sort.c") cover EDGES(@FUNC(partition))

which yields the coverage criterion

〈true, edgecov[func[partition] ◦ file[“size.c”], ∅], true〉 .

4 Query Dispatching and Optimization

To generate a test suite as solution to an FQL query Q and a program given
as CFA A, we analyze the cover-clause of Q and choose—depending on its
structure—a suitable algorithm to generate the matching test cases. More specif-
ically, simple coverage criteria (recall Definition 16) which use a single state-,
edge- or path-coverage expression without heading or tailing path monitors are
amenable to specialized and efficient algorithms. Such criteria are of particular
importance, since most generic coverage criteria are defined as simple coverage
sequences (cf. Table 1).

Our top-level query processing algorithm dispatch is shown in Listing 3. It
takes a query Q and a CFA A to return a test suite Γ which satisfies Q on
A. In the first four lines of dispatch, we simplify the query to its base case
which consists of a single cover-clause without an accompanying in- or passing-
clause: We split the query Q in line 2 into its three constituents in I, cover C,
and passing P . Next, the filter I, which describes the scope of the query, is
propagated in lines 3 and 4 into C and P by replacing each occurring filter F by
compose(F, I) (following the rules in Tables 2(e) and 3). Then in line 5, we apply
the passing-clause P to obtain L(A) = {π ∈ L(A′) | π |= PJP K(A′)} where A′ is
the original CFA and where the predicate PJP K(A′) is defined following the rules
of Table 2(c). We implement the latter step by translating P into an automaton
which we inject into A to run in parallel with the original program such that
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A spans only those executions of the original program which also satisfy the
passing-clause.

1 function dispatch(query Q, cfa A) {
2 extract I , C, and P from Q = in I cover C passing P ;
3 C := C[substitute F with COMPOSE(F, I)];
4 P := P [substitute F with COMPOSE(F, I)];
5 A := PJP K(A);

7 if (C = STATES(F )) return ICS(A, stategoals[FJF K](A));
8 if (C = STATES(F, Φ)) return GCS(A, stategoals[FJF K, Φ](A));
9 if (C = EDGES(F )) return ICS(A, edgegoals[FJF K](A));

10 if (C = EDGES(F, Φ)) return GCS(A, edgegoals[FJF K, Φ](A));
11 if (C = PATHS(F, B)) return GCS(A, pathgoals[FJF K, B](A));

13 return ICS(A,QJCK(A));
14 }

Listing 3. Query dispatching

At this point, to answer the original query Q on A, we only have to find
a test suite which satisfies the plain cover-clause C on the restricted CFA A.
Our top-level algorithm distinguishes six cases depending on the structure of C:
Aside from the general case handled in line 13, we consider simple state coverage
on standard and predicated CFAs in lines 7 and 8, respectively, likewise edge
coverage in lines 9 and 10, as well as simple path coverage on standard CFAs in
line 11.

We solve these six cases with two algorithms, called iterative constraint
strengthening (ICS) and groupwise constraint strengthening (GCS), introduced
in [1]. An invocation to the basic iterative constraint strengthening algorithm
ICS(A, G) returns a test suite which satisfies all feasible goals in G on A. The
groupwise constraint strengthening algorithm GCS is a refinement of ICS and
exploits knowledge on mutually exclusive test goals, i.e., test goals which can-
not be covered simultaneously by the same test case. Additionally, for GCS

to work, all involved test goals must be state predicates. Hence in a call
GCS(A, {G1, . . . , Gk}), GCS expects the test goalsG =

⋃k

i=1Gi to be partitioned
into k groups Gi of mutually exclusive test goals [1]: The algorithm requires that
for all test goals p 6= p′ ∈ Gi and for all 1 ≤ i ≤ k, there exists no state s with
s |= p and s |= p′.

