
An Efficient TDMA Start-Up and
Restart Synchronization Approach
for Distributed Embedded Systems

Vilgot Claesson, Member, IEEE, Henrik Lönn, Member, IEEE, and

Neeraj Suri, Senior Member, IEEE

Abstract—A desired attribute in safety-critical embedded real-time systems is a system time and event synchronization capability on

which predictable communication can be established. Focusing on bus-based communication protocols, we present a novel, efficient,

and low-cost start-up and restart synchronization approach for TDMA environments. This approach utilizes information about a node’s

message length that forms a unique sequence to achieve synchronization such that communication overhead can be avoided. We

present a fault-tolerant initial synchronization protocol with a bounded start-up time. The protocol avoids start-up collisions by

deterministically postponing retries after a collision. We also present a resynchronization strategy that incorporates recovering nodes

into synchronization.

Index Terms—Data communications, access schemes, real-time and embedded systems, distributed applications.

�

1 INTRODUCTION

THE pervasiveness of computer control is extending to
safety-critical embedded systems in mass-market sys-

tems, e.g., X-by-wire control in cars, for the enhanced
functionality and flexibility it offers. However, the high cost
of implementation and adapting to existing underlying bus-
based communication protocols, as well as the overhead
costs of distributed protocols limit their effective usage. For
cost-sensitive mass-market safety-critical systems (e.g.,
computer control), we develop low-cost and fault-tolerant
synchronization strategies for Time Division Multiple
Access (TDMA) bus environments. Specifically, highly
efficient and fault-tolerant communication primitives for
safety-critical systems with hard real-time requirements.
This paper builds upon the basic ideology presented in our
initial work [1]; we have since developed a novel algorithm
that significantly reduces the maximum start-up time.

Virtually all existing TDMA synchronization techniques
define and utilize explicit bits for node ID, which are used
in the synchronization algorithm. In this paper, we remove
the explicit bits used for node ID; instead, we base our
approach on the existence of unique message length
patterns to be used as node identifiers. The communication
primitives are intended for communication protocols where
the access method is TDMA. The primary primitives of
interest address the start-up behavior of a protocol in a
TDMA environment. We investigate how to effectively use
the information about messages lengths (ML) as a form of
message identifiers on which a synchronization approach

can be built—we term this the ML-approach. A solution for
avoiding start-up collisions is also presented using a
method based on the same idea.

Broadcast media approaches are prolifically used in
many systems on account of their simplicity and low
implementation/operational costs. In computer control,
many different protocols utilize a broadcast media, for
example, CAN [2]. However, with a shared communication
media, different access strategies exist. The most common
strategies utilize contention resolution, more specifically,
Carrier Sense Multiple Access (CSMA), where each node
senses bus activities and may send when none is detected.
The drawback occurs when two (or more) nodes send at the
same time, the messages will collide. Therefore, it is often
combined with Collision Detection where the colliding
nodes withdraw if they sense a collision; this is called
CSMA/CD and is used in, for example, Ethernet. Although
used with great success in Ethernet, the CSMA/CD method
is not appropriate for hard real-time systems due to the
inherent lack of determinism. With CSMA/CD, it is not
deterministically possible to avoid repeated collisions,
which effectively constrains estimating worst-case commu-
nication times.

To avoid the limitations of CSMA/CD for real-time
systems, collisions can be avoided using bit arbitration.
With bit-arbitration, messages sent simultaneously are
arbitrated using the bit sequence in the beginning of each
message. This implies a priority order among messages.
Nodes are not allowed to send messages with the same
arbitration bit sequence. Using the priority order among
messages, a worst-case communication time can be calcu-
lated for each message [3]. Using bit arbitration, the bus
propagation time imposes a minimum length of the
communication bit. Furthermore, bit pulses must be fairly
well formed for the arbitration to work. These two facts
limit the possible bit communication speed.

Token bus (IEEE 802.4) and mini-slotting [4] are other
fundamentally different medium access schemes. However,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004 1

. V. Claesson and N. Suri are with the Department of Computer Science, TU
Darmstadt, 64283 Darmstadt, Germany.
E-mail: {vilgot, suri}@informatik.tu-darmstadt.de.

. H. Lönn is with the Volvo Technology Corporation, Electronics and
Software, 412 88 Göteborg, Sweden. E-mail: henrik.lonn@volvo.com.

Manuscript received 11 Nov. 2002; revised 20 Sept. 2003; accepted 1 Dec.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 117751.

1045-9219/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

token bus is sensitive to loss of the token and mini-slotting is
limited in bandwidth as it is basedon the concept of delays. In
this paper, we focus on the TDMA media access method
where nodes are preassigned time-slots in a repeating
schedule. TDMA communication provides a deterministic
behavior where, for example, arrival times and worst-case
delays can be easily calculated. Although TDMA commu-
nication has been criticized for its static properties and its
consequent lack of flexibility, the properties resulting from
the determinism of TDMA communication are very useful,
for example, evident timing, composability, easy fault
detection, and testing [5].

Furthermore, most computer control systems have real-
time requirements where these properties are particularly
important. Combined with safety requirements in a hard
real-time system, the consequences are catastrophic if
deadlines are missed.

This paper is organized as follows: In Section 2, we
review related work. This is followed by a presentation of
the system and fault model in Section 3. In Section 4, the
novel initialization and resynchronization approaches are
described in detail. Sections 5 and 6 present the achieved
bounds on the start-up and the related evaluations. Section 7
details the supporting simulation results.

2 RELATED WORK

Several solutions to TDMA system start-up exist. Many
protocols utilize a bus master with a special sync message
that identifies the start of a communication cycle, e.g., [6].
Another example is Byteflight [7], that can be run as a
TDMA protocol. However, we have chosen to avoid bus
masters as it limits the reliability by introducing single
points of failure. Consequently, we have directed our
attention to distributed approaches.

One possible approach without bus masters is to use a
known nondestructive bit-pattern, i.e., a jamming signal,
that indicates the beginning of a TDMA cycle such that
more than one node can transmit this sync pattern, see [8].
This naturally increases the overhead as the synchroniza-
tion pulse must be sent at each and every TDMA-round. A
similar approach is to use a unique signal level, e.g., a third
signal level, other than 0 or 1. However, the extra hardware
necessary would probably be more efficiently used to
improve the bit encoding. Also, for both the jamming signal
as well as the additional signal level a faulty node may
repeatedly issue the resynchronization signal. Such a failure
would be more severe and difficult to mask than other
failure modes that result in invalid transmissions. Alter-
nately, if the synchronization information was embedded in
a regular message, a message (and a correct checksum)
would have to be transmitted successfully in order to
achieve synchronization. This is unlikely unless the node is
functioning correctly.

Another approach lets one or more nodes try to initiate
the communication by sending a message, the receivers of
the message can use it for synchronization. There is a risk
for collisions and even repeated collisions using this
method. This can be handled by different ways for the
node to make retries, for example, using a random back-off
time as in Ethernet [9]. However, this implies a lack of an
upper bound on the start-up time which is undesirable for
real-time systems with safety critical implications. Thus, we
focus on developing a start-up approach with a determi-
nistic upper bound on start-up time.

In the TDMA protocol TTP [10], a node is reset and
transits to a start-up mode on initialization or when a
system-wide communication blackout has occurred. On
entering this mode, each node has a unique delay until its
first message is transmitted. The unique delay reduces the
risk of collisions, but it also means that we cannot continue
sending according to the original bus schedule. Instead, the
bus clock must be reset when the initialization mode is
entered. Moreover, if collisions are detected while in this
mode, all nodes must reset their clocks [11].

The TTP protocol is one of the most established and
robust time-triggered approaches. It is a full communication
solution containing not only start-up and restart mechan-
isms, but also services as membership handling and
changing operational modes of the communication. It
should be clear that our approach only targets start-up
and does not address the membership and operational
modes. However, there is nothing preventing this synchro-
nization approach to be combined with other communica-
tion services, and even TTP’s approach for operational
modes and membership handling.

In the next section, we present the pertinent system and
communication model for our proposed approach. We also
detail the fault types considered.

3 SYSTEM, COMMUNICATION, AND FAULT MODELS

BEHIND THE APPROACH

TheSystemModel:The target systemsaresafety-criticalwith
real-time requirements. The system consists of n autonomous
nodes that communicate via a broadcast bus. The nodes have
local counters that are used to control the sending and
receiving of messages. Furthermore, the communication
system operates in a cyclic manner, where nodes have
preassigned time slots in a TDMA communication round,
see Fig. 1. Each node has a static list indicating when to send,
and also when and from whom to expect messages in the
cyclic TDMA round. If nothing else is stated, we will assume
that each node i sends messages of different lengths as
denoted by tmi.

Communication Model: The synchronization of the
nodes in the communication system can be divided into a
number of steps, namely: 1) collection of nodes clock values,
2) calculating adjustment value, and 3) clock adjustment.
Thus, clock synchronization requires that the receiver of a
message knows the sender’s identification (ID) and local
time (e.g., when the message was sent). For this type of
TDMA communication, this information can be extracted
from the arrival time of messages as they are known a priori.
The differences between the local and sender’s clocks are
calculated by the differences in the expected arrival time
and the real arrival time.

We assume that synchronization is handled by a
standard clock synchronization algorithm controlling the
progress of the local clocks, for example, using the daisy-
chain clock synchronization algorithm [12]. Other examples

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

Fig. 1. A TDMA communication round.

of existing suitable synchronization algorithms can be
found in [13], [14], [15].

Synchronization ensures that every node has the same
view of the current position in the communication schedule,
which suffices for nodes to know when to send their
messages.

Each node must store the synchronization schedule
containing the information of when and what a node is
expected to send. The storage requirement for this informa-
tion is normally relatively small, typically a few kilobits,
since we deal with embedded systems with a limited
number of nodes.

The global time-base can be used to synchronize
distributed tasks and minimize delay and jitter by relating
execution times of tasks to the TDMA rounds, as has been
established by [10], [11]. This simplifies the scheduling of
periodic tasks.

The intended area for these communication primitives is
hard real-time systems that also need to be cost-efficient. The
intent is to keep the primitives as simple as possible.
Communication bandwidth for embedded systems is sparse
and has developed relatively slowly compared to the growth
in processing capacity. Thus, it is important to have efficient
protocols with limited communication overhead.

The Fault Model: We assume that nodes follow fail-silent
semantics that prevents faulty nodes to fail in a mode where
they continuously transmit on the bus. Such a failure would
overflow the bus and prevent any normal communication,
including synchronization traffic. The fail-silent property
relies on high coverage of the nodes’ error detection
mechanisms. It can be argued that, since sufficient coverage
may be difficult to achieve, such failure semantics are
unsuitable for safety-critical system. However, recent work
indicates that using rigorous design and error detection
methods, a very high coverage can be achieved for this fault
model [16].

The communication media has omission failure seman-
tics such that messages are either received correctly and on
time or not at all. Byzantine failures are not considered as
they are avoided by design, using a bus combined with
message checksums and similar design means.

The initial synchronization algorithm requires a majority
of nodes to synchronize such that different smaller groups
do not form disparate cliques. This puts a limit on the
number of tolerated faulty nodes to bðn� 1Þ=2c, where n is
the number of nodes in the system. Thus, the initial
synchronization will tolerate bðn� 1Þ=2c node failures or
message omissions. The number of message omissions may
affect the synchronization time, which will be discussed in
Section 6. A node recovering from a failure will need
resynchronization in order to send messages. A node using
our ML-approach for synchronization will regain synchro-
nization after a unique pattern of message lengths has been
received. Thus, assuming normal operation, message
omissions will only affect the time for resynchronization
of the node.

In the next section, we discuss our approach along with
existing solutions for initial synchronization and resynchro-
nization. We highlight properties and shortcomings, in
order to put our approach in perspective.

4 INITIALIZATION AND RESYNCHRONIZATIONS

This section outlines the basic idea of our proposed
synchronization approach; we precede that with a short
discussion on existing synchronization solutions.

Current Approaches: Sending the time of local clocks
explicitly in messages is an established technique to
exchange time and position information in the communica-
tion schedule. A distributed algorithm can then be used to
agree on the global time. We advocate an approach where
the message arrivals are clocked and these time values are
used for synchronization. As messages are prescheduled,
these time values will reflect the local time of the
corresponding sender. Consequently, we must be able to
identify the sender of the message. Then, the static schedule
unambiguously provides the send time. The difference from
the scheduled send time and the local time when the
message was received, is used to create a correction of the
receivers’ clock. The correction can then be achieved using
an averaging algorithm; other possible approaches are
described in, e.g., [14]. In this paper, we focus on how
initial synchronization can be made more efficient by using
our approach for transferring message ids. The synchroni-
zation properties such as precision, etc., will naturally be
inherited from the chosen clock synchronization algorithm.

In most communications systems, a message identifier is
included in the beginning of messages, as id-fields, e.g., [2],
[4], [17], [18], and [7]. However, using statically scheduled
messages, the reception time of the message can serve as the
senders id, thus making the sender id-field of messages
unnecessary during normal operation when the clocks are
synchronized. Thus, before the nodes achieve synchroniza-
tion, explicit sender ids are necessary.

To handle initial synchronization and resynchroniza-
tions, we can include a sender-id in all messages, as done in
DACAPO [18]. Another way of achieving synchronization
is to send special initial messages, as done in TTP [10].
Sending the id in all messages will add extra overhead that
is useful only at start-up and at synchronization. Thus,
sending special messages at start-up appears as a good idea,
but then we increase the complexity by adding an extra
communication mode at start-up. Furthermore, resynchro-
nization of nodes is not supported if there is no sender id in
messages, i.e., reintegration of a node that has lost
synchronization. A third alternative is to let a node send
periodic messages with resynchronization information. If
the node that sends such a message fails, nodes that have
lost synchronization will not be able to reintegrate. There-
fore, additional nodes have to send messages with
resynchronization information to tolerate failures. The
disadvantage is the requirement of an extra synchronization
mode and the additional overhead at runtime.

Proposed Approach: Our solution takes advantage of
information that is inherent in statically scheduled commu-
nication such that inclusion of the sender’s id in messages
becomes unnecessary. This is achieved by using the
message length as the id of corresponding senders. A
receiver can then identify the sender of a message by the
unique sequence of message lengths received from the
communications media. Each node has a list that contains
all nodes, their message lengths, and the expected receive
order such that the sending node can be looked-up in this
list. After a unique message length (or sequence of
messages) has been received, the sender can immediately
be identified using this table. The unique message lengths

CLAESSON ET AL.: AN EFFICIENT TDMA START-UP AND RESTART SYNCHRONIZATION APPROACH FOR DISTRIBUTED EMBEDDED... 3

of nodes’ are chosen to reflect the individual nodes
bandwidth requirement, i.e., the node with most data to
transfer (per time unit) will have the largest message. The
only case when it is impossible to create a unique sequence
of messages is when all nodes require the same message
length. However, in such a case, this method is still possible
but the symmetry must be broken by, e.g., differentiating
the message length of one or more nodes. See Section 4.1 for
a detailed discussion of this issue.

Using this approach, nodes will know the position of the
communication schedule as soon as one unique message
length or sequence of messages has been received correctly.
However, using different message lengths will not prevent
messages from colliding. Making a new retry one TDMA
cycle later can lead to a new collision and, in the worst-case,
lead to an infinite sequence of collisions. A common work-
around is to wait a random delay before resending, usually
called exponential back-off.1 This works to attain syn-
chrony, though does not provide for the bounded start-up
and resynchronization times needed in safety critical real-
time systems.