Both algorithms initially translate the CFA and the test goals into a SAT
instance utilizing a bounded model checker [7]. Then each solution to the SAT
instance yields a test case which is used in turn to strengthen the constraints
obtained so far such that each future solution must cover some hitherto un-
covered test goal. This scheme of iteratively strengthening the same constraint
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database leads naturally to incremental SAT solving [2] as suitable constraint
solving back-end.

Note that an FQL cover-clause C produces a set of test goals QJCK(A)
containing only path predicates. In all but the general case in line 13, we avoid
to use these test goals directly but derive an alternative and more suitable set
of implementation-level test goals to drive the search with ICS and GCS more
efficiently. Due to space restrictions, we discuss in this paper the handling of
edge- and path-coverage only. The two remaining cases for state-coverage in
lines 7 and 8 are handled similar to the edge-coverage case.

To handle the two edge-coverage cases (lines 9 and 10) with C = EDGES(F )
and C = EDGES(F,Φ) respectively, we have to specify the coverage of a single
program statement as concisely as possible. Thus we would prefer to work—
for this purpose—with the classical control flow graph (CFG) which carries the
program statements at its nodes (whereas the CFA A carries them with its
edges). Since our approach is based on the CFA representation, we augment the
CFA A with additional history information such that we know upon reaching a
state in A the last preceding state, thereby identifying the edge taken last.

Recall for example Figure 3 on page 11: If we have a test goal which requires
to cover the transition from state 1 to 3, we cannot directly replace this test
goal with the state predicate requiring to reach state 3, since state 3 is reachable
through states 1 and 2. Instead, we always store the last preceding state in the
history, such that we can check with a state predicate (a) that the path did reach
state 3 and (b) that the path visited state 1 directly before.

The only remaining case is simple path coverage (line 11) with C =
PATHS(F,B), which we approach in a manner similar to the edge case: To handle
paths, the history information does not only describe the last preceding state
but is extended to the relevant tailing part of the entire path. Since we allow
only a bounded number of occurrences of the same state, all considered paths
and therefore all accumulated history information is bounded.

In the remainder of the section, we discuss the three cases corresponding to
lines 9 to 11 in detail.

4.1 Simple Edge Coverage

Many common coverage criteria (e.g., basic block, decision, and condition cov-
erage) use coverage specifications of the form C = EDGES(F ) which yields
〈edgecov[FJF K]〉 as coverage criterion via the rules in Table 2 (omitting the
empty set of predicates).

Thus, each individual test goal of such a specification C applied to a CFA A
requires at least one test case to pass through each edge in edgecov[FJF K](A).
Since we want to use state predicates relying on history information, we use the
following definition for our implementation level test goals used in conjunction
with ICS:
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Definition 17 (Edge Goals). Given a CFA A and a filter function filter,
edgegoals[filter](A) is defined as the set of state predicates

edgegoals[filter](A) =
{

pe | e ∈ Efilter(A)

}

where Efilter(A) is the set of transitions in the filtered CFA filter(A) and where
s |= pe holds for a state iff s has been entered through the edge e = 〈s, s′〉 for
some other state s′.

Using edgegoals, we build a covering test suite for a program A which satis-
fies a coverage specification C = EDGES(F ) with ICS(A, edgegoals[FJF K](A)), as
invoked in line 9.

4.2 Simple Predicated Edge Coverage

In case of a simple edge coverageC = EDGES(F, {φ1, . . . , φk}) on predicated CFAs,
we obtain 〈edgecov[FJF K, {φ1, . . . , φk}]〉 as coverage criterion (cf. Table 2).

Analogously to the unpredicated case, we define an alternative set of
implementation-level test goals suitable for GCS: We introduce an individual
test goal pē for each edge ē ∈ Efilter(A[φ1,...,φk]) in the filtered and predicated CFA
filter(A[φ1, . . . , φk]). Since we want to apply GCS in the predicated case, we must
group these test goals pē into groups of mutually exclusive test goals. To this
end, we introduce a group Ge for each edge of the filtered and unpredicated CFA
filter(A) and assign pē to the group Ge with ē |= e, i.e., ē has to refine e.