To achieve a bounded start-up when messages collide,
each node will delay its retry by a short but unique time
period. We will show that, by using time periods that are
short compared to the cycle time, a short and bounded
worst-case start-up time is achieved while the average
startup is fast. Although, this worst-case scenario is
extremely unlikely, we support our proposition with
extensive simulation results. We show the average start-
up times of this approach using these simulations.

4.1 Identical Message Length Scenario

In most systems, nodes are likely to have different demands
on bandwidth and the requirement of a unique message
length sequence is normally not a limitation. However,
there could naturally exist situations where a number of
nodes in a system having similar assignments generate
similar communication loads. One example could be brake
nodes in a car, but in this case, other nodes in the car will
likely break the symmetry. Properties contributing to nodes
requiring the same message length are, for example, larger
system size where the increasing number of nodes and
messages makes it more likely that different nodes want the
same message lengths. Furthermore, data transferred in
most systems is often in multiples of bytes which also
reduces the number of possible message lengths. As our
approach works with unique sequences of message lengths,
there are still cases where we actually need to separate
messages. In Fig. 2, we show an example where nodes with
even id numbers have equal message length. Nodes with

odd id numbers demand different message sizes, therefore
a unique message sequence is easily formed, for example,
by sending a unique message every second message.

4.1.1 Handling of Identical Message Lengths

In an unlikely situation where all nodes require identical
messages, we need to separate at least one message to form a
unique sequence. A simple solution is to make one message
slightly longer, i.e., add padded bits, such that a unique
sequence is created.When creating unique sequences,we can
trade the average time to detect a uniquemessage against the
additional overhead for padded bits by controlling the
number of messages with unique message length.

When considering the initial start-up, nodes can still use
messages with the same length by adding simple con-
straints on sending at the initial synchronization. Note that
when one identifiable message (by length or sequence) has
been received by a majority of the nodes, it is sufficient to
achieve system level synchronization. Thus, we can con-
strain certain nodes during the initial start-up such that
messages directly can be identified. For example, if a
nonunique message is sent, all nodes (including the sender)
will assume that it is the last message in the TDMA round
of that length. Hence, all nodes can use that message for
synchronization, although they cannot use that message
payload. This simple method will allow many messages
with the same message length.

We are targeting systems where data exchange often
consists of control values, e.g., actuator set-points, etc., such
data typically needs around 8 to 32 bits per value. These
values are packed in messages and transferred on the
communication media. Normally, a number of these data
values are combined into a message, which determines the
message lengths. Each data message could be sent
separately, but that would obstruct our main objective to
decrease the overhead, as each message imposes an over-
head, e.g., for checksums, etc. Thus, better message
response may come at the expense of decreasing bandwidth
efficiency.

As larger systems are considered, which increases the
number of messages, we may use messages with equal
length. Thus, we use a unique sequence of messages to
decide the system’s current position of the communication
schedule. When identifying the unique sequence, a penalty
follows as more than one message might be necessary to
decide the position in the schedule. In Section 4.1.2, we
show how this time penalty can be reduced under certain
conditions.

There are a few situations we need to avoid that form
identical sequences that are repeated, which makes it
impossible to distinguish the exact position of the schedule.
Assume that a number of nodes send messages with
length x, and another set of nodes sends messages with
length y and, similarly, there are nodes using message
length z. Thus, x, y, and z are nonunique message lengths,
i.e., they do not provide unambiguous information of the
position in the schedule. In Fig. 3, we show a few examples
of unique and nonunique sequences. The difference among
unique sequences is the worst-case time to unambiguously
decide the position in the communication schedule.

Note that we must use at least one more node with
nonequal message length than the number of faulty nodes
that are to be tolerated.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

1. The exponential back-off strategies used in CDMA do not provide a
guaranteed bounded time to bus access. Predictable bounded times are
essentially required for safety critical applications.

Fig. 2. A TDMA communication round. Nodes with odd id numbers have

a unique message length, all nodes with even id numbers have equal

message length.

4.1.2 Optimizations

In this section, we describe how to minimize delays
emanating from using messages with the same length. This
will ensure that the initial start-up is fast despite messages
with equal length. A sender with a nonunique message
length, say node b, will be preselected if a node receives a
message with the length of node b, i.e., nodes will assume b
was the sender independently of who actually sent it. This
preselected node, b, will be determined before runtime.
When receiving a nonunique message, all nodes will
assume b as the sender and, thereby, the system nodes
can be synchronized using any of the messages with that
length. For example, if we have a 6-node system with nodes
labeled, “a” to “f ,” i.e., the node id:s a; b; c; d; e; f , sending in
alphabetical order. We assume nodes a and b have the same
message lengths. Then, if the nodes receive a message from
node a or b in the start-up phase, they will always assume
that b was the sender, regardless of the actual sender. All
nodes will synchronize to this message and they assume c is
the next message to be received.

The drawback of this method is that the message content
cannot be used when the first received message is not
unique, as the sender is uncertain. This is not a problem
during an initial start-up or system resynchronization as
nodes are synchronized after the first message is received.
Thus, the contents of following messages can be used. We
argue that this is reasonable since the primary issue is to get
nodes synchronized and it is only one message where the
data contents cannot be used due to an unknown sender.
Thus, the only negative effect of this in the initial start-up is
that the first message cannot be utilized.

This optimized approach cannot be used for resynchro-
nization of a single recovering node, as such a node must
pinpoint the exact location in the schedule. Thus, a
resynchronizing node must wait until a unique pattern/
message has been received in order to be sure of the current
position in the communication schedule.

4.2 The Node-Level Synchronization Operations

On this background, we now detail the node synchroniza-
tion process. Nodes work in three different modes depend-
ing on the level of synchronization achieved, see Fig. 5. In
Mode (1) normal operation a node is synchronized and sends
according to the preassigned schedule. Mode (2) resynchro-
nization mode is entered when a node has lost synchroniza-
tion or messages from less than half of the nodes are
received. Mode (3) is the recovery mode that a node enters at
start-up and after a disturbance preventing message
reception for the duration of a full TDMA cycle. The rules
are based on those described in [19]. We first provide some

relevant definitions that are used in the synchronization

protocol description in Section 4.2.2.

4.2.1 Definitions

n: The number of nodes in the system.

T: The TDMA round time.

tmi: The time it takes for a node i to send its message Mi,

i.e., this time is proportional to the message length.

INCi: Each node i is allotted a unique time period INCi

used to delay the nodes transmission after a collision.

tmmax: The time it takes for the node with the longest

message Mmax to send its message, i.e., the time it takes

to send the longest message.

TCi: The time counter for node i, keeps track of the current

time in the schedule. With this pointer, each node will

know when to send.

STi: The send time of node i.

tc: A variable that stores the start time of the first detected

collision event.

SP: The silence period (SP) is the time a node must check

the media for existing traffic, before it is allowed to make

the initial send. SP ¼ T þ INCmax.

MRvec: Message Receive Vector, containing information

on whether the latest n messages were received correctly

or not. In a (n) node system, a node’s MRvec contains n

zeros and ones, e.g., f0; 1; . . . 0; 1; 1; 1g, where 1 represent

correctly received messages and a 0 incorrectly or

missing messages. MRvec is a FIFO list where a new 0

or 1 is shifted (shift
���!

) into the vector representing the

receive status of the latest received or expected message.

We denote the number of 1 in MRvec with onesðMRvecÞ.
SCi: The silence counter for node i, timing the period from

last bus event or disturbance. The silence counter is reset
every time any messages/traffic is sensed on the bus.

Having introduced the definitions, we now present the
synchronization protocol, with the operational modes and
their corresponding operation.