Definition 18 (Predicated Edgegoals). Given a CFA A, a fil-
ter function filter, and a set of predicates {φ1, . . . , φk}, we define
edgegoals[filter, φ1, . . . , φk](A) as the set of groups

edgegoals[filter, {φ1, . . . , φk}](A) =
{

Ge | e ∈ Efilter(A)

}

each containing the state predicates

Ge =
{

pē | ē |= e and ē ∈ Efilter(A[φ1,...,φk])

}

where Efilter(A[φ1,...,φk]) is the set of transitions in the filtered and predicated CFA
filter(A[φ1, . . . , φk]) and where s |= pē holds for a state s iff s has been entered
through the edge ē.

Observe that two different goals pē 6= pē′ ∈ Ge are mutually exclusive: While
ē and ē′ refine the same edge e in the CFA, they each require different evaluations
of the predicates {φ1, . . . , φk} such that no path can possibly satisfy ē and ē′

simultaneously (not withstanding the application of GCS, the same path can
pass through ē and ē′ at different times).

Then, to solve C = EDGES(F, {φ1, . . . , φk}) on a CFA A, we use
GCS(A, edgegoals[FJF K, {φ1, . . . , φk}](A)) to construct a matching test suite
(line 10).
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4.3 Simple Path Coverage

A coverage specification C = PATHS(F,B) yields the coverage criterion
〈pathcov[FJF K, B, ∅]〉 following the rules of Table 2 (dropping the empty set
of predicates).

Analogously to edge coverage and the predicates pe for each edge e, we in-
troduce for each state sequence π to be covered a corresponding test goal pπ.
To use GCS, we need to partition these goals into groups of mutually exclusive
test goals: We put two test goals pπ and pπ′ into the same group Ge if π and π′

end in the same transition e. Thus, all test goals pπ 6= pπ′ ∈ Ge are mutually
exclusive—since a state is either reached through π or π′ but not through both
sequences at the same time.

Definition 19 (Path Goals). Given a CFA A and a filter function filter, we
define pathgoals[filter, B](A) as the set of groups

pathgoals[filter, B](A) =
{

Ge | e ∈ Efilter(A)

}

with the state predicates

Ge = {pπ | π ∈ LB(filter(A)) and π ends in e}

where s |= pπ holds for a state s iff s has been entered through a path which
followed the state sequence π immediately before entering s.

Hence, to solve a coverage specification C = PATHS(F,B), we use
GCS(A, pathgoals[FJF K, B](A)) , as shown in line 11.

5 Implementation and Experiments

We presented a first implementation of query-driven program testing in [11].
It has since been augmented with efficient algorithms for enumeration [1]. In
the technical report version of the VMCAI paper [12] we also demonstrated
the algorithmic feasibility of complex queries on several benchmarks, using a
prototypical early version of FQL.

Our implementation, FShell, uses the code base of CBMC 3.2 [7], a bounded
model checker with support for full ANSI C semantics. FShell features an
interactive, shell-like, interface to state FQL queries and control commands.
Furthermore, support for macros is provided to ease the use of complex queries.
An integration with the Eclipse IDE is part of our ongoing work.

Currently, FShell can only be used on C programs with static CFAs, i.e.,
there is limited support for function calls by function pointers and no support
for longjmp and setjmp. Behavior left undefined by the C standard is fixed in an
arbitrary manner, since our approach requires a fully specified CFA to formulate
test targets in terms of target graphs.

To show the viability of our approach we selected a set of C programs of dif-
ferent origin. We first picked some tools from the Unix coreutils implementation
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in Busybox 1.141, which has also be studied in [13]. Furthermore we generated
test data for kbfiltr.c from Microsoft Windows DDK, experimental results for
which had first been presented in [14]. In [15] model checking tools were ap-
plied to a manually cleaned up version of the Linux virtual file system layer.
The provided code2 includes an example use case, which was included in our
analysis.