4.2.2 Synchronization Protocol, Modes, and Operation

Each of the following operations is performed at each node.
A node will also treat message reception from itself in the
same way as other nodes, e.g., updating the MRvec. This
protocol is triggered by events set according to the cyclic
clock (timeouts) and media activities (message received).

Recovery mode: (Fig. 4) The start mode which nodes
enter initially at start-up. A node starts by listening for
existing traffic during slightly more than one communica-
tion cycle. If no message was received during that time, the
node will send its message according to its own clock. A
node returns to this mode in case of complete loss of
synchronization.

Resynchronization mode: Having sent a message in

recovery mode, a node enters resynchronization mode and

waits for reception of messages from half of the nodes.

(Note: No message transmissions are made in Resynchro-

nization mode).

CLAESSON ET AL.: AN EFFICIENT TDMA START-UP AND RESTART SYNCHRONIZATION APPROACH FOR DISTRIBUTED EMBEDDED... 5

Fig. 3. Unique and nonunique sequences of message received from a

bus. Each TDMA-cycle is eight messages and they are separated with

semicolon (:).

To reach normal mode (see Fig. 5), we require message

receipt from a majority of the nodes, thus we tolerate

bðn� 1Þ=2c faulty nodes. The effect of failure during start-

up and resynchronization is a delay in the start-up time.
It is important to avoid repeated collisions of messages

which would prevent the system from synchronizing. This

is handled in the recovery mode above. Each node i is

assigned a time increment INCi, significantly shorter than

the period time T. If a collision occurs at time tc, colliding

nodes will postpone their next retry with a time equal to the

increment INCi. Thus, the send time of the retry, tr, for

node i will be one period plus the time increment, i.e.,

tr ¼ tc þ T þ INCi. This will postpone the resending of the

message with the time period INCi. Nodes that are not

involved in the collision will mark the collision time tc and

refrain from any transmissions during the time they can

expect an retry from the colliding nodes. As colliding nodes

delay their next send by a node unique value, INCi, they

will not collide again. Thus, after a deterministic time

interval, as detailed in Section 5, (2), at least one node will

access the media and transfer its message. All nodes will

receive this message and synchronize to it preventing

further collisions. Thereby, the initial synchronization

process completes.

In Section 5, we now derive the maximum number of
collisions in a worst-case scenario and substantiate its
correctness.

5 UPPER BOUND ON START-UP

In this section, we establish the upper bound on subsequent
collisions. In an initial start-up scenario, a node will start in
the Recovery mode. In this mode, a node will synchronize
with the first received message. Thus, we need to show that
the nodes, in a bounded time, will receive an uncorrupted
message to synchronize with.

To prove this upper bound on the initialization, we use
the following assumption:

INC1 < INC2 < � � � < INCn << T; ð1Þ

wheren is the index of the last node. Thus, nodenwill use the
longest delay after a collision. For clarity, we have used the
specific terms INCmin and INCmax instead of INC1 and
INCn, respectively. The minimum time unit must be at least
one propagation delay, � , of the media. Thus, the shortest
INCmin must be at least � , and the following, INCminþ1, must
differ with at least � . Furthermore, clock drift will effect the
start-up. Thus, the difference d between different increments,
i.e., d ¼ INCiþ1 � INCi, must be large enough to avoid the
effects of clock drift. We need to avoid that the clock drift can
make the nodes collide again, thus d > T � 2�þ � , where T is
the TDMA length and � is the maximum clock drift.

When nodes p and q collide, we want to prevent further
collisions fromoccurring. This is achievedwhen the colliding
nodes, p and q, postpone their send retry with INCp and
INCq, respectively, after a collision. As INCp 6¼ INCq, nodes
p and q are prevented from colliding subsequently.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

We summarize important properties of the protocol:

1. There will be one or more nodes that will be the first
to send after a start-up.

2. If a single node starts to send, other nodes will listen
and synchronize accordingly.

3. If two or more nodes send at the same time, there
will be a collision at time tc.

. Nodes that participate in the collision will adapt
to the collision and postpone their retries with
the additional INC parameter.

. For all other nodes, they will remember the
collision time tc and avoid to send during nodes
retry, i.e., ½tc þ T þ INCmin; tc þ T þ INCmax�.

Now, the colliding nodes, i.e., nodes p and q, will then

send at tp and tq, respectively. Where:

tp ¼ tc þ T þ INCp

tq ¼ tc þ T þ INCq:

As we previously stated, INCp 6¼ INCq and the nodes will

not make their retransmission at the same time. Thus, all

nodes will synchronize to the first of p and q that sends.
Now, if there was another node r that wants to send at tp

(or tq), this would create another collision. However, this

node started its media monitoring at the time tr which is:

tr ¼ tp � SP:

CLAESSON ET AL.: AN EFFICIENT TDMA START-UP AND RESTART SYNCHRONIZATION APPROACH FOR DISTRIBUTED EMBEDDED... 7

Fig. 4. Events handled by node i in Recovery mode.

However,

tr ¼ tp � SP ¼ tc þ T þ INCp � ðT þ INCmaxÞ:

Finally, we have:

tr ¼ tc þ INCp � INCmax � tc:

This means that the monitoring of the media, by node r,
started before the transmission/collision occurred. This
leads to a contradiction as, according to the protocol, it
could not happen. Thus, none of the other nodes can create
further collisions.

Nodes will fail by becoming silent and will therefore not
affect the start-up scenario.

The worst-case time is then the longest tp, i.e., with
INCmax. Furthermore, we need to find out the maximum
possible time until the first collision, i.e., tc, may occur.

. First, we have the SP ¼ T þ INCmax.

. After SP, a node local clock may be in any position,
thus we might need to wait an additional T �mlmin.

. Then, the first message is sent, which requires at
most mlmax time units.

Thus, the maximum time from the point where at least
one node starts executing, would be:

tc ¼ T þ INCmax þ T �mlmin þmlmax

¼ 2T þ INCmax þmlmax �mlmin:

Thus, the maximum start-up time tsmax is:

tsmax ¼
2T þ INCmax �mlmin þ T þ INCmax þmlmax:

After collecting terms, we get:

tsmax ¼ 3T þ 2INCmax þmlmax �mlmin: ð2Þ

6 PROPERTIES AND OVERHEAD

In this section, we present the properties of this synchro-
nization approach. The overhead of synchronization can be
manifested in three ways, namely, 1) communication
overhead, 2) synchronization time overhead, and 3) compu-
tation/memory overhead. The communication overhead
relates to additional data that must be transferred in order
to achieve synchronization. The time overhead relates to the
additional timeouts, retransmissions, etc. Finally, the
computation/memory overhead is related to processing
and memory storage which is required in order to
accomplish resynchronization.

This synchronization approach is efficient in the sense
that it has low communication overhead, e.g., no id bits are
necessary. However, there is invariably some overhead
related to communication services like synchronization. In
safety-critical real-time systems, the synchronization over-
head and communication overhead are normally most
critical. Computation time and memory is relatively cheap
in comparison. Therefore, we favor a solution that may have
a larger computation overhead but smaller time and
communication overhead. The following list summarizes
the main overhead contributors in this approach.

Communication: No additional messages are sent and no
extra information bits are needed to achieve synchroni-
zation, except in the rare cases when we need to add
extra bits to get unique message lengths.

Time: Synchronization is accomplished as soon as a
message is received. It may be delayed by collisions,
but is bounded as given in (2), Section 5.

Computation/Memory:

. Each node carries a list of “n” entries, i.e., one for
each node in the system entries containing all
message lengths and the corresponding nodes, it
also includes the knowledge about the time slot it
should be sent out in.

. Counters which keeps track of local time (TC) (i.e.,
point in the communication schedule) and silence on
the media (SC).

. A storage value for the start-up increments, INCi,
the time for a collision tc and the silence period SP.

. A vector with the n last received/expected mes-
sages, with only one bit necessary for each node,
indicating received or not received messages.

To analyze the proposed Message Length (ML) ap-
proach, we compare it with two existing approaches for
initial synchronization and resynchronization. The ap-
proach used in DACAPO [18] (D-appr.) uses fixed length
messages where one or two special nodes change its send
time in order to resolve collisions. The second approach is
based on the start-up approach used in TTP [10], [20], the
(T-appr.), see also Section 4.1 where nodes send special start
frames and each node uses dedicated back-off times.
Finally, an approach that behaves as ML except that it uses
exponential back-off to resolve collisions. This approach
will be referred to asMLexp. The exponential back-off uses a
random delay before retry, and additional collisions
exponentially increase the time range from which the
random delay is chosen. The exponential back-off is used
in, for example, the Ethernet protocol [9]. This method
would require a random number generator in each node
instead of our increment value calculated and stored
preruntime. Although slightly more complex in implemen-
tation, MLexp is independent of system size.

In Table 1, the main differences in overhead for these
start-up scenarios are summarized. The main categories we
have compared are

1. communication bandwidth overhead (in number of
bits),

2. storage overhead,
3. bounded/unbounded start-up time, and
4. maximum time for a node to resynchronize.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

Fig. 5. Communication controller states.

In our ML approach and MLexp, there are no communica-
tion overheads since information is transferred using
message lengths. The required storage is proportional to
the number of nodes n such that a message can be identified
by the message length. The major difference between these
two is that ML has a bounded start-up time, see Section 5.

For the resynchronization, the maximum time it takes to
resynchronize a node is important. Using theML approach,
the maximum resynchronization time is determined by the
maximum time to detect any unique sequence of messages.
Thus, it is dependent on how message lengths are set and
distributed in the send schedule during design time.

We first look at a case where all nodes have unique
message lengths. The time to send messages from node i,
i.e., the duration during which that message occupies the
bus, is tmi and we assume that we index the nodes such
that the send duration for node i is shorter than for node
iþ 1, i.e., tm1 < tm2 < � � � < tmi < tmiþ1 < � � � < tmn. Thus,
the worst-case resynchronization time tr, i.e., the longest
time it can take for a node to receive a message, would be:

tr ¼ tmn�1 þ tmn: ð3Þ

In case of f faults, i.e., message omissions or node crashes,
we have:

tr ¼ tmn�1�f þ � � � þ tmn�1 þ tmn: ð4Þ

As we see in (4), tr will increase for each extra fault. As a
pessimistic approximation, we can write ðf þ 1Þ � tmmax if f
is the number of tolerated faults and tmmax is the longest
message length.

In the worst-case, there will be only one unique sequence
thus, (i.e., one unique message); the worst-case resynchro-
nization time is then one TDMA round minus the length of
the unique message tmu, i.e., tr ¼ T � tmu. Now, we
include faulty nodes leading to message omissions. On
receipt of the unique message, a node can synchronize;
similarly, on receipt of all the other messages without any
omission, we know that the next message is the unique one.
Thus, the worst-case synchronization time with one omis-
sion fault is: tr ¼ T � tmu þ tmu ¼ T . For two omission
faults: tr ¼ 2T � 2tmu.

2tmu reflects that we need an additional unique message
for each tolerated faulty node. We can get a simpler
expression by the fact that tr ¼ 2T � 2tmu � 2T . Thus, for
f ¼ f1; 2; 3; 4; 5; . . .gwe get tr ¼ f1T; 1T; 2T; 2T; 3T; . . .g, etc.
Then, we can bound the resynchronization time as:

tr � 1þ f

2

� �� �
T: ð5Þ

The TTP approach requires special initialization mes-
sages to be sent that include information about the sender.
A node is synchronized when it has received an initializa-
tion message; this is equally true for a resynchronizing
node. Thus, initialization messages must be sent during
normal operation to allow a recovering node to resynchro-
nize. Furthermore, to tolerate failure of the initialization
message sender, ðf þ 1Þ nodes must send this type of
message. The number of bits required in initialization
messages is ðf þ 1Þlog2ðnÞ, where log2ðnÞ bits are needed to
identify the sender and such a message must be sent ðf þ 1Þ
times to tolerate f failures.

In the TTP approach, nodes synchronize to the first
initialization message. In case of colliding nodes, TTP
ensures that further collisions are avoided by ensuring that
nodes listen to the bus and reset their local clock at a
collision or bus event. Thus, after such a reset, nodes will
wait for a node-specific time, based on the requirement, to
send their message. For this to work and to avoid additional
collisions, all nodes must have sensed the collision. By
increasing the time between two successive initialization
messages, we reduce the overhead stemming from initi-
alization messages. However, this will increase the worst-
case time for resynchronization of a recovering node. The
worst-case resynchronization time depends on the time
between and on the length of initialization messages,
f � td þ tmim, where td is the largest time between initializa-
tion messages and tmim is the length of those messages.

In the D-approach, the sender id is always included in the
message and will result in a communication overhead of
nlog2ðnÞ per TDMA cycle. There is no extra storage needed
for either the D-approach or T-approach for the start-up. This
should not be confused with the fact that TTP-controllers
already store total information about the communication
schedule, including messages lengths. This extra overhead
is used for other purposes than the start-up synchronization
and resynchronization.

Table 1 shows that the ML-approach combines a
bounded start-up time with low communication overhead.
For the resynchronization we should remember that the
worst case for the ML-approach is based on a case where
most nodes use the same message length. In a more likely
case, e.g., with up to three nodes with the same length in a
row, the worst-case resynchronization time should be three
received messages.

7 SIMULATIONS

To show the normal start-up behavior of our approach, we
have simulated the initial start-up synchronization and
measured the time for all nodes to reach the Normal mode.

CLAESSON ET AL.: AN EFFICIENT TDMA START-UP AND RESTART SYNCHRONIZATION APPROACH FOR DISTRIBUTED EMBEDDED... 9

TABLE 1
Properties of Start-Up/Resynchronization Approaches

(B = Bounded and U = Unbounded.)

Note that the worst-case start-up time previously calculated
was for the first message to be received by all nodes. The
simulations have been done in a number of scenarios, such
as under normal fault free condition as well as with faulty
nodes during the start-up.

We have assumed a bus system where the bus is no
longer than 40 m. The propagation delay for a 40 m cable is
approximately 0.2 �s, and we selected a communication bit
length of twice the propagation delay. This affects the start-
up times, but as we have used the same for all simulated
protocols, it does not affect the relative comparison between
protocols. In these simulations, the basic time-units are
0.4 �s, i.e., the basic bit transmission time.

The message lengths are unique and chosen as a multiple
of the basic time unit, of 0.4 �s. For the time increments
(INCi), it is important that they are longer than the
propagation time. Furthermore, they should differ by more
than one propagation time-unit each, such that after a
collision between two nodes these nodes will not collide
again. In our simulations, INCi are chosen starting with one
time unit, i.e., two times the propagation time, and for each
additional node we add two time-units, e.g., INCi ¼
1; 3; . . . ; ð1þ 2 � nÞ for i ¼ 1 to n where n, is the number of
nodes.

The start times of the local clocks, i.e., the time counter
TC, have been evenly distributed in the time interval (0,T)
where T is the TDMA round time, see Fig. 6.

7.1 Normal Operation

We conducted our simulations by determining the start-up
times under conditions when all nodes work correctly. To
show how the ML-approach scales with system size we

show the simulation results from a 6-node and 24-node
system.

We assume BCT is the number of bits that fits within a

cycle, i.e., a Cycle Time (CT). Then, if bt is the send time of a

single bit, we get the number of bits during a Cycle Time as:

BCT ¼ CT

bt
:

The message lengths have been chosen randomly from

approximately 24 bits and up, such that the Cycle Time of a
communication round is equal to a certain chosen period.