In addition to these well studied examples we applied our framework on two
industrial case studies. First, we performed test case generation for an engine
controller code generated from a MATLAB/Simulink model (matlab.c). Second,
we examined a dynamic memory manager for airborne software systems (mem-
man.c).

Basic Block Condition BB × BB
Source LLOC #goals #tc #goals #tc #goals #tc #inf

coreutils/cat.c 14 12 5 10 5 144 12 25
coreutils/echo.c 72 26 8 20 11 626 30 92
coreutils/nohup.c 20 12 5 12 5 144 15 24
coreutils/seq.c 21 26 7 20 9 626 25 116
coreutils/tee.c 45 20 2 15 4 362 9 74
kbfiltr.c 1764 225 61 204 64 49731 278 35773
pseudo-vfs.c 359 6 3 6 3 36 3 16
matlab.c 2098 37 6 34 6 1297 10 780
memman.c 127 52 3 42 4 2704 8 1270

Table 4. Summary of experimental results

The summary of our experiments is presented in Table 4. For each source we
analyzed, we give the number of logical lines (LLOC, determined by counting
the number of “;” occurring in the code). To compare to previous work, we first
established basic block coverage for each of the programs. We give the number
of test goals (#goals) and the number of test cases (#tc) that were necessary
to cover these test goals. Given a loop bound, we compute test suites for 100%
coverage of all feasible test goals. In [13] in many cases coverage of more than
90% is achieved, but there is no information about infeasibility of the remaining
test goals.

Furthermore, we established condition coverage for each of the benchmarks
and computed test suites for the query

> cover EDGES(@BASICBLOCKENTRY)->EDGES(@BASICBLOCKENTRY)

as discussed in Section 1 and abbreviated as BB × BB in Table 4. Naturally,
many of the resulting test goals will be infeasible. We included these numbers in
the column #inf.

1 http://www.busybox.net/
2 http://research.nianet.org/~radu/VFS/
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The evaluation was performed on an Intel 2.53 GHz system equipped with
4 GB RAM. Apart from BB × BB for kbfiltr.c, which took 71 seconds, each
analysis finished within at most 30 seconds and used no more than 450 MB of
memory.

6 Related Work

Most existing formalisms for test specifications focus on the description of test
data. Well established approaches like TTCN-3 [16] and UML TP [17, 18] may
be applied both in white- and blackbox settings. None of them, however, allows
to describe structural coverage criteria.

As our focus rests on structural code coverage, we only study related work
on whitebox testing. In this context, generic coverage criteria, e.g., basic block
coverage, condition coverage, and path coverage are well studied, cf. [19, 10],
albeit with different names and with a notable lack of precise definitions. At-
tempts of formalizations using temporal logics [20], automata and graph based
approaches [21] or using the Z notation [22] do not consider the specifics of the
underlying programming language, which we encapsulate in filter functions.

Apart from the missing link to the programming language, these mathemat-
ical frameworks are not easily accessible by the working programmer. Such an
easy-to-use query language has been built into the BLAST model checker [23],
which was also used to generate basic block covering test suites for C code [14].
The BLAST query language [24, 25] is tailored towards verification and can de-
scribe test goals only by reachability properties. It does does not exhibit the
necessary support for specification of complex test suites. Implementation-wise,
the work of BLAST is closest related as we also use a model checker as backend.
BLAST, however, is based on predicate abstraction, whereas CBMC implements
SAT-based bounded model checking.

7 Conclusion

We have presented the syntax and semantics of FQL, a precise and expressive
query language for the specification of formal coverage criteria. Using the concept
of target graphs, we showed how to precisely specify coverage targets and how
to combine them to powerful coverage criteria — generic as well as code-specific
ones. Furthermore, by performing experiments on real world code using our
tool FShell we exemplified the practical strength of the theoretical concepts
underlying FQL.

We consider FQL an open framework to be extended. On the language level,
we are currently working on support for path set predicates, which will enable
us to specify criteria such as MC/DC. Concerning the query solving backend,
we are working on an alternative engine based on predicate abstraction and
configurable program analysis [26].
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