The selected periods are between 0.2 and 1.6 ms. We have

also varied the system sizes, using 6 and 24 node systems.
For each CT (cycle time), 50 sets of messages with

randomly generated lengths were used. We have initially

chosen to randomly generate messages between 24 bits and
BCT

ðn=2Þ, where n is the number of nodes. The 24 bits is not a fixed

limit, but has been chosen as it is reasonable to assume that

smaller messages are rarely used. However, if messages of

equal length were generated, they were separated by

decreasing the length of one of them. Therefore, a few

messages may have been separated such that their length are

below the 24 bits. Normally, they are separated by increasing

the length of one of the messages, so as not to interfere with

the payload. However, to increase or decrease does not alter

the simulations and the choice is based on the implementa-

tion.
The sum of all n messages Sr should be BCT . Therefore,

each randomly generated message length mlri was adapted
according to (6). The used message length mli is then:

mli ¼ ðmlri � 24Þ � Sr � 24 � n
BCT � 24 � nþ 24: ð6Þ

This ensures that messages are randomly generated

starting from 24 bits and the total sum is BCT . The message
length distributions for the 6-node and 24-node system are

shown in Fig. 7. We can see that with a shorter CT we have
shorter messages in average. Furthermore, in the 6-node

case, there is a wider range of message lengths 24-1,000 bits

compared to 22-450 bits in the 24-node case.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

Fig. 6. Start-up initialization.

Fig. 7. Message length distribution with the ML approach. (a) A 6-node system and (b) a 24-node systems. Note the different scale on the abscissas.

We use the 24-node case to show the operational
capability of our approach for a relatively large system size
as well. The system size of 6 and 24 nodes will also be used
for the simulation of the fault scenarios.

For each of these 50 message sets 1,000 starts were run,
such that in total 50,000 starts were run for each CT-case. In
Fig. 8, we see the maximum, average, and minimum start-
up times for these simulation runs. The average time to
reach normal mode is almost linear to the CT. This means
that the start-up time increases when the average message
length increases while using the same system size. This also
applies to the maximum and minimum start-up times.

We can calculate the maximum start-up time using (2). If
we, for example, look at the 6-node case with a CT of 0.2ms,
from our simulation data, we see that the maximum time
until the system reached the normal mode was 0.55 ms. The
first node to send was node 3 followed by 4, 5, and 6. Thus,
when the node 6 message has been delivered, all nodes will
enter normal mode. To calculate the maximum start-up
tsmax, we use INCmax ¼ INC6 ¼ 13 � 0; 4 �s, minimum
message length is in this case 48 bits and the maximum
message length is 130 bits. Thus, mlmin ¼ 48 � 0; 4 �s and
mlmax ¼ 130 � 0; 4 �s. and we get tsmax ¼ 0:64 ms.

Now, if we reduce the simulation start-up maximum
from the impact of nodes 4, 5, and 6, we get the

corresponding value, i.e., the time until the first message
was received. Their total length is 288 bits which takes
0.11 ms and the worst measured start-up time is 0:55�
0:11 ¼ 0:44 ms. Thus, our measured start-up time of 0.44 ms
is well below the theoretical maximum of 0.64 ms that is
given by (2). What we show in Fig. 8 is a lower
approximation of the theoretical start-up time of 3T
(� tsmax). Thus, even when we use the shorter theoretical
start-up time to compare with the simulation results (the
time to enter normal mode), the simulation results stays
well below the theoretical value.

As we can see in Fig. 8, the average start-up time is close
to linear to the CT, i.e., the start-up time is a fixed factor of
the CT. In the 6-node case, the start-up time is close to
1.8 times the CT and slightly less for the 24-node case where
it is 1.6 times the CT.

Furthermore, we see that the theoretical maximum is
above the corresponding simulated maximum values. In the
system with few nodes, there is a smaller margin to the
theoretical max value.

In Fig. 9, we show the relative frequency of the start-up
times. As observable, the distribution of the different starts
depends on the CT-length. The fact that start-up times are
more spread in the 6-node case (except for CT=0.2ms) can

CLAESSON ET AL.: AN EFFICIENT TDMA START-UP AND RESTART SYNCHRONIZATION APPROACH FOR DISTRIBUTED EMBEDDED... 11

Fig. 8. Approximate theoretical max (for first message), Max, Average, and Min start-up time. (a) A 6-node system and (b) a 24-node system.

Fig. 9. The relative frequency of the start-up times in a (a) 6-node and (b) 24-node (b) system. In each graph, each curve corresponds to a Cycle

Time, where the leftmost curve has the shortest Cycle Time.

be explained by the fact that there is a larger spectrum in
message lengths for the 6-node case, see Fig. 7.

7.2 Equal Message Length Scenarios

We now outline the simulations conducted to show the
effect of equal message length in a system. We have utilized
the optimizations described in Section 4.1.2. Using this
method will result in a limited effect on the average start-up
times. To show this, we ran simulations with a 24-node
system and a relatively small cycle time, see Fig. 10. This
has been chosen as messages of the same size are more
likely needed when using a system with many nodes that
have requirements of relatively short messages, such that
varying the message lengths is hard. All message lengths
have been chosen randomly as described in Section 7.1; one
message length is then used for a number of nodes. In our
simulations, we have used the 24-node system with three,
six, and nine messages with equal length. The simulation
results are shown in Fig. 10. As the figure shows, there is a
limited effect of using the same message lengths when we
use this optimized approach. The main difference is when
the number of messages with equal lengths increases, there
is a slightly larger dispersal between the start-up times. For
comparison, we have also included the case with no
identical messages.

We can see that we get a small impact on the start-up
times using the optimized method. However, there is still a
question of the applicability of this method in reality. How
often do we get schedules where we cannot use our method
at all, i.e., without using some manual intervention like
adding bits to get unique messages? It is hard to find typical
real-time application data, for example, industry can
seldom provide typical real-time system schedules or
information about the amount of data they send. In order
to get an indication of how often schedules occur that
prohibit our approach, we have randomly generated a large
number of schedules. We have then studied this data to see
how often our approach can be used and how the
maximum delays are imposed due to recurring message
sequences.

To handle data values that are multiples of bytes long,
many communication protocols use messages lengths with

multiples of bytes as well. We use the same principle and use
onlymessageswithmultiples of bytes. This naturally reduces
the number of possible message lengths in the system.
Messages in real-time systems are approximately 24 to
240 bits long excluding overhead, this gives us 27 different
message lengths. However, to stay on the pessimistic side
with our figures, we will restrict the message lengths further
andonlyallowmessagesbetween56and200bits,whichgives
us only 18 different message lengths to choose from.

We have generated TDMA schedules, consisting of
randomly generated messages that are evenly distributed
among these 18 message lengths. These simulations have
been done for different system sizes, i.e., with 10, 15, 20, 25,
30, 35, and 40 messages per TDMA-round. We have
measured the longest nonunique sequences of messages
in each simulation and studied the effect of increasing
number of messages. The result is shown in Table 2, where
we generated 100,000 schedules per system size. The
columns show the occurrences of the longest sequence of
messages that must be received before the sender’s ID can
be established. For each system size, the occurrences of all
the generated schedules is shown such that the sum in each
row is 100,000. In column 1, we see the occurrences where
only one message must be received before the senders id
can be established. In column 2, the longest sequence that
exists in a schedule before the sender’s ID can be
established is 2, etc. For each system size we show in the
table the distribution of the longest nonunique sequence.
We found that even in quite difficult circumstances, all
generated schedules could use our approach. However,
when the system size increases, repeated sequences of
message lengths becomes more frequent as possible
message lengths are the same.

7.3 Fault Scenarios

In this section, we show a system start-up behaves when
one or more nodes fail during start-up. A number of failure
scenarios can occur during the start-up of the system.

The main failure scenario we have to consider is when a
node falls silent before or during the start-up. Since this will
affect the start-up behavior, we have simulated when faulty
nodes are silent during the start-up. The main effect on the
start-up is that the average start-up times for still working

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

Fig. 10. The relative frequency of the start-up times in a 24-node system

using three, six, and nine messages with the same length, respectively.

The Cycle Time is 0,82 ms.

TABLE 2
Distribution of Nonunique Sequences Divided

by the Different Systems Sizes

The sequences are measured in the number of nodes required before
they can be resolved. For each system size, 100,000 schedules have
been measured.

nodes increase, as can be seen in Table 3. It also shows the
relatively small standard deviation on the average start-up
for the three cases, i.e., zero, one, and two faulty nodes, and
the increasing minimum and maximum start-up times, due
to faulty nodes, during the simulations. To further show
how the start-up is affected, we show in Fig. 11 the relative
frequency of the starts simulated.

In order to show how this behavior scales to larger
system sizes, we show in Fig. 12 the relative frequency of
the startup times for a 24-node system. The maximum
startup time increases with the number of faulty nodes and
in our simulations the maximum startup time increased
from 1.60 ms, for the case with zero faulty nodes, to 1.87 ms
for the case with seven faulty nodes.

7.4 Comparison

We compare the simulations of our startup approach with
the popular TDMA communication approach TTP/C [10],
[20], [21]. We also compare with one of our earlier
approaches, used in the DACAPO [18] system.

TTP/C is a Time Triggered protocol for distributed real-
time systems. It focuses on safety-critical systems and is
designed to tolerate faults. The information regarding the
system startup behavior in TTP/C has been taken from [21]
and [20].

To get nodes synchronized, TTP/C sends special
messages with information about the time and the other
C-state information. These messages are called Initialization
frames (I-frames) and are sent at startup and regularly under

normal operation such that nodes can resynchronize after a
transient failure.

The basic TTP/C startup behavior can, under normal
conditions, be described in three steps as follows [20]:

1. When the nodes are turned on, they enter an Init
mode. In the Init mode, the nodes run the initializa-
tion code.

2. After a node has initialized itself, it enters the Listen
State where it starts a listen-timeout and waits for an
initialization message, i.e., the I-frame. If a node
receives an I-frame before the timeout it can
synchronize itself to the sending node. After the
reception of the I-frame, a node transfers to the
Active State, via the Ready State. In the Active State,
nodes send normal messages, i.e., messages with
data information.

3. If a node does not receive the I-frame before the
listen-timeout ends, it will send its own I-frame.
After sending this I-frame message, the node will
wait until it receives a new I-frame message with the
same C-state. If such a message is received before the
end of the Cold Start Timeout, this node will transfer
into the Active state.

Thus, the node that times out first from the Listen Timeout

will send the first message, which is an I-frame. Other
nodes receiving this message will set its C-State accordingly
and can then change to normal operation phase where
normal messages can be exchanged, i.e., messages with data
information.

The basic startup behavior is, in reality, a bit more
complex, for example, TTP/C has a dual communication
channel. Such a dual link will affect the startup behavior,
but, in order to compare these startup methods, we will
compare with a single channel version. In this comparison
we are mainly interested in the average startup times of the
protocol, but also the max startup times. However, TTP/C
has one extremely unlikely startup case where all nodes
enter the cold start mode simultaneously. This will generate
a very long startup time, but it occurs with very small
probability. We have chosen not to simulate such a case, as
it is very unlikely and it would affect the average time

CLAESSON ET AL.: AN EFFICIENT TDMA START-UP AND RESTART SYNCHRONIZATION APPROACH FOR DISTRIBUTED EMBEDDED... 13

TABLE 3
Simulation Result Using a 6-Node System with Zero, One, and
Two Nodes Faulty during the Startup, the Cycle Time is 0.4 MS

Fig. 11. The relative frequency of the startup times in a 6-node system.

The cycle time is 0.4. ms. The curves correspond to startup cases where

the number of faulty nodes are zero, one, and two.

Fig. 12. The relative frequency of the startup times in a 24-node system.

The cycle-time is 0.82 ms. The curves correspond to startup cases

where the number of fault nodes are varied between zero and seven.

startup minimally. If such a case would occur, several
TDMA-rounds would be added to the startup time.

In this simulation, we have assumed that the TTP/C
nodes are started approximately at the same time and then
they run their initialization code. As a consequence, the
Listen Timeouts of the nodes are started at different times. In
this simulation, we have therefore assumed that nodes start
their individual Listen Timeouts at different times, evenly
distributed between time zero and a cycle time, e.g., for a
six node system between 0 and 0.2 ms.

The startup time and behavior of the TTP/C protocol is
mainly decided by the startup timeout’s �startupi , shown in
Fig. 13, which is unique to each node.

Together with the TDMA round time �round, they build
the Cold Start Timeout and the Listen Timeout as follows:

�coldstarti ¼ �round þ �startupi ; ð7Þ
�listeni ¼ 2 � �round þ �startupi : ð8Þ

In Table 4, we can see the average startup times with their
standard deviation as well as the Max startup times for the
TTP/C protocol compared to the presented ML- approach.

As seen from Table 4, our ML approach compares well
when considering average startup time. It should also be
emphasized that the ML-approach does not require any
special messages to be synchronized, i.e., it uses normal
messages. This means that the communication is estab-
lished very fast using the ML-approach. When the nodes in
the ML-approach reach the Normal state (when we have
stopped measuring the time of this approach), half of these
nodes have already sent messages with data. This is not the
case for the TTP/C protocol, which we stopped the time
measuring after the first correctly sent message, i.e., the first
I-frame.

The DACAPO protocol [18] is a TDMA protocol where
all nodes have static and equal lengths, otherwise, it is
similar to our approach. When comparing with the
DACAPO protocol startup, we have used data from [19]
where three startup methods are compared. We will not go
into details of these, but note that two of them are

developed by one of the authors of this paper. These
startup methods are referred to as the ZF and I/D methods.
In order to translate those results to our configuration, we
have adapted the message length to be 1=6 of the cycle time.
We have compared our case with 6-nodes and a cycle time
of 204.8 �s. This means that we have adapted the result
from [18] to use a message length of 83 bits and interframe
gaps of 2 bits, which results in a slightly smaller cycle time
of 204.0 �s. The results can be studied in Table 5. Our
primary interest has been in comparing the max startup
times to see whether they have improved compared to our
initially described startup method. As shown in the table,
we have managed to improve the startup times consider-
ably from our previous generation of startup-protocols.

8 SUMMARY AND CONCLUSIONS

In this paper, we have presented a unique synchronization
approach that provides for low-cost fault-tolerant synchro-
nization in distributed real-time systems targeting safety-
critical systems for the mass-market. The proposed TDMA
communication approach uses 1) the static information of
the different message lengths to obtain information about
sender id and 2) unique sequences of message lengths to
discern ordering. This simple approach provides low-
complexity and high-efficiency start-up synchronization
and resynchronization. Fundamentally, our approach
makes the following contributions:

. Provision of bounded start-up time using a novel
deterministic backoff strategy.

. Quick start-up on average, with a small standard
deviation.

. Low communication overhead compared to existing
TDMA-based approaches.

. Fast reintegration of recovering nodes.

. High robustness in tolerating faults with only a
limited synchronization and resynchronization time
penalty.

Thus, the synchronization approach appears well suited
for real-time control applications due to its guaranteed
temporal upper bound on start-up. Its low complexity
combined with the simplicity makes it useful for cost-
sensitive safety critical systems as well.

ACKNOWLEDGMENTS

The authorswould like to thank the reviewers of this paper as
well as their colleagues Arshad Jhumka, Martin Hiller, and
Andréas Johansson for their time and many helpful com-
ments. This work was partly funded by the Volvo Research
Foundation #F99/07 and EU Next TTA #IST-2001-32111.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

Fig. 13. The startup timeout.

TABLE 4
Average Startup Times for TTP/C Protocol Compared to the

Presented Message Length (ML) Approach

TABLE 5
Max Startup Times for ZF, I/D, and LS Startup Methods
(Fault-Free Cases) Compared to the Presented Message

Length (ML) Approach

REFERENCES

[1] V. Claesson, H. Lönn, and N. Suri, “Efficient TDMA Synchroniza-
tion for Distributed Embedded Systems,” Proc. 20th Symp. Reliable
Distributed Systems, pp. 198-201, Oct. 2001.

[2] CAN Specification Version 2.0, Robert Bosch GmbH, 1991.
[3] K.W. Tindell and A. Burns, “Guaranteed Message Latencies for

Distributed Safety-Critical Hard Real-Time Control Net,” Dept. of
Computer Science, Real-Time Systems Research Group, Univ. of
York, Technical Report YCS 229, 1994.

[4] Multi-Transmitter Data Bus, Part 1, Technical Description,
Aeronautical Radio, Inc., Dec. 1995.

[5] H. Kopetz, “Should Responsive Systems be Event-Triggered or
Time Triggered?” IEICE Trans. Information and Systems, vol. E76D,
no. 11, pp. 1325-1332, 1993.

[6] H. Sivencrona, L.-�A Johannson, and V. Claesson, “A Novel Bit-
Oriented Communication Concept for Distributed Real-Time
Systems, qrcontrol,” Proc. Third Int’l Conf. Control and Diagnostics
in Automotive Applications, 2001.

[7] J. Berwanger, M. Peller, and R. Griessbach, “Byteflight—A
New High-Performance Data Bus System for Safety-Related
Applications,” http://www.byteflight.com/, 2004.

[8] P.J. Koopman and B.P. Upender, “Time Division Multiple Access
without a Bus Master,” United Technologies Research Center, US,
Technical Report RR-9500470, 1995.

[9] R.M. Metcalfe and D.R. Boggs, “Ethernet: Distributed Packet
Switching for Local Computer Networks,” Comm. ACM, vol. 19,
no. 7, pp. 395-404, 1976.

[10] H. Kopetz and G. Grunsteidl, “TTP—A Protocol for Fault-Tolerant
Real-Time Systems,” Computer, vol. 27, no. 1, pp. 14-23, 1994.

[11] H. Kopetz, A. Krüger, R. Hexel, D. Millinger, R. Nossal, R.
Pallierer, and C. Temple, “Redundancy Management in the Time-
Triggered Protocol,” Technical Univ. of Vienna, Technical Report
4/1996, 1996.

[12] H. Lönn and R. Snedsbøl, “Synchronisation in Safety-Critical
Distributed Control Systems,” Proc. IEEE Int’l Conf. Algorithms and
Architectures for Parallel Processing, vol. 2, pp. 891-899, 1995.

[13] N. Suri, M.M. Hugue, and C.J. Walter, “Synchronization Issues in
Real-Time Systems,” Proc. IEEE, vol. 82, no. 1, pp. 41-54, 1994.

[14] P. Ramanathan, K.G. Shin, and R.W. Butler, “Fault-Tolerant Clock
Synchronization in Distributed Systems,” Computer, vol. 23, no. 10,
pp. 33-42, Oct. 1990.

[15] H. Kopetz and W. Ochsenreiter, “Clock Synchronization in
Distributed Real Time Systems,” IEEE Trans. Computers, vol. 36,
no. 8, pp. 933-940, Aug. 1987

[16] P. Folkesson, “Assessment and Comparison of Physical Fault
Injection Techniques,” PhD dissertation, Chalmers Univ. of
Technology, 1999.

[17] J. Berwanger, C. Ebner, A. Schedl, R. Belschner, S. Fluhrer, P.
Lohrmann, E. Fuchs, D. Millinger, M. Sprachmann, F. Bogenber-
ger, G. Hay, A. Krüger, M. Rausch, W.O. Budde, P. Fuhrmann,
and R. Mores, “FlexRay—The Communication System for
Advanced Automotive Control Systems,” SAE 2001 World
Congress, ser. SAE Technical Paper Series, Detroit, Mich., 2001.

[18] B. Rostamzadeh, H. Lönn, R. Snedsbøl, and J. Torin, “DACAPO: A
Distributed Computer Architecture for Safety-Critical Control
Applications,” Proc. Intelligent Vehicles Symp., pp. 376-381, 1995.

[19] H. Lönn, “Initial Synchronization of TDMA Communication in
Distributed Real-Time System,” Proc. 19th IEEE Int’l Conf.
Distributed Computing Systems, pp. 370-379, 1999.

[20] TTP/C Protocol, Specification of the Basic TTP/C Protocol, first ed.,
Time-Triggered Technology, TTTech Computertechnik GmbH,
www.tttech.com, July 1999.

[21] W. Steiner and M. Paulitsch, “The Transition from Asynchronous
to Synchronous System Operation: An Approach for Distributed
Fault-Tolerant Systems,” Proc. Int’l Conf. Distributed Computing
Systems, pp. 329-336, July 2002.

Vilgot Claesson received the PhD degree from
Chalmers University of Technology, Sweden. He
is currently a research fellow at TU Darmstadt,
Germany, and is associated with Volvo Technol-
ogy serving a liaison role across academic and
industrial research. Previously, he worked with
system and software design on the AXE10
group switch at Ericsson Research and Devel-
opment. His research interests are in real-time
distributed embedded systems. Currently, the

focus is on time-triggered systems and their extension to provide
efficient event-triggered services, such that they meet the dependability
and functionality demands of aerospace-and automotive arenas. He is a
member of the IEEE and the IEEE Computer Society.

Henrik Lönn received the PhD degree in
computer engineering from Chalmers University
of Technology, Sweden. He has researched
communication issues in real-time systems with
a special focus on initialization and clock
synchronization. He is currently at Volvo Tech-
nology Corporation, Department of Electronics
and Software. At Volvo, he has worked with
prototypes, architecture modeling, and commu-
nication aspects on vehicle electronic systems.

He is also participating in national and international research collabora-
tions on embedded systems development. He is a member of the IEEE
and the IEEE Computer Society.

Neeraj Suri received the PhD degree from the
University of Massachusetts at Amherst. He
currently holds the TU Darmstadt chair profes-
sorship in “Dependable Embedded Systems and
Software” at TUDarmstadt, Germany, and is also
affiliated with the University of Texas at Austin.
His earlier academic appointments include the
Saab Endowed Professorship and, earlier, at
Boston University. His research interests focus
on design, analysis, and assessment of depend-

able embedded systems and software. His current research is
emphasizing robustness hardening of software, verification along with
experimental validation of protocols, embedded software and operating
systems, and “security by design” for SW and OSs. His group’s research
activities have garnered support from DARPA, the US National Science
Foundation, ONR, European Commission, NASA, Boeing, Microsoft,
Intel, Saab, Volvo, and Daimler Chrysler among others. He is also a
recipient of the US National Science Foundation CAREER award. He
serves as an editor for ACM Computing Surveys covering embedded
systems and real-time, and has been an editor for the IEEE Transactions
on Parallel and Distributed Systems. He is a member of IFIP WG 10.4 on
Dependability, a senior member of the IEEE and IEEEComputer Society,
and also on the board for Microsoft’s Trustworthy Computing Academic
Advisory Board. More professional details are available at: http://
www.deeds.informatik.tu-darmstadt.de/suri/activities/activities.html.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CLAESSON ET AL.: AN EFFICIENT TDMA START-UP AND RESTART SYNCHRONIZATION APPROACH FOR DISTRIBUTED EMBEDDED... 15

